EDGE-COLORING LINEAR HYPERGRAPHS WITH MEDIUM-SIZED EDGES

VANCE FABER ${ }^{1}$ AND DAVID G. HARRIS ${ }^{2}$

Abstract

Motivated by the Erdős-Faber-Lovász (EFL) conjecture for hypergraphs, we consider the list edge coloring of linear hypergraphs. We show that if the hyper-edge sizes are bounded between i and $C_{i, \epsilon} \sqrt{n}$ inclusive, then there is a list edge coloring using $(1+\epsilon) \frac{n}{i-1}$ colors. The dependence on n in the upper bound is optimal (up to the value of $C_{i, \epsilon}$).

1. Introduction

Let $H=(V, E)$ be a hypergraph with $n=|V|$ vertices. Each edge $e \in E$ can be regarded as a subset of V. We say that H is linear if $\left|e \cap e^{\prime}\right| \leq 1$. We define the minimum rank of H as $\rho=\min _{e \in E}|e|$ and similarly the maximum rank of H as $P=\max _{e \in E}|e|$. A graph is a special case with $\rho=P=2$.

For any hypergraph H, one may define the line graph of H, to be an (ordinary) graph $L(H)$ on vertex set E, with an edge $\left\{e_{1}, e_{2}\right\}$ in $L(H)$ iff $e_{1} \cap e_{2} \neq \emptyset$. The edge chromatic number $q(H)$ (respectively list edge chromatic number $q_{\text {list }}(H)$) is the chromatic number χ (respectively list chromatic number $\chi_{\text {list }}$) of $L(H)$.

A long-standing conjecture, known now as the Erdős-Faber-Lovász conjecture, can be stated as Conjecture 1.1 (EFL). Let H be a linear hypergraph with n vertices and no rank-1 edges. Then $q(H) \leq n$.

There has been partial progress to proving this result; in [3] Kahn showed that $q(H) \leq n+o(n)$. See [5] for a more recent review of results.

In this paper, we will show a related result for hypergraphs in which the edges all have medium size. More specifically, we show the following:
Theorem 1.2. For any integer $i \geq 3$ and any $\epsilon>0$, there exists some value $C_{i, \epsilon}>0$ with the following property. For any linear hypergraph H on n vertices, with minimum rank $\rho \geq i$ and maximum rank $P \leq C_{i, \epsilon} \sqrt{n}$, it holds that

$$
q_{l i s t}(H) \leq(1+\epsilon) \frac{n}{i-1}
$$

In particular, the EFL conjecture holds for hypergraphs of minimum rank $\rho \geq 3$ and maximum rank $P \leq C \sqrt{n}$, for some universal constant $C=C_{3,1}$. By way of comparison, [6] showed that the EFL conjecture holds for hypergraphs of minimum rank $\rho \geq \sqrt{n}$. However, Theorem 1.2 can be significantly stronger than EFL in cases where ρ is large. We also note that the dependence of P on n is optimal, up to the value of the constant $C_{i, \epsilon}$; see Section 4 for further details.

2. Preliminaries

2.1. Notation. To simplify some notation, we define the truncated logarithm by

$$
\log (x)= \begin{cases}\ln (x) & \text { if } x \geq e \\ 1 & \text { otherwise }\end{cases}
$$

[^0]Thus, $\log (x) \geq 1$ for all $x \in \mathbf{R}$.
If $H=(V, E)$ is a hypergraph and $E^{\prime} \subseteq E$, then $H\left(E^{\prime}\right)$ is the hypergraph $\left(V, E^{\prime}\right)$. If $V^{\prime} \subseteq V$, then $H\left[V^{\prime}\right]$ is the induced hypergraph $\left(V^{\prime}, E^{\prime}\right)$, where E^{\prime} is the set of edges involving only vertices of V^{\prime}. If the hypergraph H is understood, then we sometimes write $q_{\text {list }}\left(E^{\prime}\right)$ as shorthand for $q_{\text {list }}\left(H\left(E^{\prime}\right)\right)$.
2.2. Background facts. Our proof is based upon two powerful theorems for list-coloring hypergraphs. The first is due to Kahn [4], restated in terms of linear hypergraphs.

Theorem 2.1 ([4]). For every $\epsilon>0$ and integer $P>1$ there exists a constant $c=c(\epsilon, P)$, such that any linear hypergraph H with maximum rank P and maximum degree $\Delta \geq c$ satisfies

$$
q_{l i s t}(H) \leq \Delta(1+\epsilon)
$$

Observe that if $P \leq O(1)$, then Theorem 2.1 immediately shows Theorem 1.2, namely that $q_{\text {list }}(H) \leq \frac{n}{\rho-1}(1+\epsilon)$. Indeed, Kahn's asymptotic proof of EFL [3] uses this proof strategy. However, Theorem 2.1] does not give useful information when P is increasing with n.

In this second case, we follow a strategy of [2] and use another graph property, local sparsity, based on the triangle counts in the line graph.
Definition 2.2. A triangle in a graph G is a set of three vertices v_{1}, v_{2}, v_{3} such that $\left(v_{1}, v_{2}\right) \in$ $E,\left(v_{1}, v_{3}\right) \in E,\left(v_{2}, v_{3}\right) \in E$.
Theorem 2.3 (7). Suppose that every vertex of G has degree at most d, and every vertex participates in at most f triangles. Then

$$
\chi_{\text {list }}(G) \leq O\left(\frac{d}{\log \left(d^{2} / f\right)}\right)
$$

We note that [1] had earlier showed a similar bound $\chi(G) \leq O\left(\frac{d}{\log \left(d^{2} / f\right)}\right)$ for the ordinary chromatic number. However, our proofs really need list-coloring as a subroutine: even if our goal was only to bound the ordinary chromatic index $q(H)$, we would still need the list-coloring provided by Theorem 2.3.

3. Main result

In this section, we prove Theorem 1.2, We let L denote the line graph of H. Also, we let $\epsilon>0$ be an arbitrary fixed quantity which we view as a constant throughout the proof.
Observation 3.1. Every vertex $v \in H$ is in at most $\frac{n-1}{\rho-1}$ edges of H.
Proof. Since H is linear, the edges containing v do not share any other vertices.
Proposition 3.2. Suppose we are given a linear hypergraph $H=(V, E)$ and a partition $E=$ $E_{1} \sqcup E_{2}$. Let $P_{1}=\max _{e_{1} \in E_{1}}\left|e_{1}\right|$ and let $\rho_{2}=\min _{e_{2} \in E_{2}}\left|e_{2}\right|$.

Then

$$
q_{l i s t}(H) \leq \max \left(q_{l i s t}\left(E_{2}\right), q_{l i s t}\left(E_{1}\right)+\frac{(n-1) P_{1}}{\rho_{2}-1}\right)
$$

Proof. Suppose each edge has a palette of size $Q \geq q_{\text {list }}\left(E_{2}\right)$. Select an arbitrary list-coloring of $H\left(E_{2}\right)$. Consider the residual palette for each edge $e \in E_{1}$; that is, the palette available to e after removing the colors selected by edges $f \in E_{2}$ with $f \cap e \neq \emptyset$. By Observation 3.1, each vertex v is in at most $\frac{n-1}{\rho_{2}-1}$ edges in E_{2}, and thus each edge $e \in E_{1}$ touches at most $\frac{(n-1) P_{1}}{\rho_{2}-1}$ edges in E_{2}. Thus, each edge in E_{1} has a residual palette of size at least $Q-\frac{(n-1) P_{1}}{\rho_{2}-1}$.

As long as $Q-\frac{(n-1) P_{1}}{\rho_{2}-1} \geq q_{\text {list }}\left(E_{1}\right)$, we can list-color $H\left(E_{1}\right)$ with the residual palette, thus giving a full list-coloring of H. Thus, our coloring procedure succeeds as long as

$$
Q \geq q_{\text {list }}\left(E_{2}\right) \quad \text { and } \quad Q \geq \frac{(n-1) P_{1}}{\rho_{2}-1}+q_{\text {list }}\left(E_{1}\right)
$$

Given a hypergraph H, we let A_{i} denote the set of edges $e \in E$ such that $2^{i} \leq|e|<2^{i+1}$. Note that each edge $e \in E$ corresponds to a vertex of L, and for any $U \subseteq E$ we denote by $L[U]$ the induced subgraph of L on the edges of U.

Proposition 3.3. For any integer $i \geq 1$, we have

$$
q_{l i s t}\left(A_{i}\right) \leq O\left(\frac{n}{i}+\frac{n}{\left.\log \left(n / 2^{2 i}\right)\right)}\right)
$$

Proof. By Observation 3.1, every vertex in H touches $O\left(n / 2^{i}\right)$ edges in A_{i}. As each edge in A_{i} contains at most 2^{i+1} vertices, it follows that $L\left[A_{i}\right]$ has maximum degree $O(n)$.

Now, consider some edge $e \in A_{i}$; we want to count how many triangles of L it participates in. There are two types of triangles. The first involves three edges around a single vertex; for each $v \in e$ there are at most $n / 2^{i}$ choices for the other two edges, giving a total triangle count of at most $2^{i+1} \times\left(n / 2^{i}\right)^{2}=O\left(n^{2} / 2^{i}\right)$.

The second type of triangle involves three edges, each intersecting at a distinct point. There are $O(n)$ choices for the second edge e^{\prime}. By linearity, for any given choice of vertices $v \in e, v^{\prime} \in e^{\prime}$ there is at most one possible choice for the third edge $e^{\prime \prime}$ intersecting e at v and e^{\prime} at v^{\prime}. Hence, the total number of triangles of this second type is at most $n \times\left(2^{i+1}\right)^{2} \leq O\left(n 2^{2 i}\right)$.

Now, applying Theorem 2.3, we see that

$$
q_{\text {list }}\left(A_{i}\right) \leq O\left(\frac{n}{\log \left(\frac{n^{2}}{O\left(n^{2} / 2^{i}+n 2^{2 i}\right)}\right)}\right) \leq O\left(\frac{n}{i}+\frac{n}{\log \left(n / 2^{2 i}\right)}\right)
$$

The remainder of this proof will be expressed in terms of an integer parameter k (which does not depend on n), and which we will set later in the construction.

Observation 3.4. For each integer $k \geq 1$, there is some integer N_{k}, such that whenever $n \geq N_{k}$ it holds that

$$
q_{l i s t}\left(A_{1} \cup A_{2} \cup \cdots \cup A_{k}\right) \leq(1+\epsilon) \frac{n}{\rho-1}
$$

Proof. By Observation [3.1, $L\left[A_{1} \cup A_{2} \cup \cdots \cup A_{k}\right]$ has maximum degree $\frac{n-1}{\rho-1}$ and maximum rank $2^{k+1}-1$. Now apply Theorem 2.1.

Corollary 3.5. If $i \geq k$ and $P \leq \sqrt{n e^{-k}}$, then $q_{l i s t}\left(A_{i}\right) \leq O(n / k)$.
Proof. This is vacuously true for $i \geq \log _{2} P$, since then A_{i} is empty. Otherwise, Proposition 3.3 gives $q_{\text {list }}\left(A_{i}\right) \leq O\left(\frac{n}{i}+\frac{n}{\log \left(n 2^{-2 i}\right)}\right) \leq O\left(\frac{n}{k}+\frac{n}{\log \left(n P^{-2}\right)}\right) \leq O(n / k)$.

Proposition 3.6. Suppose $i \geq k$ and $P \leq \sqrt{n e^{-k}}$. Let $x=\left\lceil\log _{2} k\right\rceil$. Then

$$
q_{l i s t}\left(A_{i} \cup A_{i+x} \cup A_{i+2 x} \cup A_{i+3 x} \ldots\right) \leq O(n / k)
$$

Proof. Let $s=\left\lceil\log _{2} n\right\rceil$. For each integer $j \geq 0$, define

$$
B_{j}=A_{i+s x} \cup A_{i+(s-1) x} \cup A_{i+(s-2) x} \cup \cdots \cup A_{i+(j+1) x} \cup A_{i+j x}
$$

We will prove that $q_{\text {list }}\left(B_{j}\right) \leq c n / k$ for some sufficiently large constant c and $j \geq 0$, by induction downward on j.

When $j=s$, this is vacuously true as $B_{j}=\emptyset$. For the induction step, we use Proposition 3.2 using the decomposition $E_{1}=A_{i+j x}$ and $E_{2}=A_{i+(j+1) x} \cup A_{i+(j+2) x} \cup \cdots \cup A_{i+s x}=B_{j+1}$.

Note that $P_{1} \leq 2^{i+j x+1}-1$ and $\rho_{2} \geq 2^{i+(j+1) x}$. By induction hypothesis, $q_{\text {list }}\left(E_{2}\right)=q_{\text {list }}\left(B_{j+1}\right) \leq$ $c n / k$. By Corollary 3.5, $q_{\text {list }}\left(E_{1}\right)=q_{\text {list }}\left(A_{i+j x}\right) \leq c^{\prime} n / k$, for some constant $c^{\prime} \geq 0$. This gives

$$
\begin{aligned}
q_{\text {list }}\left(B_{j}\right) & \leq \max \left(q_{\text {list }}\left(E_{2}\right), q_{\text {list }}\left(E_{1}\right)+\frac{(n-1) P_{1}}{\rho_{2}-1}\right) \\
& \leq \max \left(c n / k, c^{\prime} n / k+\frac{(n-1)\left(2^{i+j x+1}-1\right)}{2^{i+(j+1) x}-1}\right) \\
& \leq \max \left(c n / k, c^{\prime} n / k+4 n / k\right)
\end{aligned}
$$

which is at most $c n / k$ when $c \geq c^{\prime}+4$.
Proposition 3.7. For each integer $k \geq 1$, there is some integer N_{k}^{\prime} such that whenever $n>N_{k}^{\prime}$ and $P \leq \sqrt{n e^{-k}}$ it holds that

$$
q_{l i s t}\left(A_{k} \cup A_{k+1} \cup A_{k+2} \cup \ldots\right) \leq O\left(\frac{n \log k}{k}\right)
$$

Proof. Suppose every edge begins with a palette of size $\frac{c n \log k}{k}$ for some constant c. Let $x=\left\lceil\log _{2} k\right\rceil$. We randomly partition the colors into x classes. For any class i and edge e, let $Q_{i, e}$ denote the number of class- i colors in the palette of edge e.

We have $\mathbf{E}\left[Q_{i, e}\right] \geq \frac{c n \log k}{k x} \geq \frac{c n}{2 k}$. Furthermore, $Q_{i, e}$ is the sum of independent random variables (whether each color in the palette of e goes into $Q_{i, e}$), and so by Chernoff's bound we have

$$
\operatorname{Pr}\left(Q_{i, e} \leq \frac{c n}{4 k}\right) \leq e^{-\Theta(n / k)}
$$

For fixed k, this is smaller than $n^{2} k / 2$ for sufficiently large n. Since there are at most n^{2} edges and k classes, by the union bound there is a positive probability that every edge has at least $\frac{c n}{4 k}$ colors of each class in its palette.

Next, for each i in the range $i=1, \ldots, x$, we use the class- i colors to color $L\left[A_{k+i} \cup A_{k+i+x} \cup\right.$ $\left.A_{k+i+2 x} \cup \ldots\right]$. By Proposition 3.6 this succeeds for c sufficiently large.

We are now ready to prove Theorem [1.2,
Proof of Theorem 1.2. We will prove that $q_{\text {list }}(H) \leq \frac{n}{i-1}(1+O(\epsilon))$; the result follows easily by rescaling.

By Proposition [3.7, there is some constant c such that for any integer $k>1$ and $n>N_{k}^{\prime}$ we have $q_{\text {list }}\left(A_{k} \cup A_{k+1} \cup A_{k+2} \cup \ldots\right) \leq \frac{c n \log k}{k}$. We select k sufficiently large so that

$$
\frac{c \log k}{k} \leq \frac{\epsilon}{i-1}
$$

By Observation 3.4, for $n>N_{k}$ we have

$$
q_{\text {list }}\left(A_{1} \cup A_{2} \cup \cdots \cup A_{k-1}\right) \leq \frac{n(1+\epsilon)}{i-1}
$$

Now, suppose every edge has a palette of size $Q=\frac{(1+3 \epsilon) n}{i-1}$. Randomly partition the colors into two classes, where a color goes into class I with probability $p=\frac{1.5 n \epsilon}{Q}$ and goes into class II with probability $1-p$. A Chernoff bound argument similar to Proposition 3.7 shows that for $n>N^{\prime \prime}$, with positive probability every edge has at least $n \epsilon$ class-I colors and $\frac{n}{i-1}(1+\epsilon)$ class-II colors. In such a case, we can color $L\left[A_{k} \cup A_{k+1} \cup A_{k+2} \cup \ldots\right]$ using class-I colors and $L\left[A_{1} \cup A_{2} \cup \ldots \cup A_{k-1}\right]$ using class-II colors.

So far, we have shown that there is an integer k and integer $M=\max \left(N_{k}, N_{k}^{\prime}, N_{k}^{\prime \prime}\right)$ such that whenever $P \leq \sqrt{n e^{-k}}$ and $n>M$ that $q_{\text {list }}(H) \leq \frac{n}{i-1}(1+O(\epsilon))$. Set $C_{i, \epsilon}=\min \left(e^{-k / 2}, \frac{1}{\sqrt{M}}\right)$.

When $P \leq C_{i, \epsilon} \sqrt{n}$, then $P \leq \sqrt{n e^{-k}}$. Also, when $P \leq C_{i, \epsilon} \sqrt{n}$, we have $P \leq \sqrt{\frac{n}{M}}$. Since $P \geq i \geq 2$, this implies $n \geq 4 M$. So $q_{\text {list }}(H) \leq \frac{n}{i-1}(1+O(\epsilon))$.

4. Dependence of n on P

In this section, we show (roughly speaking) that Theorem 1.2 must include a condition of the form $P \leq C_{i, \epsilon} \sqrt{n}$ where $C_{i, \epsilon} \leq \sqrt{\frac{1+\epsilon}{i-1}}$.

Proposition 4.1. For every real number x in the range $(0,1)$ and every $\delta>0$, there is some integer N such that, for all $n \geq N$, there are linear hypergraphs H on n vertices which satisfy the following properties:
(1) $q_{l i s t}(H)>x n$
(2) $P=\rho=r$
(3) $\sqrt{n x} \leq r \leq(1+\delta) \sqrt{n x}$

Proof. Consider a finite projective plane with parameter q; this gives a linear hypergraph H^{\prime} with $q^{2}+q+1$ vertices and every edge of rank $r=q+1$, and $q_{\text {list }}\left(H^{\prime}\right)=q^{2}+q+1$. Assuming that $q^{2}+q+1 \leq n$, we can form H from H^{\prime} by adding $n-\left(q^{2}+q+1\right)$ isolated vertices.

Let $u=\sqrt{n x}$ and let q be the smallest prime with $q \geq u$. For n (and hence u sufficiently large), this q satisfies $q \leq u+u^{\theta}$ for some constant $\theta<1$. In particular, $q^{2}+q+1 \leq n x+o(n) \leq n$ for n sufficiently large. Our choice of q ensures that that $q_{\text {list }}\left(H^{\prime}\right)=q^{2}+q+1 \geq u^{2}+u+1>x n$. Also, $r>\sqrt{n x}$ and $r / \sqrt{n} \rightarrow \sqrt{x}$ as $n \rightarrow \infty$.
Proposition 4.2. For any integer $i \geq 3$ and $\epsilon \in(0,1)$, the term " $C_{i, \epsilon} \sqrt{n}$ " in Theorem 1.2 cannot be replaced by any expression of the form $f(i, \epsilon, n)$, where for any fixed i, ϵ, δ there are infinitely many n with

$$
f(i, \epsilon, n)>(1+\delta) \sqrt{\frac{(1+\epsilon) n}{i-1}}
$$

Proof. Apply Proposition 4.1 with $x=(1+\epsilon) /(i-1)$; note that since $i \geq 3$ and $\epsilon<1$ we have $x \in(0,1)$. This ensures that for all $n>N$, there is a hypergraph H_{n} with $q_{\text {list }}\left(H_{n}\right)>x n$ and rank $\rho=P=r$ for $\sqrt{n x} \leq r \leq(1+\delta) \sqrt{n x}$.

Thus, for n sufficiently large, we have $\rho \geq i$. Also, for sufficiently large n, we have $P \leq$ $(1+\delta) \sqrt{n x}=(1+\delta) \sqrt{\frac{(1+\epsilon) n}{i-1}}$. Thus, if $f(i, \epsilon, n)>(1+\delta) \sqrt{\frac{(1+\epsilon) n}{i-1}}$ for infinitely many n, then for infinitely many n we would have $q_{\text {list }}\left(H_{n}\right) \leq \frac{(1+\epsilon) n}{i-1}=x n$, a contradiction.

5. Acknowledgments

Thanks to the anonymous reviewers for helpful suggestions and corrections.

References

[1] Alon, N., Krivelevich, M., Sudakov, B.: Coloring graphs with sparse neighborhoods. Journal of Combinatorial Theory, Series B 77, pp. 77-82 (1999)
[2] Faber, V.: Linear hypergraph edge-coloring - generalizations of the EFL conjecture. Bulletin of Mathematical Sciences and Applications 17, pp. 1-9 (2016)
[3] Kahn, J.: Coloring nearly-disjoint hypergraphs with $n+o(n)$ colors. Journal of Combinatorial Theory, Series A 59, pp. 31-39 (1992)
[4] Kahn, J.: Asymptotically good list-colorings. Journal of Combinatorial Theory Series A 73, pp. 1-59 (1996)
[5] Romero, D., Sánchez-Arroyo, A.: Advances on the Erdős-Faber-Lovász conjecture. Oxford Lecture Series in Mathematics and its Applications 34, pp. 272-283 (2007)
[6] Sánchez-Arroyo, A.: The Erdő-Faber-Lovász conjecture for dense hypergraphs. Discrete Mathematics 308, pp. 991-992 (2008)
[7] Vu, V.: A general upper bound on the list chromatic number of locally sparse graphs. Combinatorics, Probability and Computing 11, pp. 103-111 (2002)

[^0]: ${ }^{1}$ IDA/Center for Computing Sciences, Bowie MD 20707. Email: vance.faber@gmail.com
 ${ }^{2}$ Department of Computer Science, University of Maryland, College Park, MD 20742. Email: davidgharris29@gmail.com.

