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Abstract

Bootstrap percolation is a prominent framework for studying the spreading of activity
on a graph. We begin with an initial set of active vertices. The process then proceeds
in rounds, and further vertices become active as soon as they have a certain number of
active neighbors. A recurring feature in bootstrap percolation theory is an ‘all-or-nothing’
phenomenon: either the size of the starting set is so small that the process stops very soon,
or it percolates (almost) completely.

Motivated by several important phenomena observed in various types of real-world net-
works we propose in this work a variant of bootstrap percolation that exhibits a vastly
different behavior. Our graphs have two types of vertices: some of them obstruct the dif-
fusion, while the others facilitate it. We study the effect of this setting by analyzing the
process on Erdős-Rényi random graphs. Our main findings are two-fold. First we show that
the presence of vertices hindering the diffusion does not result in a stable behavior: tiny
changes in the size of the starting set can dramatically influence the size of the final active
set. In particular, the process is non-monotone: a larger starting set can result in a smaller
final set. In the second part of the paper we show that this phenomenom arises from the
round-based approach: if we move to a continuous time model in which every edge draws
its transmission time randomly, then we gain stability, and the process stops with an active
set that contains a non-trivial constant fraction of all vertices. Moreover, we show that in
the continuous time model percolation occurs significantly faster compared to the classical
round-based model. Our findings are in line with empirical observations and demonstrate
the importance of introducing various types of vertex behaviors in the mathematical model.

1 Introduction

Bootstrap percolation is a classical and well-studied mathematical framework for the spreading
of activity on a given graph. One starts with an initial set of active vertices; this set may be
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chosen randomly or deterministically. The process then proceeds in rounds, and further vertices
become active as soon as they have at least k active neighbors, where k ∈ N is a parameter of
the process. The process is said to percolate if all vertices eventually turn active.

This process was first studied in 1979 on Bethe lattices by Chalupa, Leath and Reich [7]
to model demagnetisation in magnetic crystals. If we choose the starting set randomly, then
one would expect that for many graphs there is a percolation threshold such that if the number
of starting vertices is above this threshold, then the process percolates, whereas if it is below
the threshold, it does not. For example, such a threshold has been determined for finite grids
by Balogh, Bollobás, Duminil-Copin and Morris [3] and for the Erdős-Rényi random graph by
Janson, Łuczak, Turova, and Vallier [12]. The problem has also been studied on various other
graphs [1, 5, 4] and models, as for example in cellular automata [16, 10]. In all of these examples
we observe an “all-or-nothing” phenomenon: if the size of the starting set is too small, then the
process stops rather quickly, and otherwise, it spreads to a level that includes (almost) all vertices
of the underlying graph. In a way, this is not too surprising, as the likelihood that a vertex has
k active neighbors increases with the total number of active vertices.

The aim of this paper is to study percolation processes with inhibition that can restrict
further dissemination of activity. As an example, consider the diffusion of an innovation in a
society. When a new product is introduced to the market people may like and promote it or
they may dislike and denigrate it. If we now assume that people buy the product as soon as
they get, say, k more positive feedbacks than negative ones from their neighbors, we have a
bootstrap percolation process with inhibition. Another example is a phenomenon called input
normalization in neuroscience, cf. [6] for a review. This refers to the following well-studied
observation: when a signal activates a small part of a local ensemble of neurons, the activity
spreads through to recurrent connections. But only up to a certain point. Then inhibitory
neurons are strong enough to stop a further spread of activitation. In this way, very different
input strengths can lead to similar levels of activity that never surpass a certain upper bound.
Such an effect has been observed experimentally in many species [9, 15, 14].

In this paper, we consider the Erdős-Rényi random graph Gn,p with two types of vertices:
inhibitory vertices (those obstructing the diffusion) and excitatory vertices (those facilitating the
diffusion). First we show that in the standard, round-based percolation model the introduction
of inhibitory vertices does not result in a stable behavior: either inhibition has essentially no
effect, or tiny changes in the size of the starting set can dramatically influence the size of the final
active set. In particular, the process is non-monotone: a larger starting set can result in a smaller
final set. In the second part of the paper we show that such a phenomenon is actually the result
of the round-based approach: if we move to a continuous time model in which every edge draws
its transmission time randomly according to an exponential distribution, then normalization is
an automatic and intrinsic property of the process. Moreover, we find that random edge delays
accelerate percolation dramatically: for transmission delays that are distributed according to
independent exponential distributions with mean one the time to activate all vertices reduces
from Θ(log log n) in the round based model to O(1) time in the asynchronous model.

1.1 Model and results

The classical bootstrap percolation process on Erdős-Rényi random graphs was studied by Jan-
son, Łuczak, Turova, and Vallier [12]. This process starts with a random active subset of size a

of the vertices. The process then proceeds in rounds, where in each round all non-active vertices
that have at least k active neighbors also become active, and remain so forever. A percolation
process percolates completely if there is some round in which every vertex is active. It almost
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percolates if there is some round in which n− o(n) vertices are active. Janson et al. showed that
for 1/n ≪ p ≪ n−1/k there exists a threshold

ath(n, p, k) = (1− 1/k)

(

(k − 1)!

npk

)1/(k−1)

such that for every ε > 0, a.a.s.1 the process almost percolates for a > (1 + ε)ath, and a.a.s. it
stays forever at O(ath) active vertices if a < (1 − ε)ath. They also showed that for starting sets
of size a = (1 + ε)ath the process almost percolates in logk log(pn) + O(1) rounds, where the
hidden constant depends only on ε. Observe that this result immediately carries over to directed
random graphs (in which activation requires k active in-neighbours) if we insert each directed
edge with probability p.

We extend the standard model by allowing inhibitory vertices: we assume that each of the
n vertices is inhibitory with probability τ and excitatory with probability 1− τ , independently.
To be slightly more general, we also introduce an additional parameter 0 < γ ≤ 1/p and insert
each directed edge with excitatory (inhibitory) origin independently with probability p (with
probability γp). The process is similar to the classical bootstrap percolation with one crucial
difference: a previously inactive vertex v turns active in some round i if after round i − 1 the
number of active excitatory neighbors of v exceeds the number of its active inhibitory neighbors
by at least k. We generalize the threshold function ath so that it now also depends on τ :

ath = ath(n, p, k, τ) = (1− 1/k)

(

(k − 1)!

(1− τ)knpk

)1/(k−1)

. (1)

Note that the threshold does not depend on the inhibition excess γ. Note further that, compared
to the threshold ath(n, p, k, 0) for the case without inhibition, there is an additional factor of
(1 − τ)k in the denominator. This factor can be interpreted in the following way: clearly, a
necessary condition for percolation is that the process percolates in the subgraph induced by the
excitatory vertices, which has (1 + o(1))(1 − τ)n vertices a.a.s.. If we choose a random starting
set of size a, then this starting set will contain (1+ o(1))(1− τ)a excitatory vertices a.a.s.. Then,
by the result for the process without inhibition, the process will not percolate if

(1− τ)a ≤ (1− ε)ath((1 − τ)n, p, k, 0),

or, equivalently, if a ≤ (1 − ε)ath(n, p, k, τ). In particular, we can restrict our analysis to the
case a ≥ ath, since, by the results of Janson, Łuczak, Turova and Vallier [12], the process with
a ≤ (1− ε)ath will stop with O(a) active vertices.

Our results for this process are collected in the following theorem.

Theorem 1. Let ε, τ, γ > 0, k ≥ 2 and assume 1/n ≪ p ≪ n−1/k and a ≥ (1 + ε)ath(n, p, k, τ).
Then the bootstrap percolation process with inhibition a.a.s. satisfies the following.

(i) For τ < 1/(1 + γ) the process almost percolates in logk log(a/ath)
(np) + O(1) rounds (as

it does in the case without inhibition). If, additionally, p = ω(log n/n), then the process
percolates completely in the same number of rounds.

(ii) For τ > 1/(1 + γ) and a ≥ (log n)2+ε and p = ω(log n/n) the process is chaotic in the
following sense: for every constant C1 > 0 there exists a constant C2 > C1 such that for
every target function f with (log n)/p ≪ f(n) ≪ n, there exists a function c : N → [C1, C2]
such that if one starts the process with a = ⌊c(n)ath⌋ vertices, then it stops with a∗ =
(1 + o(1))f(n) active vertices a.a.s..

1Asymptotically almost surely, that is, with probability tending to one as n → ∞.
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In other words, if τ < 1/(1 + γ) then inhibition has basically no effect on the outcome of
the process: the process behaves similar as in the classical case with (1 − τ)n vertices and no
inhibition. On the other hand, if τ > 1/(1 + γ), then the outcome of the process depends in a
rather unstable way on the size of the initially active set: by changing the size of the starting
set by a constant factor, we can change the number of active vertices at the end of the process
drastically; in particular, the number of active vertices at the end of the process is non-monotonic
in the size of the starting set. We remark that the condition ath ≥ (log n)2+ε is essentially best
possible: for ath ≤ (log n)2−ε the statement of the theorem is not true, cf. the argument following
Theorem 12 on page 11. If one weakens the conditions of (ii) by just requiring a ≥ (1 + ε)ath or
p ≫ 1/n, then it is still true that the process is unstable, but one cannot predict where it ends.

A main feature of the classical bootstrap percolation processes is that activation takes place
in rounds. This phenomenon can be interpreted in the following way: when a vertex turns active,
then this information needs exactly one time unit to reach its neighbors. In the second part of our
paper we drop this assumption and replace this synchronous model with an asynchronous one:
each edge independently draws a random transmission delay δ from an exponential distribution
with expectation one, and the information that the neighbor is active requires time δ to travel
from one vertex to another. The activation rule itself remains unchanged: a vertex turns active
as soon as it is aware that k of its neighbors are active (in the process without inhibition), or as
soon as it has notice of k more active excitatory than inhibitory neighbors (in the general case).
Although the expected transmission delay is one – as it is deterministically in the synchronous
model – it turns out that quantitatively and qualitatively the percolation process changes rather
dramatically.

Theorem 2. Let ε, τ, γ > 0, k ≥ 2 and assume 1/n ≪ p ≪ n−1/k and a ≥ (1 + ε)ath(n, p, k, τ).
Then there exists a constant T = T (ε, k) ≥ 0 such that the asynchronous bootstrap percolation
process with a ≥ (1 + ε)ath and n−1 ≪ p ≪ n−1/k a.a.s. satisfies the following.

(i) If τ < 1/(1 + γ), then the process almost percolates in time T . If, additionally, p =
ω(log n/n), then the process percolates completely within time T .

(ii) If τ ≥ 1/(1+γ) and if a = o(n), then a.a.s. there are (1− τ)kn/(γτ)k+o(n) active vertices
at time T . Also, the process stops with (1− τ)kn/(γτ)k + o(n) active vertices.

Note that this theorem implies two interesting phenomena. On the one hand, we see that
the asynchronous version accelerates the process dramatically: it essentially stops after constant
time, as opposed to the roughly logk log(pn) rounds it takes in the synchronous model. On the
other hand, we see that the final size of the process only depends on the parameters τ and γ
but not on the size of the initial set, in sharp contrast to the synchronous model. Therefore, by
choosing the parameters τ and γ appropriately, we can realize a normalization for an arbitrary
(linear) target size of the finally activated set.

We note that recently it was shown in [13] that Theorem 2 also implies similar results for
other random graph models.

1.2 Outline

In [12] it is shown among other things that the classical bootstrap percolation process on Gn,p

(without inhibition) consists of three phases. While the active set is still very small (close to the
threshold size ath), the active set grows only by a small factor in each round. Once the size of
the active set is asymptotically larger than ath, the growth of the active set picks up momentum,
and we call this the explosion phase. Finally, once the active set has size at least 1/p, the process
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terminates in at most two more rounds (provided p ≫ log n/n): one round to activate a linear
subset of the vertices, and a possible second round to to activate all remaining vertices. A similar
situation occurs also in the process with inhibition. In order to prove Theorem 1 we need to track
the size of the active set very precisely during the first two phases (as a function of the size of the
starting set). In principle, this seems like an easy task: given an active set of size x, we expect
that in the next round we activate (n−x) ·Pr[Bin(x, p) ≥ k] additional vertices. The problem is,
of course, that such a simple approach ignores the dependencies between rounds. We overcome
this issue by defining a different probability space (Section 2) that describes the same process
but is more amenable to a formal analysis. In this section we also prove some general properties
of the percolation process that apply both to the synchronous and the asynchronous case. In
Section 3 we then use these prelimiaries to first describe the evolution of the size of the active set
as a function of the number rounds very precisely (Theorem 12) and subsequently use this result
to prove Theorem 1. In Section 4 we then consider the asynchronous version of the process.
As we will see, this process behaves similarly as the synchronous version in the very early stage
of the process (while still close to the threshold) but then speeds up considerably. Theorem 2
then follows from the fact that the sum of the incoming signals (positive minus negative ones)
essentially performs a random walk where the bias is a function of τ and γ.

2 Preliminaries and Definitions

The aim of this section is to define a general bootstrap percolation process which subsumes both
the synchronous and the asynchronous case, and to prove some basic properties of this process.

2.1 Formal definition of the percolation process

In this section we describe a version of the bootstrap percolation process that is particularly
amenable to its analysis. We first activate the vertices in the starting set, assuming without
loss of generality that this set consists of the vertices 1, . . . , a. Then for each s ≥ 1 we provide
just enough information with the s-th active vertex to determine whether a (s + 1)-st vertex
is activated. Crucially, this information does not require knowledge of the labels of the active
vertices. In this way we can determine properties of active sets of a certain size, without actually
knowing which vertices belong to this set. We now turn to the details.

Let n ∈ N, let p, τ ∈ [0, 1], and let γ ∈ [0, 1/p]. Let Φ be a random variable taking values in
the positive reals. Define the product probability space

(Ω,A,Pr) =
∏

1≤i,v≤n

(

X+
iv ×X−

iv × Φiv

)

×
n
∏

i=1

Ψi,

where

• X+
iv is the probability space of a Bernoulli random variable with parameter p,

• X−
iv is the probability space of a Bernoulli random variable with parameter γp,

• Ψi is the probability space with Pr[−1] = τ and Pr[+1] = 1− τ , and

• Φiv is the probability space on R>0 given by the distribution of Φ.
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By abuse of notation, we also denote the random variables corresponding to the spaces X+
iv , X

−
iv ,

Φiv, and Ψi again by X+
iv , X

−
iv , Φiv, and Ψi, respectively. It will always be clear from the context

which interpretation we have in mind.
Before precisely defining the percolation process we give the intended interpretations of these

random variables. By symmetry, we assume that the initially active set is [a] = {1, . . . , a}. Define

xi := i for all 1 ≤ i ≤ a.

In general, xi will be the label of the i-th vertex that becomes active in the percolation process,
where, if several vertices should become active simultaneously ties are broken arbitrarily, for
example by the natural ordering of the vertices. Then

• Ψi determines the sign of vertex xi. That is, vertex xi is inhibitory if and only if Ψi = −1,
which happens with probability τ , and excitatory otherwise;

• X−
iv and X+

iv describe whether there is a directed edge from vertex xi to v: there is a
directed edge from xi to v exactly if either ΨiX

+
iv = 1 or ΨiX

−
iv = −1. Note that the roles

of i and v are not interchangeable: while v represents a vertex of the underlying graph, i
represents the index of the i-th vertex that becomes active.

• Φiv describes the delay of the edge (xi, v). In the synchronous model, the delay is a
constant of value 1, while in the asynchronous model, it is an exponentially distributed
random variable with parameter 1. Note that for ease of analysis we define these random
variables regardless of whether Xiv = 1 or not.

For every s ∈ [n], we define random variables Es, Is : Ω → P([s]) by

Es := {i ∈ [s] | Ψi = +1} and Is := {i ∈ [s] | Ψi = −1},

respectively. These are the sets containing the indices of the active excitatory resp. inhibitory
vertices at the time at which exactly s vertices are active.

We can now describe formally how elements ω ∈ Ω define a percolation process

((x1, t1), . . . , (xn, tn))

with starting set [a] on Gn,p. First, activate all the vertices in [a] at time t = 0 by letting xs = s
and ts = 0 for all 1 ≤ s ≤ a. Assume now that active vertices x1, . . . , xs are given, where s ≥ a.
Also assume that for each such vertex xi we know the time ti when it turned active.

Then xs+1 is defined as follows. First, for each vertex v ∈ [n] \ {x1, . . . , xs} we determine the

earliest time t
(s)
v at which v has received k more excitatory than inhibitory signals from the set

{x1, . . . , xs}:

t(s)v := min
{

t ∈ R≥0 | |{i ∈ Es | Xiv = 1 and ti +Φiv ≤ t}| ≥

k + |{i ∈ Is | Xiv = 1 and ti +Φiv ≤ t}|
}

,

where min ∅ = ∞. If there is some vertex v for which t
(s)
v < ∞, then we define

ts+1 := min
{

t(s)v | v ∈ [n] \ {x1, . . . , xs}
}

.
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In this case, let J := {v ∈ [n] \ {x1, . . . , xs} | t
(s)
v = ts+1} and j := |J |. We set ts+i := ts+1 for

2 ≤ i ≤ j, and we let xs+1 < . . . < xs+j be the (uniquely determined) vertices such that

{xs+1, . . . , xs+j} = J .

If, on the other hand, we have t
(s)
v = ∞ for all v ∈ [n] \ {x1, . . . , xs}, then the process stops and

we set ts′ := ∞ and xs′ := min {v ∈ [n] \ {x1, . . . xs′−1}} for all s′ ≥ s+ 1, i.e., we enumerate all
remaining vertices by increasing label.

Finally, we introduce some more useful notation. For every s ∈ [n] and v ∈ [n], we define the
random variables

N+
s (v) :=

∑

i∈Es

X+
iv and N−

s (v) :=
∑

i∈Is

X−
iv .

Note that N+
s (v) and N−

s (v) are the number of excitatory and inhibitory active neighbors of v at
the time at which exactly s vertices are active. For brevity, we also use Ns(v) := N+

s (v)+N−
s (v).

Remark 3. From the definition of the probability space it follows immediately that for all positive
integers e, the conditional distributions of N+

s (v) and N−
s (v) given |Es| = e are binomial. More

specifically, for every 0 ≤ x ≤ s, we have

Pr[N+
s (v) = x | |Es| = e] =

(

e

x

)

px(1 − p)e−x

and

Pr[N−
s (v) = x | |Es| = e] =

(

s− e

x

)

(γp)x(1− γp)s−e−x.

Also, for distinct vertices v and w, the random variables N+
s (v), N−

s (v), N+
s (w) and N−

s (w)
are mutually conditionally independent, given the value of |Es|. In addition, note that Ns(v) ∼
Bin(s, p̂), for every s, v ∈ [v], where p̂ = (1− τ)p+ τγp.

We will make frequent use of the following concentration bounds on the binomial distribu-
tion [11].

Lemma 4 (Chernoff). Let X1, . . . ,Xn be independent Bernoulli variables with Pr[Xi = 1] = p
and Pr[Xi = 0] = 1− p for all 1 ≤ i ≤ n, and let X =

∑n
i=1Xi. Then for every 0 ≤ δ ≤ 1,

Pr[X ≥ (1 + δ)np] ≤ e−δ2np/3 and Pr[X ≤ (1− δ)np] ≤ e−δ2np/3.

2.2 General properties of the percolation process

In this subsection we prove some properties of the probability space that are independent of the
distribution of the transmission delays Φiv. These results thus apply equally in the synchronous
and the asynchronous case.

Let us start with the following simple fact, which states that at every point in time, the
numbers of active excitatory and inhibitory vertices are close to their expectations.

Lemma 5. Let δ0 = δ0(n) ∈ (0, 1/2) be such that δ20a = ω(− log δ0). Then a.a.s. the percolation
process satisfies

|Es| ∈ (1± δ0)(1 − τ)s and |Is| ∈ (1± δ0)τs

for all s ≥ a.
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Remark 6. We will apply this lemma in two settings: first, when δ0 is constant and a = ω(1),
second, when δ0 = (log n)−1−ε/3/(10k) and a ≥ (log n)2+ε, for some constant ε > 0. Note that
in both cases, the condition δ20a = ω(− log δ0) is satisfied.

Proof of Lemma 5. If τ = 0 or τ = 1 there is nothing to show. So assume 0 < τ < 1. It follows
directly from the definitions that for every s ∈ [n], we have |Es| ∼ Bin(s, 1− τ). Then Lemma 4
and the union bound imply that

Pr[∃s ≥ a : |Es| 6∈ (1± δ0)(1 − τ)s] ≤
∑

s≥a

2e−
δ20
3
(1−τ)s = o(1),

where we used that δ20a = ω(− log δ0) and routine calculations to obtain the last equality. The
statement for |Is| is proved similarly.

Our primary goal in this subsection is to introduce a general method to prove that the process
reaches a certain number of active vertices in a certain period of time. To do this, for every s ∈ [n]
and r ∈ R>0, we define

Ls(r) := |{a < v ≤ n | N+
s (v) = k and N−

10s(v) = 0 and max
i∈Es

X+
ivΦiv ≤ r}|.

The random variable Ls(r) has the following very useful property: assume that exactly s vertices
are active at some time t, and let r be any positive real number; then at time t + r, there will
be at least min {a + Ls(r), 10s} active vertices – indeed, unless 10s vertices are activated before
time t+ r, every vertex counted in Ls(r) will be active by time t + r. (Here the value 10s has
no deeper meaning: we just need some value sufficiently larger than s.) Therefore, if we want to
show that many vertices turn active quickly, then we need to prove lower bounds for the variables
Ls(r). This is what we will do in the next lemma.

For the analysis, it turns out to be very useful to parametrize the number of active vertices at
a given time as s = x · ath/(1− 1/k), for some x > 0. For this reason, we introduce the notation

Λ = Λ(n, p, k, τ) :=
ath

1− 1/k
=

(

(k − 1)!

(1− τ)knpk

)1/(k−1)

, (2)

and note that Λ satisfies
(1− τ)knpkΛk

(k − 1)!
= Λ. (3)

The following lemma shows essentially that, conditioned on the event that the values |Es| are
very close the their expectations, it is unlikely that there is some a ≤ s ≪ 1/p for which Ls(r)
is very small.

Lemma 7. There exists a positive constant c = c(τ, k) such that if a ≥ ath and p ≥ n−1,
then the following holds for every 2k2/((1 − τ)a) ≤ δ0 ≤ 1/(30k). Let η ∈ [10kδ0, 1/2) and
δ = η/(10k). Write E for the event that |Es| ∈ (1 ± δ0)(1 − τ)s holds for all s ≥ a. Then for
every a ≤ s = xΛ ≤ min{δ/p, δ/(γp)} and r ∈ R>0, we have

Pr[Ls(r) ≥ (1− η) Pr[Φ ≤ r]kxkΛ/k | E ] ≥ 1− e−cη2 Pr[Φ≤r]kxkΛ.

Proof. Write Es(a) for the event that |Es| = a, and Is(b) for the event that |Is| = b. Fix some
a ≤ s ≤ min{δ/p, δ/(γp)} and r ∈ R>0.
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We first prove that for all integers (1− τ)s/2 ≤ a ≤ s and 0 ≤ b ≤ 10s we have

E[Ls(r) | Es(a) ∩ I10s(b)] ≥ (1− δ)13 ·
nakpk

k!
· Pr[Φ ≤ r]k. (4)

To see this, fix a vertex a < v ≤ n arbitrarily and write L(v) for the event that N+
s (v) = k and

N−
10s(v) = 0 and maxi∈Es XivΦiv ≤ r. Using the conditional independence of N+

s (v) and N−
s (v)

(see Remark 3), and the independence of the variables Φiv, we get

Pr[L(v) | Es(a) ∩ I10s(b)] = Pr[N+
s (v) = k | Es(a)] · Pr[N

−
10s(v) = 0 | I10s(b)] · Pr[Φ ≤ r]k

=

(

a

k

)

pk(1− p)a−k · (1− γp)b · Pr[Φ ≤ r]k

≥

(

1−
k2

a

)

akpk

k!
(1− p)s · (1− γp)10s · Pr[Φ ≤ r]k

≥ (1− δ)12 ·
akpk

k!
· Pr[Φ ≤ r]k,

using s ≤ min {δ/p, δ/(γp)}, and the fact that k2/a ≤ 2k2/((1− τ)a) ≤ δ0 ≤ δ.
By definition, we have Ls(r) = |{a < v ≤ n | L(v)}|, and thus

E[Ls(r) | Es(a) ∩ I10s(b)] ≥ (n − a)(1− δ)12 ·
akpk

k!
· Pr[Φ ≤ r]k

≥ (1− δ)13 ·
nakpk

k!
· Pr[Φ ≤ r]k,

for all a and b as above, proving (4). Here we used that a ≤ δ/p ≤ δn.
Now, observe that, by definition of the underlying probability space, the events {L(v) | v ∈

[n]} are conditionally independent given Es(a) ∩ I10s(b), for all choices of a and b. Then, by
Lemma 4, writing µa,b := E[Ls(r) | Es(a) ∩ I10s(b)], we have

Pr[Ls(r) < (1− δ)µa,b | Es(a) ∩ I10s(b)] < e−δ2µa,b/3 < e−δ2 Pr[Φ≤r]k(1−δ)13nakpk/(3k!).

for all (1− τ)s/2 ≤ a ≤ s and 0 ≤ b ≤ 10s. If we condition on the event E , then we may assume
a ∈ (1± δ)(1 − τ)s, and we get

Pr[Ls(r) < (1− δ)14+kPr[Φ ≤ r]k(1− τ)knskpk

k!
| E ]

< e−δ2 Pr[Φ≤r]k(1−δ)14+k(1−τ)knskpk/(3k!).

The lemma now follows using s = xΛ with (3) and from δ = η/(10k), which implies that
1/2 ≤ 1− η ≤ (1− δ)14+k holds for k ≥ 2.

Remark 8. For later reference, we just note here that (4) in the proof above, together with (3),
implies that for every a ≤ s = xΛ ≤ min{1/(10kp), 1/(10kγp)} and (1− τ)s/2 ≤ a ≤ s, we have

E[Ls(r) | |Es| = a] = Ω(xkΛPr[Φ ≤ r]k).

Recall that, by the definition of Ls(r), if there are exactly s active vertices at time t, then at
time t+ r there are at least min{a+Ls(r), 10s} active vertices. We now use this observation to
obtain a lower bound on the growth of the process.
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Corollary 9. For every ε > 0, there exist positive constants c0 = c0(ε, k,Φ) and δ = δ(ε, γ, k)
such that for every function f : N → N, the percolation process with a ≥ (1 + ε)ath and n−1 ≤
p ≪ n−1/k is a.a.s. such that at least min{f(n)a, δ/p} vertices are active at time c0 log(f(n)).

Proof. Fix a sufficiently small constant η = η(ε, k) ∈ (0, 1) and let δ := η/(10k). Note that
p ≪ n−1/k implies that a ≥ ath = ω(1), so that for large enough n, we have δ ≥ 2k2/((1 − τ)a).
Also, since a = ω(1), by Lemma 5, we may assume that |Es| ∈ (1± δ)(1− τ)s holds for all s ≥ a.

Choose r = r(k,Φ) to be so large that Pr[Φ ≤ r]k ≥ 1− η. Applying Lemma 7, we get that
for every a ≤ s = xΛ ≤ min{δ/p, δ/(γp)}, we have

Pr[Ls(r) ≥ (1− η)2xkΛ/k] ≥ 1− e−Ω(xkΛ) ≥ 1− e−cs,

for some positive constant c = c(η, k, τ). Since
∑

s≥a
e−cs = e−ca/(1− e−c) = o(1) the process is

such that a.a.s.
Ls(r) ≥ (1− η)2xk−1s/k

holds for all a ≤ s ≤ min {δ/p, δ/(γp)}. Thus

a+ Ls(r)

s
≥ (1− η)2

a/Λ + xk/k

x
≥ (1− η)2(a/ath)

k−1
k ,

where the last inequality follows by minimizing over x ≥ a/Λ = (1−1/k)(a/ath) and the minimum
is obtained at xk = a/ath. As a ≥ (1+ ε)ath, the definition of Ls(r) implies that after every time
period of constant length r, the number of active vertices is multiplied by a constant factor of
size at least min {(1 − η)2(1 + ε)k−1, 10}. If η is small enough, then (1− η)2(1 + ε)k−1 > 1, and
the corollary follows.

Corollary 9 implies that the process grows at least at an exponential rate. In fact, it will
turn out that in both the synchronous and the asynchronous case, the growth is actually much
faster. However, the corollary already implies two useful facts. Firstly, regardless of the fraction
τn of inhibitory vertices, the process will always reach Θ(1/p) active vertices. Secondly, in order
to activate a constant multiple of the starting set we only need O(1) time.

Corollary 10. For every ε > 0 there exists a δ = δ(ε, γ, k) > 0 such that for a ≥ (1 + ε)ath and
n−1 ≤ p ≪ n−1/k, the process a.a.s. activates at least δ/p vertices.

Corollary 11. For every ε > 0 and c > 0 there exist constants T = T (ε, k, c,Φ) > 0 and
δ = δ(ε, γ, k) > 0 such that if a ≥ (1 + ε)ath and n−1 ≤ p ≪ n−1/k, then the percolation process
a.a.s. activates at least min{ca, δ/p} vertices in time T .

2.3 Phases of percolation

It is interesting to note that in the statements of Corollaries 10 and 11, the inhibition parameter
τ is not mentioned at all. The reason for this is that, as long as there are o(1/p) active vertices,
the number of vertices that have even one active inhibitory neighbor is o(n); in this sense, the
behavior of the process is almost completely unaffected by the presence of inhibitory vertices
until there are Ω(1/p) active vertices.

Thus, the evolution of the percolation process divides naturally into two separate phases: the
initial phase a ≤ s ≪ 1/p, during which the growth is largely unaffected by inhibition, and the
end phase s = Ω(1/p), where many vertices start to have inhibitory neighbors.

If a = Θ(ath), then one can further subdivide the initial phase into two phases with s = Θ(ath)
and ath ≪ s ≪ 1/p, respectively. The former is called the startup phase, and Corollary 11 shows

10



that if a ≥ (1 + ε)ath, then the time spent in the startup phase is bounded from above by some
constant. However, one can show that if a = Θ(ath), then this upper bound is close to the truth,
i.e., the size of the active set really increases only by some (small) constant factor in each round.
In contrast, once we have s ≫ ath, the rate of growth speeds up considerably. Thus we call this
second phase the explosion phase. As we will see, the time that is spent in the explosion phase
depends significantly on the distribution Φ of the signal delays: for the synchronous process
(where Φ is identically one), the time spent in the explosion phase is logk log(a/ath)

(pn) + O(1),
while for the asynchronous process (where Φ is exponentially distributed with mean one), it is
o(1).

3 Synchronous Bootstrap Percolation

In this section we study the synchronous bootstrap percolation process with inhibition. Recall
that the synchronous process is defined by taking all edge delays to be constants Φiv = 1. Then
it is clear that for every vertex xi, the time ti at which xi becomes active is either a non-negative
integer or ∞. For this reason, we can view the percolation process as happening in discrete
rounds t = 0, 1, 2, . . . . We write

at := |{xi | i ∈ [n] and ti ≤ t}|

for the number of vertices that are active after round t, and

a∗ := max {at | t ≥ 0}

for the number of vertices at termination.
For τ = 0 (the Gn,p case without inhibition), the process was analyzed in great detail in [12].

Among other results, it was shown that ath(n, p, k, 0) is the threshold for percolation in Gn,p, and
moreover that the process with a ≤ (1− ε)ath will a.a.s. not even activate more than ka/(k − 1)
vertices. Moreover, the authors of [12] determined the typical number of rounds until percolation
up to an additive constant.

In the case with inhibition, it is not clear that we percolate to a point where all (or at least
most of) the excitatory vertices are active. Corollary 10 guarantees that inhibition essentially
plays no role while we have at most δ/p active vertices, but from then on things may change. Our
plan for the rest of this section is as follows. First we show that we can describe the dynamics of
the percolation process very precisely up to δ/p active vertices. Then we show that this implies
that the process with inhibition actually follows a complicated pattern, where the number of
finally active vertices depends on the size on the starting set in a non-monotone way. We start
by proving a concentration theorem.

Theorem 12. For every ε > 0 there exists δ = δ(ε, γ, k, τ) > 0 such that, for the sequence
(ât)t≥0 defined by

â0 := a and ât+1 := â0 + (1− τ)knpk
âkt
k!

, (5)

the synchronous process with a ≥ max {(1 + ε)ath, (log n)
2+ε} and p ≫ n−1 a.a.s. satisfies

(1− ε)ât ≤ at ≤ (1 + ε)ât

for all t ≥ 0 such that ât ≤ δn.

11



One can show that the requirement a ≥ (log n)2+ε is tight in the following sense: if we have
a < (log n)2−ε for some constant ε > 0, then with non-negligible probability the number of active
vertices after the first round will deviate from its expectation by a factor that, accumulated over
many rounds, makes it impossible for such a statement to hold. More precisely, assume that
a = (1 + ε)ath ≤ (log n)2−ε, then the expectation of a1 is

E[a1] ≈ a+ (1− τ)knpkak/k!
(3)
= Θ(a).

Let δ = (log n)ε/3−1 ≪ a
−1/2. By the tightness of the Chernoff bound (or by normal approx-

imation), the probability that a1 > (1 + δ)E[a1] is at least some constant. By the definition
of the sequence âi, the factor (1 + δ) will blow up at a doubly exponential rate, and after i
rounds, the uncertainty on ai will be (1 + δ)Θ(ki). We will see (cf. Lemma 15) that the number
of rounds with ât ≤ δn is ℓ = logk log(n) − O(1). So the uncertainty after ℓ rounds would be
(1+ (log n)ε/2−1)Θ(logn) ≫ 1, which shows that it is impossible for aℓ to be concentrated around
âℓ.

3.1 The speed of round-based percolation

In Subsection 2.2, we introduced a general approach for proving that the percolation progresses
grows at least with a certain speed: if, at some point, there are s active vertices, then after
waiting for a time period of length r, there will be at least min {a+ Ls(r), 10s} active vertices.
In the case of synchronous percolation, we can strengthen (and simplify) this statement a bit.
Define, for every s ∈ [n],

Ls := |{a < v ≤ n | N+
s (v) = k and N−

s (v) = 0|.

Note that in comparison to the definition of Ls(r), we replaced the condition N−
10s(v) = 0 by

N−
s (v) = 0 and omitted the condition on the random variables Φiv. Nevertheless, due to the

round-based nature of the synchronous process, we still can conclude: if there are s = at active
vertices at time t, then at time t+ 1, there will be at least a+ Ls active vertices.

To prove concentration of the sequence (at)t≥0, we need to show that this lower bound for
at+1 is more or less tight. To do this, we introduce a second set of random variables. For every
s ∈ [n], define

Us := |{a < v ≤ n | N+
s (v) ≥ k}|.

With this definition, it is clear that if at some time t, there are s = at active vertices, then at
time t+ 1, there will not be more than a+ Us active vertices. The next lemma says that for all
s ≪ 1/p, the upper and lower bounds Us and Ls are not likely to differ by much.

Lemma 13. There exists a positive constant c = c(τ, k) such that if a ≥ ath and p ≥ n−1,
then the following holds for every 2k2/((1 − τ)a) ≤ δ0 ≤ 1/(30k). Let η ∈ [10kδ0, 1/2) and
δ = η/(10k). Write E for the event that |Es| ∈ (1 ± δ0)(1 − τ)s holds for all s ≥ a. Then, for
every a ≤ s = xΛ ≤ min {δ/p, δ/(γp)}, we have

Pr[Ls ≥ (1− η)xkΛ/k | E ] ≥ 1− e−cη2xkΛ

and
Pr[Us ≤ (1 + η)xkΛ/k | E ] ≥ 1− e−cη2xkΛ.
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Proof. Fix some a ≤ s = xΛ ≤ δ/p. Since Ls ≥ Ls(1), the statement for Ls follows directly from
Lemma 7. For the statement for Us, given 0 ≤ a ≤ s, write Es(a) for the event that |Es| = a. By
Remark 3 we know that, conditioned on Es(a), the variable Us follows a binomial distribution.
In order to obtain an upper bound on µa := E[Us | Es(a)] we use the following property of the
binomial distribution: if W ∼ Bin(n, p) with np ≤ 1/2, then we have (see for example [2])

Pr[W ≥ b] ≤ (1 + 2np) Pr[W = b] ∀b ≥ 0. (6)

As a ≤ s ≤ δ/p this bound implies that

µa = (n− a) · Pr[Bin(a, p) ≥ k] ≤ n · (1 + 2pa) ·
akpk

k!
≤ (1 + δ)2 ·

nakpk

k!
.

From here an application of the Chernoff bound (Lemma 4) gives that for every (1 − τ)s/2 ≤
a ≤ s, we have

Pr[Us > (1 + δ)3nakpk/k! | Es(a)] < e−δ2µa/3 = e−δ2Ω(xkΛ),

since Ls ≤ Us implies that µa ≥ E[Ls | Es(a)] = Ω(xkΛ), by Remark 8. Recall that the statement
we want to prove conditions on the event E , meaning that we can assume a ∈ (1 ± δ)(1 − τ)s.
The above bound thus implies

Pr[Us > (1 + δ)3+kn(1− τ)kskpk/k! | E ] < e−δ2Ω(xkΛ),

We have (1 + δ)k+3 = (1 + η/(10k))k+3 ≤ 1 + η, for all η ∈ (0, 1) and k ≥ 1. Then the lemma
follows with an application of (3).

3.2 The expected trajectory (ât)t≥0

Lemma 13 tells us that if there are at = xΛ active vertices in round t, then in round t+1, there
will be

at+1 ≈ a+
xkΛ

k
= a+ (1− τ)knpk

akt
k!

active vertices, using (3). This motivates the definition of a sequence (ât)t≥0 in equation (5) in
Theorem 12. Note that if we parametrize ât = xΛ, we get

ât+1 = a+
xk

k
Λ. (7)

In the next lemma we establish a simple fact on the minimal growth of the sequence (ât)t≥0.

Lemma 14. For all t ≥ 0, we have ât+1/ât ≥ (a/ath)
k−1
k .

Proof. Write ât = xΛ. Then we obtain from (7) that

ât+1/ât =
a/Λ + xk/k

x
.

The minimum of this expression is achieved for x = (a/ath)
1/k, where its value is (a/ath)

k−1
k ,

completing the proof.
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The bounds from the previous lemma are weak, but nevertheless best possible: the sequence
(ât) grows very slowly at the beginning. Once, however ât is above, say, 2Λ, a doubly exponential
growth kicks in, and implies that the total number of rounds of the process is just doubly
logarithmic, as our next lemma shows.

Lemma 15. For every ε > 0, there exists a constant K = K(k, ε) such that for all large enough
n ∈ N, the following holds, provided a ≥ (1 + ε)ath and p = ω(n−1):

(i) ât ≥ n for all t ≥ logk log(a/ath)
(pn) +K, and

(ii) ât ≤ 1/p for all t ≤ logk log(a/ath)
(pn)−K.

Proof. First observe that by Lemma 14, there exists a constant t0 = t0(ε, k) such that ât0 ≥
(ak/ath)Λ. By (7), we see in particular that ât = xΛ implies ât+1 ≥ (xk/k)Λ. Using induction
we get that for all t ≥ 0, we have

ât0+t ≥
(ak/ath)

ktΛ

k1+k+k2+···+kt−1 ≥

(

ak

athk

)kt

Λ = (a/ath)
ktΛ.

It follows that for all t ≥ logk log(a/ath)
(1/(pΛ)), we have ât0+t ≥ 1/p, and so

ât0+t+1 ≥ a+ (1− τ)kn/k! = Ω(n),

whence ât0+t+2 = ω(n), using p = ω(n−1). Since logk log(a/ath)
(1/(pΛ)) is within a constant

difference of logk log(a/ath)
(pn), this proves (i).

For (ii), we may assume, again by Lemma 14, that there is some smallest constant t0 ≥ 0
such that 2Λ ≤ ât0 ≤ 1/p. Now if ât = xΛ ≥ a for some x ≥ 2, then, using (7) and k ≥ 2, we
have

ât+1 = a+
xkΛ

k
≤ (x+ xk/k)Λ ≤ xkΛ.

By induction, we thus have

ât ≤ ât0+t ≤ (ât0/Λ)
ktΛ ≤ (ât0/ath)

ktΛ

for all t ≥ 0, and it follows that for all t ≤ logk log(ât0/ath)
(1/(pΛ)), we have ât ≤ 1/p. If t0 = 0,

then ât0 = a. If t0 > 0, then ât0/ath = O(1). In both cases, (ii) follows easily.

3.3 Initial phases – proof of Theorem 12

Assume that a ≥ (1 + ε)ath holds for some constant ε > 0. We want to show that a.a.s.,

(1− ε)ât ≤ at ≤ (1 + ε)ât

holds for all t ≥ 0 such that ât ≤ δn, where δ = δ(ε, γ, k, τ) is some positive constant. The idea
is to proceed by induction over t. Recall that for t = 0 we have â0 = a0 = a by definition, so
the base case is settled. The difficulty in the induction step is that from one round to the next
the error bounds that we can prove will worsen. Therefore, instead of showing at ∈ (1 ± ε)ât,
we need to show at ∈ (1± εt)ât for an appropriate sequence (εt)t≥0. Here is how we choose this
sequence: set η0 = (log n)−1−ε/3 and define ηt for t ≥ 1 by

1 + ηt := (1 + η0)(1 + 20kâtp ·max {1, γ}) ≤ 1 + η0 + 40kâtp ·max {1, γ}.
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Finally, define the sequence (εt)t≥0 recursively by

ε0 := 0 and 1 + εt := (1 + ηt−1) · (1 + εt−1)
k =

t−1
∏

i=0

(1 + ηi)
kt−1−i

for t ≥ 1,

where the last equality follows from a straightforward induction. Recall that we assume that
a ≥ (log n)2+ε, so that we have in particular that η20a ≥ (log n)ε/3 = ω(− log η0).

Lemma 16. For every ε > 0, there exists δ = δ(ε, γ, k, τ) > 0 such that the following holds,
assuming that a ≥ (1 + ε)ath and p = ω(n−1). Define (εt)t≥0 and (ηt)t≥0 as above and write ℓ
for the largest positive integer such that âℓ ≤ δn. Then

(i) εt ≤ ε for all 0 ≤ t ≤ ℓ,

(ii) ℓ = O(log log n), and

(iii) ηt ·min {1, γ−1} ≥ (1 + εt)10kâtp holds for all 0 ≤ t ≤ ℓ.

We defer the technical proof of this lemma to the end of this subsection and first show how
it can be used in order to complete the proof of Theorem 12.

Proof of Theorem 12. Assume the sequences (ηt)t≥0 and (εt)t≥0 are defined as above. As in the
statement of Lemma 16, we define ℓ to be the largest positive integer t for which ât ≤ δn, for
some sufficiently small positive constant δ = δ(ε, γ, k, τ). By Lemma 16 (ii) and since η20a ≥
(log n)ε/3, we know in particular that ℓe−cη20a = o(1) for any constant c > 0. For every i ≥ 0, let
δi = ηi/(10k). Write E for the event that |Es| ∈ (1± δ0)(1− τ)s holds for all s ≥ a.

Let xi := âi/Λ and let s
(1)
i := (1 − εi)âi and s

(2)
i := (1 + εi)âi. Observe that by (7) and

Lemma 14, we have
xki Λ/k = âi+1 − a ≥ εa.

Note that Lemma 16 (iii) implies that s
(1)
i , s

(2)
i ≤ min {δi/p, δi/(γp)}. One easily checks that the

other conditions of Lemma 13 are met, so we obtain that there is a constant c > 0 such that

Pr[L
s
(1)
i

≥ (1− ηi)(1 − εi)
k(âi+1 − a) | E ] ≥ 1− e−cη0a

and
Pr[U

s
(2)
i

≤ (1 + ηi)(1 + εi)
k(âi+1 − a) | E ] ≥ 1− e−cη0a.

We have (1+ηi)(1+εi)
k = 1+εi+1 and one can see that this implies that (1−ηi)(1−εi)

k ≥ 1−εi+1.
Moreover, by Lemma 5 and the fact that δ20a = ω(− log δ0), we have Pr[E ] = 1− o(1). Thus, by
the union bound, with probability 1− 2ℓe−cη0a = 1− o(1), we have

L
s
(1)
i

≥ (1− εi+1)(âi+1 − a) and U
s
(2)
i

≤ (1 + εi+1)(âi+1 − a) (8)

for all 0 ≤ i < ℓ. In the following, we assume that this is the case.
We now prove by induction that for each 0 ≤ i ≤ ℓ, we have

(1− εi)âi ≤ ai ≤ (1 + εi)âi. (9)

Note that by Lemma 16 (i), this will complete the proof. Since a0 = â0, Equation (9) holds
trivially for i = 0. For the induction, assume that it holds for a given i ≥ 0, that is, assume

s
(1)
i ≤ ai ≤ s

(2)
i . Then by the definition of the sets L

s
(1)
i

and U
s
(2)
i

, we have

a+ L
s
(1)
i

≤ ai+1 ≤ a+ U
s
(2)
i

.
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By (8), this implies
(1− εi+1)âi+1 ≤ ai+1 ≤ (1 + εi+1)âi+1,

completing the proof.

Proof of Lemma 16. By Lemma 15, we know that ℓ ≤ logk log(a/ath)
(np) +K, for some constant

K = K(k, ε), so (ii) is immediate.
To prove (i), fix some 0 ≤ t ≤ ℓ. Using the fact that log(1 + x) ≤ x holds for all x > −1, we

get

log(1 + εt) =
t−1
∑

i=0

kt−1−i log(1 + ηi) ≤ η0

t−1
∑

i=0

kt−1−i +max {1, γ} · 40kp
t−1
∑

i=0

kt−1−iâi.

We bound the two terms individually. Since a ≥ (1 + ε)ath, we have

η0

t−1
∑

i=0

kt−1−i = η0
kt − 1

k − 1
≤ η0

kℓ − 1

k − 1
≤

kK(k,ε) log(a/ath)
(np)− 1

(log n)1+ε/3(k − 1)
= o(1).

Now consider the smallest integer t0 ≥ 0 such that ât0 > 4k3Λ. By Lemma 14, we know that t0
is bounded. Thus, using the upper bound on t, (2) and pn = ω(1) we obtain

max {1, γ} · 40kp
t0−1
∑

i=0

kt−1−iâi = Θ(pΛkt) = O(log(pn)(pn)−1/(k−1)) = o(1)

and it thus remains to bound the quantity max {1, γ} · 40kp
∑t−1

i=t0
kt−1−iâi.

By (7) we have âi+1/âi ≥ (4k3)k−1/k ≥ 2k for every i ≥ t0. By induction, it follows that for
every t0 ≤ i < t− 1, we have ât−1 ≥ (2k)t−1−iâi. Moreover, by the definition (5) of âℓ

δn ≥ âℓ = a+ (1− τ)knpk
âkℓ−1

k!
,

implying that for large enough n

ât−1 ≤ âℓ−1 ≤

(

k!
δn− a

(1 − τ)knpk

)1/k

≤
δ1/kk

(1− τ)p
.

We get

40kp

t−1
∑

i=t0

kt−1−iâi ≤ 40kp

t−1
∑

i=t0

kt−1−i(2k)−(t−1−i)ât−1 ≤ 40kpât−1 ≤ 40k2δ1/k/(1− τ).

Therefore, if δ is small enough, then log(1 + εt) ≤ log(1 + ε), and so εt ≤ ε, which proves (i).
By (i), we have εt ≤ ε < 1, and so

ηt ·min {1, γ−1} ≥ 20kâtp > (1 + εt)10kâtp,

proving (iii).

16



3.4 End phase – proof of Theorem 1

In this subsection, we will study the effect of the inhibition parameter τ on the number of active
vertices at termination. Theorem 12 shows in particular that the process does not stop while
at = o(1/p) (since at = o(1/p) implies at+1 = o(n)), and the growth of the process during that
time does not depend in any significant way on the number of inhibitory vertices. The situation
changes during the very last rounds.

Lemma 17. For every ε > 0 there exists a δ = δ(ε, γ, k, τ) > 0 such that the synchronous
bootstrap percolation process satisfies the following, assuming max {(1 + ε)ath, (log n)

2+ε} ≤ a ≤
δ/p and p ≫ n−1. Let ℓ denote the the largest positive integer such that âℓ ≤ δn.

(i) If τ < 1/(1+γ) then a.a.s. the process almost percolates in at most ℓ+2 rounds. If moreover
p ≫ log n/n, then the process completely percolates in at most ℓ+ 2 rounds.

(ii) If τ > 1/(1 + γ) and p ≫ log n/n, then there exists some constant C = C(τ, γ) > 0 such
that if âℓ ≥ C(log n)/p, then a.a.s. the process stops with (1− ε)âℓ ≤ a∗ ≤ (1 + ε)âℓ.

(iii) If τ > 1/(1+γ) and p ≫ log n/n, then for every α > 0, there exists a constant C ′ > 0 such
that if C ′/p ≤ âℓ ≤ αn/(1 + ε), then a.a.s. the process stops with a∗ ≤ αn.

Some remarks are in order. By Lemma 15, we already know that ℓ is, up to an additive
constant, at most logk log(a/ath)

(pn). Then (i) shows that the number of rounds to percolation
a.a.s. takes one of only two possible (deterministic) values ℓ + 1 and ℓ + 2. If âℓ > C(log n)/p,
then the proof actually implies that a.a.s. the process percolates in exactly ℓ+ 1 rounds.

Lemma 17 spares out the border cases (a) τ = 1/(1+γ), and (b) τ > 1/(1+γ) and âℓ ≤ C ′/p.
We also do not determine the size of the final active set for the regime âℓ ≤ C(log n)/p. These
regimes show a slightly richer, but also more complicated behavior. Here even a harmless factor
of 1 + o(1) in the size of the starting set can shift2 the size of the ℓ-th set from Θ(1/p) to
ω((log n)/p), so every effect that depends on the property C ′/p ≤ âℓ ≤ C(log n)/p should be
considered unstable.

Proof of Lemma 17. From Theorem 12 we know that we can choose δ > 0 such that

(1− ε)ât ≤ at ≤ (1 + ε)ât

holds for all 0 ≤ t ≤ ℓ, where ℓ is as in the statement of the theorem. Also, by Lemma 5, we
may assume that

|Es| ∈ (1± δ0)(1− τ)s and |Is| ∈ (1± δ0)τs

holds for all s ≥ a, for some δ0 = δ0(n) = o(1). Using the definition of the sequence (ât)t≥0 and
since, by definition of ℓ, we have âℓ+1 > δn, we can easily check that if n is large enough, then
we have aℓ ≥ δ1/k/p. We will prove the three statements of Lemma 17 separately.

First consider (i), that is, assume that τ < 1/(1 + γ). In a first step we show by a case
distinction that aℓ+1 = Θ(n). Let s := aℓ and let C ∈ N be a large enough constant (that we
define below). Assume first that sp ≥ C. Let ξ = ξ(τ, γ) > 0 be so small that (1− ξ)2(1 − τ) ≥
(1 + ξ)2τγ; such a choice is possible since τ < 1/(1 + γ). Then the assumption that

|Es| ∈ (1± δ0)(1− τ)s and |Is| ∈ (1± δ0)τs

2We do not give a formal proof of this fact, it follows essentially from the calculations in the proof of Theorem 1

below.
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implies in particular that (1 − ξ)|Es|p ≥ (1 + ξ)|Is|γp. By the Chernoff bounds (Lemma 4), we
have

Pr[N−
s (v) > (1 + ξ/2)|Is|γp] ≤ e−

1
12

ξ2|Is|γp ≤ e−
1
12

ξ2(1−δ0)τγsp

and
Pr[N+

s (v) < (1− ξ)|Es|p] ≤ e−
1
3
ξ2|Es|p ≤ e−

1
3
ξ2(1−δ0)(1−τ)sp.

Since sp ≥ C, by choosing C large enough, we can assume that both these probabilities are at
most 1/3. Then with probability at least 1/3, we have

N+
s (v) ≥ (1− ξ)|Es|p ≥ (1 + ξ)|Is|γp ≥ k + (1 + ξ/2)|Is|γp ≥ k +N−

s (v),

where we used that for large enough C, we have ξ|Is|γp/2 ≥ k. For the second case assume
now that δ1/k ≤ sp < C, which implies in particular that p < C/s = o(1). In this case, the
probability that N−

s (v) = 0 is at least

(1− γp)|Is| ≥ (1− γp)s ≥ (1− γp)C/p ≥ 2−2Cγ ,

and the probability that N+
s (v) ≥ k is at least

(

|Es|

k

)

pk(1− p)k ≥
|Es|

k

2kk
pk ≥

pksk(1− τ)k

4kk
≥

δ(1 − τ)k

4kk
.

So both probabilities are bounded from below by positive constants. Since N+
s (v) and N−

s (v) are
conditionally independent, we see that with positive probability, we have N+

s (v) ≥ k + N−
s (v).

Summarizing, we proved in both cases that for every vertex v, N+
s (v) ≥ k + N−

s (v) occurs
independently with some nonzero constant probability. Another application of Chernoff thus
implies that after round ℓ+ 1, a.a.s. a linear fraction of all vertices is active. Since p = ω(n−1),
we then have Pr[N+

aℓ+1
(v) ≥ k + N−

aℓ+1
(v)] = 1 − o(1) for all vertices v ∈ [n]. This implies that

in round ℓ+2, there are n− o(n) active vertices. If we assume additionally that p = ω(log n/n),
then using the Chernoff bounds and the union bound, we actually obtain that a.a.s. we have
N+

aℓ+1
(v) ≥ k +N−

aℓ+1
(v) for all v ∈ [n], which proves that all vertices are active in round ℓ+ 2,

showing (i).
To show (ii), assume τ > 1/(1 + γ) and that âℓ ≥ C(log n)/p holds for some large constant

C = C(τ, γ) > 0 (chosen below), so that s := aℓ ≥ (1 − ε)C(log n)/p. To prove that the
process stops with s active vertices, it is enough to show that every vertex v ∈ [n] is such that
N−

s (v) ≥ N+
s (v). Fix any vertex v ∈ [n] and choose a constant ξ = ξ(τ, γ) > 0 so small that

(1 + ξ)|Es|p ≤ (1 + ξ)(1 + δ0)(1− τ)sp ≤ (1− ξ)(1− δ0)τγsp ≤ (1− ξ)|Is|γp;

such a choice is possible since τ > 1/(1 + γ). If C is sufficiently large, then by the Chernoff
bounds (Lemma 4) we get

Pr[N−
s (v) < (1− ξ)|Is|γp] ≤ e−ξ2(1−δ0)τγsp/3 ≪ n−1,

and
Pr[N+

s (v) > (1 + ξ)|Es|p] ≤ e−ξ2(1−δ0)τsp/3 ≪ n−1.

So by the union bound, a.a.s. every vertex v ∈ [n] satisfies N−
s (v) ≥ N+

s (v) and the process will
stop.
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Finally, for (iii), let τ > 1/(1+γ) and suppose that we are given some α > 0. Let C ′ = C ′(α)
be large enough and assume that

(1− ε)C ′/p ≤ (1− ε)âℓ ≤ aℓ ≤ (1 + ε)âℓ ≤ αn.

If (1 + ε)âℓ ≥ αn/2, then by (ii), the process will stop with a∗ = aℓ active vertices, so assume
from now on that aℓ ≤ (1 + ε)âℓ < αn/2.

First, if there is no t ≥ ℓ such that at ≥ αn/2, then we are done. Otherwise, let t0 be
the smallest t ≥ ℓ with this property. The same arguments as in (ii) show that the process
stops with a∗ = at0 . Thus, it suffices to show that at0 ≤ αn. To prove this, it is enough to
show that with probability tending to one, we have at+1 ≤ at + αn/2 for all t ≥ ℓ. To see
this recall that at ≥ aℓ ≥ (1 − ε)C ′/p. Thus, if we choose C ′ large enough, then we have
Pr[N+

s (v) ≥ N−
s (v)] ≤ α/4 for every vertex v ∈ [n] and for every s ≥ at, using τ > 1/(1 + γ).

Then, by the Chernoff bound, the probability that at+1 − at ≥ αn/2 is o(n−1). Since there can
be at most n rounds in total until the process stops (there are only n vertices), the union bound
easily shows that a.a.s., at+1 ≤ at + αn/2 holds for all t ≥ ℓ, completing the proof.

Proof of Theorem 1. Observe that Corollary 11, Lemma 17 allows us to restrict ourselves to the
case τ > 1/(1 + γ). Given any real number â0, we can define a sequence (ât)t≥0 by (5), as in
the statement of Theorem 12. Our first goal is to show that this sequence is sufficiently robust
against rounding down the starting value â0.

For this, fix any C2 > C1 > 0, and assume that C1ath ≤ â0 ≤ C2ath is any real number.
Denote by ℓ the largest positive integer t for which ât ≤ n. From Lemma 15 we know that

ℓ = logk log(â0/ath)
(pn) +O(1) = logk log(pn) +O(1).

Let (b̂t)t≥0 denote the sequence defined by the same recursion as ât, but with an initial value of
⌊â0⌋, i.e., b̂0 = ⌊â0⌋ and b̂t+1 = b̂0 + (1 − τ)knpkb̂kt /k!. We will show by induction that for all
t ≥ 0, we have b̂t/ât ≥ (1 − 1/â0)

kt . For t = 0 this immediately follows from b̂0 ≥ â0 − 1. For
the inductive step assume b̂t−1/ât−1 ≥ (1− 1/â0)

kt−1
. Using Equation (7) on page 13, we have

b̂t
ât

=
b̂0 + (b̂t−1/Λ)

kΛ/k

â0 + (ât−1/Λ)kΛ/k
≥

(

1− 1
â0

)

â0 +
(

1− 1
â0

)kt

(ât−1/Λ)
kΛ/k

â0 + (ât−1/Λ)kΛ/k
≥

(

1−
1

â0

)kt

,

as claimed. Thus the error in âℓ caused by rounding â0 down to the next integer satisfies

1 ≥
b̂ℓ
âℓ

≥

(

1−
1

â0

)kℓ

≥

(

1−
1

C1(log n)2+ε

)Θ(log(pn))

→ 1,

by the assumption that â0 ≥ C1ath ≥ C1(log n)
2+ε. This means that for the asymptotic size of

âℓ, it does not matter whether â0 is rounded down to the next smallest integer or not.
To complete the proof of Theorem 1, we will show that for every constant C1, there exists

a constant C2 such that for every function log n/p ≪ f(n) ≪ n, there exists a function C1 ≤
c(n) ≤ C2 such that a.a.s., the process with a = ⌊c(n)Λ⌋ stops with (1+o(1))f(n) active vertices.
Observe that it suffices to consider constants C1 that are sufficiently large so that the inequalities
below hold.

Consider the process with a = C1Λ. Recall that we assume that ath ≥ (log n)2+ε holds for
some constant ε > 0. Since we may assume that C1 ≥ 1 + ε, Theorem 12 implies that there
exists some δ > 0 such that a.a.s.,

(1− ε)ât ≤ at ≤ (1 + ε)ât
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holds for all 0 ≤ t ≤ ℓ, where ℓ is the largest integer such that âℓ ≤ δn. Define ℓ0 to be the
largest integer such that âℓ0 ≤ f(n)/(1 + ε), and note that, since f(n) ≪ n, we have ℓ0 ≤ ℓ for
all large enough n. Thus we have aℓ0 ≤ (1 + ε)âℓ0 ≤ f(n) a.a.s..

Observe also that for large enough n, we have f(n) ≤ âℓ0np, which is obvious if âℓ0 ≥ 1/p
and otherwise follows from

f(n)/(1 + ε) ≤ âℓ0+1 = â0 + (1− τ)kâkℓ0
npk

k!
≤ â0 + npâℓ0/k! ≤ npâℓ0/(1 + ε).

We will show that if one multiplies â0 with a large enough constant factor c0, then âℓ0
increases by a factor of ω(pn). This will imply, by the intermediate value theorem, that there
exists some c = c(n) ∈ [C1, c0C1] such that a starting value â0 = cΛ results in âℓ0 = f(n).
Then, by the argument above, and by Lemma 17 (ii) (using f(n) ≫ (log n)/p), the process with
a = ⌊cΛ⌋ will stop after ℓ0 rounds with (1 + o(1))f(n) active vertices. Since C1 is an arbitrary
constant and since Λ = Θ(ath), this will complete the proof of the theorem.

So consider a sequence (b̂t)t≥0 defined by b̂0 = c0C1Λ and by the same recursion (5), with â
replaced by b̂. Our goal is to show that b̂ℓ0/âℓ0 = ω(pn). Write b̂t = ctât and ât = xtΛ. Using
(7) and the fact that xt is monotonically increasing, we see that for all t ≥ 0, we have

ct+1 =
b̂t+1

ât+1
=

c0C1 + (ctxt)
k/k

C1 + xkt /k
≥ ckt

(

1−
C1

C1 + xkt /k

)

≥ ckt

(

1−
C1

C1 + Ck
1 /k

)

.

In particular, if C1 and c0 are large enough, then we have c1 ≥ 2c0 and ct ≥ ckt−1/2 for all t > 0.
By induction it follows that for all t > 0, we have

ct ≥
ck

t−1

1

2(kt−1−1)/(k−1)
≥ ck

t−1

0 .

Since f(n) ≥ 1/p, Lemma 15 tells us that ℓ0 ≥ logk log(pn) − O(1), where the constant in the
O(1) term does not depend on c0. Therefore, if c0 is large enough, we get

b̂ℓ0
âℓ0

= cℓ ≥ c
Ω(log pn)
0 = ω(pn),

completing the proof.

4 Asynchronous Bootstrap Percolation

In the second part of the paper we consider the bootstrap percolation process with an additional
temporal component. More precisely, we assume that all edges have independent delays dis-
tributed according to Exp(1). Recall that these transmission delays correspond to the random
variables Φiv in the probability space introduced in Section 2.1.

The main difference of this model to the synchronous case studied in the previous section is
that the activation no longer takes place in rounds, but that vertices turn active at individual
times. Recall that we write ts for the time at which the s-th vertex turns active. Note that
we may assume without loss of generality that no two vertices become active at the same time
(except for the vertices in the starting set).
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4.1 Initial phases

The goal of this subsection is to describe the behavior of the process in the range where few
vertices are active. In this range, inhibition does not play an important role.

Lemma 18. For every ε > 0, there exists a constant T = T (ε, k) > 0 such that the asynchronous
process with a ≥ (1 + ε)ath and n−1 ≪ p ≪ n−1/k satisfies the following. For every constant
C > 0, a.a.s.,

(i) tC/p ≤ T ,

(ii) tC/p − t1000Λ ≤ 1 + o(1), and

(iii) tC/p − ts = o(1) for all s = ω(ath).

Proof. Let δ0 ∈ (0, 1/2) be a sufficiently small constant. By Lemma 5, and since p ≪ n−1/k

implies a ≥ ath = ω(1), we can condition the process on the event E that

|Es| ∈ (1± δ0)(1− τ)s

holds for all s ≥ a. Moreover, by Lemma 7 (with η = 1/2), we know that for every a ≤ s =
xΛ ≤ 1/(20kp) and r > 0, we have

Pr[Ls(r) < Pr[Φ ≤ r]kxkΛ/(2k) | E ] < e−cPr[Φ≤r]kxkΛ, (10)

for some positive constant c = c(τ, k) that is independent of r and x.
From Corollary 11, we know that a.a.s. the process reaches at least s0 = min {1000Λ, δ/p}

active vertices after some constant time T0 = T0(ε, k), for an appropriate δ = δ(ε, γ, k) > 0.
Starting from T0, we examine successive time intervals of lengths 1/2, 1/4, 1/8 . . ., respectively,
and compute the number of active excitatory vertices after each interval. So, for every i ≥ 1,
define Ti = T0 +

∑i
j=1 2

−j and let si be the number of vertices active at time Ti. We claim that
a.a.s. we have

si ≥ min {10i+3Λ, δ/p} (11)

for every i ≥ 0. Write Si for the event that (11) holds for i. Since the lengths of our time
intervals sum up to 1, the occurrence of

⋂

i≥0 Si implies that at time T0 + 1 there are at least
δ/p active vertices. We will show by induction that

Pr[Si | E ] ≥ 1−
i

∑

j=1

e−c2jΛ (12)

holds for all i ≥ 0. The case i = 0 is evident by the choice of s0, so let us assume that (12) holds
for some i ≥ 0. Let ∆i := Ti+1 − Ti = 2−(i+1).

Write A for the event that si ≥ δ/p. Since si ≥ δ/p implies si+1 ≥ δ/p, we have

Pr[Si+1 | Si ∩ E ∩ A] = 1.

On the other hand, if A does not occur, then Si implies that si ≥ 10i+3Λ, and in this case, we
have si+1 ≥ min {a+ L10i+3Λ(∆i), 10

i+4Λ}, by the definition of L10i+3Λ(∆i). By (10), we have

Pr[L10i+3Λ(∆i) < Pr[Φ ≤ ∆i]
k10k(i+3)Λ/(2k) | E ] < e−cPr[Φ≤∆i]

k10k(i+3)Λ
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for a suitable constant c > 0. Using the fact that Φ ∼ Exp(1), that k ≥ 2, and that e−x ≤ 1−x/2
for 0 < x ≤ 1/2 we get

Pr[Φ ≤ ∆i]
k10k(i+3) =

(

1− e−2−(i+1)
)k

10k(i+3) ≥ 2−k(i+2) · 10k(i+3) ≥ 2k10i+4

for all i ≥ 0. Then we get

Pr[Si+1 | Si ∩ E ∩ A] ≥ 1− e−c2k10i+4Λ ≥ 1− e−c2i+1Λ.

Therefore,

Pr[Si+1 | E ] ≥ Pr[Si | E ]
(

Pr[A] + Pr[A](1− e−c2i+1Λ)
)

≥ 1−
i+1
∑

j=1

e−c2jΛ,

using the induction hypothesis. This completes the proof of (12).
Finally, since

∑∞
j=1 e

−c2jΛ = o(1), it follows by the union bound that
⋂

i≥0 Si occurs with
probability 1 − o(1), i.e., that a.a.s. at least δ/p vertices are active at time T0 + 1. Since T0 is
the first time at which min{1000Λ, δ/p} vertices are active, this also shows that the time to go
from 1000Λ to δ/p active vertices is at most 1. Additionally, the same proof shows that a.a.s. for
every i ≥ 0, the time from si = 10i+2Λ to δ/p active vertices is at most T0+1−Ti, which implies
that a.a.s., the time to go from ω(ath) to δ/p active vertices is o(1).

Let T ′ denote the earliest time at which δ/p vertices are active. To complete the proof of
(i–iii), it suffices to show that for all constants ρ > 0 and C > 0, a.a.s. at least C/p vertices are
active at time T ′+ρ. Note that for a fixed vertex v ∈ [n], the events N−

C/p = 0 and N+
δ/p = k and

maxi∈Eδ/p
{XivΦiv ≤ ρ} occur simultaneously with some positive constant probability. Thus, by

the Chernoff bounds (Lemma 4), we get that a.a.s. a constant fraction of all vertices, say cn
vertices for some c = c(k, γ, ρ, C) satisfies these three conditions. Hence, by time T ′ + ρ, at least
min{cn,C/p} vertices are active. This proves the claim since C/p ≤ cn for large enough n.

4.2 End phase – proof of Theorem 2

Write a(t) for the number of vertices that are active at time t and write

S+(v, t) := |{0 ≤ i ≤ a(t) | X+
iv = 1 and Ψi = +1 and ti +Φiv ≤ t}|

and
S−(v, t) := |{0 ≤ i ≤ a(t) | X−

iv = 1 and Ψi = −1 and ti +Φ−
iv ≤ t}|

for the number of excitatory/inhibitory signals that have reached vertex v at time t. For brevity,
we will also write S(v, t) := S+(v, t) + S−(v, t).

Observe that a vertex is part of the final active set exactly if there is some time t ≥ 0 such
that S+(v, t)−S−(v, t) ≥ k. Thus, our main goal will be to describe the evolution of the random
variables S+(v, t)− S−(v, t), for different vertices v.

We start by proving some properties that are satisfied by most vertices during the end phase
of the process.

Lemma 19. For every ε > 0, the asynchronous process with a ≥ (1+ε)ath and n−1 ≪ p ≪ n−1/k

satisfies the following. For all constants ξ ∈ (0, 1/3) and C0 > 0, and for every sufficiently large
constant C > 0, if n ∈ N is large enough, then with probability at least 1− ξ, all but at most ξn
vertices v ∈ [n] satisfy:
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(i) N+
s (v) ∈ (1± ξ)(1− τ)sp and N−

s (v) ∈ (1± ξ)τγsp for all s ≥ C/p,

(ii) S(v, tC/p) = 0, and

(iii) S(v, t1/p + ξ) ≥ C0.

Proof. Fix some vertex v ∈ [n]. We will show that for C chosen sufficiently large, the vertex v
satisfies (i)–(iii) with probability at least 1 − ξ2. Then it will follow from Markov’s inequality
that the probability that more than ξn vertices fail to satisfy (i)–(iii) is at most ξ.

We first show (i). Recall that by Lemma 5 we may assume that with probability 1− ξ2/8 we
have

|Es| ∈ (1± ξ/8)(1 − τ)s for all s ≥ (1 + ε)ath, (13)

where, as before, Es denotes the set of excitatory vertices among the first s active vertices. We
know that N+

s (v) is binomially distributed with parameters |Es| and p. That is, given (13) an
application of Chernoff bounds (Lemma 4) gives us

Pr[N+
s (v) 6∈ (1± ξ/2)(1 − τ)sp] ≤ e−cξ2(1−τ)sp,

for some constant c that does not depend on ξ. By the union bound we deduce that the claim
holds for all s = (C + i)/p with i ∈ N0, as

∑

i≥0 e
−cξ2(1−τ)(C+i) = O(e−cξ2(1−τ)C) and the term

on the right hand side can be made smaller than, say, ξ2/8 by choosing C = C(ξ, τ) sufficiently
large. Now consider an s = (C + i+ r)/p for some r ∈ (0, 1) and let s̄ = (C + i+ 1)/p. Then

N+
s (v) ≤ N+

s̄ (v) ≤ (1 + ξ/2)(1 − τ)s̄p ≤ (1 + ξ)(1− τ)sp,

whenever C = C(ξ, τ) is sufficiently large. The lower bound for N+
s (v) follows similarly. The

statement for N−
s (v) follows similarly, with |Es| replaced by |Is| and p replaced by γp. This then

shows that (i) holds for v with probability at least 1− ξ2/4.
Next we show (ii). The statement is trivial if a ≥ C/p, so assume otherwise. Assume further

for the time being that NC/p(v) ≤ (1 + ξ)(1 − τ + τγ)C, i.e., that v has only constantly many
active neighbors at time tC/p. By (i), v satisfies this condition with probability at least 1− ξ2/4.

Choose δ = δ(ξ) > 0 so that Nδ/p(v) = 0 holds with probability at least 1 − ξ2/5. Since
δ/p = ω(ath) (this is implied by p = ω(n−1)), Lemma 18 tells us that tC/p − tδ/p = o(1) a.a.s..
The probability that one of the (constantly many) active neighbors of v at time tC/p has already
sent its signal to v is thus o(1). Therefore, the probability that v satisfies both (i) and (ii) is at
least 1− ξ2/2 for sufficiently large n.

Lastly, let us prove (iii). Assume that v satisfies both (i) and (ii). By the previous point, this
happens with probability at least 1−ξ2/2. In particular, assume that N+

C/p
(v) ≥ (1−ξ)(1−τ)C.

If C is large enough, then with probability at least 1 − ξ2/4, at least C0 excitatory neighbors
of v will send their signal to v before time tC/p + ξ/2, i.e., S(v, tC/p + ξ/2) ≥ C0. However, by
Lemma 18, we have tC/p + ξ/2 ≤ t1/p + ξ, which shows that v satisfies (i)–(iii) with probability
at least 1− ξ2. As noted above, an application of Markov’s inequality completes the proof.

Before we come to the technical part of the proof, we give an intuition for the result. Let us
consider a typical vertex v at time tC/p. The previous lemma shows that, although v has many
active neighbors at time tC/p, none of their signals has arrived at vertex v at that time. Moreover,
we can assume that throughout the process, roughly the correct fraction of the neighbors of v are
excitatory. I.e., when s vertices are active there are about (1−τ)sp excitatory neighbors and τγsp
inhibitory ones. Recall that we assumed that the delays (the variables Φiv) are exponentially
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distributed, that is, they are memoryless, which means that every neighbor whose signal has
not yet arrived is equally likely to be the next to deliver its signal. Therefore, we would expect
that, as the signals come in, the difference S+(v, t) − S−(v, t) performs a random walk with a
bias close to 1−τ

1−τ+τγ , in which case the probability that the vertex v becomes active is just the
probability that such a random walk ever reaches k. This is the idea for the rest of the analysis.
We will need the following basic facts about random walks.

Lemma 20. Let X1,X2, . . . ,Xn be a sequence of independent random variables, each of which
is equal to 1 with probability β ∈ [0, 1] and −1 otherwise. Consider the biased random walk
Zi = X1 +X2 + · · ·+Xi. Then there exists for every ε > 0 and k ∈ N a constant C0 = C0(ε, k)
such that the following is true:

Pr[∀n ≥ C0 : Zn ∈ (2β − 1)n ± εn] ≥ 1− ε

and

Pr[∃i ≤ C0 s.t. Zi = k] ∈ (1± ε) ·min

{

1,
βk

(1− β)k

}

.

Proof. The first fact follows immediately from Chernoff bounds and implies the second fact
whenever β > 1/2. For β ≤ 1/2 the second fact follows from [8], Problem 5.3.1.

For every vertex v ∈ [n] and every i ∈ N, define X
(v)
i to be 1 if the i-th signal arriving

in v is excitatory, and −1 otherwise. Here we assume that in the asynchronous process, no
two signals arrive simultaneously, which is the case with probability 1. Then we can define

Z
(v)
i := X

(v)
1 +X

(v)
2 + · · ·+X

(v)
i , and we know that the vertex v becomes active with the arrival

of the first signal that causes Z
(v)
i to become k, if such a signal exists. As outlined before, we

will show that Z
(v)
i follows (essentially) a random walk with bias

β :=
1− τ

1− τ + γτ
. (14)

If τ ≥ 1/(1 + γ), then β ≤ 1/2, and by Lemma 20 we would expect that roughly nβk/(1 − β)k

vertices are activated. There are two problems which complicate the analysis: the first being

that the processes (Z
(v)
i )i∈N and (Z

(u)
i )i∈N are not independent for different vertices u and v, and

the second being that for a fixed vertex v, the variables X
(v)
i and X

(v)
j are not independent for

i 6= j, meaning that (Z
(v)
i )i∈N is not a true random walk. However, the following lemma tells us

that at least for the first C0 incoming signals these problems do not matter.

Lemma 21. For every 0 < ε, ζ < 1/3, there exists some T = T (ε, k) > 0 independent of ζ
such that for every large enough constant C0 > 0, the asynchronous percolation process with
a ≥ (1 + ε)ath and n−1 ≪ p ≪ n−1/k satisfies the following: for every large enough n ∈ N, with
probability at least 1− ζ,

• if τ > 1/(1 + γ), then a(T ) ≥ βkn/(1 − β)k − ζn and at most βkn/(1− β)k + ζn vertices
get activated by their first C0 incoming signals. Moreover, all but at most ζn vertices v are

such that Z
(v)
C0

≤ −(1− ζ)(1− 2β)C0.

• if τ ≤ 1/(1 + γ), then a(T ) ≥ n− ζn.
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Proof. Assume first that τ > 1/(1 + γ) and note that this is equivalent to 0 < β < 1/2, where β
is as in (14). Let ξ = ξ(ζ) > 0 be sufficiently small (to be fixed below) and choose η = η(ζ) > 0
such that 0 < β − η ≤ β + η ≤ 1/2 and

(

β

1− β

)k

−
ζ

2
≤

(

β − η

1− (β − η)

)k

− η ≤

(

β + η

1− (β + η)

)k

+ η ≤

(

β

1− β

)k

+
ζ

2
. (15)

Moreover, we may assume that η < ζ(1 − 2β)/3, which implies (2(β + η) − 1)C0 + ηC0 ≤
(1 − ζ)(2β − 1)C0 (note that 2β − 1 is negative). We will apply Lemma 20 for β − η and for
β + η. Clearly, whenever C0 = C0(η) = C0(ζ) is sufficiently large, then for both values the
probability in Lemma 20 is within η of the limit if we only consider the first C0 terms. We will
also apply Lemma 20 with β + η, and we can assume that C0 is so large that the probability
that ZC0 ∈ (2β − 1)C0 ± ηC0 is at least 1− ξ.

Let C = C(ξ, C0) = C(ζ) be so large that C0 ≤ ξ(1 − ξ)(1 − τ)C and that Lemma 19
guarantees that with probability 1− ξ there exists a set V0 ⊆ [n] of size at least |V0| ≥ (1− ξ)n
such that for all v ∈ V0 we have

(i) N+
s (v) ∈ (1± ξ)(1− τ)sp and N−

s (v) ∈ (1± ξ)τγsp for all s ≥ C/p,

(ii) S(v, tC/p) = 0, and

(iii) S(v, t1/p + ξ) ≥ C0.

We will prove that for every vertex v ∈ V0 and every time t ≥ 0 such that S(v, t) < C0, the first
signal arriving in v after time t is excitatory with probability within β ± η. Moreover, we will
show: (⋆) these bounds hold regardless of the states of all other vertices.

Before proving this claim we show that this suffices to prove the first bullet point. Applying
Lemma 20 with respect to β− η and β+ η, together with our assumptions on C0 and Lemma 19
we observe that the probability that a vertex v ∈ V0 gets active by receiving the first C0 signals
is within (β ± η)k/(1 − β ± η)k ± η = βk/(1 − β)k ± ζ/2 by (15). By applying Chernoff bounds
(which we may, because of (⋆)), and since we may choose ξ = ξ(ζ) small enough, this then
implies that a.a.s. at least (1 − ξ)(βk/(1 − β)k − ζ/2)|V0| ≥ βk/(1 − β)kn − ζn vertices become
active with one of the first C0 incoming signals. (Note that the error that we get from Chernoff
is in the order e−Θ(n), which is smaller than ξ for all large enough n.) Similarly, a.a.s. at most
(1+ξ)(βk/(1−β)k+ζ/2)|V0|+(n−|V0|) ≤ βk/(1−β)k+ζn/2 vertices become active by one of the
first C0 signals. In addition, Lemma 20 (with β + η) and Chernoff bounds show that for at least

(1− ξ)|V0| ≥ n− ζn vertices, we have Z
(v)
C0

≤ (1− ζ)(2(β + η)− 1)C0 + ηC0 ≤ (1− ζ)(2β − 1)C0.
Since t1/p + ξ < t1/p + 1 can be upper bounded by a constant T by Lemma 18, this implies the
claim of the first bullet point.

So consider some v ∈ V0 and t ≥ 0 with S(v, t) < C0. Assume that the first signal that arrives
at v after time t does so at time t∗. Let s ∈ [n] be such that t∗ ∈ (ts, ts+1]. By (ii), we know
that we have s + 1 > C/p, as no signals arrive before time tC/p. In the following, condition the
process on the value of s. By the memorylessness of the exponential distribution, the conditional
probability that the new signal is excitatory is

N+
s (v)− S+(v, t)

Ns(v)− S(v, t)
.

By our choice of C, we deduce that (i) implies that

S+(v, t) ≤ S(v, t) < C0 ≤ ξNC/p(v) < ξNs+1(v) ≤ ξ(Ns(v) + 1).
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Also, again by (i), we have

N+
s (v)

Ns(v)
=

N+
s (v)

N+
s (v) +N−

s (v)
∈ (1± 3ξ)β

for all s ≥ C/p. Therefore, if ξ is small enough, the probability of an excitatory signal is at least

(1− 3ξ)βNs(v)− ξ(Ns(v) + 1)

Ns(v)
≥ β − η

and at most
(1 + 3ξ)βNs(v)

Ns(v)− ξ(Ns(v) + 1)
≤ β + η.

Note that these bounds hold independently of the value of s.
Now consider the case τ ≥ 1/(1 + γ), which is equivalent to β ≥ 1/2. For every η > 0,

and every large enough C0 (depending on η), by a similar argument as above, with probability
1 − ξ, there exist a set V0 of (1 − ξ)n vertices such that for every vertex v ∈ V0, each of
the first C0 signals arriving in v is excitatory with probability at least 1/2 − η, and moreover,
S(v, t1/p + ξ) ≥ C0. Then, if C0 is large enough, Lemma 20 and the Chernoff bound show that

a.a.s. at least (1− ξ)
(

1/2−η
1/2+η

)k
|V0| vertices of V0 become active with one of the first C0 signals,

and for sufficiently small ξ and η this number is at least n − ζn. Since for the vertices of V0,
we have S(v, t1/p + ξ) ≥ C0, and since t1/p + ξ can be upper bounded by a constant T (by
Lemma 18), this shows that a(T ) ≥ n− ζn.

It remains to prove that if τ ≥ 1/(1 + γ), then not too many vertices become active. This is
the content of the following lemma.

Lemma 22. For every ε > 0, the asynchronous percolation process with τ ≥ 1/(1 + γ), (1 +
ε)ath ≤ a ≪ n, and n−1 ≪ p ≪ n−1/k a.a.s. does not activate more than nβk/(1 − β)k + o(n)
vertices, where β is given by (14).

Proof. If τ = 1/(1+γ), the statement is trivial since then β = 1/2. So assume that τ > 1/(1+γ)
and thus β < 1/2.

Let ζ ∈ (0, 1) be arbitrarily small, but fixed. Let ξ = ξ(ζ) > 0 be sufficiently small (to be
fixed below), and let C0 = C0(ζ) > 0 be sufficiently large (so that we can apply Lemma 21 and
the inequalities below hold). Lastly, assume that n is sufficiently large. Let V0 be a set of n− ζn
vertices such that

N+
s (v) ≤ (1 + ξ)βNs(v) (16)

holds for every v ∈ V0 and s such that S(v, ts) > 0. If n is large enough, then such a set exists
with probability at least 1− ζ, by Lemma 19 (i) and (ii).

Recall that by Lemma 21, for every ζ > 0, for sufficiently large n with probability at least
1− ζ at most βkn/(1− β)k + ζn vertices get activated by their first C0 incoming signals. Thus,
we only need to to show that there are few vertices that get activated later than by the first C0

signals. More precisely, we will show that for large enough n, with probability at least 1 − 3ζ

there are at most 3ζn vertices v for which there is i > C0 such that Z
(v)
i = k.

Again by Lemma 21 with probability 1−ζ there is a set U0 ⊆ V0 of size |U0| ≥ (1−2ζ)n such

that Z
(v)
C0

≤ (1− ζ)(2β − 1)C0 for all v ∈ U0, for sufficiently large n. The proof will be complete

if we show that for every v ∈ U0, the probability that Z
(v)
i = k holds for some i > C0 is at most

ζ2 (the statement then follows from Markov’s inequality and the requirement that only a ≪ n

vertices are active initially). Given some v ∈ V0, write A
(v)
i,i∗ for the event that
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(i) Z
(v)
i ≤ (1− ζ)(2β − 1)i,

(ii) Z
(v)
i∗ = k, and

(iii) Z
(v)
j > (1− ζ)(2β − 1)j for all i < j < i∗.

Then it suffices to show that Pr[
⋃

i∗>i≥C0
A

(v)
i,i∗ ] ≤ ζ2. We first show that for every v ∈ U0 and

i ≥ C0, we have

Pr
[

⋃

i∗>i

A
(v)
i,i∗

]

≤

(

β + ξ

1− β − ξ

)(1−ζ)(1−2β)i+k

.

For this, assume that j > C0 is such that Z
(v)
j > (1− ζ)(2β − 1)j. Let t be any time at which v

has seen exactly j − 1 signals and assume that the j-th signal arrives in v at time t∗ ∈ (ts, ts+1].
In the following, condition on the value of s. By (16), we know that N+

s (v) ≤ (1 + ξ)βNs(v).

Moreover, from Z
(v)
j = 2S+(v, t∗)− j and our assumption on Z

(v)
j we get

S+(v, t) ≥ S+(v, t∗)− 1 ≥ βj − ζ(2β − 1)j/2 − 1 ≥ (1 + ξ)βS(v, t),

where for the last inequality, we used the facts that S(v, t) = j − 1, that 2β − 1 is negative, that
j > C0, where C0 is sufficiently large, and the fact that we may choose ξ = ξ(ζ) to be sufficiently
small. Then we have

Pr[Z
(v)
j+1 − Z

(v)
j > 0] =

N+
s (v)− S+(v, t)

Ns(v)− S(v, t)
≤

(1 + ξ)β(Ns(v)− S(v, t))

Ns(v)− S(v, t)
≤ β + ξ.

By Lemma 20, this means that for every i ≥ C0 such that (i) holds, the probability that there
exists some i∗ for which (ii) and (iii) hold is at most

(

β + ξ

1− β − ξ

)(1−ζ)(1−2β)i+k

,

where, since β < 1/2, we can assume that (β + ξ)/(1 − β − ξ) < 1. For large enough C0, the
union bound yields

Pr
[

⋃

i∗>i≥C0

Ai,i∗

]

≤
∑

i≥C0

(

β + ξ

1− β − ξ

)(1−ζ)(1−2β)i

≤ ζ2,

completing the proof.

Proof of Theorem 2. The statement for τ ≥ 1/(1+γ) is an immediate consequence of Lemmas 21
and 22.

For the case τ < 1/(1+ γ), we know by Lemma 21 that if T = T (ε) is sufficiently large, then
s = n− o(n) vertices are active at time T , which takes care of the first part of this case.

For the case τ < 1/(1 + γ) and p = ω(log n/n), the Chernoff and union bounds show that
a.a.s. every vertex v ∈ [n] is such that N+

s (v) = (1+o(1))(1−τ)pn and N−
n (v) = (1+o(1))τγpn.

Using again the Chernoff and union bounds, within a time period of constant length depending
on τ < 1/(1 + γ), every vertex receives at least |N−

n (v)| + k excitatory signals and becomes
active.

27



References

[1] M. Aizenman and J. L. Lebowitz. Metastability effects in bootstrap percolation. Journal of
Physics A: Mathematical and General, 21(19):3801–3813, 1988.

[2] R. R. Bahadur. Some approximations to the binomial distribution function. The Annals of
Mathematical Statistics, 31(1):43–54, 1960.

[3] J. Balogh, B. Bollobás, H. Duminil-Copin, and R. Morris. The sharp threshold for boot-
strap percolation in all dimensions. Transactions of the American Mathematical Society,
364(5):2667–2701, 2012.

[4] J. Balogh, Y. Peres, and G. Pete. Bootstrap percolation on infinite trees and non-amenable
groups. Combinatorics, Probability & Computing, 15(5):715–730, 2006.

[5] J. Balogh and B. G. Pittel. Bootstrap percolation on the random regular graph. Random
Structures & Algorithms, 30(1-2):257–286, 2007.

[6] M. Carandini and D. J. Heeger. Normalization as a canonical neural computation. Nature
Reviews Neuroscience, 13(1):51–62, 2012.

[7] J. Chalupa, P. Leath, and G. Reich. Bootstrap percolation on a bethe lattice. Journal of
Physics C: Solid State Physics, 12(1):L31, 1979.

[8] G. Grimmett and D. Stirzaker. One Thousand Exercises in Probability. One Thousand
Exercises in Probability. OUP Oxford, 2001.

[9] D. J. Heeger. Normalization of Cell Responses in Cat Striate Cortex. Visual Neuroscience,
9(02):181–197, 1992.

[10] A. Holroyd. Astonishing cellular automata. Bulletin du Centre de Recherches Mathema-
tiques, 13(1):10–13, 2007.

[11] S. Janson, T. Łuczak, and A. Rucinski. Random graphs. Wiley-Interscience Series in Discrete
Mathematics and Optimization. Wiley-Interscience, New York, 2000.

[12] S. Janson, T. Łuczak, T. Turova, and T. Vallier. Bootstrap percolation on the random graph
Gn,p. The Annals of Applied Probability, 22(5):1989–2047, 2012.

[13] A. Karbasi, J. Lengler, and A. Steger. Normalization phenomena in asynchronous net-
works. In Proceedings of the 42nd International Colloquium on Automata, Languages, and
Programming (ICALP ’15). To appear.

[14] K. Louie, L. E. Grattan, and P. W. Glimcher. Reward Value-Based Gain Control: Divisive
Normalization in Parietal Cortex. Journal of Neuroscience, 31(29):10627–10639, July 2011.

[15] S. R. Olsen, V. Bhandawat, and R. I. Wilson. Divisive Normalization in Olfactory Population
Codes. Neuron, 66(2):287–299, Apr. 2010.

[16] R. H. Schonmann. On the behavior of some cellular automata related to bootstrap perco-
lation. The Annals of Probability, 20(1):174–193, 1992.

28


	1 Introduction
	1.1 Model and results
	1.2 Outline

	2 Preliminaries and Definitions
	2.1 Formal definition of the percolation process
	2.2 General properties of the percolation process
	2.3 Phases of percolation

	3 Synchronous Bootstrap Percolation
	3.1 The speed of round-based percolation
	3.2 The expected trajectory (t)t0
	3.3 Initial phases – proof of Theorem ??
	3.4 End phase – proof of Theorem ??

	4 Asynchronous Bootstrap Percolation
	4.1 Initial phases
	4.2 End phase – proof of Theorem ??


