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Permutations with fixed pattern densities

Richard Kenyon∗ Daniel Král’† Charles Radin‡

Peter Winkler§

Abstract

We study scaling limits of random permutations (“permutons”)
constrained by having fixed densities of a finite number of patterns.
We show that the limit shapes are determined by maximizing entropy
over permutons with those constraints. In particular, we compute
(exactly or numerically) the limit shapes with fixed 12 density, with
fixed 12 and 123 densities, with fixed 12 density and the sum of 123
and 213 densities, and with fixed 123 and 321 densities. In the last
case we explore a particular phase transition. To obtain our results, we
also provide a description of permutons using a dynamic construction.

1 Introduction

We study pattern densities in permutations. A pattern τ ∈ Sk in a permuta-
tion σ ∈ Sn (with k ≤ n) is a k-element subset of indices 1 ≤ i1 < · · · < ik ≤
n whose image under σ has the same order as that under τ . For example the
first three indices in the permutation 4312 have pattern 321. The density of

τ ∈ Sk in σ ∈ Sn is
(
n
k

)−1
times the number of such subsets of indices.
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Pattern avoidance in permutations is a well-studied and rich area of com-
binatorics; see [21] for the history and the current state of the subject. Less
studied is the problem of determining the range of possible densities of pat-
terns, and the “typical shape” of permutations with constrained densities
of (a fixed set of) patterns. We undertake such a study here. Specifically,
we consider the densities of one or more patterns and consider the feasible
region, or phase space F, of possible values of densities of the chosen patterns
for permutations in Sn in the limit of large n. For densities in the interior of
F we study the shape of a typical permutation with those densities, again in
the large n limit. We note that the typical shape of pattern-avoiding permu-
tations (which necessarily lie on the boundary of the feasible region F) has
also recently been investigated [1, 10, 15, 26, 27, 28].

To deal with these asymptotic questions we show that the size of our
target sets of constrained permutations can be estimated by maximizing a
certain function over limit objects called permutons. Furthermore when—as
appears to be usually the case—the maximizing permuton is unique, prop-
erties of most permutations in the class can then be deduced from it. After
setting up our general framework we work out several examples. To give
further details we need some notation.

To a permutation π ∈ Sn one can associate a probability measure γπ on
[0, 1]2 as follows. Divide [0, 1]2 into an n×n grid of squares of size 1/n×1/n.
Define the density of γπ on the square in the ith row and jth column to be
the constant n if π(i) = j and 0 otherwise. In other words, γπ is a geometric
representation of the permutation matrix of π.

Define a permuton to be a probability measure γ on [0, 1]2 with uniform
marginals:

γ([a, b]× [0, 1]) = b− a = γ([0, 1]× [a, b]), for all 0 ≤ a ≤ b ≤ 1. (1)

Note that γπ is a permuton for any permutation π ∈ Sn. Permutons were
introduced in [16, 17] with a different but equivalent definition; the measure
theoretic view of large permutations can be traced to [30] and was used in
[13, 24] as an analytic representation of permutation limits equivalent to that
used in [16, 17]; the term “permuton” first appeared, we believe, in [13].

Let Γ be the space of permutons. There is a natural topology on Γ,
the weak topology on probability measures, which can equivalently be de-
fined as the metric topology defined by the metric d� given by d�(γ1, γ2) =
max |γ1(R)− γ2(R)|, where R ranges over aligned rectangles in [0, 1]2. This
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topology is also the same as that given by the L∞ metric on the cumulative
distribution functions Gi(x, y) = γi([0, x] × [0, y]). We say that a sequence
of permutations πn with πn ∈ Sn converges as n → ∞ if the associated
permutons converge in the above sense.

Extending the definition above, given a permuton γ the pattern density
of τ in γ, denoted ρτ (γ), is by definition the probability that, when k points
are selected independently from γ and their x-coordinates are ordered, the
permutation induced by their y-coordinates is τ . For example, for γ with
probability density g(x, y)dx dy, the density of pattern 12 ∈ S2 in γ is

ρ12(γ) = 2

∫
x1<x2∈[0,1]

∫
y1<y2∈[0,1]

g(x1, y1)g(x2, y2)dx1dy1dx2dy2. (2)

It follows from results of [16, 17] that two permutons are equal if they
have the same pattern densities (for all k).

The notion of pattern density for permutons generalizes the notion for
permutations. Note however that the density of a pattern α ∈ Sk in a
permutation τ ∈ Sn (defined to be the number of copies of α in τ , divided
by
(
n
k

)
) will not generally be equal to the density of α in the permuton γτ ;

equality will only hold in the limit of large n.

1.1 Results

Theorem 1 below (restated from the somewhat different form in Trashorras,
[37]) is a large deviations theorem for permutons: it describes explicitly how
many large permutations lie near a given permuton. The statement is es-
sentially that the number of permutations in Sn lying near a permuton γ
is

n!e(H(γ)+o(1))n, (3)

where H(γ) is the “permuton entropy” (defined below).
We use this large deviations theorem to prove Theorem 2, which describes

both the number and (when uniqueness holds) limit shape of permutations
in which a finite number of pattern densities have been fixed. The theorem
is a variational principle: it shows that the number of such permutations is
determined by the permuton entropy maximized over the set of permuton(s)
having those fixed pattern densities.

Another construction we use replaces permutons by families of insertion
measures {µt}t∈[0,1], which is analogous to building a permutation by induc-
tively inserting one element at a time into a growing list: for each i ∈ [n]
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one inserts i into a random location in the permuted list of the first i − 1
elements. This construction is used to describe explicitly the entropy maxi-
mizing permutons with fixed densities of patterns of type ∗∗ · · · ∗ i (here each
∗ represents an element not exceeding the length of the pattern, for example,
∗ ∗ 2 represents the union of the patterns 132 and 312). We prove that for
this family of patterns the maximizing permutons are analytic, the entropy
function as a function of the constraints is analytic and strictly concave, and
the optimal permutons are unique and have analytic probability densities.

The most basic example to which we apply our results, the entropy-
maximizing permuton for a fixed density ρ12 of 12 patterns, has probability
density

g(x, y) =
r(1− e−r)

(er(1−x−y)/2 − er(x−y−1)/2 − er(y−x−1)/2 + er(x+y−1)/2)2

where r is an explicit function of ρ12. See Figure 1.

Figure 1: The permuton with fixed density ρ of pattern 12, shown for ρ =
.2, .4, .8.

While maximizing permutons can be shown to satisfy certain explicit
PDEs (see Section 8), they can also exhibit a very diverse set of behaviors.
Even in one of the simplest cases, that of fixed density of the two patterns
12 and 123, the variety of shapes of permutons (and therefore of the approx-
imating permutations) is remarkable: see Figure 7. In this case we prove
that the feasible region of densities is the so-called “scalloped triangle” of
Razborov [34, 35] which also describes the space of feasible densities for
edges and triangles in the graphon model.
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Another example which has been studied recently [11, 18, 19] is the case
of the two patterns 123 and 321. In this case we describe a phase transition
in the feasible region, where the maximizing permuton changes abruptly.

The variational principle can easily be extended to analyze other con-
straints that are continuous in the permuton topology. For constraints that
are not continuous, for example the number of cycles of a fixed size, one can
analyze an analogous “weak” characteristic, which is continuous, by applying
the characteristic to patterns. For example, while the number of fixed points
of a permuton is not well-defined, we can compute the expected number of
fixed points for the permutation in Sn obtained by choosing n points inde-
pendently from the permuton, and analyze this quantity in the large n limit.
This computation will be discussed in a subsequent paper [22]; the result is
that the expected weak number of fixed points is∫ 1

0

g(x, x) dx

when g has a continuous density. Similar expressions hold for cycles of other
lengths.

1.2 Analogies with graphons

For those who are familiar with variational principles for dense graphs [9,
7, 31, 32], we note the following differences between the graph case and the
permutation case (see [25] for background on graph asymptotics):

1. Although permutons serve the same purpose for permutations that
graphons serve for graphs, and (being defined on [0, 1]2) are superfi-
cially similar, they are measures (not symmetric functions) and repre-
sent permutations in a different way. (One can associate a graphon with
a limit of permutations, via comparability graphs of two-dimensional
posets, but these have trivial entropy in the Chatterjee-Varadhan sense
[9] and we do not consider them here.)

2. The classes of constrained (dense) graphs considered in [9] have size
about ecn

2
, n being the number of vertices and the (nonnegative) con-

stant c being the target of study. Classes of permutations in Sn are of
course of size at most n! ∼ en(logn−1) but the constrained ones we con-
sider here have size of order not ecn logn for c ∈ (0, 1), as one might at
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first expect, but instead en logn−n+cn where c ∈ [−∞, 0] is the quantity
of interest.

3. The “entropy” function, i.e., the function of the limit structure to be
maximized, is bounded for graphons but unbounded for permutons.
This complicates the analysis for permutations.

4. The limit structures that maximize the entropy function tend, in the
graph case, to be combinatorial objects: step-graphons correspond-
ing to what Radin, Ren and Sadun call “multipodal” graphs [33]. In
contrast, maximizing permutons at interior points of feasible regions
seem always to be smooth measures with analytic densities. Although
they are more complicated than maximizing graphons, these limit ob-
jects are more suitable for classical variational analysis, e.g., differential
equations of the Euler-Lagrange type.

2 Variational principle

For convenience, we denote the unit square [0, 1]2 by Q.
Let γ be a permuton with density g defined almost everywhere. We

compute the permutation entropy H(γ) of γ as follows:

H(γ) =

∫
Q

−g(x, y) log g(x, y) dx dy (4)

where “0 log 0” is taken as zero. Then H is finite whenever g is bounded
(and sometimes when it is not). In particular for any σ ∈ Sn, we have
H(γσ) = −n(n log n/n2) = − log n and therefore H(γσ) → −∞ for any
sequence of increasingly large permutations even though H(lim γσ) may be
finite. Note that H is zero on the uniform permuton (where g(x, y) ≡ 1) and
negative (sometimes −∞) on all other permutons, since the function z log z
is concave downward. If γ has no density, we define H(γ) = −∞.

We use the following large deviations principle, first stated in a somewhat
different form by Trashorras (Theorem 1 in [37]); see also Theorem 4.1 in [29].
In Section 11 we give an alternative proof.

Theorem 1 ([37]). Let Λ be a set of permutons, Λn the set of permutations
π ∈ Sn with γπ ∈ Λ. Then:
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1. If Λ is closed,

lim sup
n→∞

1

n
log
|Λn|
n!
≤ sup

γ∈Λ
H(γ); (5)

2. If Λ is open,

lim inf
n→∞

1

n
log
|Λn|
n!
≥ sup

γ∈Λ
H(γ). (6)

To make a connection with our applications to large constrained permu-
tations, fix some finite set P = {π1, . . . , πk} of patterns. Let α = (α1, . . . , αk)
be a vector of desired pattern densities. We then define two sets of permu-
tons:

Λα,ε = {γ ∈ Γ | |ρπj(γ)− αj| < ε for each 1 ≤ j ≤ k} (7)

and
Λα = {γ ∈ Γ | ρπj(γ) = αj for each 1 ≤ j ≤ k}. (8)

With that notation, and the understanding that Λα,ε
n = Λα,ε ∩ γ(Sn),

where γ(α) = γα as before, our first main result is:

Theorem 2.

lim
ε↓0

lim
n→∞

1

n
log
|Λα,ε

n |
n!

= max
γ∈Λα

H(γ).

The value maxγ∈Λα H(γ) (which is guaranteed by the theorem to exist,
but may be −∞) will be called the constrained entropy and denoted by s(α).
In Section 4 we will prove Theorem 2.

Theorem 2 puts us in a position to try to describe and enumerate permu-
tations with some given pattern densities. It does not, of course, guarantee
that there is just one γ ∈ Λα that maximizes H(γ), nor that there is one
with finite entropy. As we shall see it seems to be the case that interior
points in feasible regions for pattern densities do have permutons with finite
entropy, and usually just one optimizer. Points on the boundary of a feasible
region (e.g., pattern-avoiding permutations) often have only singular permu-
tons, and since the latter always have entropy −∞, Theorem 2 will not be
of direct use there.

3 Feasible regions and entropy optimizers

We collect here some general facts about feasible regions and entropy opti-
mizers, making use of concavity of entropy and the “heat flow on permutons.”
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3.1 Heat flow on permutons

The heat flow is a continuous flow on the space of permutons with the prop-
erty that for any permuton µ = µ0 and any positive time t > 0, µt has
analytic density (and thus finite entropy).

The flow after time t is given by the action of the heat operator et∆

where ∆ is the Laplacian on the square with reflecting boundary conditions.
One can describe the flow concretely as follows. First, one can describe a
permuton µ by its characteristic function ĝ(u, v) = E[ei(ux+vy)]. In fact since
we are on the unit square we can use instead the discrete Fourier cosine series

ĝ(j, k) = E[cos(πjx) cos(πky)]

with j, k ≥ 0. The uniform marginals condition is that ĝ(j, k) = 0 if j = 0
or k = 0 except for ĝ(0, 0) = 1.

The operator et∆ acts on the coefficients by multiplication by e−π
2(j2+k2)t:

ĝt(j, k) = ĝ0(j, k)e−π
2(j2+k2)t.

Note that the heat flow preserves the marginals.
For any t > 0 the Fourier coefficients ĝt(j, k) then decay exponentially

quickly so that ĝt(j, k) are the Fourier coefficients of a measure with analytic
density.

3.2 Elementary consequences for feasible regions

Let R be the feasible region for permutons with some finite set of n pattern
densities τ . Let RM be the subset of R consisting of points representable
by a permuton with entropy at least −M , and R∗ those representable by
permutons with finite entropy.

Entropy is upper-semicontinuous on R (just as it is on the space Γ of all
permutons, see Lemma 19). So RM is closed.

Lemma 3. R∗ is dense in R.

Proof. Any permuton γ may be perturbed (by the heat flow for small time,
thus moving densities only a small amount) to achieve an analytic permuton,
which will have finite entropy.
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Theorem 4. Let C be a topological sphere in RM , that is, a set homeomor-
phic to the unit sphere Sn−1 in Rn, where n = dim(R) is the number of
patterns. If there is a continuous family of permutons in RM parameterized
by C then the interior of C is also contained in RM .

Proof. The hypothesis says that there is a continuous map φ : Sn−1 → Γ
such that τ ◦ φ maps Sn−1 to C. Since Γ is convex, φ extends to a map φ̃
from the unit ball Bn to Γ. The composition τ ◦ φ̃ provides a homotopy of C
to a point and thus contains the interior of C. Since the entropy function is
concave, the entropies of the points in the space of convex combinations are
all at least −M .

This statement applied to the case of single density yields

Corollary 5. If R is the feasible region for a single density, then it is an
interval on the interior of which entropy is finite and concave.

Corollary 6. Let C be a topological sphere in RM . Suppose the maximizing
permutons at points of C vary continuously on C. C contains in its interior
no local minimum of the entropy.

Proof. Concavity of entropy implies that the minimum of the entropy on the
image of Bn occurs on the image of Sn−1.

Theorem 7. The maximizing permutons associated to two local maxima in
R, at least one of which is a strict local maxima, are not connected by a
continuous path of permutons.

Proof. Connect the permutons representing the two local maxima by the
path of their convex combinations. Concavity of entropy along this path
implies the result.

Note that for any pattern π there is a permuton which has zero density for
that pattern (either the identity permuton or the ‘anti-identity’ permuton).
The maximal π-density permuton(s) are not known in general, although a
lower bound on the maximal density is obtained from the permuton γπ.
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4 Proof of Theorem 2

Since we will be approximating H by certain Riemann sums, it is useful
to define, for any permuton γ and any positive integer m, an approximating
“step-permuton” γm as follows. Fixing m, denote by Qij the half-open square
((i−1)/m, i/m] × ((j−1)/m, j/m]; for each 1 ≤ i, j ≤ m, we want γm to be
uniform on Qij with γm(Qij) = γ(Qij). In terms of the density gm of γm, we
have gm(x, y) = m2γ(Qij) for all (x, y) ∈ Qij.

To prove Theorem 2 we use the following result.

Proposition 8. For any permuton γ, limm→∞H(γm) = H(γ), with H(γm)
diverging downward when H(γ) = −∞.

In what follows we will, in order to increase readability, write∫ 1

0

∫ 1

0

−g(x, y) log g(x, y)dxdy (9)

as just
∫
Q
−g log g. Also for the sake of readability, we will for this section

only state results in terms of g log g rather than −g log g; this avoids clutter
caused by a multitude of absolute values and negations. Eventually, however,
we will need to deal with an entropy function H(γ) =

∫
Q
−g log g that takes

values in [−∞, 0].
Define

gij = m2γ(Qij). (10)

We wish to show that the Riemann sum

1

m2

∑
0≤i,j≤m

gij log gij, (11)

which we denote by Rm(γ), approaches
∫
Q
g log g when γ is absolutely con-

tinuous with respect to Lebesgue measure, i.e., when the density g exists
a.e., and otherwise diverges to ∞. We restate and prove this in slightly
greater generality, not requiring that γ have uniform marginals or that it
be normalized to have γ(Q) = 1. Note that that permutons arising later in
this work often have unbounded density functions, thus will not be Riemann
integrable; we need to show that nevertheless our particular Riemann sums
Rm(γ) do approximate the entropy integral.
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Proposition 9. Let γ be a finite measure on Q = [0, 1]2 and Rm = Rm(γ).
Then:

1. If γ is absolutely continuous with density g, and g log g is integrable,
then limm→∞Rm =

∫
Q
g log g.

2. If γ is absolutely continuous with density g, and g log g is not integrable,
then limm→∞Rm =∞.

3. If γ has a singular component, then limm→∞Rm =∞.

Proof. We begin with the first case, where we need to show that for any
ε > 0, there is an m0 such that for m ≥ m0,∫

Q

g log g − 1

m2

m∑
i,j=0

gij log gij < ε . (12)

Note that the function u log u is bounded below by −1/e and since it is
convex, the quantity on the left cannot be negative.

We need to truncate g. Let A(t) = {(x, y) ∈ Q : g(x, y) ≥ t} and choose
M > 1 so that

∫
A(M)

g log g < ε/2. Let f = 0 on A(M) and f = g otherwise,

so that
∫
Q
g log g − ε/2 <

∫
Q
f log f ≤

∫
Q
g log g. Then 1

m2

∑m
i,j=0 fij log fij,

which we will call R′m, is at most Rm, so it suffices to show
∫
f log f −R′m <

ε/2.
We next take a closer look at the function u log u. For 0 ≤ a ≤ b ≤ M ,

define

d(a, b) = max
p∈[0,1]

(
pa log a+(1−p)b log b−(pa+(1−p)b) log(pa+(1−p)b)

)
(13)

for 0 ≤ a ≤ b. For fixed b, d(a, b) increases as a decreases and reaches

d(0, b) = maxp∈[0,1]((1− p)b log b− (1− p)b log(1− p)b)
= −bmaxp∈[0,1](1− p) log(1− p) = b/e. (14)

For fixed a > 0, the second derivative of u log u—namely, 1/u—is bounded
above by 1/a on [a, b], and we can apply the following calculus exercise:

Lemma 10. Let w be a C2 function on the real line with open domain con-
taining the interval [a, b], and suppose the second derivative w′′ of w satisfies
0 ≤ w′′(x) ≤ h for x ∈ [a, b]. Let

v(x) = w(a) +
x− a
b− a

(
w(b)− w(a)

)
− w(x) (15)
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be the vertical distance d between the graph of w and its [a, b] secant. Then

max
x∈[a,b]

v(x) ≤ h(b− a)2. (16)

Proof. Differentiating v at x ∈ [a, b], we have

|v′(x)| = |w(b)−w(a)
b−a − w′(x)| = |w′(c)− w′(x)

= w′′(s)|c− x| ≤ h|c− x| ≤ h(b− a) (17)

for some c ∈ [a, b] and s ∈ [a, b], via two applications of the Mean Value
Theorem. But then, since v(a) = 0, we have v(x) ≤ h(b−a)(x−a) ≤ h(b−a)2

as claimed.

Applying Lemma 10 to w(u) = u log u with x = pa+(1−p)b, we conclude
that d(a, b) ≤ (b− a)2/a for a > 0.

To state the next lemma it will be convenient for us to define a function
η on [0,1] by η(p) = −p log p for p ≤ 1/e (including η(0) = 0) and η(p) = 1/e
for 1/e ≤ p ≤ 1.

Lemma 11. Let u be a measurable function on Q = [0, 1]2 with 0 ≤ u ≤ M
everywhere and a ≤ u ≤ b on a set R of measure 1 − δ. If c =

∫
Q
u and

D =
∫
Q
u log u− c log c, then D < d(a, b) +Mη(δ).

Proof. Fix M , δ, a, and b, and suppose that the function u satisfies the
conditions of the lemma’s statement. If, in addition, a ≤ u ≤ b everywhere
in Q, then D is maximized (by convexity of u log u) when u takes only the
two values a and b; thus, in that case, D is bounded by d(a, b).

On the other hand, let a and b be unfixed and suppose that u is constant
on R, say with value v = a = b. Then, again by convexity of u log u, to
maximize D, v must be one of the extreme values 0 or M ; and outside R, u
can take only values 0 and M . Puting it another way, for M and δ fixed and
u constant on R, D is maximized in one of the following two ways: (1) by
taking a = 0 and setting u = 0 on a set of measure 1−p ≥ 1− δ, and u = M
otherwise; or (2) by taking a = M and setting u = M on a set of measure
1− p ≥ 1− δ, and u = 0 otherwise.

In Case (1),

D ≤ pM logM − pM log pM = −Mp log p. (18)

Since −p log p ≤ −δ log δ for δ ≤ 1/e, and since −p log p ≤ 1/e always, we
conclude that D ≤Mη(δ).
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In Case (2),

D ≤ (1−p)M logM − (1−p)M log(1−p)M = −M(1−p) log(1−p). (19)

Since−(1−p) log(1−p) ≤ −p log p ≤ δ log δ for δ ≤ 1/e and−(1−p) log(1−p) ≤
1/e always, we again conclude that D ≤Mη(δ).

We now need to show that the sum d(a, b) +Mη(δ) bounds D in general.
Returning to the lemma’s hypotheses concerning u, D is maximized when u
takes on only the values a and b on the set R of measure 1− δ. Let c =

∫
Q
u

and put r = (|A|a + |B|b)/(|A| + |B|), where A is the subset of R on which
u = a and B ⊂ R is the set on which u = b.

Define a new function v by v = r on R and v = u on Q \R. Then

D =

∫
R

u log u+

∫
Q\R

u log u− c log c

=

(∫
R

u log u− |R|r log r

)
+ |R|r log r +

∫
Q\R

v log v − c log c

≤ |R|d(a, b) + |R|r log r +

∫
Q\R

v log v − c log c

= |R|d(a, b) +

∫
Q

v log v − c log c

≤ |R|d(a, b) +Mη(δ) (20)

where the last inequality follows from the cases (1) and (2) above applied to
v. Finally since |R| ≤ 1, D ≤ d(a, b) +Mη(δ) as claimed.

Next we slice up f horizontally, choosing 0 = a0 < a1 < · · · < ak = M
such that

∑k
j=1 d(aj−1, aj) < ε/4. This is easily done by choosing a1 < ε/8 to

get d(0, a1) < ε/5, and taking advantage thereafter of d(a, b) being quadratic
in b−a, in particular, bounded by (b−a)2/a1 for a ≥ a1.

The sets Sk = A(ak) \ A(ak−1) must now be approximated by unions of
grid cells. Any measurable S ⊂ Q has Lebesgue measure equal to its outer
measure inf{

∑∞
j=1 |Cj| : S ⊆ ∪Cj} where each Cj is cell of the m × m

grid on Q for some m. By picking m large enough, we can cover all but δ
of the measure of S by a subset of cells of the m ×m grid of total measure
|S| − δ. That is, we can find for any δ > 0 an m0 such that m > m0 implies
the existence of a set C of cells of the m × m grid such that the union U
of the cells of C satisfies |S∆U | < δ, where ∆ is our symbol for symmetric
difference. Applying this successively to our sets S1, S2, . . . , Sk yields mk such
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that for m > mk, there is a partition C1, . . . , Ck of the cells of the m × m
grid such that |Uj \ Sj|/|Sj| < εj for each j with |Sj| > 0, where Uj is the
union of the cells in Cj, and each εj > 0 is arbitrary. (If |Sj| = 0, we take
Cj = ∅.) We choose each εj to satisfy η(εj) < ε/4M .

We now consider the contribution made to
∫
f log f −R′m, for each j, by

the cells in Cj. Order the cells in Cj arbitrarily and let Uj(i) be the ith. Let
pi = |Uj(i) \ Sj|/|Uj(i)|. Replacing u in Lemma 11 by f , Q by Uj(i), and
R by Uj(i) \ Sj, and noting that aj−1 ≤ f ≤ aj on all of Uj(i) except on
Uj(i) \ Sj where 0 ≤ f ≤M , we conclude that

m2

∫
Uj(i)

f log f − fi log fi < d(aj−1, aj) +Mη(pi) (21)

where fi = m2
∫
Uj(i)

f .

Summing over i and dividing through by m2, we get∫
Uj

f log f − 1

m2

∑
i

fi log fi < |Uj|d(a, b) +
M

m2

∑
i

η(pi) (22)

where the average of the pi’s is p = |Uj \ Sj|/|Uj| < εj. Since η is (weakly)
concave,

∑
i η(pi) is maximized by setting all pi = p and we get∫

Uj

f log f − 1

m2

∑
i

fi log fi < |Uj|d(aj−1, aj) + |Uj|Mη(εj). (23)

Summing now over j with |Sj| > 0, we have∫
Q

f log f −R′m =

∫
Q

f log f − 1

m2

∑
j

∑
i∈Cj

fi log fi

≤
∑
j

|Uj|d(aj−1, aj) +
∑
j

|Uj|Mη(εj)

≤
∑
j

d(aj−1, aj) +
∑
j

|Uj|ε/4

≤ ε/4 + ε/4 = ε/2 (24)

and we are done with the integrable case.

In the second case, where g is defined but
∫
g log g is infinite, we truncate

g at j = 2, 3, 4, . . . to get integrable functions fj with
∫
Q
fj log fj →∞. We

14



then apply the result of the first case to each fj to get Riemann sums R(j)mj
that grow without bound; since each is below the corresponding Riemann
sum Rm(j) for g, we have limm→∞Rm →∞ as claimed.

Finally, suppose γ has a singular component and let A be a set of Lebesgue
measure zero for which γ(A) = a > 0. We first prove a cover lemma.

Lemma 12. For any ε > 0 there is an m2 such that m > m2 implies that
there are εm2 squares of the m×m grid that cover at least half the γ-measure
of A.

Proof. Note first that if B is an open disk in Q of radius at most δ, then
for m > 1/(2δ), then we can cover B with cells of an m × m grid of total
area at most 64δ2. The reason is that such a disk cannot contain more than
d2δ/(1/m)e2 < (4δm)2 grid vertices, each of which can be a corner of at most
four cells that intersect the disk. Thus, rather conservatively, the total area
of the cells that intersect the disk is bounded by (4/m2) · (4δm)2 = 64δ2. It
follows that as long as a disk has radius at least 1/(2m), it costs at most a
factor of 64/π to cover it with grid cells.

Now cover A with open disks of area summing to at most πε/64. Let bn
be the γ-measures of the union of the disks of radii at least 1/2n. Choose
m2 such that bm2 > a/2 to get the desired result.

Let M be given and use Lemma 12 to find m2 such that for any m ≥ m2,
there is a set I ⊂ {1, . . . ,m}2 of size at most δm2 such that γ(

⋃
I Qij) > a/2,

where Qij = ((i−1)/m, i/m] × ((j−1)/m, j/m] as before and δ is a small
positive quantity depending on M and a, to be specified later. Then

Rm(γ) =
∑
ij

1

m2
gij log gij

≥ −1/e+
1

m2
δm2ḡ log ḡ = −1/e+ δḡ log ḡ (25)

where ḡ is the mean value of gij over (i, j) ∈ I, the last inequality following
from the convexity of u log u. The−1/e term is needed to account for possible
negative values of g log g.

But
∑

I gij = m2γ(
⋃
I Qij) > m2a/2, so ḡ > (m2a/2)/(δm2) = a/(2δ).

Consequently

Rm(γ) > −1

e
+ δ

a

2δ
log

a

2δ
= −1

e
+
a

2
log

a

2δ
. (26)
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Taking

δ =
a

2
exp

(
−2

(
M + 1

e

)
a

)
(27)

gives Rm(γ) > M as required, and the proof of Proposition 8 is complete.

We now prove Theorem 2.

Proof. The set Λα,ε of permutons under consideration consists of those for
which certain pattern densities are close to values in the vector α. Note first
that since the density function ρ(π, ·) is continuous in the topology of Γ, Λα

is closed and by compactness H(γ) takes a maximum value on Λα.
Again by continuity of ρ(π, ·), Λα,ε is an open set and we have from the

second statement of Theorem 1 that for any ε,

lim
n→∞

1

n
log
|Λα,ε

n |
n!
≥ max

γ∈Λα,ε
H(γ) ≥ max

γ∈Λα
H(γ) (28)

from which we deduce that

lim
ε↓0

lim
n→∞

1

n
log
|Λα,ε

n |
n!
≥ max

γ∈Λα
H(γ). (29)

To get the reverse inequality, fix a γ ∈ Λα maximizing H(γ). Let δ > 0;
since H is upper semi-continuous and Λα is closed, we can find an ε′ > 0 such
that no permuton γ′ within distance ε′ of Λα has H(γ′) > H(γ) + δ. But
again since ρ(π, ·) is continuous, for small enough ε, every γ′ ∈ Λα,ε is indeed
within distance ε′ of Λα. Let Λ′ be the (closed) set of permutons γ′ satisfying
ρ(πj, γ

′) ≤ ε; then, using the first statement of Theorem 1, we have thus

lim
n→∞

1

n
log
|Λ′n|
n!
≤ H(γ) + δ (30)

and since such a statement holds for arbitrary δ > 0, the result follows.

5 Insertion measures

A permuton γ can be described by a family of insertion measures. This
description will be useful for constructing concrete examples, in particular
for the so-called star models, which are discussed in Sections 6 and 7 below.
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The insertion measures are a family of probability measures {νx}x∈[0,1],
with measure νx supported on [0, x]. This family is a continuum version of
the process of building a random permutation on [n] by, for each i, insert-
ing i at a random location in the permutation formed from {1, . . . , i − 1}.
Any permutation measure can be built this way. We describe here how any
permuton can be built from a family of independent insertion measures, and
conversely, how every permuton defines a unique family of independent in-
sertion measures. An explicit example is given in the next section.

We first describe how to reconstruct the insertion measures from the
permuton γ.

Let µx be the conditional law γ|{x}×[0,1]; by the Disintegration Theorem
(see e.g. [8]), µx is defined for almost every x. Let Yx ∈ [0, 1] be the random
variable with law µx. Let Zx ∈ [0, x] be the random variable (with law νx)
giving the location of the insertion at time x, and let F (x, ·) be its CDF.
Then νx is related to µx in the following way, which we can take to be the
definition of νx:

F (x, y) = Pr(Zx < y) = Pr(Yx < ỹ) = Gx(x, ỹ) (31)

where ỹ is defined by G(x, ỹ) = y. (Here and in what follows we use subscripts
x and y on G to denote partial derivatives. Note that Gx(x, y) is the CDF
of µx, which exists for almost every x.)

More succinctly, we have

F (x,G(x, ỹ)) = Gx(x, ỹ). (32)

This equation defines F uniquely as a function of G at almost every x.
Conversely, given the insertion measures, equation (32) is a differential

equation for G. Concretely, after we insert x0 at location Y (x0) = Zx0 , the
image flows under future insertions according to the (deterministic) evolution

d

dx
Y (x) = F (x, Y (x)), Y (x0) = Zx0 . (33)

If we let Ψ[x,1] denote the flow up until time 1, then the permuton is the
push-forward under Ψ of νx:

γt = (Ψ[x,1])∗(νx). (34)

See an example in the next section.

17



A more geometric way to see the correspondence between the insertion
measures and γ is as follows. Project the graph of G in R3 onto the xz-
plane; the image of the curves G([0, 1]×{ỹ}) are the flow lines of the vector
field (33). The divergence of the flow lines at (x, y) is f(x, y), the density
associated with F (x, y).

The permuton entropy can be computed from the entropy of the insertion
measures as follows.

Lemma 13. Assume the permuton γ has density g(x, y) and the measures
νx = γ|{x}×[0,1] have densities f(x, y). Then

H(γ) =

∫ 1

0

∫ x

0

−f(x, y) log(xf(x, y))dy dx. (35)

Proof. Differentiating (32) with respect to ỹ gives

f(x,G(x, ỹ))Gy(x, ỹ) = g(x, ỹ). (36)

Thus the RHS of (35) becomes∫ 1

0

∫ x

0

− g(x, ỹ)

Gy(x, ỹ)
log

xg(x, ỹ)

Gy(x, ỹ)
dy dx. (37)

Substituting y = G(x, ỹ) with dy = Gy(x, ỹ)dỹ we have∫ 1

0

∫ 1

0

−g(x, ỹ) log
xg(x, ỹ)

Gy(x, ỹ)
dỹ dx = H(γ) −

∫ 1

0

∫ 1

0

g(x, ỹ) log x dỹ dx

+

∫ 1

0

∫ 1

0

g(x, ỹ) logGy(x, ỹ) dỹ dx. (38)

Integrating over ỹ the first integral on the RHS gives∫ 1

0

− log x dx = 1, (39)

while the second integral is∫ 1

0

∫ 1

0

∂

∂x
(Gy logGy −Gy) dx dỹ =

∫ 1

0

(−1)dỹ = −1, (40)

since G(1, y) = y and G(0, y) = 0. So those two integrals cancel.
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6 12 patterns

The number of occurrences k(π) of the pattern 12 in a permutation of Sn
has a simple generating function:

∑
π∈Sn

zk(π) =
n∏
j=1

(1 + z + · · ·+ zj) =

(n2)∑
i=0

Ciz
i. (41)

One can see this by building up a permutation by insertions: when i is
inserted into the list of {1, . . . , i − 1}, the number of 12 patterns created is
exactly one less than the position of i in that list.

For a fixed z > 0, we can interpret the LHS of (41) as defining a mea-
sure on permutations, giving a permutation π a probability proportional to
zk(π). The product expression in the middle of (41) then indicates a way to
sample from this distribution: independently for each j we pick one of the
monomials zy(j) of 1 + z + · · · + zj, with a probability proportional to its
weight. The corresponding permutation is then obtained by the sequence
of insertions y(1), y(2), . . . , y(n). Note that these insertion probability mea-
sures are truncated geometric random variables with rate z. To sample a
permutation with a fixed density ρ ∈ [0, 1] of occurrences of pattern 12, or
at least a density close to ρ, we should choose z in the above expression so
that the monomial C[ρn2/2]z

[ρn2/2] is the maximal one.
When n is large we claim that the monomials Ciz

i of (41) for i near
[ρn2/2] contain almost all the weight. To see this, note that under this
sampling procedure the number of 12 patterns is a sum of n independent
truncated geometric random variables, with the ith variable having variance
at most i2/12 (the variance is maximized when z = 1); the sum then has
variance O(n3) and standard deviation O(n3/2). So as n → ∞ the resulting
density is ρ+O(n−1/2).

The value z can be determined as a function of ρ by Legendre duality
(see below for an exact formula). Let r be defined by e−r/n = z. In the
limit of large n, setting x = j/n, the truncated geometric insertion densities
converge in distribution to truncated exponentials, with densities

f(x, y) =
re−ry

1− e−rx
1[0,x](y). (42)

We can reconstruct the permuton from these insertion measures as dis-
cussed in the previous section; since as n → ∞ the CDFs of the insertion
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measures converge, the limiting permuton is well-defined. The CDF of the
insertion measure is

F (x, y) =
1− e−ry

1− e−rx
. (43)

We need to solve the ODE (32), which in this case (to simplify notation we
changed ỹ to y) is

1− e−rG(x,y)

1− e−rx
=
dG(x, y)

dx
. (44)

This can be rewritten as

dx

1− e−rx
=

dG

1− e−rG(x,y)
. (45)

Integrating both sides and solving for G gives the CDF

G(x, y) =
1

r
log

(
1 +

(erx − 1)(ery − 1)

er − 1

)
(46)

which has density

g(x, y) =
r(1− e−r)

(er(1−x−y)/2 − er(x−y−1)/2 − er(y−x−1)/2 + er(x+y−1)/2)2
. (47)

See Figure 1 for some examples for varying ρ.
The permuton entropy of this permuton is obtained from (35), and as a

function of r it is (where Li2(x) =
∑∞

j=0
xj

j2
is the dilogarithm),

H(r) = −2Li2 (er)

r
+
π2

3r
− 2 log (1− er) + log (er − 1)− log(r) + 2. (48)

The density ρ of 12 patterns is the integral of the expectation of f :

ρ(r) =
r (r − 2 log (1− er) + 2)− 2Li2 (er)

r2
+
π2

3r2
; (49)

see Figure 2 for ρ as a function of r.
Figure 3 depicts the entropy as a function of ρ.
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Figure 2: 12 density as function of r.

0.2 0.4 0.6 0.8 1.0

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

Figure 3: Entropy as function of 12 density.
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7 Star models

In this section, we study the density of patterns of the form ∗∗· · · ∗k, which
we refer to as star models.

Equation (41) gives the generating function for occurrences of pattern 12.
For a permutation π let k1 = k1(π) be the number of 12 patterns. Let k2

be the number of ∗∗3 patterns, that is, patterns of the form 123 or 213. A
similar argument to that giving (41) shows that the joint generating function
for k1 and k2 is ∑

k1,k2

Ck1,k2x
k1yk2 =

n∏
j=1

(
j∑
i=0

xiyi(i−1)/2

)
. (50)

More generally, letting k3 be the number of patterns ∗∗2, that is, 132 or
312, and k4 be the number of ∗∗1 patterns, that is, 231 or 321. The joint
generating function for these four types of patterns is∑

k1,...,k4

Ck1,k2,k3,k4x
k1yk2zk3wk4 =

n∏
j=1

(
j∑
i=0

xiyi(i−1)/2zi(j−i)w(j−i)(j−i−1)/2

)
.

(51)
One can similarly write down the joint generating function for all patterns of
type ∗∗. . . ∗i, with a string of some number k of stars followed by some i in
[k + 1]. (Note that with this notation, 12 patterns are ∗2 patterns.) These
constitute a significant generalization of the Mallows model discussed in [36].

7.1 The ∗2/ ∗∗3 model

By way of illustration, let us consider the simplest case of ∗2 (that is, 12)
and ∗∗3.

Theorem 14. The feasible region for (ρ∗2, ρ∗∗3) is the region bounded below
by the parameterized curve

(2t− t2, 3t2 − 2t3)t∈[0,1] (52)

and above by the parameterized curve

(1− t2, 1− t3)t∈[0,1]. (53)

The permutons on the boundaries are unique and supported on line segments
of slopes ±1, and are as indicated in Figure 4.
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Figure 4: Feasible region for (ρ∗2, ρ∗∗3).

Proof. While this can be proved directly from the generating function (50),
we give a simpler proof using the insertion density procedure. During the
insertion process let I12(x) be the fractional number of 12 patterns in the
partial permutation constructed up to time x. We let Yt ∈ [0, t] be the
random variable giving the location of the insertion at time t. Then I12(x)
is defined by I12(x) =

∫ x
0
Yt dt. On a small time interval t ∈ [x, x + dx] the

Yt are independent and almost identically distributed, so by the law of large
numbers the number of insertions in a given subinterval is very close to dx
times the Yt-measure of that subinterval. This implies that

I12(x+ dx)− I12(x) ≈ E[Yt]dx,

and so

I12(x) =

∫ x

0

E[Yt] dt.

Let I∗∗3(x) be the fraction of ∗∗3 patterns created by time x. Note that
when we insert i at position yi in a permutation of {1, 2, . . . , i− 1}, exactly
(yi − 1)(yi − 2)/2 new ∗∗3 patterns are created (those ending in i). In the
continuous limit, each infinitesimal insertion Yt at time t thus creates Y 2

t /2
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more ∗∗3 patterns, and as above we see that

I∗∗3(x+ dx)− I∗∗3(x) ≈ E[Y 2
t /2]dx.

This implies that

I∗∗3(x) =
1

2

∫ x

0

E[Yt]
2 dt. (54)

Figure 5: Permutons with (ρ∗2, ρ∗∗3) = (.5, .2), and (.5, .53) respectively.

Let us fix ρ12 = 2 · I12(1). To maximize I∗∗3(x), we need to maximize∫ 1

0

(I ′12(t))2 dt subject to

∫ 1

0

I ′12(t) dt =
ρ12

2
(55)

with the additional constraint 0 ≤ I ′12(t) ≤ t. This maximization is only
achieved if for each t, I ′12(t) is either zero or its maximal value t. In fact
the maximum is achieved by inserting points at the beginning for as long as
possible and then inserting points at the end, that is, Yt = 0 up to t = a and
then Yt = t for t ∈ [a, 1]. The resulting permuton is then as shown in Figure
4, upper curve: on the square [0, a]2 it is a descending diagonal and on the
square [a, 1]2 it is an ascending diagonal.

Likewise to minimize the above integral (55) we need to make the deriva-
tives I ′12(t) as equal as possible. Since I ′12(t) ≤ t, this involves setting
I ′12(t) = t up to t = a and then having it constant after that. The re-
sulting permuton is then as shown in Figure 4: on the square [0, a]2 it is an
ascending diagonal and on the square [a, 1]2 it is a descending diagonal.

A short calculation now yields the algebraic form of the boundary curves.
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Using the insertion density procedure outlined earlier, we see that the
permuton as a function of x, y has an explicit analytic density (which cannot,
however, be written in terms of elementary functions). The permutons for
some values of (ρ∗2, ρ∗∗3) are shown in Figure 5.

The entropy s(ρ∗2, ρ∗∗3) is plotted in Figure 6. It is strictly concave (see
Theorem 15 below) and achieves its maximal value, zero, precisely at the
point 1/2, 1/3, the uniform measure.

Figure 6: The entropy function on the parameter space for ρ12, ρ∗∗3.

7.2 Concavity and analyticity of entropy for star mod-
els

Theorem 15. For a star model with a finite number of densities ρ1, . . . , ρk
of patterns τ1 . . . , τk respectively, the feasible region is convex and the entropy
H(ρ1, . . . , ρk) is strictly concave and analytic on the feasible region. For each
ρ1, . . . , ρk in the interior of the feasible region there is a unique entropy-
maximizing permuton with those densities, and this permuton has analytic
probability density.

One can construct examples where the feasible region is not strictly con-
vex: e.g. in the case of densities ∗∗1 and ∗∗3.
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Proof. Let ki be the length of the pattern τi.
The generating function for permutations of [n] counting patterns τi is

Zn(x1, . . . , xk) =
∑
π∈Sn

xn1
1 . . . xnkk (56)

where ni = ni(π) is the number of occurrences of pattern τi in π. The number
of permutations with density ρi of pattern τi is the sum of the coefficients of
the terms xn1

1 . . . xnkk with ni ≈ nki
ki!
ρi; more precisely, we need ni

nki
ki!→ ρ. The

entropy H(ρ1, . . . , ρk) is the log of this sum, minus log n! (and normalized by
dividing by n).

As discussed above, Zn can be written as a product generalizing (51).
Write xi = eai . Then the product expression for Zn is

Zn =
n∏
j=1

j∑
i=0

ep(i,j), (57)

where p(i, j) is a polynomial in i and j with coefficients that are linear in the
ai. Using this product form, for appropriate values of xi, the maximal terms
in (56) will be those with ni ≈ nki

ki!
ρi. This follows from the same argument

as in the proof of the 12 case in Section 6: for fixed xi > 0 the standard
deviation of the number of occurrences of pattern τi will be nki−1/2, so that
ni
nki
ki! = ρi +O(n−1/2).
For large n it is convenient to normalize the ai by the appropriate power

of n: write
xi = eai = exp

(
αi/n

ki−1
)
. (58)

Writing i/n = t and j/n = x, the expression for logZn is then a Riemann
sum, once normalized: In the limit n → ∞ the “normalized free energy” F
is

F := lim
n→∞

1

n
(logZn − log n!) =

∫ 1

0

[
log

∫ x

0

ep̃(t,x) dt

]
dx (59)

where p̃(t, x) = p(nt, nx) + o(1) is a polynomial in t and x, independent of
n, with coefficients which are linear functions of the αi. Explicitly we have

p̃(t, x) =
k∑
i=1

αi
tri(x− t)si
ri!si!

(60)

where ri + si = ki − 1 and, if τi = ∗. . . ∗`i then si = ki − `i.
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We now show that F is concave as a function of the αi, by computing its
Hessian matrix. We have

∂F

∂αi
=

∫ 1

0

∫ x
0
tri (x−t)si
ri!si!

ep̃(t,x)dt∫ x
0
ep̃(t,x)dt

dx =

∫ 1

0

〈
T ri(x− T )si

ri!si!

〉
dx (61)

where T ∈ [0, x] is the random variable with (unnormalized) density ep̃(t,x),
and 〈·〉 is the expectation with respect to this probability measure.

Differentiating a second time we have

∂2F

∂αj∂αi
=

∫ 1

0

〈
T ri+rj(x− T )si+sj

ri!rj!si!sj!

〉
−
〈
T ri(x− T )si

ri!si!

〉〈
T rj(x− T )sj

rj!sj!

〉
dx

=

∫ 1

0

Cov

[
T ri(x− T )si

ri!si!
,
T rj(x− T )sj

rj!sj!

]
dx (62)

where Cov is the covariance.
The covariance matrix of a set of random variables with no linear de-

pendencies is positive definite. Thus we see that the Hessian matrix is an
integral of positive definite matrices and so is itself positive definite. This
completes the proof of strict concavity of the free energy F .

Since Zn is the (unnormalized) probability generating function, the vector
of densities as a function of the {αi} is obtained for each n by the gradient
of the logarithm

(ρ1, . . . , ρk) =
1

n
∇ logZn(α1, . . . , αk). (63)

In the limit we can replace 1
n
∇ logZn by ∇F ; by strict concavity of F its

gradient is injective, and surjective onto the interior of the feasible region.
In particular there is a unique choice of αi’s for every choice of densities in
the interior of the feasible region. Note that the αi’s determine the insertion
measures (these are the measures with unnormalized density ep̃(t,x)), and thus
the permuton itself, proving uniqueness of the entropy maximizer. Analytic-
ity of the probability density is a consequence of analyticity of the associated
differential equation (32).

By strict concavity of the free energy, we can relate the free energy to
the entropy by the following standard argument. Referring back to the first
paragraph of the proof, we have proven that, when xi = eai , the generating
function Zn concentrates its mass on the terms xn1

1 . . . xnkk for which ni ≈ nki
ki!
ρi
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(where ai and ρi are related by (63)), in the sense that a fraction 1 − o(1)
of the total mass of Zn is on these terms. The entropy is the log of the sum
of the coefficients in front of these relevant terms. The entropy can thus be
obtained from the free energy 1

n
logZn/n! by subtracting off 1

n
log(xn1

1 . . . xnkk ).
This shows that the entropy function H is the Legendre dual of F , that is,

H(ρ1, . . . , ρk) = max
{αi}
{F (α1, . . . , αk)−

∑
αiρi}. (64)

Analyticity of F implies that H is both analytic and strictly concave.
The “upper level sets” {~ρ : H(~ρ) ≥ −M} of H are convex by concavity

of H. Their union is the interior of the feasible region, which, being an
increasing union of convex sets, is convex.

8 PDEs for permutons

For permutations with constraints on patterns of length 3 (or less) one can
write explicit PDEs for the maximizers. It is possible that these may be used
to show either analyticity or uniqueness, or both (although at the moment
we have accomplished neither goal).

By Proposition 9 above we may assume that our maximizing permutons
have densities g, and moreover that g log g is integrable.

Let us first redo the case of 12-patterns, which we already worked out by
another method in Section 6.

8.1 Patterns 12

The density of patterns 12 is given in (2). Consider the problem of maxi-
mizing H(γ) subject to the constraint I12(γ) = ρ. This involves finding a
solution to the Euler-Lagrange equation

dH + α dI12 = 0 (65)

for some constant α, for all variations g 7→ g + εh fixing the marginals.
Given points (a1, b1), (a2, b2) ∈ [0, 1]2 we can consider the change in H

and I12 when we remove an infinitesimal mass δ from (a1, b1) and (a2, b2)
(assuming the mass is positive there) and add it to locations (a1, b2) and
(a2, b1). Note that two measures with the same marginals are connected by
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convolutions of such operations. The change in H to first order under such
an operation is δ times (letting S0(p) := −p log p)

− S ′0(g(a1, b1))− S ′0(g(a2, b2)) + S ′0(g(a1, b2)) + S ′0(g(a2, b1))

= log
g(a1, b1)g(a2, b2)

g(a1, b2)g(a2, b1)
. (66)

Under this operation the change in I12 to first order is δ times

2∑
i,j=1

(−1)i+j

(∫
ai<x2

∫
bj<y2

g(x2, y2)dx2 dy2 +

∫
x1<ai

∫
y1<bj

g(x1, y1)dx1 dy1

)

=
2∑

i,j=1

(−1)i+j (G(ai, bj) + (1− ai − bj +G(ai, bj))) . (67)

Thus (65) becomes an explicit integral equation for g. If g is smooth,
in the sense that gxy exists, then we can differentiate (65) with respect to
a = a1 and b = b1, getting a PDE

∂

∂a

∂

∂b
log g(a, b) + 2αg(a, b) = 0. (68)

One can check that the formula (47) satisfies this PDE.

8.2 Patterns 123

The density of patterns 123 is

I123(γ) = 6

∫
x1<x2<x3, y1<y2<y3

g(x1, y1)g(x2, y2)g(x3, y3)dx1 dx2 · · · dy3. (69)

Under a similar perturbation as above the change in I123 to first order is δ
times

dI123 = 6
2∑

i,j=1

(−1)i+j

(∫
ai<x2<x3, bj<y2<y3

g(x2, y2)g(x3, y3)dx2 dx3 dy2 dy3

+

∫
x1<ai<x3, y1<bj<y3

g(x1, y1)g(x3, y3)dx1 dx3 dy1 dy3

+

∫
x1<x2<ai, y1<y2<bj

g(x1, y1)g(x2, y2)dx1 dx2 dy1 dy2

)
. (70)
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The middle integral here is a product∫
x1<ai, y1<bj

g(x1, y1)dx1 dy1

∫
ai<x3, bj<y3

g(x3, y3)dx3 dy3

= G(ai, bj)(1− ai − bj +G(ai, bj)). (71)

Differentiating each of these three integrals with respect to both a = a1

and b = b1 (then only the i = j = 1 term survives) gives, for the first integral

g(a, b)

∫
a<x3, b<y3

g(x3, y3)dx3 dy3 = g(a, b)(1− a− b+G(a, b)), (72)

for the second integral

g(a, b)(1− a− b+ 2G(a, b)) +Gx(a, b)(−1 +Gy(a, b))

+Gy(a, b)(−1 +Gx(a, b)), (73)

and the third integral

g(a, b)

∫
x1<a, b<y1

g(x1, y1)dx1 dy1 = g(a, b)G(a, b). (74)

Summing, we get (changing a, b to x, y),

(dI123)xy = 12Gxy(1− x− y + 2G) + 12GxGy − 6Gx − 6Gy. (75)

Thus under the assumption that g is smooth, the Euler-Lagrange equation
is

(logGxy)xy + 6α
(
2Gxy(1− x− y + 2G) + 2GxGy −Gx −Gy

)
= 0. (76)

This simplifies somewhat if we define K(x, y) = 2G(x, y) − x − y + 1.
Then

(logKxy)xy + 3α (2KxyK +KxKy − 1) = 0. (77)

In a similar manner we can find a PDE for the permuton with fixed
densities of other patterns of length 3. In fact one can proceed similarly for
longer patterns, getting systems of PDEs, but the complexity grows with the
length.
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Figure 7: The feasible region for ρ12 versus ρ123, with corresponding permu-
tons (computed numerically) at selected points.
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9 The 12/123 model

When we fix the density of patterns 12 and 123, the feasible region has a
complicated structure, see Figure 7.

Theorem 16. The feasible region for ρ12 versus ρ123 is the same as the
feasible region of edges and triangles in the graphon model.

Proof. Let R denote the feasible region for pairs
(
ρ12(γ), ρ123(γ)

)
consisting

of the 12 density and 123 density of a permuton (equivalently, for the closure
of the set of such pairs for finite permutations).

Each permutation π ∈ Sn determines a (two-dimensional) poset Pπ on
{1, . . . , n} given by i ≺ j in Pπ iff i < j and πi < πj. The comparability
graph G(P ) of a poset P links two points if they are comparable in P , that
is, x ∼ y if x ≺ y or y ≺ x. Then i ∼ j in G(Pπ) precisely when {i, j}
constitutes an incidence of the pattern 12, and i ∼ j ∼ k ∼ i when {i, j, k}
constitutes an incidence of the pattern 123. Thus the 12 density of π is equal
to the edge density of G(Pπ), and the 123 density of π is the triangle density
of G(Pπ)—that is, the probability that three random vertices induce the
complete graph K3. This correspondence extends perfectly to limit objects,
equating 12 and 123 densities of permutons to edge densities and triangle
densities of graphons.

The feasible region for edge and triangle densities of graphs (now, for
graphons) has been studied for many years and was finally determined by
Razborov [34]; we call it the “scalloped triangle” T . It follows from the above
discussion that the feasibility region R we seek for permutons is a subset of
T , and it remains only to prove that R is all of T . In fact we can realize T
using only a rather simple two-parameter family of permutons.

Let reals a, b satisfy 0 < a ≤ 1 and 0 < b ≤ a/2, and set k := ba/bc.
Let us denote by γa,b the permuton consisting of the following diagonal line
segments, all of equal density:

1. The segment y = 1− x, for 0 ≤ x ≤ 1−a;

2. The k segments y = (2j−1)b−1+a−x for 1−a+(j−1)b < x ≤ 1−a+jb,
for each j = 1, 2, . . . , k;

3. The remaining, rightmost segment y = 1+kb−x, for 1−a+kb < x ≤ 1.

(See Fig. 8 below.)
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Figure 8: Support of the permutons γ.7,.2 and γ.7,0.

We interpret γa,0 as the permuton containing the segment y = 1 − x,
for 0 ≤ x ≤ 1−a, and the positive-slope diagonal from (1−a, 0) to (1, 1−a);
finally, γ0,0 is just the reverse diagonal from (0, 1) to (1, 0). These interpre-
tations are consistent in the sense that ρ12(γa,b) and ρ123(γa,b) are continuous
functions of a and b on the triangle 0 ≤ a ≤ 1, 0 ≤ b ≤ a/2. (In fact, γa,b is
itself continuous in the topology of Γ, so all pattern densities are continuous.)

It remains only to check that the comparability graphons corresponding
to these permutons match extremal graphs in [34] as follows:

• γa,0 maps to the upper left boundary of T , with γ0,0 going to the lower
left corner while γ1,0 goes to the top;

• γa,a/2 goes to the bottom line, with γ1,1/2 going to the lower right corner;

• For 1/(k+2) ≤ b ≤ 1/(k+1), γ1,b goes to the kth lowest scallop, with
γ1,1/(k+1) going to the bottom cusp of the scallop and γ1,1/(k+2) to the
top.

It follows that (a, b) 7→
(
ρ12(γa,b), ρ123(γa,b)

)
maps the triangle 0 ≤ a ≤ 1,

0 ≤ b ≤ a/2 onto all of T , proving the theorem.
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It may be prudent to remark at this point that while the feasible region
for 12 versus 123 density of permutons is the same as that for edge and
triangle density of graphs, the topography of the corresponding entropy func-
tions within this region is entirely different. In the graph case the entropy
landscape is studied in [31, 32, 33]; one of its features is a ridge along the
“Erdős-Rényi” curve (where triangle density is the 3/2 power of edge den-
sity). There is a sharp drop-off below this line, which represents the very high
entropy graphs constructed by choosing edges independently with constant
probability. The graphons that maximize entropy at each point of the feasi-
ble region all appear to be very combinatorial in nature: each has a partition
of its vertices into finitely many classes, with constant edge density between
any two classes and within any class, and is thus described by a finite list of
real parameters.

The permuton topography features a different high curve, representing the
permutons (discussed above) that maximize entropy for a fixed 12 density.
Moreover, the permutons that maximize entropy at interior points of the
region appear, as in other regions discussed above, always to be analytic.

We do not know explicitly the maximizing permutons (although they
satisfy an explicit PDE, see Section 8) or the entropy function.

10 123/321 case

The feasible region for fixed densities ρ123 versus ρ321 is the same as the
feasible region B for triangle density x = d(K3, G) versus anti-triangle density
y = d(K3, G) of graphons [19]. Let C be the line segment x+ y = 1

4
for 0 ≤

x ≤ 1
4
, D the x-axis from x = 1

4
to x = 1, and E the y-axis from y = 1

4
to y =

1. Let F1 be the curve given parametrically by (x, y) = (t3, (1−t)3+3t(1−t)2),
for 0 ≤ t ≤ 1, and F2 its symmetric twin (x, y) = ((1 − t)3 + 3t(1 − t)2, t3).
Then B is the union of the area bounded by C, D, E and F1 and the area
bounded by C, D, E and F2.

The curves F1 and F2 cross at a concave “dimple” (r, r) where r = s3 =
(1− s)3 + 3s(1− s)2), with s ∼ .653 and r ∼ .278; see Fig. 9.

To see that B is also the feasible region for 123 versus 321 density of
permutons, an argument much like the one above for 12 versus 123 can be
(and was, by [11]) given. Permutons realizing various boundary points are
illustrated in Fig. 9; they correspond to the extremal graphons described in
[19]. The rest are filled in by parameterization and a topological argument
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Figure 9: The feasible region for ρ123, ρ321. It is bounded above by the
parameterized curves (1− 3t2 + 2t3, t3) and (t3, 1− 3t2 + 2t3) which intersect
at (x, y) = (.278..., .278...). The lower boundaries consist of the axes and the
line x+ y = 1/4.
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(essentially Theorem 4 above, once we add an extra spike poking into R
from the dimple to continuously interpolate between the two permutons at
the dimple).

Of note for both graphons and permutons is the double solution at the
dimple. These solutions are significantly different, as evidenced by the fact
that their edge-densities (12 densities, for the permutons) differ. This mul-
tiplicity of solutions, if there are no permutons bridging the gap, suggests a
phase transition in the entropy-optimal permuton in the interior of B in a
neighborhood of the dimple. In fact, we can use a stability theorem from [18]
to show that the phenomenon is real.

Before stating the next theorem, we need a definition: two n-vertex graphs
are ε-close if one can be made isomorphic to the other by adding or deleting
at most ε ·

(
n
2

)
edges.

Theorem 17 (special case of Theorems 1.1 and 1.2 of [18]). For any ε > 0
there is a δ > 0 and an N such that for any n-vertex graph G with n > N and
d(K3, G) ≥ p and |d(K3, G)−Mp| < δ is ε-close to a graph H on n vertices
consisting of a clique and isolated vertices, or the complement of a graph
consisting of a clique and isolated vertices. Here Mp := max

(
(1 − p1/3)3 +

3p1/3(1−p1/3)2, (1−q)1/3
)

where q is the unique real root of q3+3q2(1−q) = p;

that is, Mp is the largest possible value of d(K3, G) given d(K3, G) = p.

From Theorem 17 we derive the following lemma. Note that there are in
fact many permutons representing the dimple (r, r) of the feasible region for
123 versus 321, but only two classes if we consider permutons with isomorphic
comparability graphs to be equivalent. The class that came from the curve
F1 has 12 density s2 ∼ .426, the other 1−s2 ∼ .574. (Interestingly, the other
end of the F1 curve—represented uniquely by the identity permuton—had 12
density 1, while the F2 class “began” at 12 density 0. Thus, the 12 densities
crossed on the way in from the corners of B.)

Lemma 18. There is a neighborhood of the point (r, r) in the feasible region
for patterns 123 and 321 within which no permuton has 12-density near 1

2
.

Proof. Apply Theorem 17 with ε = .07 to get δ > 0 with the property
stated in the theorem. Let δ′ = min(δ/2, (Mr−δ − r)/2), which yields that
|Mp − r| ≤ δ/2 for p ∈ [r − δ′, r]. So, if |ρ123(γ) − r| ≤ δ′ ≤ δ/2 and
p ∈ [r − δ′, r], then |ρ123(γ) − Mp| ≤ δ as required by the hypothesis of
Theorem 17 (noting that ρ123(γ) is the triangle density of the comparability
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graph corresponding to γ). We conclude that any permuton γ such that
(ρ123(γ), ρ321(γ)) lies in the rectangle [r− δ′, r+ δ′]× [r− δ′, r] has 12-density
within .07 of either .426 or .574, thus outside the range [.496, .504].

The symmetric argument gives the same conclusion for (ρ123(γ), ρ321(γ))
in the rectangle [r − δ′, r] × [r − δ′, r + δ′]. Since there are no permutons γ
with both (ρ123(γ) and ρ321(γ) larger than r, the lemma follows.

11 Proof of Theorem 1

For completeness, we now give a proof of Theorem 1. We begin with a simple
lemma.

Lemma 19. The function H : Γ→ R is upper semicontinuous.

Proof. Let γ1, γ2, . . . be a sequence of permutons approaching the permuton
γ (in the d�-topology); we need to show that H(γ) ≥ lim supH(γn).

If H(γ) is finite, fix ε > 0 and take m large enough so that |H(γm) −
H(γ)| < ε; then since H(γmn ) ≥ H(γn) by concavity,

lim sup
n
H(γn) ≤ lim sup

n
H(γmn ) = H(γm) < ε+H(γ) (78)

and since this holds for any ε > 0, the claimed inequality follows.
If H(γ) = −∞, fix t < 0 and take m so large that H(γm) < t. Then

lim sup
n
H(γn) ≤ lim sup

n
H(γmn ) = H(γm) < t (79)

for all t, so lim supnH(γmn )→ −∞ as desired.

Let B(γ, ε) = {γ′|d�(γ, γ′) ≤ ε} be the (closed) ball in Γ of radius ε > 0
centered at the permuton γ, and let Bn(γ, ε) be the set of permutations
π ∈ Sn with γπ ∈ B(γ, ε).

Lemma 20. For any permuton γ, limε↓0 limn→∞
1
n

log(|Bn(γ, ε)|/n!) exists
and equals H(γ).

Proof. Suppose H(γ) is finite. It suffices to produce two sets of permutations,
U ⊂ Bn(γ, ε) and V ⊃ Bn(γ, ε), each of size

exp
(
n log n− n+ n(H(γ) + o(ε0)) + o(n)

)
(80)
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where by o(ε0) we mean a function of ε (depending on γ) which approaches
0 as ε → 0. (The usual notation here would be o(1); we use o(ε0) here and
later to make it clear that the relevant variable is ε and not, e.g., n.)

To define U , fix m > 5/ε so that |H(γm) − H(γ)| < ε and let n be a
multiple of m with n > m3/ε. Choose integers ni,j, 1 ≤ i, j ≤ m, so that:

1.
∑n

i=1 ni,j = n/m for each j;

2.
∑n

j=1 ni,j = n/m for each i; and

3. |ni,j − nγ(Qij)| < 1 for every i, j.

The existence of such a rounding of the matrix {nγ(Qij)}i,j is guaranteed by
Baranyai’s rounding lemma [2].

Let U be the set of permutations π ∈ Sn with exactly ni,j points in the
square Qij, that is, |{i : (i/n, π(i)/n) ∈ Qij}| = ni,j, for every 1 ≤ i, j ≤ m.
We show first that U is indeed contained in Bn(γ, ε). Let R = [a, b]× [c, d] be
a rectangle in [0, 1]2. R will contain all Qij for i0 < i < i1 and j0 < j < j1 for
suitable i0, i1, j0 and j1, and by construction the γπ-measure of the union of
those rectangles will differ from its γ-measure by less than m2/n < ε/m. The
squares cut by R are contained in the union of two rows and two columns of
width 1/m, and hence, by the construction of π and the uniformity of the
marginals of γ, cannot contribute more than 4/m < 4ε/5 to the difference in
measures. Thus, finally, d�(γπ, γ) < ε/m+ 4ε/5 < ε.

Now we must show that |U | is close to the claimed size

exp
(
n log n− n−H(γ)n

)
(81)

We construct π ∈ U in two phases of m steps each. In step i of Phase I, we
decide for each k, (i−1)n/m < k ≤ in/m, which of the m y-intervals π(k)
should lie in. There are(

n/m

ni,1, ni,2, . . . , ni,m

)
= exp

(
(n/m)hi + o(n/m)

)
(82)

ways to do this, where hi = −
∑m

j=1(ni,j/(n/m)) log(ni,j/(n/m)) is the en-
tropy of the probability distribution ni,·/(n/m).

Thus, the number of ways to accomplish Phase I is

exp
(
o(n) + (n/m)

∑
i

hi
)

= exp
(
o(n)−

∑
i,j

ni,j log(ni,j/(n/m))
)
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= exp

(
o(n)−

∑
i,j

ni,j(log(ni,j/n) + logm)

)

= exp

(
o(n)− n logm−

∑
i,j

ni,j log γ(Qij)

)

= exp

(
o(n)− n logm− n

∑
i,j

γ(Qij) log γ(Qij)

)
. (83)

Recalling that the value taken by the density gm of γm on the points of Qij

is m2γ(Qij), we have that

H(γm) =
∑
i,j

1

m2

(
−m2γ(Qij) log(m2γ(Qij))

)
= −

∑
i,j

γ(Qij)(log γ(Qij) + 2 logm)

= −
∑
i,j

γ(Qij)(log γ(Qij) + 2 logm)

= −2 logm−
∑
i,j

γ(Qij) log γ(Qij) . (84)

Therefore we can rewrite the number of ways to do Phase I as

exp
(
n logm+ nH(γm) + o(n)

)
. (85)

In Phase II we choose a permutation πj ∈ Sn/m for each j, 1 ≤ j ≤ m,
and order the y-coordinates of the n/m points (taken left to right) in row j
according to πj. Together with Phase I this determines π uniquely, and the
number of ways to accomplish Phase II is

(n/m)!m =
(

exp
( n
m

log
n

m
− n

m
+ o(n/m)

))m
= exp

(
n log n− n− n logm+ o(n)

)
(86)

so that in total,

|U | ≥ exp
(
n logm+ nH(γm) + o(n)

)
exp

(
n log n− n− n logm+ o(n)

)
= exp

(
n log n− n+ nH(γm) + o(n)

)
(87)

which, since |H(γ)−H(γm)| < ε, does the job.
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We now proceed to the other bound, which involves similar calculations
in a somewhat different context. To define the required set V ⊃ Bn(γ, ε) of
permutations we must allow a wide range for the number of points of π that
fall in each square Qij— wide enough so that a violation causes Qij itself to
witness d�(γπ, γ) > ε, thus guaranteeing that if π 6∈ V then π 6∈ Bn(γ, ε).

To do this we take m large, ε < 1/m4, and n > 1/ε2. We define V to be
the set of permutations π ∈ Sn for which the number of points (k/n, π(k)/n)
falling in Qij lies in the range [n(γ(Qij) −

√
ε), n(γ(Qij) +

√
ε)]. Then, as

promised, if π 6∈ V we have a rectangle R = Qij with |γ(R) − γπ(R)| >√
ε/m2 > ε.

It remains only to bound |V |. Here a preliminary phase is needed in which
the exact count of points in each square Qij is determined; since the range for

each ni,j is of size 2n
√
ε, there are at most (2n

√
ε)
m2

= exp
(
m2 log(2n

√
ε)
)

ways to do this, a negligible factor since m2 log(n
√
ε) = o(n). For Phase I we

must assume the ni,j are chosen to maximize each hi but since the entropy
function h is continuous, the penalty shrinks with ε. Counting as before, we
deduce that here the number of ways to accomplish Phase I is bounded by

exp
(
n logm+ n(H(γm) + o(ε0)) + o(n)

)
= exp

(
n logm+ n(H(γ) + o(ε0)) + o(n)

)
. (88)

The computation for Phase II is exactly as before and the conclusion is that

|V | ≤ exp
(
n logm− n+ n(H(γ) + o(ε0)) + o(n)

)
× exp

(
n log n− n− n logm+ o(n)

)
= exp

(
n log n− n+ nH(γ) + o(n)

)
(89)

proving the lemma in the case where H(γ) > −∞.
If H(γ)=−∞, we need only the upper bound provided by the set V . Fix

t < 0 with the idea of showing that 1
n

log |Bn(γ,εγ)|
n!

< t. Define V as above,
first insuring that m is large enough so that H(γm) < t−1. Then the number
of ways to accomplish Phase I is bounded by

exp
(
n logm+n(H(γm)+o(ε0))+o(n)

)
< exp

(
n logm+n(t−1+o(ε0))+o(n)

)
(90)

and consequently |V | is bounded above by

exp
(
n log n− n+ n(t−1) + o(n)

)
< exp

(
n log n− n+ nt

)
. (91)
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We are finally in a position to prove Theorem 1. If our set Λ of permutons
is closed, then, since Γ is compact, so is Λ. Let δ > 0 with the idea of showing
that

lim
n→∞

1

n
log
|Λn|
n!
≤ H(µ) + δ (92)

for some µ ∈ Λ. If not, for each γ ∈ Λ we may, on account of Lemma 20,
choose εγ and nγ so that 1

n
log |Bn(γ,εγ)|

n!
< H(γ) + δ/2 for all n ≥ nγ. Since a

finite number of these balls cover Λ, we have too few permutations in Λn for
large enough n, and a contradiction has been reached.

If Λ is open, we again let δ > 0, this time with the idea of showing that

lim
n→∞

1

n
log
|Λn|
n!
≥ H(µ)− δ . (93)

To do this we find a permuton µ ∈ Λ with

H(µ) > sup
γ∈Λ

H(γ)− δ/2 , (94)

and choose ε > 0 and n0 so that Bn(µ, ε) ⊂ Λ and 1
n

log
(
|Bn(µ,ε)|

n!

)
> H(µ)−

δ/2 for n ≥ n0.

This concludes the proof of Theorem 1.
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