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EDGE-COLORING LINEAR HYPERGRAPHS WITH MEDIUM-SIZED EDGES

VANCE FABER! AND DAVID G. HARRIS?

ABSTRACT. Motivated by the Erdés-Faber-Lovdsz (EFL) conjecture for hypergraphs, we consider
the list edge coloring of linear hypergraphs. We show that if the hyper-edge sizes are bounded
between i and Cjcv/n inclusive, then there is a list edge coloring using (1 + €);%; colors. The
dependence on n in the upper bound is optimal (up to the value of C; ).

1. INTRODUCTION

Let H = (V,E) be a hypergraph with n = |V| vertices. Each edge e € E can be regarded as
a subset of V. We say that H is linear if e Ne'| < 1. We define the minimum rank of H as
p = mingcp |e| and similarly the mazimum rank of H as P = max.cp |e|. A graph is a special case
with p =P = 2.

For any hypergraph H, one may define the line graph of H, to be an (ordinary) graph L(H)
on vertex set F, with an edge {e1,es} in L(H) iff e; Neg # 0. The edge chromatic number ¢(H)
(respectively list edge chromatic number gys(H)) is the chromatic number x (respectively list
chromatic number yys;) of L(H).

A long-standing conjecture, known now as the Erdés-Faber-Lovasz conjecture, can be stated as

Conjecture 1.1 (EFL). Let H be a linear hypergraph with n vertices and no rank-1 edges. Then
q(H) < n.

There has been partial progress to proving this result; in [3] Kahn showed that ¢(H) < n+o(n).
See [5] for a more recent review of results.

In this paper, we will show a related result for hypergraphs in which the edges all have medium
size. More specifically, we show the following:

Theorem 1.2. For any integer i > 3 and any € > 0, there exists some value C; > 0 with the
following property. For any linear hypergraph H on n vertices, with minimum rank p > i and
mazimum rank P < C; \/n, it holds that

qust(H) < (1+¢)

i—

In particular, the EFL conjecture holds for hypergraphs of minimum rank p > 3 and maximum
rank P < C'y/n, for some universal constant C' = C3 ;. By way of comparison, [6] showed that the
EFL conjecture holds for hypergraphs of minimum rank p > \/n. However, Theorem can be
significantly stronger than EFL in cases where p is large. We also note that the dependence of P
on n is optimal, up to the value of the constant C; ; see Section [l for further details.

2. PRELIMINARIES

2.1. Notation. To simplify some notation, we define the truncated logarithm by

log(z) = {ln(m) ifx>e

1 otherwise
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Thus, log(x) > 1 for all x € R.

If H = (V,E) is a hypergraph and E' C E, then H(E’) is the hypergraph (V, E’). If V/ C V| then
H|[V] is the induced hypergraph (V’/, E’), where E’ is the set of edges involving only vertices of V.
If the hypergraph H is understood, then we sometimes write gjs(E’) as shorthand for g5 (H (E")).

2.2. Background facts. Our proof is based upon two powerful theorems for list-coloring hyper-
graphs. The first is due to Kahn [4], restated in terms of linear hypergraphs.

Theorem 2.1 ([4]). For every € > 0 and integer P > 1 there exists a constant ¢ = c(e, P), such
that any linear hypergraph H with mazximum rank P and maximum degree A > ¢ satisfies

Qist(H) < A(1+€)
Observe that if P < O(1), then Theorem 2] immediately shows Theorem [[.2] namely that

Qist(H) < ;%5 (1+€). Indeed, Kahn’s asymptotic proof of EFL [3] uses this proof strategy. However,

Theorem 2.1] does not give useful information when P is increasing with n.
In this second case, we follow a strategy of [2] and use another graph property, local sparsity,
based on the triangle counts in the line graph.

Definition 2.2. A triangle in a graph G is a set of three vertices vi,ve,vs such that (vi,ve) €
E, (?)1,’[)3) cFE, (?)2,’[)3) e F.
Theorem 2.3 ([7]). Suppose that every vertex of G has degree at most d, and every vertex partic-

ipates in at most f triangles. Then

L)
log(d?/ f)
We note that [1] had earlier showed a similar bound x(G) < O(log( 7 f)) for the ordinary chro-

matic number. However, our proofs really need list-coloring as a subroutine: even if our goal was
only to bound the ordinary chromatic index ¢(H ), we would still need the list-coloring provided by
Theorem 2.3

Xuist(G) < O(

3. MAIN RESULT

In this section, we prove Theorem We let L denote the line graph of H. Also, we let € > 0
be an arbitrary fixed quantity which we view as a constant throughout the proof.

Observation 3.1. Fvery vertex v € H is in at most % o edges of H.
Proof. Since H is linear, the edges containing v do not Share any other vertices. O

Proposition 3.2. Suppose we are given a linear hypergraph H = (V,E) and a partition E =
E\UE,. Let Py = maxe,cp, |le1| and let po = ming,ecpg, |ea|.
Then
(Tl — 1)P1)
p2—1
Proof. Suppose each edge has a palette of size Q > qist(F2). Select an arbitrary list-coloring of
H(E>). Consider the residual palette for each edge e € Ej; that is, the palette available to e after
removing the colors selected by edges f € Ey with f Ne # (). By Observation B, each vertex v is
) L edges in Fy. Thus,

Quist(H) < maX(Qlist(Ez), Qiist(E1) +

in at most D=L edges in F5, and thus each edge e € F touches at most (=D e
(n—1)Py
p2—1
As long as Q — ("pzillpl > qust(E1), we can list-color H(E7) with the residual palette, thus giving
a full list-coloring of H. Thus, our coloring procedure succeeds as long as
(’I’L — 1)P1

p2—1

each edge in E1 has a residual palette of size at least Q —

Q > qist(Eo) and Q> + qist (E1)
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Given a hypergraph H, we let A; denote the set of edges e € E such that 2¢ < |e| < 2¢*!. Note
that each edge e € F corresponds to a vertex of L, and for any U C E we denote by L[U] the
induced subgraph of L on the edges of U.

Proposition 3.3. For any integer ¢ > 1, we have

n

og(n/27)))

Proof. By Observation B.I] every vertex in H touches O(n/2%) edges in A;. As each edge in A;
contains at most 2/ vertices, it follows that L[A;] has maximum degree O(n).

Now, consider some edge e € A;; we want to count how many triangles of L it participates in.
There are two types of triangles. The first involves three edges around a single vertex; for each
v € e there are at most n/2 choices for the other two edges, giving a total triangle count of at
most 271 x (n/24)% = O(n?/2%).

The second type of triangle involves three edges, each intersecting at a distinct point. There are
O(n) choices for the second edge €’. By linearity, for any given choice of vertices v € e, v’ € €’ there
is at most one possible choice for the third edge e’ intersecting e at v and €’ at v’. Hence, the total
number of triangles of this second type is at most n x (2011)2 < O(n2%).

Now, applying Theorem 2.3] we see that

Quist (A;) < O(

Quist(A;) < O(% +

3

n n
) < O(— + 71)
10g(07(n2/§i2+n22i)) i log(n/2%)

O

The remainder of this proof will be expressed in terms of an integer parameter k (which does
not depend on n), and which we will set later in the construction.

Observation 3.4. For each integer k > 1, there is some integer Ny, such that whenever n > Ny
it holds that

QZist(AlUA2U"'UAk)§(1+€)p_1

Proof. By Observation B L[A; U A2 U--- U Ag] has maximum degree ;‘T_% and maximum rank

2k+1 _ 1. Now apply Theorem 211 O
Corollary 3.5. If i > k and P < Vne=F, then quu(A;) < O(n/k).
Proof. This is vacuously true for ¢ > logy P, since then A; is empty. Otherwise, Proposition [3.3]
gives ai(A) < O + pptiony) < O + pogrlry) < O(n/B). 0
Proposition 3.6. Suppose i > k and P < Vne=F. Let x = [logy k]. Then
Quist(Ai U Aipa U Ajpo, U Ajgse...) < O(n/k)

Proof. Let s = [loggn]. For each integer j > 0, define

Bj = Aitso UAir(s—1)2 UAip(s—2)2 U - U A (j11)e U Aitju

We will prove that qist(B;) < en/k for some sufficiently large constant ¢ and j > 0, by induction
downward on j.

When j = s, this is vacuously true as B; = (). For the induction step, we use Proposition
using the decomposition Ey = A;ij, and Fa = Ajy (j11). U Aip (22 U U Aigse = Bjq1.
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Note that P; < 2147241 1 and py > 2707 By induction hypothesis, gisi(E2) = qiist (Bj11) <
en/k. By Corollary BB, qust(E1) = quist(Aitjz) < ¢n/k, for some constant ¢ > 0. This gives

n—1)P
Qiist(Bj) < max(qiist(F2), quist (£1) + (,027—)11)
(n _ 1)(2i+jw+1 _ 1)
2i+(j+l)z _ q
< max(en/k,cdn/k + 4n/k)
which is at most cn/k when ¢ > ¢ + 4. O

< max(en/k,dn/k +

Proposition 3.7. For each integer k > 1, there is some integer N}, such that whenever n > Nj,
and P < vVne ¥ it holds that
nlogk

)
Proof. Suppose every edge begins with a palette of size % for some constant c. Let z = [log, k.

We randomly partition the colors into x classes. For any class ¢ and edge e, let Q; . denote the
number of class-i colors in the palette of edge e.

We have E[Q; (] > % > of- Furthermore, Q; . is the sum of independent random variables
(whether each color in the palette of e goes into @Q; ), and so by Chernoft’s bound we have

Qlist(Ak UAgs1 UAga UL .. ) < O(

‘ cn @(n/k)
P < )<
r((;)z,e S k‘) S e

For fixed k, this is smaller than n2k/2 for sufficiently large n. Since there are at most n? edges and
k classes, by the union bound there is a positive probability that every edge has at least ¢ colors

of each class in its palette.

Next, for each ¢ in the range i = 1,...,x, we use the class-i colors to color L[Agi; U Akrire U
Agiitop U...]. By Proposition this succeeds for ¢ sufficiently large. d

We are now ready to prove Theorem

Proof of Theorem[LZ. We will prove that gis(H) < 725(1 + O(e)); the result follows easily by
rescaling.
By Proposition B.7] there is some constant ¢ such that for any integer k£ > 1 and n > N} we have

Qist(Ax U A1 UAgoU..0) < %. We select k sufficiently large so that
clogk <_ €
ko —i—1

By Observation 3.4, for n > Nj we have

n(l+e)

i—1
Now, suppose every edge has a palette of size Q) = (A+3e)n Randomly partition the colors into

i—1
two classes, where a color goes into class I with probability p = % and goes into class II with

QIist(Al U A2 U---u Ak‘—l) <

probability 1 — p. A Chernoff bound argument similar to Proposition B.7 shows that for n > N”,
with positive probability every edge has at least ne class-I colors and 3 (1 + €) class-II colors. In
such a case, we can color L[A; U Ak U AgioU. . .| using class-I colors and L[A; UAsU---U Ap_1]
using class-II colors.

So far, we have shown that there is an integer k and integer M = max (N, Ny, N}) such that

whenever P < Vne=* and n > M that gs(H) < 72 (1 4 O(e)). Set Cj . = min(e */2, ﬁ)

When P < Cjey/n, then P < Vne=*. Also, when P < Cj/n, we have P < /5. Since
P > > 2, this implies n > 4M. So qiist(H) < 725 (1 + O(e)). O
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4. DEPENDENCE OF nn ON P

In this section, we show (roughly speaking) that Theorem must include a condition of the
form P < C; v/n where C; < (/12¢

i—1°

Proposition 4.1. For every real number x in the range (0,1) and every 6 > 0, there is some
integer N such that, for all n > N, there are linear hypergraphs H on n vertices which satisfy the
following properties:

(1) qust(H) > an

(2) P=p=r

(3) vVnz <r < (1+46)y/nx

Proof. Consider a finite projective plane with parameter g; this gives a linear hypergraph H' with
q> + q + 1 vertices and every edge of rank r = ¢ + 1, and g (H') = ¢®> + ¢ + 1. Assuming that
¢®> 4+ q+1<n, we can form H from H' by adding n — (¢> + ¢ + 1) isolated vertices.

Let u = y/nx and let ¢ be the smallest prime with ¢ > u. For n (and hence u sufficiently large),
this ¢ satisfies ¢ < u 4 u® for some constant # < 1. In particular, ¢*> + ¢+ 1 < na 4 o(n) < n for n
sufficiently large. Our choice of ¢ ensures that that qg(H') = ¢*> +¢+1 > u? +u+1 > zn. Also,
r > +/nx and r/\/n — /x as n — 0. O

Proposition 4.2. For any integer i > 3 and € € (0,1), the term “C; /n” in Theorem [L2 cannot
be replaced by any expression of the form f(i,e,n), where for any fized i,€,0 there are infinitely
many n with

(1+e)n

1 —1
Proof. Apply Proposition [4.1] with x = (1 + €)/(i — 1); note that since ¢ > 3 and € < 1 we have
x € (0,1). This ensures that for all n > N, there is a hypergraph H,, with qys;(H,,) > xn and rank
p=P=rfor Vnx <r <(1+4d)y/nz.

Thus, for n sufficiently large, we have p > i. Also, for sufficiently large n, we have P <
(1+96)y/nz = (1+9) w Thus, if f(i,e,n) > (1 +9) (9 for infinitely many n, then for

i— i—1
infinitely many n we would have qyst(H,) < % = xn, a contradiction. O

fi,e,n) > (1+9)
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