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Abstract

We consider random permutations which are spherically symmetric with respect to
a metric on the symmetric group S, and are consistent as n varies. The extreme
infinitely spherically symmetric permutation-valued processes are identified for the
Hamming, Kendall-tau and Caley metrics. The proofs in all three cases are based
on a unified approach through stochastic monotonicity.
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1 Introduction

Characterisation of processes with symmetries as mixtures of extreme processes is a central
theme in the circle of ideas surrounding de Finetti’s theorem on infinite exchangeability.
A distinguished example is Freedman’s [9] representation of a spherically symmetric se-
quence of real random variables &1, &, ... as a scale mixture of i.i.d. zero-mean Gaussian
sequences. This result is equivalent to Schoenberg’s theorem from analysis, see [4, [I8], 2]
for background and various proofs.

Traditionally, spherical symmetry in n dimensions is defined as invariance of the dis-
tribution of &, ..., &, under the group of orthogonal transformations. But this property
holds precisely when the conditional distribution on every sphere centred at the origin is
uniform. The latter interpretation is better suitable for generalisation to metric spaces
other than Euclidean and, in fact, this kind of extension of Freedman’s theorem for L”-
spherically symmetric sequences &1, &, ... has appeared in the literature [4]. Seeking for
further analogues one is naturally lead to consider the infinite spherical symmetry in the
framework of projective limits of metric spaces, as counterparts of the real space R*.

In this paper we explore the setting of combinatorial spaces of permutations S5,
equipped with some metric. There are many meaningful metrics on 5, used in appli-
cations to quantify the unsortedness of permutation or the similarity between rankings
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[7], but it is far from obvious if these can be complemented by projections that preserve
the spherical symmetry. We observe that such projections connecting the S,,’s exist for
three classic metrics — Hamming, Kendall-tau and Cayley — and for each of these we iden-
tify explicitly the extreme permutation-valued processes with spherical symmetry. On the
technical side, we will emphasize the approach based on stochastic monotonicity. This
method has been previously used in [I2] in a setting closely related to ours and in [6] in
the study of Markov chains on the Young graph arising in the asymptotic representation
theory of symmetric groups.

2 Virtual permutations

Suppose S, (n = 1,2,...), the symmetric group of permutations of [n] = {1,...,n}, is
equipped with some metric. Let |7| denote the distance between m € S,, and the identity
permutation, so {7 € S,, : |m,| = r} is a sphere of radius r centred at the identity.

A random permutation II of [n] is just a random variable with values in S,,. We say
that I is spherically symmetric if the probability P(IT = 7) depends on © € S, only
through |7|. For the family of spherically symmetric permutations, the random variable
IIT] is a sufficient statistic, in the sense that given |II| = r the conditional distribution of
IT is uniform on the sphere of radius r.

Let f, : S, — S,_1 be a system of n—to—1 projections (n > 1). Wherever f,(m) =
o form € S, and ¢ € S,_1 we say that o is the projection of 7, and that 7 is an
extension of 0. Thus every o € S,,_; has exactly n extensions in 5,,. Generalising by
induction this relation, we define for v > n the projection f,, : S, — S, through
foin == fas10 fag20---0 f,. Foro € S, and 7 € S, with n < v we say that 7 is an
extension of ¢ (and o is the projection of 7) if f,,.(7) = 0.

We shall assume throughout that the metric is consistent with the projections, meaning
that for all n > 1,7 > 0 and ¢ € S, the number of extensions #{7r € S, : 7| =
r, fu(m) = o} depends on o only through |o|. The condition is needed to ensure that
spherical symmetry is preserved by the projections, indeed the consistency entails that
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only depends on |o|.

The projective limit of (S, f,)’s is the compact (in the product topology) space of
sequences w = (my,mo,...) with m, € S, and f,(m,) = m,_1 for n > 1. We call  a
virtual permutation. The term is borrowed from [19], where a particular projective limit
of the permutation spaces was considered. In known examples a virtual permutation can
be interpreted as a kind of combinatorial structure build upon the infinite set N, either a
bijection (infinite permutation) N — N or a more complex object.

A random virtual permutation IT = (II;, I, . . . ) is a random variable, which we canon-
ically realize as the identity function on the projective limit space endowed with some
probability measure (distribution of IT). By the measure extension theorem, the distribu-
tion of IT is uniquely determined by the marginal distributions of I1,,’s, provided these are



consistent with the projections. We may also view Il dynamically as a permutation-valued
growth process, where II,, extends II,,_; in some random fashion.

Special notation IT* = (II7, I15, ... ) will be used for the uniform virtual permutation
which has II uniformly distributed over S,, for every n; the consistency in this case
follows from the n—to—1 property of f,,’s. To construct IT* sequentially, at each step the
extension must be chosen from the available options uniformly. It should be stressed that
the support and distribution of IT* depend on the type of projections.

In the sequel we focus on infinitely spherically symmetric (ISS) random virtual permu-

tations I, which have every Il,,,n = 1,2, ..., spherically symmetric. Clearly, the uniform
IT" is ISS.
The sequence of sufficient statistics [II| := (|II;], [ILy], . ..) is a Markov chain naturally

associated with ISS virtual permutation. The Markov property for |I1I| is readily justified
by looking at the time-reversed process. Moreover, the backward transition probabilities
for |II| do not depend on particular IT, hence are the same as for the uniform IT*. Con-
versely, if a time-inhomogeneous Markov chain at every step has the same range and the
same backward transition probabilities as [IT*|, then it can be uniquely realised as |II| for
some ISS virtual permutation.

The set of spherically symmetric distributions for each II,, is a simplex. The family of
ISS virtual permutations is a projective limit of these finite-dimensional simplices, thus by
a general result (see e.g. [I5], p. 164) it is a Choquet simplex, i.e. a convex compact set
with the property that each element has a unique representation as a mixture of extreme
elements. In this sense the problem of describing the ISS virtual permutations amounts
to identifying the extremes.

There is one very general approach to the problem, which can be traced back deeply in
history. By a theorem attributed to Maxwell and Borel [1§], the projection to n dimensions
of the uniform distribution on a sphere in R” of radius A\v'/? converges, as v — 00, to
the product of n copies of N'(0, A\?). Comparing with Freedman’s theorem, it follows that
all extreme ISS sequences in the Euclidean setting appear as limits of such projections
from spheres in high dimensions. Likewise, let 4, , be a uniformly random element of the
sphere of radius r in the symmetric group S,. Restating another general result (cf. [§],
Theorem 4.1) we have the following analogue.

Theorem 2.1. IfII = (IIy,1Ils,...) is an extreme 1SS wvirtual permutation, then there
exists a sequence of numbers r(v), v = 1,2,... such that for each n = 1,2,... the
sequence f, i, (Lh,,0y) converges in distribution to 11, as v — oo.

The set of probability distributions that arise as such limits is called, depending on the
context, the Martin boundary or the family of Boltzmann laws.

Here is another simple property of the Euclidean spheres, which can be used to give
yet another proof of Friedman’s theorem. Let U be uniformly distributed on the unit
sphere in R”, and let p,, be the norm of the coordinate projection of U to R"™ for n < v.
Then rU is uniform on the sphere of radius r, and rp,, is the norm of the projection of rU
in n dimensions. Note that the random variable rp,, increases with r. For the symmetric
group, an analogous property in the form of stochastic monotonicity of |f,,,(4,,)| in r
holds for all three metrics we consider here (cf. Lemmas[B.0] 1.2 5.2]). We use the property
as a key tool to identify the extreme ISS virtual permutations.



3 Hamming spherical symmetry

3.1 Classification theorem

Hamming distance between two permutations 7 and o in S, is defined as the number of
positions j € [n] where 7(j) # o(j). The distance to the identity permutation is |r| = n—
F(m), where F(m) := #{j € [n] : m(j) # j} is the number of fixed points in 7. Therefore,
a sphere in the Hamming distance can have radius 0,2, 3,...,n. The sphere of radius 0
has a single element, which is the identity permutation. The elements of the sphere of
radius n have no fixed points, they are called derangements. Thus a random permutation
IT is Hamming-spherically symmetric if its distribution is conditionally uniform given the
number of fixed points.

Let f, : S, — S,,_1 be the operation of deleting element n from permutation written
in the cycle notation. Then permutation o € S,,_; has n extensions obtained by either
inserting element n in a cycle next to the right of one of the elements in o, or appending
a singleton cycle (n). For instance, five extensions of (13)(24) € Sy are

(153)(24), (135)(24), (13)(254), (13)(245), (13)(24)(5).

If a permutation o € S,,_; has k fixed points, then it has 1 extension with k£ + 1 fixed
points, k extensions with & — 1 fixed points and n — k — 1 extensions with % fixed points.
Hence, the Hamming spherical symmetry is consistent under this system of projections.

The virtual permutations defined via the f,’s were introduced in [19]. Writing per-
mutation in the cycle notation yields a composite combinatorial structure, comprised of a
partition of the set [n] into disjoint nonempty blocks and a linear order on each block of
the partition, with the property that in each block the smallest integer is also the minimal
element of the order. Similarly, a virtual permutation corresponds to a partition of N into
some collection of disjoint nonempty blocks, taken together with a linear order on each
block, such that within the block the smallest integer is also the minimal element in the
linear order.

The sequential construction of uniform virtual permutation IT* specializes in the cycle
notation as the Dubins-Pitman Chinese restaurant process [16] with the following dynam-
ics: given the permutation at step n—1is Il,,_; = o, element n is inserted with probability
1/n in a cycle next to the right of any given element of o, and appended to o as singleton
cycle (n) with probability 1/n. This process has been intensely studied, in particular, it
is well known that the random series comprised of the asymptotic frequencies of blocks
follows the Poisson-Dirichlet/ GEM distribution with parameter 1 |2, [16]. To this we only
add here that IT* can be seen as a partition of N in infinitely many blocks, with the set
of elements within each block ordered like the set of nonnegative rational numbers.

We introduce next a family of ISS virtual permutations {II%, o € [0, 1]}, which includes
the uniform virtual permutation as the a = 0 case. Another edge case, & = 1, corresponds
to the trivial virtual permutation, which restricts to every [n] as the identity.

For aw € (0,1), to construct the virtual permutation IT* explicitly, it will be conve-
nient to introduce enriched permutations of [n|, which have an additional feature that
genuine singleton cycles are distinguished from the cycles which will be bigger within a
larger context [v] D [n] but have a sole representative in [n]. For 7 a virtual permutation,
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call element n singular if (n) is a singleton cycle in every m,, v > n, and call n reqular
otherwise. Define enriched virtual permutation 7 = (71, T2, ... ) to be a virtual permuta-
tion 7w = (m, m,...) with additional classification of the elements in each m, in singular
and regular, and such that 7, is consistent under the deletion of elements from cycles.
For instance g = (13)(2)(46)(5) with singular element 2 and regular other five elements
encodes that some elements v > 6 will be inserted in the cycle of every element except 2.
The correspondence between 7 and 7 is a canonical bijection, but for any fixed n, 7, as
compared to 7, contains more information about 7.

For a € [0, 1) define a random enriched virtual permutation by the following two rules.

(i) Each n independently of other elements is singular with probability .

(ii) The virtual permutation restricted to the set of regular elements is distributed like
the uniform IT*, provided the regular elements are enumerated in increasing order

by N.

Here is a sequential construction of I, modifying the Chinese restaurant process. Ele-
ment 1 is singular with probability «. Inductively, for n > 1, as an enriched permutation
of [n — 1] with some s singular fixed points (hence n — s — 1 regular elements) has been
constructed, element n becomes singular with probability «, is inserted in existing cycle
next to the right of any given regular element with probability (1 — «)/(n — s), and is
appended as a regular singleton cycle with probability (1 — «)/(n — s).

Discarding the division into regular and singular elements yields II*. Explicitly, for
the probability p, x := P(IIY = o) of a permutation o € S,, with k fixed points we have

k
k) : |
Pnk(a) = (=) ——, ke{0,1,...,n—2n}. 3.1
@=% (§)at-ars Lo weg SR
The formula follows by noting that the probability of any given enriched permutation
with j singular elements is o/ (1 — )"/ /(n — j)!, and that any j out of k fixed points can
be singular. It is obvious from (3] that IT* is ISS.

Lemma 3.1. The virtual permutation II* satisfies

FII3)

T

J=0

lim

n—00 n

—

almost surely.

Proof. For any virtual permutation

P(F(ru) = k= 1| P() = k) = © | B(F(m, 1) > KAL) = k)= "—F

which readily implies that the sequence F'(II,)/n is a reverse submartingale, hence con-
verges almost surely. For IT* we have E[F(IT%)] = 1 hence the limit fraction is 0. The
limit for a # 0 follows from this and the construction of IT¢. O

Theorem 3.2. The extreme Hamming-1SS virtual permutations are {II%, o € [0, 1]}.

In the sequel we give two proofs of Theorem using different techniques. The first
proof in Section is based on the explicit enumeration of spheres. The second proof in
Section uses stochastic monotonicity.



3.2 Proof through exact enumeration

A starting point for a straight approach to extreme virtual permutations is the enumer-
ation of Hamming spheres. The sphere of radius n is the set of derangements, which are
permutations with no fixed points. The number of derangements d,, is given by

h=ny P2l (3:2)

- n
j=0

The first part of this formula is the classics due to de Montmort (1713), and the second
is found in [I7]. Denoting D, ; the number of permutations of [n] with & fixed points, we
have

Dy = (Z) . (3.3)

Note that the elements comprising singleton cycles are precisely the fixed points of
permutation. If F'(o) = k for o € S,,_; then o has n — k — 1 extensions © € S,, with
F(m) = k, one extension with F(7) = k + 1 and k extensions with F(7) = k — 1.
Reciprocally, enumerating projections for given m € S,, with F'(7) = k yields the recursion

Dyr=n—k—=1)Dp1p+ Dy_1p—1+ (E+1)Dp1 441, 0<k <n, (3.4)

where Dy =0, D;; = 1 and we adopt the convention D, ; =0 for j € {—1,n+ 1}. The
recursion implies D, ,,—1 = 0, in accord with the fact that permutation of [n] cannot have
n — 1 fixed points. There is some similarity between ([B.4]) and a two-term recursion for
the Eulerian numbers counting descents [I1], but these have very different properties.

For IT = (II, Iy, ...) a ISS virtual permutation, let p, , = P(Il, = 7) be the proba-
bility of any given permutation 7 € S,, with F'(7) = n — |r| = k fixed points. We call the
bivariate array p = (pn) the probability function. By the rule of addition of probabilities

Pnk = (n - k)pn—i—l,k + Pn+1,k+1 + kpn-l—l,k—la k € {07 1a s, — 2a n}a (35)

which is a backward recursion, dual to (3.4). Every nonnegative solution to (83) with
p11 = 1 is a probability function for some unique random virtual permutation. Observe
that for n fixed, D, ;pni, 0 < k < n, is the distribution of the number of fixed points
F(I1,,) = n — |I1,,], in particular

Z Dn,kpn,k = ]-7
k=0

and D, opn.0 = dypn,o is the probability that II, is a derangement.
Now we wish to explore the limit distributions which can arise in Theorem 2.1 To
that end, for integer v and 0 < »x < v — 1 let

Py =PI, =7 F(II}) = »), where m €S, F(r)=k. (3.6)
In terms of the Markov chain (F(II}),n=1,2,...)

Do py = P(FL) = k| F(IL) = 5)
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is the backward transition probability (also for any other ISS virtual permutation in place
of IT*). Viewed as a function of n and k, pflz is an incomplete probability function which
satisfies (B.3]) for n < v together with the boundary conditions p;% = 1/D, .. and p,7’ =0
for k # s

Let D% be the number of extensions of a given o € 5, with F(¢) =k to any m € 5,
with F'(7) = 5. Then
Dk
Dy , 1< n<y,
where the ratio is called the Martin kernel. To find probability functions appearing as
limits of the Martin kernel one needs to identify the regimes for s = s(v) which ensure
convergence of [B1) as v — oo, for all fixed n and k. In the case of convergence, we will
say that the limit probability function is induced by s(v) as v — co. The following simple
observation allows us to only focus on the probabilities of derangements.

(3.7)

V7% _
pn,k -

Lemma 3.3. Every solution to [B.3) is uniquely determined by (pno, n=1,2,...).

Proof. Re-write the recursion as ppi1x+1 = Pnk — (W — k)Pnt1k — KDnt1x—1, and the
conclusion is obvious by induction in k. O

Now, DZ”’S counts extensions of a given derangement o € S, to a permutation 7 € S,
with s fixed points. Clearly, D,’§ = 0 if 2 > v — n. Otherwise, out of v — n elements

added to o some m < v —n — s elements, say a; < --- < a,, are allocated within the
cycles present in o, and there are n(n + 1)---(n 4+ m — 1) such allocations. The other
v—n—m elements {n+1,...,v}\{ai,...,a,} form new cycles of which s are singletons.

Thus using ([33]) we obtain

v =T (v—n\(n+m—1)
D)5 = Dy =
™0 Z ( m ) (n—1)! ’

PICUE = o AT

(v—n)"& n+m—1 Ay pr—n— s
! Z m (v—n—m-—x)!

m=0 ’

Lemma 3.4. As v — oo, the ratios B.1) converge for k = 0 (hence also for k > 0) if
and only if /v — « for some o € [0, 1]. In this case

(1—a)y

Pro =~ (3.8)

Proof. Applying (B.2) and (3.3) and using the above calculation for D)7, after cancela-
tions we get as v — 00

ve Do 17 (n+m—1 /1_%/" a" ! gy (L= 2/v)"
= ~ — ~ _—ar =
Pno D,, v m 0 (n—1)! n! ’

m=0

thus the convergence holds if and only if »/v — « for some a € [0, 1]. 0O
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We see that there exists a unique probability function p(a) = (ppx()), with p, o(a) =
(1 — a)™/n!. Comparing with (B we conclude that p(«) is the probability function of
the virtual permutation IT*.

Proof of Theorem[32. Since p(a)’s (corresponding to II%) are the only possible limits
in the context of Theorem 1] the family contains all extremes. On the other hand,
by Lemma BT, F(IT%)/n — « a.s. Thus the supports of distributions corresponding to
different « are disjoint, and each p(«) is extreme. O

3.3 Proof through monotonicity
For the second proof we recall the notion of stochastic order.

Definition 3.5. For real random variables & and n we say that & is stochastically larger
than n, denoted & >4 n if either of the two equivalent properties hold:

(a) For each v € R, we have P({ > x) > P(n > x),

(b) Elu(¢)] > Elu(n)] for every nondecreasing function .

If £ >4 n, then it is possible to define distributional copies of these variables, say £ and
7', on the same probability space in such a way that & > n’ almost surely.

Lemma 3.6. Let IT and I1" be two random Hamming—spherically symmetric permutations

in Sy, such that F(I1) >4 F(II'). Then also F(f,1n(I1)) >s F(fo1n(1l")) forn <wv.

Proof. 1t is sufficient to prove the relation for n = v — 1, with F'(IT) and F(IT") some given
nonrandom values. Excluding the trivial case F'(IT) = v of the identity permutation, we
further reduce to the case F'(Il') = k, F(II) = k+ 1 with 0 < k < v — 2. The general
case will follow by induction and using the fact that the stochastic order is preserved by
convex mixtures.

We have F(f,(I1)) € {k,k+ 1,k +2} and F(f,(I")) € {k — 1, k, k+ 1}, thus to show
that F'(f,(IT)) is stochastically larger than F'(f,(Il")) we only need to check that

P(F(f,(IV)) = k+ 1) <P(F(f,(10)) € {k+ 1,k +2}). (3.9)

Since II is uniformly distributed over permutations with k 4 1 fixed points, and since
the event in the right-hand side of (B.9]) occurs precisely when v is not a fixed point, the
probability of this event is (v —k —1)/v. Likewise, the event on the left-hand side implies
that v is neither a fixed point nor belongs to a (v — k)-cycle of II'. The probability that
v is a fixed point of II" is k/v. The probability that 11" has a (v — k)-cycle containing v is

v—k) (v—k-1)! (w—Fk)(v—FkF-1)!
v dy—k ST (v —k)!

1
]/’
where we used the obvious bound d,_; < (v —k)! along with the fact that given the cycle
structure v is equally likely to occupy any position within the cycles. Now (3.9) follows:
Eo1 —k—-1
P(E(L(IT) =k +1)<1-0 -~ == =P

14 14 14

(F(f,(I)) e {k + 1,k +2}).



Proof of Theorem[32 Let II = (II,,,n = 1,2,...) be extreme Hamming-ISS virtual per-
mutation. There exists a sequence »(v) such that IT is representable as a limit of £, ,_ ..,
as in Theorem 2] (where r(v) = v — »#(v)). Passsing if necessary to a subsequence we
may assume that s(v)/v — a as v — oo for some « € [0, 1].

Suppose first o € (0,1) and choose 0 < € < min(a, 1 —a). Asv — 00, F(f1nthy—kw))
converges in distribution to F'(Il,,), and by Lemmal[3dlthe probability of relation F'(I13*€) >
»(v) approaches 1. Likewise, the probability of relation F(IIS™¢) < »(v) approaches 1.
Invoking Lemma we obtain for projections

F(II7) <o F(IL) < FIIT).

By continuity in the parameter both bounds converge in distribution to F'(II%) as € — 0.
Thus F(II,,) has the same distribution as F'(II%), implying that II,, and II¢ have the same
distribution for every n. It follows that IT has the same distribution as IT“.
The edge cases a € {0,1} are treated similarly, with one-sided bounds derived from
I1¢ and TI.7¢, respectively.
It follows that virtual permutations {I1*, « € [0, 1]} are the only possible limits in
Theorem 2.1] Since their supports are disjoint by Lemma [3.1] this is the set of extremes.
O

3.4 Complements

1. For II" the bivariate process counting singular and regular fixed points is a Markov
chain with transition probabilities at step n being

' (171733(n—1—7"—s) .

For the count of fixed points F'(II%) the transition probabilities are more involved.

2. With ISS virtual permutation IT one can uniquely associate a partition of the infinite
set N, by assigning integers ¢ and j to the same block if they belong to the same cycle of 11,
for n > max(i, j). This partition is exchangeable, that is has distribution invariant under
bijections N — N moving finitely many elements. Partitions with nonzero frequency of
singletons (dust component) appear as intermediate states in exchangeable coalescence
processes (e.g. [14]).

The distribution of exchangeable partition is determined by the exchangeable partition
probability function (EPPF), see [16]. Our classification of ISS virtual permutations can
be recast as the characterisation of partitions of N with EPPF of the form

l
p(ni, ...y ne) = o H(nj -1,
j=1

where ny,...,n, is a partition of integer n and k is the multiplicity of part 1.



3. It is well known that for the uniform II}, the sequence of cycle sizes arranged in
non-increasing order and normalised by n converges weakly to the Poisson-Dirichlet dis-
tribution with parameter 1 [2, [I6]. The same limit holds for II%, provided the cycle sizes
are normalised by (1 — a)n.

4 Kendall-tau spherical symmetry

4.1 Inversions in permutation

The Kendall-tau distance between 7 and ¢ in S,, is the number of discordant pairs, i.e.
positions ¢ < j with sgn(7(i) — 7(j)) = —sgn(o(i) — o(j)). When o is the identity
permutation, discordant pair ¢ < j is inversion in 7, thus |r| coincides with the number
of inversions

I(m):=#{(,7): 1 <i<j<mn:7(i)>n())}

In this setting spherical symmetry means that permutations of [n] with the same number
of inversions have equal probability.

Viewing permutation m € S,, as a linear order on the set of positions and using the
one-line notation (m(1),...,7(n)), we understand 7(j) as the rank of element j among
[n] (so m(j) = 1if j is the minimal element in the order). It is useful to observe that for
the inverse permutation I(7~!) = I(7), which suggests two systems of projections, each
consistent with the spherical symmetry:

(i) f!(m) deletes the last entry 7(n) , and re-labels 7(1),...,m(n — 1) by an increasing
bijection with [n — 1].

(ii) f/(m) deletes letter n from the one-line notation.

For instance,
fr:(2,5,1,4,3) — (2,4,1,3), 2 (2,5,1,4,3) — (2,1,4,3).

The projections are mapped into one another by the group inversion.

For convenience we will work with projection f/, which may be also seen as the re-
striction of order from [n] to [n —1]. The advantage of this choice of projection is that the
set of inversions within [n] remains unaltered as the permutation gets extended. Further-
more, the mapping (7(1),...,7(n)) — (n —7w(1),...,n — w(n)) yields the inverse order
relation, hence also consistent with the projections.

A virtual permutation 7 = (7, 72, ... ) in this setting is a system of consistent orders
on [n] for n = 1,2,..., hence defines a linear order on N. Note that m,1(j) — m,(j) is 1
or 0 depending on whether 7,,1(n+ 1) < j or not. The order defined by 7 is a well-order
(i.e. isomorphic to (N, <)) if and only if 7,(j) has a terminal value as n increases, for
every j.

Observe that I(m) = 7, nj, where n; := #{i : 1 < i < j, m(i) > 7(j)}. The mapping
T M1, ..., My, 1 a bijection called the Lehmer code. For instance, (2,5, 1,4, 3) is encoded
into 0,0,2,1,2. In terms of the Lehmer code, f/ acts as the coordinate projection which

10



sends 71, ...,Mn—1,Mn t0 M1, ..., Mu_1. The consistency with the Kendall-tau distance is
now easily seen. Indeed, if 7 € .S, is an extension of ¢ € S,,_1, the counts of inversions are
related as I(w) = I(0) +n —w(n) = I(0) + n,. The idea of the Lehmer code generalises
to the infinite setting, allowing us to encode the order on N in a single string 7;, 72, .. ..

4.2 Mallows distributions

For the virtual permutation IT* the terms of the Lehmer code 71,75, ... are independent,
with 7; being uniformly distributed on {0,1,...,5 — 1}. This connects the problem of
classification of the ISS permutations to the study of conditional laws and tail algebras
for sums of independent random variables, see |1, 20] and especially [3].

Exponential tilting of the uniform distribution yields a truncated geometric distribu-
tion with masses ¢'/[j], (0 <i <j—1), where [j], := (1 —¢’)/(1 — ¢). The tilted joint
distribution of ny,...,n, conditional on 7, + --- + 7, does not depend on ¢, hence the
corresponding permutation is Kendall-tau spherically symmetric, with distribution

P(II, = 7) = L, 7€ Sy, (4.1)

where [n],! == []_,[j];- This is the Mallows distribution on permutations. The parameter

range is ¢ € [0, 0o, where the edge cases 0 and oo correspond to the deterministic identity
and the decreasing permutation (n,n — 1,..., 1), respectively.

Under the Mallows distribution with ¢ < 1 the virtual permutation determines a
well-order on N. Passing to the inverse order relation yields a Mallows distribution with
parameter 1/q. See [Bl [I3] for further properties of the Mallows permutations.

Theorem 4.1. Mallows distributions (L)) with q € [0, 00| and only they are the extreme
1SS virtual permutations with respect to the Kendall-tau distance.

The proof hinges on the following analogue of Lemma [3.6]

Lemma 4.2. Let I and IT' be two random Kendall-tau—spherically symmetric permuta-
tions in S, such that I(I1) >4 I(II"). Then also I(f,,(I1)) >« I(f,,,(II")) for n < v.

vin vin

To show this we will need the following property of the uniform distribution.

Lemma 4.3. Fori=1,2,3 let (U;,V;) be pairs of integer random variables such that
(i) Vi and Uy are independent, with Uy uniformly distributed on some integer interval,
(i) the conditional distribution of (V;,U;) given V; + U; is the same for i =1,2,3,

(i) Vo + Us >4 Vs + Us.

Then Vo >4 Va.

Proof. 1t is sufficient to consider the case with U; uniformly distributed on {1,2,... &k},
Vo+ Uy =k+1 and V3 + Us = k, where k is some constant. The general case will follow
by shifting the range of the variables, induction and taking mixtures.
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Then for 1 < m < k we have
P(Va>m) =P(Vi >m|Vi + Uy =k +1) =
S PVi=4Ui=k+1-3j) k'Pm<V<k)

S B(Vi=j Ui =k+1-j5) FTRA<SV<k)
Pim<Vi<k-1)+Pi=k) _ Bm<W<k-1)
P1<WVi<k-1)4+PWVi=k) — PA<Vi<k-1) —
EIP(m <Vy <k-—1)
E'PO<V; <k-—1)

where we used that (a + x)/(b+ x) increases in > 0 for b > a > 0. The cases m > k or
m < 1 are trivial, and the relation follows. O

=P(Vi 2 m[Vi+ U1 = k) =P(V3 = m),

Proof of Lemma[{.4 We apply Lemma repeatedly to the Lehmer code of permuta-
tions IT%, IT and IT', respectively. Here, U; is the last coordinate of the code and V; is the
sum of all other coordinates. O

Proof of Theorem[/.1 The argument goes along the line of proof of Theorem hence
we omit some details. By the strong law of large numbers for sums, under the Mallows
distribution (1)) the number of inversions satisfies the almost sure asymptotics:

(a) I(I,) ~ fnfor 0 <gq<1,
(b) I(IL,) ~ 4n? for ¢ = 1 (the uniform case),

Let »#(v) be a sequence inducing an extreme ISS virtual permutation IT = (II,,n =
1,2,...), as in Theorem 1] (so r(r) = »(v)). Passing to a subsequence of the values of v

we can achieve that either s(v) ~ ¢L-v or (5) — »(v) ~ 13;1,1 v for some ¢, or both »(v)
and (3) — »(v) grow faster than linearly as v — oco.

Consider the case »(v) ~ tLv with 0 < ¢ < 1. Fix n and 0 < & < min(g,1 — ).
To construct stochastic upper and lower bounds for I(Il,) we use virtual permutations
Mallows(g+e) and appeal to Lemmal2 Sending € — 0 we conclude that II,, is Mallows(q)
for every n, hence II is Mallows(q).

Two other asymptotic regimes for »(v) are treated similarly. It follows that the family
of Mallows(q) virtual permutations contains all extreme ISS virtual permutations. Since

by (a), (b) and (c) they all have didjoint supports all these are extreme. O

It is of interest to recast Theorem [4.1]in terms of ratios of combinatorial numbers. The
number of permutations o € .S,, with & inversions is the Mahonian number M, ; counting
solutions to the equation n; +- - -+n, = k, where 1,19, ... are integer variables satisfying
0 <m; < j. The number of extensions of any such o to a permutation 7 € S, with I(7) =
s is a generalised Mahonian number M7 counting solutions to 7,1 + -+ + 1, = 2 — k.
Identifying

My
M, .

(4.2)
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with the Martin kernel we obtain

Corollary 4.4. If as v — 0o and 3 = x(v) varies in some way the ratios [A2) converge
for alln and 0 < k < (3)) then the limit is ¢*/[n],! for some q € [0,00]. The convergence

holds if and only if either >(v) ~ (L. v for 0 < ¢ <1, or (5) — »(v) ~ lfqil v for

1 < q< o0, or both »(v) and (g) — #(v) grow faster than linearly for g = 1.

5 Cayley spherical symmetry

The Cayley distance between 7 and o in .S, is defined as the minimal number of transpo-
sitions needed to transform one permutation in another. Right-multiplying m € S,, by the
transposition (7, j) amounts to swapping letters ¢ and j in the one-row notation of 7. The
multiplication increases the number of cycles by one if ¢ and j belong to the same cycle
of m, and decreases by one otherwise. Thus the distance to the identity is |7| = n — C(7),
where C'(7) denotes the number of cycles in 7. We take the same projections f,, as in the
setting with Hamming distance of Section Bl If o € S,,_; is a permutation with k cycles,
then it has n — 1 extensions with the same number of cycles and 1 extension with k + 1
cycles. Hence, the Cayley spherical symmetry is preserved under these projections.

For virtual permutation 7 = (7, m,...), we have C(m,) = >_7_, #; where 3; = 1
if j is a fixed-point of 7; and 3; = 0 otherwise. For the uniform IT*, the sequence of
B,’s is independent Bernoulli with P(5; = 1) = 1/j. Exponential tilting with parameter
6 € [0, 00| yields a family of ISS virtual permutations with the Fwens distribution
(I 9C(m)
(M, =) = T

where (0),, =[]/, (0 +1). For = 0 this is a uniform cyclic permutation, and for § = co
the unit mass at the identity. Under the Ewens distribution II follows the dynamics of
the Chinese restaurant process, where element n is a new cycle appended to II,,_; with
probability 6/(0 4+ n — 1), and is inserted next to the right in the cycle of any j € [n — 1]
with probability 1/(60 +n — 1) [16].

Theorem 5.1. The Ewens distributions ([B.1l) with 0 € [0,00] and only they are the
extreme 1SS virtual permutations with respect to the Cayley distance.

T € Sp, (5.1)

A proof of Theorem [5.] can be found in [12], where it appears in a minor disguise
(see also [10, Theorem 4.1]). Following our unified approach, the key observation is the
following lemma:

Lemma 5.2. Let II and 11" be two random Cayley—spherically symmetric permutations in
Sy, such that C(I1) >4 C(II'). Then for every n < v, also C(f,n(I1)) >s C(fr1n(11')).

Proof. This immediately follows from the fact that if = € S,, has k cycles, then f,(7) has
either k or k — 1 cycles. O

Using Lemma and that under the Ewens distribution with 6 € (0, 00) the number
of cycles grows as C(I1,,) ~ flogn, see e.g. |2], the proof of Theorem [5.1] can be produced
along the same lines as in Theorems and [l A counterpart of Corollary 4] concerns
limiting regimes for the ratios of generalised Stirling numbers of the first kind.
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