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UNIFORM RANDOM COLORED COMPLEXES

by

A. Carrance

Abstract. — We present here random distributions on (D+1)-edge-colored, bipartite graphs with
a fixed number of vertices 2p. These graphs encode D-dimensional orientable colored complexes.
We investigate the behavior of those graphs as p → ∞. The techniques involved in this study also
yield a Central Limit Theorem for the genus of a uniform map of order p, as p → ∞.

1. Introduction

For D ≥ 1, we call (D + 1)-colored graphs, (D + 1)-regular graphs, equipped with a
proper (D+1)-coloring of their edges. (D+1)-colored graphs have been known from the 1970’s,
and the work of Pezzana [Pez74; Pez75], to be an encoding of piecewise-linear (PL) topological
structures, that we will call complexes in a sense precised below. Among those structures
are PL manifolds, which thus admit a combinatorial and graph-theoretical formulation. This
formulation was further developped by Gagliardi and others (see [FGG86]), leading notably to
classification results for 3- and 4-dimensional PL (hence smooth) manifolds with a small num-
ber of cells [CM15; CC15]. Additionally to these achievements in PL-topology, (D + 1)-colored
graphs have recently garnered interest from theoretical physicists, as they are at the heart of
a new approach to quantum gravity, colored tensor models (see [GR12; Gur16] for detailed
reviews). As the quantized space-time described by colored tensor models is a PL-structure
corresponding to a random distribution on (D+ 1)-colored graphs, this is an incentive to study
such distributions.

Our work can be related to other random models: first, we can compare it to Euclidean
Dynamical Triangulations, that also have the purpose to define a quantum spacetime as the
continuum limit of random triangulations in any dimension (see [Tho99] for a detailed review).
In this approach, the topology is fixed to be spherical, and the random distribution depends
on a parameter that tunes a curvature constraint, while we do not put any constraint on the
topology nor the curvature. Note also that we do not work with any triangulations, but with a
specific type of complexes that we will define below. Moreover, these models have mostly been
studied numerically, while we make a probabilistic and combinatorial investigation of ours.

Likewise, we can relate this paper to works in random maps, as in dimension 2 our models can
be seen as particular models of random maps. Furthermore, to look for a tentative continuum
spacetime as the scaling limit of the discrete spacetime given by our model, we will consider the
obtained complexes as metric spaces, just like the Brownian map is the scaling limit of several
families of planar maps seen as metric spaces (see [LG13; Mie13] for instance). While the most
studied models of random maps have conditions on the face degrees, with for instance random
triangulations and quadrangulations, the graphs we consider for D = 2 have 3-valent vertices, so
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2 A. CARRANCE

we are more naturally dealing with objects dual to the ones typically studied in the random maps
literature. Moreover, most works on random maps deal with maps of a fixed genus (most often
planar maps), or whose genus is assumed to grow linearly with their size (like in [ACCR13]),
whereas we do not fix the topology.

There is no fixed topology either in random simplicial complexes constructed as higher
dimensional analogues of Erdös-Rényi graphs, such as [CF16; Kah14]. Such models also share
with the present work the fact that they are defined in any dimension. However, they are
constructed quite differently, as their realizations are subcomplexes of a standard simplex (see
the definitions below), whereas we build a complex by randomly gluing simplexes together.

This gluing construction is very close to the various models of random gluings of polygons
(see [PS06; CP16]), and we will indeed use similar techniques throughout this paper. Just like
these random gluing models, our models can be seen as generalizations of the configuration
model, which starts from a set of vertices with prescribed valences to form a random graph,
by taking a uniform matching of the half-edges attached to these vertices. Some results on the
configuration model will be of crucial use to prove some of our results.

Since the distributions arising the most naturally in colored tensor models are very involved
from a mathematical point of view (notably, they are stongly non-uniform), we present here
two simpler models on bipartite, vertex-labelled, (D + 1)-colored graphs of fixed order 2p. We
focus on the limit p → ∞, which is the first step towards the continuum limit for our tentative
space-time. Our first model, which we analyze in Section 2, is the obvious, uniform one: as
we will see, the associated topological structure has a very singular behavior as p → ∞. Our
second model, which we call the quartic model, is described in Section 3. It has more physical
foundation, and is richer topologically, but is still ill-fitted for the purpose of quantum gravity.
Over the course of the study of this model, we also obtain a Central Limit Theorem for the
genus of a uniform map of order p, as p → ∞ (see Section 3.3). We then study in Section 4
a generalization of the quartic model, that we call the class of uniform-uncolored models,
which possess a similar asymptotical behavior.

Before going into technical details, let us fix some very general notations. We will say that
an event A occurs asymptotically almost surely (a.a.s.), if P(A) −−−→

p→∞
1. We will note V (G) the

vertex set of a graph G, E(G) its edge set, and k(G) its number of connected components (c.c.).

Colored graphs, bubbles and Gurau degree. — We now give a few necessary definitions
about colored graphs.

Definition 1.1 (Colored graphs). — Let G be a (D + 1)-regular graph, and ζ a function
E(G) → C, where C is some set with cardinality D+1. The couple (G, ζ) is a (D +1)-colored
graph, if, for all v ∈ V (G), for all c ∈ C, there is one and only one edge e incident to v, such
that ζ(e) = c.
If there is no ambiguity, we will simply note G for the colored graph. In that case, if not specified,
C will be the set of integers {0, 1, . . . ,D}.

Remark. — A very special class of (D + 1)-colored graphs are those with only two vertices,
and all edges joining the two vertices (see Fig. 1). We call those graphs, melons.

Definition 1.2 (Bubbles). — Let G be a (D + 1)-colored graph, and let {i1, . . . , ik} be a
subset of the color set C. Consider the graph Gı̂1,...,̂ık obtained from G by erasing all the
il-colored edges, for l = 1, . . . , k. The connected components of Gı̂1,...,̂ık are called (D + 1 − k)-

bubbles of G (of colors {0, 1, . . . ,D}\{i1, . . . , id}). We will write B
ı̂1,...,̂ık

(ρ) for a bubble of G

of colors {0, 1, . . . ,D}\{i1, . . . , id}, with ρ indexing the different bubbles of the same color. We
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Figure 1. Melons are the simplest example of (D + 1)-colored graphs.

will note bk(G) the number of k-bubbles of G.
The vertices of G are its 0-bubbles, its edges are the 1-bubbles, and its 2-bubbles (which are
bicolored cycles) are called its faces.

When dealing with bubbles, we will often write ı̂1 . . . ı̂d for {0, 1, . . . ,D}\{i1, . . . , id}, to
simplify notations.

Definition 1.3 (Embedding). — Let G be a graph, and S a Riemann surface. An embed-
ding of G into S is a continuous and one-to-one function i:G → S. We can then consider that
G, as a topological space related to a 1-cellular complex, is included in S. The connected com-
ponents of S \G are called the regions of the embedding. If all the regions are homeomorphic
to an open disk, the embedding is said to be 2-cellular.

Definition 1.4 (Regular embedding). — Let G be a (D + 1)-colored graph. A 2-cellular
embedding of G is said to be regular if there exists a (D + 1)-cycle τ ∈ SD+1, such that any
region is bounded by a bicolored cycle, of colors {i, τ(i)}, for some i ∈ C. Any cycle τ gives rise
to a regular embedding.

Remark. — There is a two-to-two correspondence between regular embeddings of G and (D+
1)-cycles, as a cycle and its reverse are associated to the same two embeddings.

If G is (D+1)-colored and bipartite, all its regular embeddings are necessarily into orientable
surfaces (see for instance [Gag81]). This makes the following definition possible:

Definition 1.5 (Degree). — The Gurau degree ω(G) of a (D + 1)-colored graph G is the
sum of the genera of its regular embeddings:

ω(G) =
1

2

∑

τ

gτ

where the sum runs over the (D + 1)-cycles of SD+1. The factor 1/2 is a matter of convention,
here we follow [GR12].

The Gurau degree of G can also be written in terms of its number of vertices, edges and
faces:

Lemma 1.6. — [GR11] For a connected bipartite (D + 1)-colored graph G with 2p vertices,
one has:

ω(G) =
(D − 1)!

2

(
D(D − 1)

2
p+D − b2(G)

)

.

Proof. — G has D!
2 distinct regular embeddings, and each face of G corresponds to a region in

(D − 1)! different regular embeddings. �
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Trisps. — With the bubbles of a (D + 1)-colored graph G, we can build a D-dimensional
triangulated space (trisp), which is a particular type of cellular complex with simplicial cells.
For the sake of precision, let us fix some definitions and notations related to simplices that are
needed for the definition of a trisp, for which we follow the conventions of [Koz08].

Definition 1.7 (Simplices). — A geometrical n-simplex σ is the convex enveloppe of a
set A of n + 1 affinely independent points in R

N , for some N ≥ n. The dimension of σ is
|A|−1 = n. The convex enveloppes of the subsets of A are called sub-simplices of σ, or its
faces, and the points defining σ are called its vertices. We will note σ ⊆ τ to signify that σ
is a face of τ . A d-face of σ is a face of dimension d, and the d-skeleton of σ is the set of its
faces of dimension lower or equal to d.
We note 〈x1, . . . , xn〉 the simplex with vertices x1, . . . xn.
The standard n-simplex is 〈(1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, . . . , 0, 1)〉, where the point co-
ordinates are taken in the canonical basis of Rn+1.

Let us start from some sets (Si)i∈N of geometrical simplices, where Si contains i-simplices,
seen as copies of the standard i-simplex. Then, for m ≤ n, for each order-preserving injection
f : {1, . . . ,m+ 1} → {1, . . . , n+ 1}, take a map Bf :Sn → Sm, so that:

(i) if f, g are two such injections and are composable : {1, . . . , l + 1} g−→ {1, . . . ,m + 1} f−→
{1, . . . , n + 1}, then: Bf◦g = Bg ◦Bf

(ii) Bid{1,...,n+1}
= idSn .

This abstract structure implicitly contains a topological space. Indeed, an order-preserving
injection f : {1, . . . ,m+1} → {1, . . . , n+1} induces a linear map Mf :Rm+1 → R

n+1, which sends
the k-th vector of the canonical basis of R

m+1 to the f(k)-th vector of the canonical basis of
R
n+1. This map can be restricted to a homeomorphism from the standard m-simplex to a certain

m-sub-simplex of the standard n-simplex. For σ ∈ Sn, this homeomorphism therefore glues an
m-sub-simplex of σ to the standard m-simplex Bf (σ) ∈ Sm. The condition Bf◦g = Bg ◦ Bf
ensures that these gluings are coherent.

Definition 1.8 (Trisp). — A complex defined in the above way is called a triangulated
space, or trisp.

Let G be a (D + 1)-colored graph. We now quickly map out the construction of a trisp
∆(G) with the bubbles of G. To each (D+ 1 − k)-bubble Bı̂1...̂ık(ρ) , we associate a (k− 1)-simplex
whose vertices are indexed by the missing colors i1, . . . , ik. This yields some set Sk, with an
order on the vertices of each simplex. The gluing maps are defined in the following way: if
f : {1, . . . ,m+ 1} → {1, . . . , n+ 1} is an order-preserving injection, and if σ ∈ Sn corresponds to

the bubble Bı̂1...̂ın+1

(ρ) , Bf sends it to the m-simplex corresponding to the (D−m)-bubble obtained

from Bı̂1...̂ın+1

(ρ) by adding the colors in {i1, . . . , in+1} \ {if(1), . . . , if(m+1)}. By construction, the

maps Bf satisfy conditions (i) and (ii) of Definition 1.8.

The trisp ∆(G) induced by a (D + 1)-colored graph G has severable notable properties:

Theorem 1.9. — [Gur10]
If G is connected, the induced trisp ∆(G) is a simplicial pseudo-manifold of dimension D, i.e.:

(i) Si = ∅ for i > D, and SD 6= ∅

(ii) ∆(G) is pure, i.e. any simplex is the face of a D-simplex
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(iii) it is strongly connected, i.e. any two D-simplices can be joined by a chain of D-simplices
in which each pair of neighboring D-simplices has a common (D − 1)-simplex

(iv) it is non-branching, i.e. any (D − 1)-simplex is a face of at most two D-simplices.

Moreover, ∆(G) is a simplicial pseudo-manifold without boundary, i.e. each of its (D − 1)-
simplices is actually a face of exactly two D-simplices.

Remarks
• As the (D+1−k)-bubbles of G correspond to the (k−1)-simplices of ∆(G), we sometimes

say that ∆(G) is the dual complex of G.

• If we cut open some edges of a bipartite (D+1)-colored graph G, the previous construction
will yield a pseudomanifold with a boundary consisting of the (D−1)-simplices correspond-
ing to the open half-edges.

• As said before, the physical motivations of our work lead us to consider the complex ∆(G)
as a metric space, with the structure given by its graph distance: the elements of this metric
space are the vertices of ∆(G), i.e. its 0-simplexes, and the distance between two points is
the number of edges of the smallest path from one to the other in the 1-skeleton of ∆(G).
The two first criteria to get a scaling limit will therefore be:

(i) that the number of points of ∆(G) goes to infinity as p → ∞
(ii) that the typical distance between two points of ∆(G) goes to infinity as p → ∞.

Permutations. — Let us now note that the set of bipartite (D + 1)-colored graphs with 2p
labelled vertices (the positive and negative vertices being labelled independently from 1 to p
each), is in bijection with the (D + 1)-tuples of permutations (α0, . . . , αD) ∈ (Sp)

D+1.

Indeed, given such a labelled graph, for each i ∈ C, define a permutation αi by: αi(k) = l if
there is an i-colored edge linking the k-th negative vertex and the l-th positive one. Reciprocally,
given such a tuple (α0, . . . , αD), we can consider p numbered negative vertices and p numbered
positive ones, and link them according to the permutations.

In the sequel, we will use the permutation formulation to define random bipartite vertex-
labelled (D + 1)-colored graphs.

Remark. — The labellings of the vertices, combined with the coloring of the edges, yield
a labelling of the half-edges, and with this formulation we count the possible pairings of the
half-edges, i.e. Wick contractions, in the language of quantum field theory.



6 A. CARRANCE

2. Uniform model

We consider a (D + 1)-tuple of random permutations (α0, . . . , αD), all independent and
uniform on Sp, for D ≥ 1. These permutations induce a (D + 1)-colored, bipartite random
graph UDp , with 2p labelled vertices. It is clear that UDp follows the uniform measure on this set
of graphs.

Remark. — We can note that this model is a “colored version” of the well-known configuration
model [Wor99], that will appear more explicitly in Sections 3 and 4.

2.1. Connectedness. — We show, similarly to Pippenger and Schleich [PS06], that a.a.s.
UDp is connected, and more precisely:

Theorem 2.1. — Let UDp be the random graph defined above, with D ≥ 2. Then

P

(

UDp connected
)

= 1 − 1

pD−1
+ O

(
1

p2(D−1)

)

.

Proof. — We first prove an upper bound on P

(

UDp not connected
)

. For UDp to be not connected

(n.c.), it must be decomposable into at least two closed subgraph, and, considering the smallest
of these subgraphs, it must have a closed subgraph with at most 2⌊p/2⌋ vertices. Thus

P

(

UDp n.c.
)

≤
∑

1≤k≤⌊ p
2

⌋
P(∃ closed subgraph with 2k vertices)

≤
∑

1≤k≤⌊ p
2

⌋
Fk , where Fk =

(

p
k

)1−D
.

Since

Fk+1

Fk
=
k + 1

p− k
≤ 1 ∀k = 1, . . . ,

⌊p

2

⌋

− 1,

we get

P

(

UDp n.c.
)

≤ F1 + F2 +

(
p

2
− 2

)

F3 =
1

pD−1
+

(
2

p(p− 1)

)D−1

+ O
(

p−3D+4
)

,

and in particular

P

(

UDp connected
)

−−−→
p→∞

1.

Now, to get a lower bound on P

(

UDp n.c.
)

, consider the probability of having exactly one

closed melon:

P

(

UDp n.c.
)

≥ P(∃! closed melon)

= P(∃ at least 1 closed melon) − P(∃ at least 2 closed melons)

≥ 1

pD−1
− 1

2

1

(p(p − 1))D−1
.

Thus P

(

UDp connected
)

= 1 − 1
pD−1 + O

(
1

p2(D−1)

)

. �
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Knowing that UDp is connected a.a.s., the next step is to investigate its average number of
connected components. We have the following result:

Theorem 2.2. — For D ≥ 2, one has:

E

[

k(UDp )
]

= 1 + O

(
1

pD−1

)

.

Proof. — We derive upper bounds on P

(

k(UDp ) = k
)

, for k ≥ 2. We already know that

P

(

k(UDp ) = 2
)

≤ 1
pD−1 + O

(
1

p2(D−1)

)

from Theorem 2.1. We then get an upper bound for k = 3,

decomposing the event that UDp has 3 closed subgraphs:

P

(

k(UDp ) = 3
)

≤ P

(

k(UDp ) ≥ 3
)

= P

(

UDp has 3 closed proper subgraphs
)

≤
∑

1≤k≤⌊p/2⌋
P

(

UDp has a closed subgraph U ′ with 2k vertices
)

· (P
(
U ′ n.c.

)
+ P

(
(U ′)c n.c.)

)

≤
∑

1≤k≤⌊p/2⌋

(
k! (p− k)!

p!

)D−1

·



∑

1≤l≤⌊k/2⌋

(
l! (k − l)!

k!

)D−1

+
∑

1≤l≤⌊(p−k)/2⌋

(
l! (p − k − l)!

p− k!

)D−1




≤ 2

p2(D−1)
+ O

(
1

p3(D−1)

)

.

And, similarly, for k ≥ 4:

P

(

k(UDp ) ≥ 4
)

≤
∑

1≤k≤⌊p/2⌋
P

(

UDp has a closed subgraph U ′ with 2k vertices
)

·
[
P
(
U ′ has ≥ 3 c.c.

)
+ P

(
(U ′)c has ≥ 3 c.c.

)
+ P

(
U ′ n.c. and (U ′)c n.c.

)]

≤ O

(
1

p3(D−1)

)

.

Thus

E

[

k(UDp )
]

≤ 1 − 1

pD−1
+

2

pD−1
+ O

(
1

p2(D−1)

)

+

(
p(p+ 1)

2
− 6

)

O

(
1

p3(D−1)

)

≤ 1 + O

(
1

pD−1

)

for D ≥ 2.

�

Remark. — For D = 1, we have two uniform permutations α0 and α1. The number of con-
nected components of U1

p is the number of cycles of α0α
−1
1 , which is uniform too. Thus, one

has: P

(

U1
p connected

)

= 1
p , and, from well-known results on uniform permutations [ABT03]:

E

[

k(U1
p )
]

= ln p+ O(1).

For a given color i ∈ J0,DK, the graph (UDp )ı̂, see Definition 1.2, has the same law as UD−1
p

(up to a color renaming). This means that Theorem 2.2 can also be used for the number
bD(UDp ) of D-bubbles of UD+1

p , simply by summing over all colors. This is of particular interest,
as these D-bubbles correspond to the vertices of the complex dual to our colored graph. It is
straightforward to derive the following result:
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Corollary 2.3. — For D ≥ 3, one has:

E

[

bD(UDp )
]

= D + 1 + O

(
1

pD−2

)

.

Remark. — This means that for D ≥ 3, there is typically only one point of each color in the
dual complex. This thwarts the hope of defining a continuous D-dimensional random space
from this simple model by going through the same steps that yield the Brownian Sphere from
uniform planar maps. Note that, as stated in the introduction, this uniform model differs from
that of uniform planar maps, in that it does not fix the topology.

However, the essential difference might lie in the dimension: indeed, in Euclidean Dynamical
Triangulations, Monte Carlo simulations show evidence of a so-called crumpled phase in di-
mension 3 and 4 even for spherical models, as long as the sampling of the triangulation does not
depend too strongly on its curvature (see [Tho99]), while for dimension 2 such a phase occurs
only when there is no constraint on the topology.

2.2. Degree. — We now investigate the Gurau degree of UDp , for D ≥ 2. According to

Lemma 1.6, this is equivalent to studying the number of faces of UDp , i.e. the number of its
bicolored cycles. This quantity can be expressed in terms of the permutations (α0, . . . , αD):

b2(UDp ) =
∑

0≤i<j≤D
O
(

αiα
−1
j

)

,

where O(α) is the number of orbits (cycles) of α. The use of well-known results about uniform
permutations gives us the following estimations for the average and variance of the number of
faces:

Proposition 2.4

E

[

b2(UDp )
]

=
D(D + 1)

2
(ln p+ γ) + o(1)(2.1)

Var
(

b2(UDp )
)

=
D(D + 1)

2
ln p+ o(ln p).(2.2)

In terms of the Gurau degree, this means that:

E

[

ω(UDp )
]

=
(D − 1)!

2

(D(D − 1)

2
p+D − D(D + 1)

2
(ln p+ γ)

)

+ o(1)

Var
(

ω(UDp )
)

=
(D − 1)!

2

D(D + 1)

2
ln p+ o(ln p).

Proof. — If α is a uniform permutation of size p, then one has (see for instance [ABT03]):

E[O(α)] =
p
∑

j=1

1

j
= ln p+ γ + o(1), where γ is the Euler constant

Var(O(α)) =
p
∑

j=1

j − 1

j2
= ln p+ γ − π2

6
+ o(1).

Eq. (2.1) is obtained immediately from this. Eq. (2.2) is obtained after simple calculations, once
one notices that two permutations αiα

−1
j and αkα

−1
l are independent, as long as either i 6= k,

or j 6= l. �
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To get more precise information, we will now focus on the number of faces of a single regular
embedding of UDp , instead of the total number of faces. We state our main result concerning

this in Theorem 2.5 : the number of faces of any regular embedding Jp of UDp has a normal
limit when p → ∞.

We can assume, without loss of generality, that Jp corresponds to the usual cyclic ordering
of the colors (0 1 · · · D). Thus, we are interested in the law of:

F =
∑

0≤i≤D
O
(

αiα
−1
i+1

)

=:
∑

0≤i≤D
Oi,i+1

where, by convention, αD+1 = α0.
To prove its normal asymptotical behaviour, we consider the distribution of the last permuta-
tion, αDα

−1
0 =: αD,0, conditionally to a given realization {Ci,i+1} of the respective conjugacy

classes π(αi,i+1) of the D first permutations αiα
−1
i+1 =: αi,i+1. We note this distribution P

{Ci,i+1}
D .

As αD,0 =
(
∏

0≤i≤D−1 αi,i+1

)−1
, for some given {Ci,i+1}, the parity of αD,0 is fixed. We will

note H := Ap or Ac
p, according to this parity condition (where Ap is the alternating group of

degree p), and UH the uniform distribution on H. Let us assume that, for i = 0, . . . ,D − 1,
Ci,i+1 has less than ln p fixed points and 2-cycles. We note this hypothesis (∗). As stated in

Proposition 2.7, under this assumption, P
{Ci,i+1}
D converges to UH in total variation distance.

We prove this using group representation techniques, similarly to Chmutov and Pittel in [CP16].
Well-known results on the number of cycles of fixed length in a uniform permutation then allow
us to deduce Theorem 2.6, i.e. that, up to a parity condition, the law PF of F converges to a
convolution product of the laws Pi,i+1 of the Oi,i+1. Finally, we prove the asymptotic normality
of PF , using a well-known expression of the number of cycles of a uniform permutation as a sum
of Bernoulli variables.

Let us now state these results more precisely:

Theorem 2.5. — Let Jp be a regular embedding of UDp , and FJp be the number of faces ( i.e.

regions) of Jp. Then the quantity
FJp−E[FJp ]√

Var(FJp)
converges weakly to the standard normal distribu-

tion.

Theorem 2.6. — With the notations given above, one has:

‖PF − 2 · 1{(D+1)p−F even}P0,1 ∗ P1,2 ∗ · · · ∗ PD,0‖ = O

(

(ln p)D

pD−1

)

where ‖ · ‖ is the total variation distance.

Proposition 2.7. — Let us assume (∗). Then:

‖P {Ci,i+1}
D − UH‖ = O

(

(ln p)D

pD−1

)

.

Before starting the proof of Proposition 2.7, it should be noted that, while its steps closely
follow those of the proof of Theorem 2.2 in [CP16], it employs a few stronger arguments, as we
are here dealing with conjugacy classes with a logarithmic number of small cycles, whereas the
permutations in [CP16] have no small cycles. We will detail those differences after the proof.
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Proof. — As proved in [CP16], we get from the Cauchy-Schwartz inequality and the Plancherel
theorem:

‖P {Ci,i+1}
D − UH‖2 ≤ 1

4

∑

λ⊢p, λ6=<p>,<1p>

fλtr
[

P̂
{Ci,i+1}
D (ρλ)P̂

{Ci,i+1}
D (ρλ)∗

]

where the sum is over the partitions λ = (λ1 ≥ λ2 ≥ . . . ) of p, ρλ is the irreducible representation
of Sp associated to λ, fλ is the dimension of this representation, and, for a probability measure
P on Sp, P̂ is the Fourier transform of P :

P̂ (ρ) =
∑

σ∈Sp

ρ(σ)P (σ)

for a representation ρ.
As the permutations αi,i+1, i = 0, . . . ,D − 1, are all independent, the law of αD,0 writes as

a convolution product (even conditionally to the realization of {Ci,i+1}0≤i≤D−1):

P
{Ci,i+1}
D = PαD,D−1

∗ PαD−1,D−2
∗ · · · ∗ Pα1,0 = UCD−1,D

∗ UCD−2,D−1
∗ · · · ∗ UC0,D1

.

Indeed, for i = 0, . . . ,D − 1, αi,i+1 is uniform on Ci,i+1, and so is its inverse αi+1,i. So, by
applying the Fourier transform:

P̂
{Ci,i+1}
D = ÛCD−1,D

· ÛCD−2,D−1
· · · · · ÛC0,1 .

Furthermore, as the UCi,i+1 are invariant under conjugacy, they are necessarily homothecies, by
Schur’s Lemma. We can therefore write:

ÛCi,i+1(ρλ) =
χλ(Ci,i+1)

fλ
Ifλ

where χλ is the character of ρλ. We derive from this:

‖P {Ci,i+1}
D − UH‖2 ≤ 1

4

∑

λ⊢p, λ6=<p>,<1p>

(∏

0≤i≤D−1 χ
λ(Ci,i+1)

(fλ)D−1

)2

.

We now decompose this sum into two parts:

‖P {Ci,i+1}
D − UH‖2

≤ 1

4

∑

λ6=<p>,<1p>
λ1,λ′

1≤p−4

(∏

0≤i≤D−1 χ
λ(Ci,i+1)

(fλ)D−1

)2

︸ ︷︷ ︸

Σ1

+
∑

λ6=<p>,<1p>
λ1≥p−3 or λ′

1≥p−3

(∏

0≤i≤D−1 χ
λ(Ci,i+1)

(fλ)D−1

)2

︸ ︷︷ ︸

Σ2

where λ′ is the dual partition of λ. We will bound Σ1 and Σ2 with different inequalities from
Gamburd [Gam06] and Larsen-Shalev [LS08]. We start with Σ1. Since we have assumed that
Ci,i+1 has at most po(1) cycles of size 1 or 2, from [LS08]:

(2.3) |χλ (Ci,i+1)| ≤
(

fλ
) 1

3
+o(1)

when p → ∞.

Therefore:

∀λ ⊢ p

(∏

0≤i≤D−1 χ
λ(Ci,i+1)

(fλ)D−1

)2

≤
(

fλ
)−4D/3+2+o(1)

when p → ∞.
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And, from [Gam06]:

∀t > 0
∑

λ⊢p
λ1,λ′

1≤p−m

(

fλ
)−t

= O
(

p−mt
)

.

Thus Σ1 = O
(

p−4D+6
)

.

For Σ2, we use another inequality from [Gam06]:

fλ ≥
(

p− a
a

)

if λ1 = p− a >
p

2

which also gives a bound on fλ when λ′
1 ≥ p − 3, since fλ = fλ

′
. Now, similarly to [CP16], we

show that if λ1 = p− a, with a = 1, 2 or 3:

|χλ(Ci)| = O((ln p)a).

Figure 2. Example of a rim hook.

Indeed, consider λ with λ1 ≥ p− 3. Let ζ = (ζ1, ζ2, . . . ) be an ordered sequence of the cycle
lengths in Ci,i+1 (with multiplicity). The Murnaghan-Nakayama rule implies:

(2.4) |χλ(Ci)| ≤ gλ(ζ)

where gλ(ζ) is the number of ways of emptying the Young diagram Y (λ) associated to λ by
deleting rim hooks of successive sizes (ζ1, ζ2, . . . ). Here, by rim hooks of Y we mean the con-
tiguous border strips R of Y that can be removed from Y leaving a proper subdiagram Y \R
(see Fig. 2).

As λ1 = p − a ≥ p − 3, Y (λ) is made of a first line of p − a cells, and a small inferior
sub-diagram Z, with a cells. An ordered sequence of hook deletions emptying Y (λ) according
to ζ can be decomposed into two parts (see Fig. 3):
- first, a sub-sequence of deletions that do no touch the a first cells of the first line;
- then, a sub-sequence of deletions starting with one that touches the cell (1, a).
The first sub-sequence is composed of horizontal deletions in the first line, and possibly some
deletions in Z too. Since at each step, the size of the deleted hook is fixed, the only freedom in
this sub-sequence stems from the position of the deletions in Z. As Ci,i+1 satisfies (∗), if a = 1
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there are at most O(ln p) possible choices for the step at which the only possible deletion in Z
occurs, if a = 2 there are at most O

(
(ln p)2

)
possible choices (in the case where the two cells in

Z are deleted one by one), and likewise for a = 3.
The second sub-sequence is composed of deletions in a sub-diagram containing at most a2

cells, so the number of possibilities for this sub-sequence is a O(1). Therefore |χλ(Ci)| ≤ gλ(ζ) =
O((ln p)a).

Z

a p − 2a

(a)

(b) (c)

(d)

Figure 3. The Young diagram Y (λ) associated to λ (a), the 2 possible types of deletions
of the first subsequence (b) and (c), and the first deletion of the second subsequence (d).

We get the same result when λ′
1 ≥ p− 3, by considering the first column of Y (λ). Hence

Σ2 = O

(

(ln p)2D

p2D−2

)

,

which finally gives us ‖P (C1,C2)

α1α
−1
2

− UH‖ = O
(

(ln p)D

pD−1

)

. �

As mentioned above, some steps of this proof use stronger arguments than in [CP16]. Indeed,
to estimate Σ1, we are in the strongest case of application of the bound (2.3), when there is a
number po(1) of cycles under a given size, while the permutations in [CP16] have no cycles under
a given size. Moreover, when we bound Σ2 with a number of sequences of rim-hook deletions, we
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have to take into account the contribution to this number of rim-hooks of length 1 or 2, which
do not appear in [CP16], for the same reason.

We can now prove Theorem 2.6.

Proof of Theorem 2.6. — For 0 ≤ l ≤ (D + 1)p, we want to estimate the probability

P(F = l) =
∑

c0,1+c1,2+···+cD,0=l

P(O0,1 = c0,1,O1,2 = c1,2, . . . ,OD,0 = cD,0).

We decompose the event of having some given {ci,i+1, 0 ≤ i ≤ D} depending on the conjugacy
classes π(αi,i+1) of the αi,i+1, for 0 ≤ i ≤ D − 1:

P(F = l) =
∑

c0,1+c1,2+···+cD,0=l

∑

Ci,i+1

O(Ci,i+1)=ci,i+1

for i=0,...,D−1

P(OD,0 = cD,0|{Ci,i+1})
∏

0≤i≤D−1

P(π(αi,i+1) = Ci,i+1).

Now, we separate the conjugacy classes into those that satisfy (∗) and those that do not:

P(F = l) =
∑

c0,1+c1,2+···+cD,0=l

∑

O(Ci,i+1)=ci,i+1

Ci,i+1 satisfies (∗) ∀i

P(OD,0 = cD,0|{Ci,i+1})
∏

0≤i≤D−1

P(π(αi,i+1) = Ci,i+1)

+
∑

c0,1+c1,2+···+cD,0=l

∑

O(Ci,i+1)=ci,i+1

∃i Ci,i+1 violating (∗)

P(OD,0 = cD,0|{Ci,i+1})
∏

0≤i≤D−1

P(π(αi,i+1) = Ci,i+1)

= : P1 + P2.

From Proposition 2.7, if all the Ci,i+1 satisfy (∗), then:

P

(

O (αD,0) = cD,0
∣
∣
∣ C(αi,i+1) = Ci,i+1, 0 ≤ i ≤ D − 1

)

= P

(

O (αD,0) = cD,0
∣
∣
∣ ε(p − cD,0) = ε(C0,1) · · · ε(CD−1,D)

)

+ O

(

(ln p)D

pD−1

)

= 2 · 1{ε(p−cD,0)=ε(C0,1)···ε(CD−1,D)} · P(O (αD,0) = cD,0) + O

(

(ln p)D

pD−1

)

where ε(n) is the parity of n. Thus, for P1, we know that the only dependency left in cD,0 is a
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parity condition:

∑

c0,1+c1,2+···+cD,0=l

∑

O(Ci,i+1)=ci,i+1

Ci,i+1 satisfies (∗) ∀i

P(OD,0 = cD,0|{Ci,i+1})
∏

0≤i≤D−1

P(π(αi,i+1) = Ci,i+1)

=
∑

c0,1+c1,2+···+cD,0=l

2 · 1{p−cD,0≡Dp−
∑

ci,i+1 [2]}

·
∑

O(Ci,i+1)=ci,i+1

Ci,i+1 satisfies (∗) ∀i

(

P(OD,0 = cD,0) + O

(

(ln p)D

pD−1

))
∏

0≤i≤D−1

P(π(αi,i+1) = Ci,i+1)

=
∑

c0,1+c1,2+···+cD,0=l

2 · 1{p−cD,0≡Dp−
∑

ci,i+1 [2]}

·









∑

O(Ci,i+1)=ci,i+1

Ci,i+1 satisfies (∗) ∀i

P(OD,0 = cD,0)
∏

0≤i≤D−1

P(π(αi,i+1) = Ci,i+1)









+ O

(

(ln p)D

pD−1

)

.

To control P2, we use the fact that for a fixed l, the number of cycles of length l in a uniform
permutation α ∈ Sp asymptotically follows a Poisson law of parameter 1/l (see [ABT03]).
This implies that: P(α has more than ln p cycles of size 1 and 2) = O(1/(ln p)! ). Therefore:

P2 = P(F = l and ∃i ∈ {0, 1, . . . ,D − 1} αi,i+1 violates (∗))

≤ P(∃i ∈ {0, 1, . . . ,D − 1} αi,i+1 violates (∗)) = O

(
1

(ln p)!

)

and, similarly,

∑

c0,1+c1,2+···+cD,0=l

∑

O(Ci,i+1)=ci,i+1

∃i Ci,i+1 violating (∗)

2 · 1{p−cD,0≡Dp−
∑

ci,i+1 [2]}P(OD,0 = cD,0)·

∏

0≤i≤D−1

P(π(αi,i+1) = Ci,i+1) = O

(
1

(ln p)!

)

.

Hence

P(F = l) =
∑

c0,1+c1,2+···+cD,0=l

2 · 1{p−cD,0≡Dp−
∑

ci,i+1 [2]} P(OD,0 = cD,0)·

∏

0≤i≤D−1

P(Oi,i+1 = ci,i+1) + O

(

ln pD

pD−1

)

.

Finally, notice that the parity condition on the ci,i+1 is: “(D+ 1)p−∑0≤i≤D ci,i+1 is even”,
that is: “(D + 1)p − l is even”. So

P(F = l) = 2 · 1{(D+1)p−l even}
∑

∑

0≤i≤D
ci,i+1=l

P(OD,0 = cD,0)·

∏

0≤i≤D−1

P(Oi,i+1 = ci,i+1) + O

(

ln pD

pD−1

)

. �
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We now prove Theorem 2.5:

Proof of Theorem 2.5. — We have obtained that:

‖PF − PF ‖ = O

(

(ln p)D

pD−1

)

,

where PF = 2 · 1{(D+1)p−F even}P0,1 ∗ P1,2 ∗ · · · ∗ PD,0, i.e. F is, up to a parity condition, the
sum of D + 1 i.i.d. variables of law P0,1. Therefore, F converges (uniformly) in distribution to
F :

|ΦF − ΦF | = O

(

(ln p)D

pD−1

)

where ΦX(a) = P(X ≤ a), i.e. ΦX is the cumulative distribution function of X.

We thus want to show that F−E[F ]√
Var(F)

converges weakly to the normal distribution. Now, for

a uniform permutation σ ∈ Sp, O(σ) has the same distribution as a certain sum of independent
Bernoulli variables:

P(O(σ) = l) = P




∑

1≤j≤p
Bj = l





where the Bj are independent Bernoulli variables, with Bj of parameter 1/j. Therefore, F has
the same distribution as S · 1{(D+1)p−S even}, with:

S =
∑

1≤j≤p
Cj

where the Cj are independent binomial variables, with Cj of parameters (D + 1, 1/j).

Applying the Lindeberg Central Limit Theorem to S, we show that S−E[S]√
Var(S)

converges in

distribution to the standard normal law. Then, by applying the Local Limit Theorem (see
[McD05, Theorem 3.1]), we show that:

P(S = l) =
(1 + o(1)) exp

(
−(l−E[S])2

2 Var(S)

)

√

2πVar(S)

uniformly in l. Therefore, as

P(F = l) = 2 · 1{(D+1)p−l even} · P(S = l),

this local limit theorem holds for F as well.
This implies that F−E[S]√

Var(S)
converges in distribution to the standard normal law, so this is

also the case for F , and, as E[F ] = E[S] and Var(F ) = Var(S), we get the final result. �
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3. Quartic model

The uniform model presented in the previous section is easy to manipulate, but, as we have
seen, it yields a relatively unsatisfying geometrical structure. Moreover, it is very far from the
distributions arising in colored tensor models, as all of these yield an average number of faces
linear with p (see for instance [BDR15]), to be compared with the logarithmic behavior of the
uniform case, which thus has little physical relevance. These two sources of dissatisfaction are
incentives to consider a slightly more complicated model, that we call the quartic model,
and whose structure is quite familiar to physicists working on colored tensor models [DGR13;
DGR14; OSVT13; RVT17]. Note however that the quartic model from the physics literature
has degree-dependent weights, whereas ours is uniform on the possible realizations.

More precisely, our quartic model can be defined as follows: we consider a bipartite (D+ 1)-
colored graph, where the D-bubbles without color 0 are all quartic, i.e. contain 4 vertices, put
into two pairs linked by D− 1 edges, with the two edges of the remaining color c connecting the
pairs (see Fig. 4). The D-bubbles without color 0, that we call 0̂-bubbles, are the “interaction
vertices” of the model from the point of view of quantum field theory, while the 0-edges are its
“propagators”. In each 0̂-bubble, we want every color c ∈ {1, 2, . . . ,D} to be drawn equiprobably
as the distinguished color, the bubbles being all independent. We also want the edges of color
0 to be sampled uniformly and independently of the rest.

c c

2k 2k

2k − 1 2k − 1

Figure 4. The structure of each 0̂-bubble of QD
p .

Thus, our random graph QDp ((D + 1)-colored, with p 0̂-bubbles, hence 4p vertices) can
be described by a permutation α0 uniform on S2p, independent from a set of D permutations
{α1, α2, . . . , αD} ⊆ S2p, each being a product of transpositions of the form (2k − 1 2k), with
the constraints:

∀k ∈ {1, 2, . . . , p} ∃! i ∈ {1, 2, . . . ,D}, αi(2k − 1) = 2k

∀k ∈ {1, 2, . . . , p},∀i ∈ {1, 2, . . . ,D}, P(αi(2k − 1) = 2k) =
1

D
.

Following the structure of the previous section, we now present results on the connectedness
and the degree of QDp , as p → ∞.
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3.1. Connectedness. — We show that QDp is connected a.a.s., very similarly to the uniform
case:

Theorem 3.1. — For all D ≥ 2, one has:

P

(

QDp connected
)

= 1 − 1

2p − 1
+ O

(
1

p

)

.

Proof. — We use the same arguments as for Theorem 2.1, with the slight difference that we
consider the number of 0̂-bubbles contained in a subgraph, instead of the number of vertices.

Thus, for the upper bound on P

(

QDp n.c.
)

P

(

QDp n.c.
)

≤
∑

1≤k≤⌊ p
2

⌋
P

(

∃ closed subgraph with k 0̂-bubbles
)

≤
∑

1≤k≤⌊ p
2

⌋

(

p
k

)

(2k)! (2(p − k))!

(2p)!
=

1

2p− 1
+ O

(
1

p2

)

,

and, for the lower bound

P

(

QDp n.c.
)

≥ P

(

∃! isolated 0̂-bubble
)

= P(∃ at least 1 isolated bubble) − P(∃ at least 2 isolated bubbles)

≥ 1

2p− 1
− 1

2(2p − 1)(2p − 3)
. �

As was the case for the uniform model, the probability of QDp having k connected components
decreases fast enough with k to get an asympotic expectation value of 1 for its number of
connected components:

Theorem 3.2. — For all D ≥ 2, one has:

E

[

k(QDp )
]

= 1 + O

(
1

p

)

.

Proof. — Calculations similar to those of Section 2.1 give:

P

(

k(QDp ) ≥ 3
)

= O

(
1

p2

)

, P

(

k(QDp ) ≥ 4
)

= O

(
1

p3

)

.

Hence

E

[

k(QDp )
]

= 1 + O

(
1

p

)

+ O

(
1

p2

)

+

(
p(p+ 1)

2
− 6

)

O

(
1

p3

)

= 1 + O

(
1

p

)

. �

If we now move on to the number of D-bubbles of QDp , we get a picture which is very different

from the uniform case. Indeed, since removing from QDp the edges of one given color does not

yield QD−1
p , one cannot rely on Theorem 3.2 to infer a result for bD(QDp ), and one must therefore

tackle this problem with new tools.
Let us first deal with the case D = 2, which is much simpler than the higher dimensions. As a
matter of fact, for D = 2 removing one color other than 0 (that is, either 1 or 2) yields 2p edges
linked by a uniform permutation (see Fig. 5), hence:

E

[

bD(Q2
p)
]

= p+ 2(ln p+ γ) + o(1),
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i

i

0 0

0 0

0 0

0 0

Figure 5. Removing a color other than 0 in Q2
p.

using once again our knowledge of the number of cycles of uniform permutations.

To answer our question for the general case D ≥ 3, let us start with a quick analysis of the

structure of
(

QDp

)

ı̂
, for i ∈ {0, 1, . . . ,D}:

• if i = 0, then we just have p disconnected quartic bubbles;

• if i 6= 0, then
(

QDp

)

ı̂
is composed of (D − 1)-melons (coming from the splitting of the

0̂-bubbles in which i is distinguished) and quartic (D − 1)-bubbles (coming from the 0̂-
bubbles in which i is not distinguished), completed with edges of color 0.

i i

0 0

0 0

i

i

0 0

0 0

0 0

0 0

0 0

0 0

Figure 6. Going from QD
p to

(
QD

p

)

ı̂
, and from

(
QD

p

)

ı̂
to SD,i

p .

For i 6= 0, as we are here only interested in the connected components of
(

QDp

)

ı̂
, we can

study a simpler (directed) graph SD,ip , which possesses vertices in lieu of quartic bubbles and

melons, and whose edges correspond to the 0-edges of
(

QDp

)

ı̂
.

More precisely, the quartic bubbles of
(

QDp

)

ı̂
are represented in SD,ip by vertices with in-degree

and out-degree of 2, and its melons, by vertices with in-degree and out-degree of 1. We can
decide for instance that each white (resp. black) vertex gives rise to an in- (resp. out-)half edge,
and thus the half edges of SD,ip unambiguously inherit a labelling. The uniformity of α0 is then
translated into a uniform matching of the in- and out-half edges. This construction, illustrated

in Fig. 6, clearly preserves the connected components of
(

QDp

)

ı̂
.

Crucially, SD,ip is a very special case of the (directed) configuration model, and general results
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by Cooper and Frieze [CF04], combined with the recent ones of Federico and van der Hofstad
[FH17], allow us to obtain the following asymptotic results for the connected components of
(

QDp

)

ı̂
:

Theorem 3.3. — For D ≥ 3, for any i ∈ {1, 2, . . . ,D}, QDp has a giant ı̂-bubble containing

4p− O
(√
p ln p

)

vertices. Moreover, the expectation value of the number of ı̂-bubbles of QDp is:

E

[

k(SD,ip )
]

= ln

(
D

D − 1

)

+ 1 + o(1).

We therefore get, for the total number of D-bubbles of QDp :

Corollary 3.4. — For D ≥ 3:

E

[

bD(QDp )
]

= p+D

(

ln

(
D

D − 1

)

+ 1

)

+ o(1).

As stated above, to prove Theorem 3.3, we will make use of results on the directed configu-
ration model, that we define now. The directed configuration model describes a random digraph
Dn with n vertices, among which, for i, j ≥ 0, li,j have in-degree i and out-degree j. Dn is
obtained from these vertices by taking each matching of the in- and out-half-edges equiproba-
bly. For Dn to be well-defined,there must be an equal number of in- and out-half edges, i.e.:
∑

i,j ili,j =
∑

i,j jli,j =: θ · n. The average directed degree in Dn is then d :=
∑

i,j ij
li,j
θn .

SD,ip is an example of a directed configuration model, with q = 2q1 + q2 vertices, where q1

is the number 0̂-bubbles that were split by removing i-edges, and q2 = p − q1 is the number of
bubbles that were not split. Now, by construction, q1 is the sum of p independent Bernoulli
variables of parameter 1/D, so, from the Hoeffding inequality:

P

(
∣
∣
∣
q1

p
− 1

D

∣
∣
∣ ≥

√

ln p

p

)

≤ 2

p2
.

Thus, a.a.s. q1 ∼ p/D, and in that case l1,1 = 2p
D (1 + o(1)), l2,2 = (D−1)p

D (1 + o(1)), θ = 2p
q =

2D
D+1(1 + o(1)), and d = 2q1+4q2

2p =
(

2D−1
D

)

(1 + o(1)).

To prove Theorem 3.3, we use a result proved in [CF04], which implies that SD,ip a.a.s.
contains one giant connected component of size of order q, as well as smaller cycles. Then, we
will adapt a result from [FH17] to know the number of those cycles.

Theorem 3.5. — [CF04]
Let Dn be a configuration model digraph defined by a sequence (li,j), satisfying:

(i) the degrees in Dn are bounded, i.e. ∃ im, jm such that i > im or j > jm ⇒ li,j = 0

(ii) ∃ constants θ0, d0 such that: θ = θ0(1 + o(1)) and d = d0(1 + o(1)), with d0 > 1

(iii) ∀ i li,0 = 0 and ∀ j l0,j = 0.

Then a.a.s. the structure of Dn is as follows:

(i) There is a unique giant strongly connected component S in Dn, of size n− O
(√

n lnn
)

.

(ii) There is a collection C of vertex-disjoint directed cycles. The vertices of a cycle in C are
all of in-degree 1 or all of out-degree 1. Moreover, each cycle in C is connected to S by
zero or more directed paths, all such paths having the same direction with respect to the
given cycle.
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To understand Theorem 3.5, it is important to note that it deals with strongly connected
components of Dn, i.e. subgraphs of Dn in which any two vertices can be joined by directed
paths in both directions. Thus, the cycles in C can be connected to S by paths, but not strongly
connected.

From our analysis of SD,ip , Theorem 3.5 applies to our case, as only l1,1 and l2,2 are non-zero,

θ → 2D
D+1 , and d → 2 − 1

D . Moreover, as all the vertices of SD,ip have same in-degree and out-
degree, its strongly connected components are the same as its merely connected ones. Therefore,
SD,ip is comprised of one giant connected component, together with a collection of small cycles.

To obtain the number of connected components of SD,ip , we thus have to determine its number
of cycles. To do so, we adapt a result from [FH17] on the undirected configuration model, to
the directed case:

Proposition 3.6. — Let Dn be a configuration model digraph defined by a sequence (li,j),

satisfying the hypothesis (ii) from Theorem 3.5, and such that:
l1,1
n −−−→

p→∞
p1,1 ∈ [0, 1]. Let

Ck(n) be the number of cycles (composed of vertices of in- and out-degree 1) of length k in Dn.
Then:

(Ck(n))k≥1

(d)−→ (Ck)k≥1

where the Ck are independent Poisson variables, of respective parameter
pk1,1
kθk0

.

To prove Proposition 3.6, we use the following Lemma, similarly to the proof of Theorem
3.3 in [FH17]:

Lemma 3.7. — [Hof17] A sequence of vectors of non-negative integer-valued random variables

(X
(n)
1 ,X

(n)
2 , . . . ,X

(n)
k )n≥1 converges in distribution to a vector of independent Poisson random

variables with parameters (λ1, λ2, . . . , λk) when, for all possible choices of (r1, r2, . . . , rk) ∈ N
k:

lim
n→∞

E

[

(X
(n)
1 )r1(X

(n)
2 )r2 · · · (X

(n)
k )rk

]

=
k∏

i=1

λrii

where (X)r = X(X − 1) · · · (X − r + 1).

Proof of Proposition 3.6. — From Lemma 3.7, it suffices to show that, for all k ≥ 1 and all
possible choices of (r1, r2, . . . , rk) ∈ N

k:

lim
n→∞

E[(C1(n))r1(C2(n))r2 · · · (Ck(n))rk ] =

(
p1,1

θ0

)r1+2r2+···+krk 1

2r2 · · · krk .

We will proceed by induction on k. We first define Ck the set of candidates for cycles of length
k in Dn, i.e. Ck = {{v1, v2, . . . , vk}|vi has in- and out-degree 1}, so that:

Ck(n) =
∑

c∈Ck

1{c is in Dn}.

This formulation highlights the fact that we are dealing with the factorial moments of sums
of indicators, which implies that (see [Hof17, Section 2.1]):

(3.1) E[(C1(n))r1(C2(n))r2 · · · (Ck(n))rk ] =
∑

c1(1),...,c1(r1)∈C1

distinct

· · ·
∑

ck(1),...,ck(rk)∈Ck
distinct

P(ci(s) is in Dn, ∀ i = 1, . . . , k, ∀s = 1, . . . , rk).
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We note Wk(
−→r ) the set of candidates for a collection of cycles like in Eq. (3.1): Wk(

−→r ) :=
{{c1(1), . . . , c1(r1), . . . , ck(1), . . . , ck(rk)} | ci(j) ∈ Ci, 1 ≤ i ≤ k, 1 ≤ j ≤ ri, the ci(s) are distinct},
and for w ∈ Wk(

−→r ) we note E (w) the event that all the cycles of w are in Dn. Then

E[(C1(n))r1(C2(n))r2 · · · (Ck(n))rk ]

=
∑

wk∈Wk(−→r )

P(E (wk))

=
∑

wk−1∈Wk−1(−→r )

P(E (wk−1))
∑

c1,...,crk∈Ck

distinct

E

[

1{c1 in Dn} · · ·1{crk in Dn}|E (wk−1)
]

︸ ︷︷ ︸

Sk

.

We now calculate Sk. It can be decomposed into the possible choices of cycles, that is, choices
of collections of vertices of in- and out-degree of 1, multiplied by the probability of having those
cycles in Dn. The choice of vertices is only constrained by the vertices already appearing in
cycles of wk, as those cannot be chosen. As for the probability of the cycles, they correspond to
successive restrictions on the uniform permutation representing the matchings of the half-edges.
Thus:

Sk =
(l1,1 − a1,1)!

(l1,1 − a1,1 − krk)! (k! )rk
· ((k − 1)! )rk(θn− a1,1 − k)!

(θn− a1,1)!

where a1,1 is the number of vertices appearing in wk−1. Therefore, for fixed k,

Sk =
lkrk1,1

krk(θn)krk
(1 + o(1)) =

(

pk1,1
kθk0

)rk

(1 + o(1)),

i.e.

E[(C1(n))r1(C2(n))r2 · · · (Ck(n))rk ] =

E
[

(C1(n))r1(C2(n))r2 · · · (Ck−1(n))rk−1

]

·
(

pk1,1

kθk0

)rk

(1 + o(1)). �

From Theorem 3.5 and Proposition 3.6, we deduce that the number of connected components
of SD,ip has an expectation value of:

E

[

k(SD,ip )
]

= 1 +
∑

k≥1

E[Ck(q)]
∣
∣
∣|q−D+1

D
p|=O(

√
p ln p)

+ O

(

p · 1

p2

)

= 1 +
∑

k≥1

1

kDk
+ o(1),

i.e.

E

[

k(SD,ip )
]

= 1 + ln

(
D

D − 1

)

+ o(1)

which gives Theorem 3.3, and therefore Corollary 3.4.
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3.2. Geometry of the complex. — With a view towards scaling limits, it is encouraging
that the number of points in the complex ∆(QDp ) grows linearly with p, as stated in Corollary 3.4.
However, to make it possible to hope for a continuum scaling limit, the typical distances in
∆(QDp ) must grow to infinity with p. This is why we investigate the behavior of distances in
this complex.

We show that, unfortunately, the average distance between two points of the complex is
bounded, and more precisely, as stated in Theorem 3.8, equal to 2. This can be predicted by
considering the “typical landscape” of the complex. Indeed, there always are p 0-points, while
the number of i-points, for i 6= 0, grows sublinearly with p, as a consequence of Theorem 3.5.
Thus, a uniform point is a.a.s. of color 0. Moreover, Theorem 3.5 also implies that, for i 6= 0,
there is a “hub” i-point corresponding to the giant component of SD,ip , which is linked to most of

the 0-points, and much more isolated i-points, corresponding to the small cycles of SD,ip . Hence,

typically two independent and uniform points of ∆(QDp ) will be of color 0, and will have the
“hub” i-points, for i 6= 0, as common neighbors. We formalize this heuristic in the proof of the
following theorem:

Theorem 3.8. — Let u, v be two vertices of ∆(QDp ) chosen uniformly at random and indepen-
dently. Then, a.a.s.:

d(u, v) = 2.

Proof. — To prove this result, we show that a.a.s. u and v are points of color 0, and have a
common neighbor of color i 6= 0. The fact that they are 0-colored a.a.s. is a simple consequence
of Theorem 3.5, and more precisely the fact that a.a.s. the giant component of SD,ip has size

q − O
(√
q ln q

)
(where q is the number of vertices of SD,ip ), so that a.a.s. there are less than

O
(√
p ln p

)
ı̂-bubbles for i 6= 0, while there are p 0̂-bubbles.

It now remains to show that u and v have a common neighbor. To do so, let us consider the
D-bubbles Bu,Bv of QDp they respectively correspond to. For any color i 6= 0, Bu corresponds

to either 1 or 2 vertices in SD,ip , depending on whether i is the distinguished color in Bu or

not. If Bu corresponds to a single vertex u ∈ SD,ip , then conditionally to the existence of a
giant component like in Theorem 3.5, u is necessarily in that giant component, as it is a quartic
vertex. Now, conditionally to the fact that Bu corresponds to 2 vertices w, x ∈ SD,ip , both w and

x are uniform on the quadratic vertices of SD,ip , and are thus a.a.s. in the giant component of

SD,ip , from Theorem 3.5. Therefore, a.a.s. Bu and the ı̂-bubble Bg,i corresponding to the giant

component of SD,ip have an (̂ı, 0̂)-bubble in common. In terms of simplices of ∆(QDp ), this means
that a.a.s., a 1-simplex of the complex links u to the vertex tg,i corresponding to Bg,i, i.e. that
these two vertices are nearest neighbors. Following the same reasoning for v, a.a.s. it is also a
direct neighbor of tg,i, so that u and v are at distance 2 in ∆(QDp ). �
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3.3. Degree. — We now look into the number of faces of QDp . Like for the uniform model, we
present results on the expectation value and the variance of the total number of faces, as well as
one on the asymptotic behavior of the number of faces of a given jacket. As we will see, upon
proving these results we also obtain the asymptotic behavior of the genus of a uniform map of
size p, as p → ∞ (see Theorem 3.14).

Theorem 3.9 (Number of faces of QD
p )

E

[

[b2(QDp )
]

= (D − 1)2p+D(ln (2p) + γ) + o(1)(3.2)

Var
(

b2(QDp )
)

= O
(

(ln p)3
)

.(3.3)

We also get a normal limit for the number of faces of one jacket:

Theorem 3.10. — Let Jp be a regular embedding of QDp , and FJp be the number of faces of

Jp. Then the quantity
FJp−E[FJp ]√

Var(FJp)
converges weakly to the standard normal distribution.

To prove both Theorem 3.9 and Theorem 3.10, we will need to determine the asymptotical
behavior of the joint law of O(α0α

−1
i ),O(αjα

−1
i ),O(αjα

−1
0 ), for 1 ≤ i < j ≤ D. By conjugating

all permutations by a uniform permutation β ∈ S2p, independent from the rest, this amounts to
answering the same question for O(ϕ),O(α),O(αϕ−1), for α,ϕ two independent permutations
in S2p, with ϕ uniform, and α an involution with n = 2b fixed points, where b is the sum
of p independent Bernoulli variables of parameter D−2

D . This slight change of setting leads to
considering the following result:

Proposition 3.11. — Let p be a positive integer, and 0 ≤ b ≤ p fixed. Let α be uniform on
the conjugacy class of involutions on {1, . . . , 2p} with 2b fixed points, and let ϕ be a uniform
permutation on {1, . . . , 2p}, independent from α. Then (O(ϕ) + O(αϕ−1)) has the same law as
(O(ψ) + O(δψ−1)), where δ is uniform on the fixed-point-free involutions on {1, . . . , 2(p − b)},
and ψ is uniform on S2(p−b), and independent from δ.

Proof. — The key idea of the proof is that α,ϕ, αϕ−1 respectively describe the (half-)edges, faces
and vertices, of an (half-edge) labelled ribbon graph G with (p − b) edges and 2b unmatched
half-edges. By erasing the unmatched half-edges of G, we obtain a ribbon graph H with (p− b)
edges.

As α and ϕ are independent and uniform on their respective sets of possible realizations, G
is uniform on the set of labelled ribbon graphs with (p− b) edges and 2b unmatched half-edges.
Therefore, if we relabel the half-edges of H, by keeping their order, so that the labels are in
{1, 2, . . . , 2(p−b)}, we get a ribbon graph H ′, uniform on the labelled ribbon graphs with (p−b)
edges. H ′ can thus be identified to a triple (δ, ψ, δψ−1) satisfying the hypotheses mentioned
above. As the transformation from G to H ′ preserves the Euler characteristic, we have

χ(G) = O(ϕ) − (O(α) − 2b) + O(αϕ−1)

= χ(H ′) = O(ψ) − O(δ) + O(δψ−1),

that is
�

O(ϕ) + O(αϕ−1) = O(ψ) + O(δψ−1).

Let us go back to the permutations that define QDp . We deduce from Proposition 3.11 an
intermediate result that will be necessary to prove Theorem 3.9:
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Proposition 3.12. — Let Oi,j be the number of cycles of αiα
−1
j . Then:

E[O0,1OD,0] = O
(

(ln p)3
)

.

Proof. — We first write:

E[O0,1OD,0] =
1

2

(

E

[

(O0,1 + OD,0)2
]

− E

[

O2
0,1

]

+ E

[

O2
D,0

])

.

Then, from Proposition 3.11, when the number 2b of fixed points of αDα
−1
1 is fixed, we have:

E

[

(O0,1 + OD,0)2 |αD,1 has 2b fixed points
]

= E

[(

O(ψ) + O(δψ−1)
)2
]

with the notations of Proposition 3.11. Now, with the same techniques as in Section 2.2, we
prove that, conditionally to the conjugacy class Cψ of ψ, δψ−1 is asymptotically uniform on
H = A2(p−b) (resp. H = (A2(p−b))

c) if ψ and δ are of the same parity (resp. of opposite
parities). More precisely,

‖Pδψ−1 − UH‖ = O

(

(ln (p − b))2

p− b

)

.

Thus

E

[

O(ψ)O(δψ−1)
]

=
∑

1≤c1,c2≤2(p−b)
c1c2 P

(

O(ψ) = c1,O(δψ−1) = c2

)

=
∑

1≤c1≤2(p−b)
c1 P(O(ψ) = c1)

[

O
(

(ln (p − b))2
)

+
∑

1≤c2≤2(p−b)
2 · 1{(−1)c1+c2=(−1)p−b} · c2 P

(

O(δψ−1) = c2

)]

=
∑

1≤c1≤2(p−b)
c1 P(O(ψ) = c1)

[

O
(

(ln (p − b))2
)

+ O(ln (p− b))
]

= O
(

(ln (p − b))2
) ∑

1≤c1≤2(p−b)
c1 P(O(ψ) = c1)

= O
(

(ln (p − b))3
)

.

This implies that

E

[(

O(ψ) + O(δψ−1)
)2
]

= O
(

(ln (p − b))3
)

,

and so E[O0,1OD,0] = O
(
(ln (p− b))3

)
as well. �

We can now prove Theorem 3.9.

Proof of Theorem 3.9. — To prove Eq. (3.2), we first make a clear list of the different types of
faces:

• the faces without color 0 are, by definition, subsets of the 0̂-bubbles. They either contain
the distinguished color of their 0̂-bubble, in which case they have 4 vertices, or they do
not, in which case they have 2 vertices. There are, in each 0̂-bubble, D − 1 faces of the
first type, and (D − 1)(D − 2) of the second.
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• For each i 6= 0, one can see the bicolored graph (QDp )i,0 as 2p vertices with one in- and one
out-half-edge, with a uniform matching of the half-edges, similarly to the construction of
SD,jp . The faces of color {0, i} are thus given by the cycles of a uniform permutation of
size 2p.

Therefore:

E

[

b2(QDp )
]

= ((D − 1)(D − 2) + (D − 1)) p+D





2p
∑

j=1

1

j





= (D − 1)2p+D(ln (2p) + γ) + o(1).

To obtain the variance, we now have to calculate E

[(

b2(QDp )
)2
]

. We decompose it into

different parts as follows:

E

[(

b2(QDp )
)2
]

= E









∑

0≤i<j≤D
O
(

αiα
−1
j

)





2





= E









∑

1≤i<j≤D
O
(

αiα
−1
j

)





2





︸ ︷︷ ︸

E1

+ 2 E







∑

1≤i≤D
1≤k<l≤D

O
(

α0α
−1
i

)

O
(

αkα
−1
l

)







︸ ︷︷ ︸

E2

+
∑

1≤i≤D
E

[

O
(

α0α
−1
i

)2
]

︸ ︷︷ ︸

E3

+ 2
∑

1≤i<j≤D
E

[

O
(

α0α
−1
i

)

O(α0α
−1
j )
]

︸ ︷︷ ︸

E4

.

In the first term, E1, there are all the faces without color 0. By definition, the number of those
is fixed:

∑

1≤i<j≤D
O
(

αiα
−1
j

)

= p((D − 1)(D − 2) + (D − 1)) = p(D − 1)2,

so that E1 = p2(D − 1)4. Moving on to E2, for any i, k, l ∈ {1, 2, . . . ,D}, the permutations
α0α

−1
i and αkα

−1
l are independent, so:

E2 = 2 E




∑

1≤i≤D
O
(

α0α
−1
i

)



 · E



∑

1≤k<l≤D
O
(

αkα
−1
l

)





= 2D





2p
∑

j=1

1

j



 · (D − 1)2p,

using, for the first part, the fact that all i ∈ {1, 2, . . . ,D}, α0α
−1
i is uniform, and, for the second

part, the same argument as for E1. Thus

E2 = 2D(D − 1)2p





2p
∑

j=1

1

j



 .

For E3, we are dealing with uniform permutations, so:

E3 = D((ln 2p)2 + (2γ − 1) ln (2p) + o(ln p))

= D(ln p)2 + O(ln p).
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We are now left with E4, which we estimate thanks to Proposition 3.11: E4 = O
(
(ln p)3

)
.

Therefore

Var
(

b2(QDp )
)

=



p2(D − 1)4 + 2D(D − 1)2p





2p
∑

j=1

1

j



+ O
(

(ln p)3
)





−


(D − 1)2p+D





2p
∑

j=1

1

j









2

= O
(

(ln p)3
)

. �

Proof of Theorem 3.10. — Like in Section 2.2, by symmetry, we assume without loss of gen-
erality that Jp corresponds to the usual cyclic ordering (0 1 . . . D), and in that case we are
interested in the quantity:

F =
∑

0≤i≤D
Oi,i+1

where, by convention, OD,D+1 = OD,0. From the structure of the αi, for 1 ≤ i ≤ D, we deduce

∑

1≤i≤D−1

Oi,i+1 + OD,1 = 2p(D − 1),

hence:

F = O0,1 + OD,0 + 2p(D − 1) − OD,1.

Thus, up to a constant, F follows the same law as f := O0,1 + OD,0 − OD,1. Now, condi-
tionally to the number 2b of fixed points of αDα

−1
1 , Proposition 3.11 gives us the behavior of

f . Indeed, it has the same law as O(ψ)+O(δψ−1)−(p+b), with the notations of Proposition 3.11.

As explained above in the proof of Proposition 3.12, conditionally to the conjugacy class Cψ
of ψ, the law of δψ−1 converges for the total variation distance to the uniform measure either
on A2(p−b) (if Cψ has the same parity as δ), or on (A2(p−b))

c (if they are of opposite parities).
Thus:

(3.4)

P(f = l) =
∑

1≤b≤p
P(OD,1 = p+ b)P

(

O(ψ) + O(δψ−1) = l + p+ b
)

=
∑

1≤b≤p
P(OD,1 = p+ b)

[

2 · 1{l even}
(

Pψ ∗ Pδψ−1

)

(l + p+ b)+

O

(

(ln (p− b))2

p− b

)
]

where Pσ is the law of the number of cycles of σ.

Now, let us recall that for a uniform permutation σ ∈ Sn, O(σ) has the same distribution as
∑n
j=1Bj, where the Bj are independent Bernoulli variables, with Bj of parameter 1/j. We use

this fact to bound the dependence on b of Pψ and Pδψ−1 . Indeed, as we will later use Hoeffding’s

inequality for b, we consider the case |b − p
(
D−2
D

)

| ≤ √
p ln p. We can couple O(ψ) with a

variable of the form
∑⌊ 4p

D
⌋

j=1 Bj,by taking or adding some Bj to the sum to get O(ψ), and in that
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case:

(3.5) P






∣
∣
∣O(ψ) −

⌊ 4p
D

⌋
∑

j=1

Bj
∣
∣
∣ ≥ 1




 = O

(√

ln p

p

)

.

Indeed:

∣
∣
∣O(ψ) −

⌊ 4p
D

⌋
∑

j=1

Bj
∣
∣
∣ ≤ B

(

O
(√

p ln p
)

,
⌊4p

D

⌋)

where B(O
(√
p ln p

)
, ⌊4p

D ⌋) follows a binomial distribution of parameters (O
(√
p ln p

)
, (⌊4p

D ⌋)−1).

Then, applying Markov’s inequality to B(O
(√
p ln p

)
, ⌊4p

D ⌋):

P

(

B

(

O
(√

p ln p
)

,
⌊4p

D

⌋)

≥ 1

)

= o

(
1√
ln p

)

.

Let us note gDp the law of
∑⌊ 4p

D
⌋

j=1 Bj. Similarly to what we did in the proof of Theorem 2.5,

we show that gDp converges uniformly to a discrete gaussian distribution, of mean Ep = ln p +

γ + ln( 4
D ) + o(1), and of variance Vp = ln p+ γ + ln( 4

D ) − π2/6 + o(1):

(3.6) gDp (c) =
(1 + o(1)) exp

(−(c−Ep)2

2Vp

)

√
2πVp

.

As Eq. (3.6) implies in particular that gDp (c) is slowly varying, we deduce from Eq. (3.5):

(3.7) Pψ(c) = gDp (c) + o

(
1√
ln p

)

.

Now, applying Hoeffding’s inequality to b, we get:

(3.8) P

(∣
∣
∣b− p

(
D − 2

D

) ∣
∣
∣ ≥

√

p ln p

)

= O

(
1

p2

)

.

Combining Eqs. (3.4), (3.7) and (3.8), we can write:

P(f = l) = 2 · 1{l even}(P̃D,1 ∗ gDp ∗ gDp )(l) + o

(
1√
ln p

)

where P̃D,1 is the law of −OD,1.

Thus:

∥
∥
∥Pf − 2Ph · 1{h even}

∥
∥
∥ = o

(
1√
ln p

)

,

where h =
∑

1≤j≤⌊ 4p
D

⌋Xj +Y +p, with the Xj and Y being independent binomial variables, with

Xj of parameters (2, 1/j) and Y of parameters (p, (D − 2)/D). The Lindeberg Central Limit
Theorem and the Local Limit Theorem apply once again, and the resulting convergence of Ph
to a discrete gaussian implies that of Pf .
Finally, as E[f ] = 2p(D − 1)/D + 2 ln p + O(1) = E[h] + O(1), and Var(f) = 2p(D − 2)/D2 +
O
(
(ln p)3

)
= Var(h) + O

(
(ln p)3

)
, we have a weak convergence result for (f − E[f ])/

√

Var(f). �
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As anounced before, the arguments we have used here to get results on the degree of QDp
also imply a Central Limit Theorem for the genus of a uniform random map, in a sense that
we make more precise now. Consider, for a given p ≥ 1, a uniform fixed-point-free involution
of {1, . . . , 2p}, δ, and a uniform permutation ψ ∈ S2p, independent from δ. Then δ, ψ, δψ−1

respectively describe the edges, faces and vertices of a (half-edge-labelled) ribbon graph Mp

with p edges, which is clearly uniform on the set of such graphs.

We first prove that Mp is a.a.s. connected:

Proposition 3.13. — One has:

(3.9) P(Mp connected) = 1 − 1

2p− 1
+ O

(
1

p

)

.

Proof. — Notice that the probability of Mp being connected is exactly the same as the probabil-
ity of QDp being connected (for any D ≥ 2). Indeed, in both cases we consider the set of indices

{1, . . . , 2p} grouped into pairs (by δ for Mp and by the structure of the 0̂-bubbles for QDp ), and
then add connections according to a uniform permutation independent from the pairing (ψ for
Mp and α0 for QDp ). We therefore deduce Eq. (3.9) directly from Theorem 3.1. �

Now that we know that Mp is connected a.a.s., we can consider its genus, for which we prove
the following theorem:

Theorem 3.14. — Let gp be the genus of Mp. Then the quantity
gp−E[gp]√

Var(gp)
converges weakly to

the standard normal distribution. Moreover, we have the following estimations:

E[gp] =
p

2
− (ln 2p+ γ) + 1 + o(1),

Var(gp) = O
(

(ln p)3
)

.

Proof. — Let us start with the first statement of the theorem. As explained in the proof of
Proposition 3.12, conditionally to the conjugacy class Cψ of ψ, δψ−1 is asymptotically uniform
on H = A2p (resp. H = (A2p)

c) if ψ and δ are of the same parity (resp. of opposite parities),
indeed:

‖Pδψ−1 − UH‖ = O

(

(ln p)2

p

)

.

Therefore, just like we derived Theorem 2.6 from Proposition 2.7, we get:

‖Pδ,ψ − 2 · 1{Cδ,ψ+p even}Pψ ∗ Pδψ−1‖ = O

(

(ln p)2

p

)

where Pδ,ψ is the law of Cδ,ψ := O(ψ) + O(δψ−1).
Now, following the same arguments as in the proof of Theorem 2.5, we obtain that the quan-

tity
Cδ,ψ−E[Cδ,ψ]√

Cδ,ψ
converges weakly to the standard normal law. Finally, as gp = 1

2 (p− Cδ,ψ) + 1,

we have a weak convergence result for gp as well. As for the estimations of E[gp] and Var(gp),
the first is a direct consequence of the fact that ψ and δψ−1 are uniform permutations, and the
second was proved in the proof of Proposition 3.12. �
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4. Uniform-uncolored models

Random D-complexes studied by physicists are mainly of the type of the quartic model:
the 0̂-bubbles of the corresponding colored graphs all belong to a fixed finite set of D-colored
graphs. In the quartic model studied in Section 3, this set is reduced to a singleton, namely
the quartic melonic graph of Fig. 4. Melonic D + 1-colored graphs are dual to special colored
triangulations of the D-sphere [GR12]. A natural question is the following: do the results ob-
tained for the quartic model also hold in the case of more generic 0̂-bubbles set and particularly
if this set contains non melonic graphs? To answer this question, we now consider a type of
model similar to the quartic one, where the 0̂-bubbles are all identical, up to color permutations.

More precisely, we start from a fixed, connected bipartite D-colored graph G with 2t ≥ 4
vertices, and we consider a random (D+1)-colored graph Gp, with p 0̂-bubbles B0̂

1, . . . ,B0̂
p, which

are all copies of G up to a color permutation: if an edge e of G has color c(e) ∈ {1, . . . ,D},

then the corresponding edge e′ of B0̂
k will have color ck(e

′) = γk(c(e)), where γ1, . . . , γp are i.i.d.
uniform permutations in SD (see Fig. 7 for an illustration).
Similarly to the quartic case, the 0-colored edges of Gp are given by a permutation α0 uniform on
Sp·t, and independent from the rest (we can choose an arbitrary labelling vB1 , . . . , v

B
t , v

W
1 , . . . , vWt

of the vertices of G to obtain a canonical labelling of the vertices of Gp).

The connectivity properties of this model are very similar to the specific case of the quartic
model seen in Section 3.1, as detailed in Section 4.1. In particular, the complex of the general
uniform-uncolored model ∆(Gp) exhibits the same asymptotic structure as for the quartic model,
i.e. a majority of 0-points, most of which having the “colored hubs” as common neighbors, as
explained in Section 4.2. As for the behaviors of the degree and of the genera of the jackets,
they are difficult to obtain in the general case, as we do not have an explicit description of
Gp in terms of D + 1 random permutations (α0, α1, . . . , αD) ∈ S

D+1
p . Even if we use such a

description for a particular case, the laws of the αi will typically be much more complicated
than for QDp , and might not yield explicit results or estimations as easily. Moreover, because
of the unsatisfying connectivity properties of this model, it does not seem very worthwhile to
undertake such a laborious task.

4.1. Connectedness. — Just like in the quartic case, we show that Gp is connected a.a.s.,
and moreover that the expectation value of its number of components converges to 1:

Theorem 4.1. — One has:

P(Gp connected) = 1 − p
(

tp
t

) + O

(
1

p2(t−1)

)

,

E[k(Gp)] = 1 + O

(
1

pt−1

)

.

Proof. — We proceed in the same way as for Theorems 3.1 and 3.2, using the fact that, for
1 ≤ k ≤ ⌊p2⌋, P(Gp has a closed subgraph containing k copies of G) =

(p
k

)

/
(tp
tk

)

. �

Now, to obtain results about the asymptotic number of ı̂-bubbles of Gp, for a fixed i ∈
{1, 2, . . . ,D}, we will consider the simplified graph Sip, defined like in the quartic case: the dele-

tion of the edges of color i decomposes any 0̂-bubble Bk into a certain number ri of connected

components B(1)
k , . . . ,B(ri)

k , having respectively, say, 2n1, . . . , 2nri vertices (with
∑

k nk = t). We

associate to each component B(s)
k a vertex vk,s with ns out- (resp. in-)going half-edges, corre-

sponding to its black (resp. white) vertices, so that each half-edge inherits the labelling of its



30 A. CARRANCE

3

3

γk(3)

γk(3)

γl(3)

γl(3)

2

2

1

γk(2)

γk(2)

γk(1)

γl(2)

γl(2)

γl(1)

1

1

31 2 3 2

γk(1)

γk(1)

γk(3)γk(1) γk(2) γk(3) γk(2)

γl(1)

γl(1)

γl(3)γl(1) γl(2) γl(3) γl(2)

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

G

Gp

B0̂
k B0̂

l

Figure 7. Starting from aD-colored graphG (hereD = 3), we construct a (D+1)-colored
graph Gp, whose p 0̂-bubbles are copies of G in which the colors have been permuted.
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Figure 8. For the purpose of studying the ı̂-bubbles of Gp, we replace each of its 0̂-
bubbles by vertices, whose number, in- and out-degrees are prescribed by the positions
of the i-edges in the 0̂-bubble. In this example we have taken the same base graph G as
in Fig. 7.
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corresponding vertex (see Fig. 8 for an example). We then consider the graph Sip on the vertices

(vk,s) (corresponding to all the components of all the 0̂-bubbles of (Gp)ı̂), obtained by taking a
uniform matching of the in- and out-half-edges: as explained in Section 3.1 for the quartic case,
this translates the uniformity of α0, and thus the connected components of (Gp)ı̂ correspond to
those of Sip.

Now, just like in the quartic case, we want to apply Theorem 3.5 to prove that Sip has a
giant component. First, let us translate the characteristics of Sip in the notation of the directed
configuration model. If deleting the color j in G gives rise to rj vertices of respective degrees

(δj1, δ
j
1), . . . , (δjr , δ

j
r) in our simplified formulation, then Sip will have q =

∑

1≤j≤D qjrj vertices,
where qj = #{k ∈ {1, 2, . . . , p}|γk(j) = i}. And for each possible degree 1 ≤ δ ≤ t, the number
of vertices of degree (δ, δ) in Sip will be: lδ,δ =

∑

1≤j≤D qjNδ,j, with Nδ,j = #{v ∈ {1, . . . , rj}|δjv =
δ}.

Now, note that, as the γk are uniform, a given i ∈ {1, 2, . . . ,D} has an equal probability to
replace any color j ∈ {1, 2, . . . ,D} in a given 0̂-bubble. Moreover, the γk are independent, so
that, for given i, j ∈ {1, 2, . . . ,D}, the number of 0̂-bubbles in which i replaces j is a binomial
variable of parameters ( 1

D , p):

#{k ∈ {1, 2, . . . , p}|γk(j) = i} ∼ Bin

(
1

D
, p

)

.

Thus, applying Hoeffding’s inequality, we have once again:

P

(
∣
∣
∣
qj
p

− 1

D

∣
∣
∣ ≥

√

ln p

p

)

≤ 2

p2
,

and for qj ∼ p/D, we can write lδ,δ = p · cδ(1 + o(1)), q = p · cq(1 + o(1)), θ = θ0(1 + o(1)), d =
d0(1 + o(1)), where:

cδ =
1

D

∑

1≤j≤D
Nδ,j, cq =

∑

1≤δ≤t
cδ

θ0 =

∑

δ δcδ
∑

δ cδ
, d0 =

∑

δ δ
2cδ

∑

δ δcδ
.

Thus, Sip satisfies the hypotheses of Theorem 3.5 as long as d0 > 1, i.e. as long as c1 <
∑

δ cδ.
In other words, we can apply Theorem 3.5 if there is at least one color j ∈ {1, 2, . . . ,D} such
that Ĝ is not made of melons only, which is always the case when D ≥ 2. Indeed, if there is
one color j such that Ĝ is only made of melons, then G is necessarily a “pearl necklace” (see
Fig. 9), and in that case, for any other color k ∈ {1, 2, . . . ,D} \ {j}, Gk̂ is connected, and in
particular not made of melons only.

Proposition 3.6 also applies, as we have, in the notation of the proposition:
l1,1
n = c1

cq
+ o(1).

This yields the following theorem, analogous to Theorem 3.3:

Theorem 4.2. — For D ≥ 3, for any i ∈ {1, 2, . . . ,D}, Gp has a giant ı̂-bubble containing
2tp− O

(√
p ln p

)
vertices. Moreover, the expectation value of the number of ı̂-bubbles of Gp is:

E

[

k(Sip)
]

= cG + 1 + o(1)

where cG =
∑

k≥2
ck1

k(cqθ0)k
< ∞ as c1 < cqθ0.

Hence, for the total number of D-bubbles of Gp:

Corollary 4.3. — For D ≥ 3, E[bD(Gp)] = p+D (cG + 1) + o(1).
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j

jj

j

j j

Figure 9. A pearl necklace of color j.

4.2. Geometry of the complex. — Just like in the particular case of the quartic model, the
previous study of the D-bubbles of Gp gives us insight on the typical geometry of the associated
complex ∆(Gp). Indeed, once again there are p 0-points in ∆(Gp), while for any i ∈ {1, 2, . . . ,D}
there are at most O

(√
p ln p

)
i-points, one of which is the “hub” i-point having most 0-points as

neighbors. The result of Theorem 3.8 thus also holds for any uniform-uncolored model, as long
as D ≥ 3:

Theorem 4.4. — Let u, v be two vertices of ∆(Gp) chosen uniformly at random and indepen-
dently. Then, if D ≥ 3, d(u, v) = 2 a.a.s..

Remark. — Let us note that what we have done for one fixed, connected base graph G can
be generalized further to models where this base graph G is not necessarily connected (in which
case, the copies of G are not 0̂-bubbles but sets of 0̂-bubbles), or where each 0̂-bubble is uniformly
drawn from a finite set of (finite) D-colored graphs (with, once again, a randomization of the
different colors): similar results will still apply, as long as the criterion d0 > 1 is verified for
the corresponding oriented configuration model. This is typically the case for all “interaction
vertices” appearing in colored tensor models generalizing the quartic one.

This brings an end to the pursuit of continuum scaling limits in the spirit of the Brownian
sphere in uniform-uncolored models. As noted in Section 2.1, the results of numerical simulations
for Euclidean Dynamical Triangulations had already hinted that in higher dimensions, models
of random triangulations with no or low constraints on curvature yield quite degenerate limit
spaces. We can thus see both our uniform and uniform-uncolored models as instances of a
crumpled phase, which would be the first ones to be investigated mathematically and not by
simulations.

To find promising scaling limits, we must turn to more complicated models, and works in
theoretical physics suggest that the Gurau degree (which is a way to quantify the curvature of
trisps) must play a central role in our tentative distributions.



34 A. CARRANCE

5. Conclusion

We have studied in this work two random models on bipartite (D + 1)-colored graphs and
the associated complexes. The first one, UDp , is uniform on the bipartite (D+ 1)-colored graphs

with 2p labelled vertices. We have proved that, a.a.s., UDp is connected and the associated

complex ∆(UDp ) has exactly one point of each color, which is a quite singular behavior, and is
not satisfactory for the purpose of finding scaling limits. We have also obtained a Central Limit
Theorem for the genus of one jacket of UDp . In the second one, Gp, we have fixed the 0̂-bubbles
to be copies of a given D-colored graph G, and kept the matching of the 0-half-edges uniform.
Gp is also connected a.a.s., but the number of points of ∆(Gp) grows linearly with p. However,
the average distance between two points of ∆(Gp) is a.a.s. 2, which also halts our quest for
a continuum limit. We have more extensively studied the special case of QDp , in which G is
quartic. In that particular case, we have also obtained a Central Limit Theorem for the genus of
one jacket, and the arguments we employed also yielded a Central Limit Theorem for the genus
of a uniform map of size p, as p → ∞.

In the context of quantum gravity, we wish to find random models on colored complexes
exhibiting a scaling limit, that can be interpreted as a continuum space-time. We have seen that
these models do not fit this purpose. However, their study involved the adaptation of several
combinatorial and probabilistic tools to the subject of edge-colored graphs, which will surely
prove to be valuable when tackling more complicated models, as we plan to do. Those new
models will undoubtely have to involve the Gurau degree more deeply, as it is a crucial quantity
in the theory of colored tensor models.
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