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Abstract

A 1992 conjecture of Alon and Spencer says, roughly, that the
ordinary random graphGn,1/2 typically admits a covering of a constant
fraction of its edges by edge-disjoint, nearly maximum cliques. We
show that this is not the case. The disproof is based on some (partial)
understanding of a more basic question: for k ≪ √

n and A1, . . . , At

chosen uniformly and independently from the k-subsets of {1, . . . , n},
what can one say about

P(|Ai ∩ Aj | ≤ 1 ∀i 6= j)?

Our main concern is trying to understand how closely the answers to
this and a related question about matchings follow heuristics gotten by
pretending that certain (dependent) choices are made independently.

1 Introduction

Write G for the the random graphGn,1/2 and f(k) (= fn(k)) for the expected

number of k-cliques in G; that is, f(k) =
(

n
k

)

2−(k
2
). Set

k0 = k0(n) = min{k : f(k) < 1}

and temporarily (through Conjecture 1.1) set k = k(n) = k0 − 4. It is
easy to see that k ∼ 2 log2 n and that f(k) is at least about n3 (precisely,
f(k) = Ω̃(n3), where, as usual, Ω̃ ignores log factors).
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We will call a collection of edge-disjoint cliques a packing (and a t-packing
if it has size t). Write νk(G) for the maximum size of a packing of k-cliques in
G. This quantity (with independent sets in place of cliques) plays a central
role in Bollobás’ celebrated work [4] on the chromatic number of G, though
all he needs from Eνk(G)—the quantity that will interest us here—is the
easy

Eνk(G) = Ω(n2/k4). (1)

(His key point is that νk is Lipschitz, so martingale concentration implies it
is (very) unlikely to be significantly smaller than its expectation.)

Of course one always has νk(G) ≤
(

n
2

)

/
(

k
2

)

. A conjecture of Alon and
Spencer, from the original 1992 edition of [3] (and subsequent editions), says
that this trivial bound gives the true order of magnitude of Eνk(G), viz.

Conjecture 1.1. Eνk(G) = Ω(n2/k2).

In other words, one can (in expectation) cover a constant fraction of the
pairs from [n] by edge-disjoint k-cliques of G. Here we show that this is not
correct, even for somewhat smaller k:

Theorem 1.2. For each C there is a D so that if k = k0 − C, then

P(νk(G) > Dn2/k3) < exp[−n2/k2].

Again, it is easy to see that for k as in Theorem 1.2 we have

Ω̃(nC−1) < f(k) < nC , (2)

and that edges of G typically lie in many (at least about nC−3) k-cliques,
which might suggest plausibility of Conjecture 1.1. But as we will see below
(following Theorem 1.5), falsity of the conjecture should not be surprising,
though establishing this intuition so far seems less straightforward than one
might expect.

We also observe a slight improvement in the lower bound of (1), an easy
consequence of a seminal result of Ajtai, Komlós and Szemerédi [1, 2]:

Proposition 1.3. Eνk(G) = Ω((n2/k4) log k).

Though it may look like a detail at this point, determining the true order
of magnitude of Eνk(G) still seems to us quite interesting, since it seems to
require understanding more basic issues. For a guess, we slightly prefer the
upper bound, but there are heuristics on both sides. It is not too hard to see
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that for a suitable c the expected number of (cn2/k3)-packings of k-cliques
is large.

As above, a collection of sets is a packing—or is nearly-disjoint ; we will
find it convenient to have both terms—if no two of its members have more
than one point in common, and a t-packing is a packing of size t. As usual
a matching is a collection of pairwise disjoint sets and an m-matching is a
matching of size m. Given n and k (for most of our discussion k need not

be as above), we write K for
([n]
k

)

.

Our real interest in this paper is in the validity of heuristics based on
the idea that certain events are close to independent. We view the next
question in this way and will see a second instance in the discussion around
Theorem 1.6.

Question 1.4. For A1, . . . , At drawn uniformly and independently from K,
what can be said about

ζ = ζ(n, k, t) := P(A1, . . . , At form a packing)? (3)

Of course what we expect here will depend on the parameters. We assume
throughout that

1 ≪ k ≪ √
n. (4)

As noted below, the case of fixed k is handled in [11, 10] (with slight changes
to our “natural” answers, e.g. since

(k
2

)

6∼ k2/2 when k is fixed). The upper
bound in (4) makes P(|Ai∩Aj| ≥ 2) small, without which the problem seems
less natural. (We actually tend to think of k = Θ(log n), the relevant range
for Theorem 1.2.)

For k as in (4) and A,B drawn uniformly and independently from K,

P((|A ∩B| ≥ 2) ≈ k4/(2n2);

so thinking of the events {|Ai ∩Aj | ≥ 2} as close to independent suggests

ζ ≈
(

1 − k4/(2n2)
)(t

2
) ≈ exp

[

− t2k4

4n2

]

. (5)

Another, more robust way to arrive at the same guess: the probability that
m := t

(k
2

)

pairs chosen independently (and uniformly) from
([n]
2

)

are distinct
is

∏m−1
i=1 (1 − i/

(

n
2

)

), (6)
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which agrees (approximately) with the r.h.s. of (5), provided

t ≪ n2/k2. (7)

It seems not impossible that these heuristics are close to the truth; precisely,
that for t as in (7),

log(1/ζ) ∼ t2k4/(4n2) (8)

(when the distinction matters, we use log for ln), while for larger t (where
(5) and (6) are not so close) the asymptotics of log(1/ζ) are given by (6).

Here we give upper bounds on ζ that (i) for t relevant to Theorem 1.2
support the theorem but fall somewhat short of (8), and (ii) agree with (8)
for slightly smaller t. We will not have anything to say about lower bounds.

Theorem 1.5. (a) There is a fixed β > 0 such that if t = Dn2/k3, then

ζ <

{

exp[−βDtk] if e ≥ D = Ω(1),
exp[−β(logD)tk] if D > e.

(9)

(b) If 1 ≪ t≪ n2/k3 then ζ < exp[−(1 − o(1))t2k4/(4n2)].

(Note for perspective that for t as in (a) the bound in (b), which is essentially
ideal if we have (7), becomes exp[−(1− o(1))Dtk/4]. We won’t bother with
the silly case t = O(1)—which would require occasionally replacing t2 by
t(t−1)—and retain the uninteresting constant bounds for t = O(n/k2) only
because they require no extra effort.)

Before continuing we observe that this gives Theorem 1.2. We may
bound P(νk(G) ≥ t) by the expected number of t-packings in G (= Gn,1/2),
which is less than

ζ
(

n
k

)t
2−(k

2
)t = ζ

[

(

n
k

)

2−(k
2
)
]t
< ζ exp[Ct log n], (10)

where ζ
(

n
k

)t
(crudely) bounds the number of t-packings in K, each of which

appears in G with probability 2−(k
2
)t, and the inequality is given by (2).

Now letting t = Dn2/k3 with D (> e) chosen so that β logD > C (where
β is as in Theorem 1.5 and we recall k ∼ 2 log2 n) and combining (10) with
the second bound in (9) gives

P(νk(G) > Dn2/k3) < exp[−n2/k2].

The argument for Theorem 1.5(a) (the part needed for Theorem 1.2)
is mainly based on Theorem 1.6 below, which we next spend a little time
motivating.
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To begin, we remind the reader that there is a natural entropy-based
approach to problems “like” that addressed by Theorem 1.5; this approach
was introduced by J. Radhakrishnan [12] in his proof of Brégman’s Theo-
rem [5] and followed more recently in (e.g.) the Linial-Luria upper bound on
the number of Steiner triple systems [11] and its extension to more general
designs by Keevash [10]. In our situation the entropy argument works up
to a point, but we don’t see how to push it to a proof of Theorem 1.5 (or a
disproof of Conjecture 1.1) and will take a different approach.

A first simple (but seemingly crucial) idea is that we should choose our
packing in two rounds, the first round specifying just half, say Bi, of each
Ai. A necessary condition for a packing is then:

for each x ∈ [n], {Bi : x ∈ Ai \Bi} is a matching.

Modulo a certain amount of fiddling, this gets us to the following situation,
in which l will be k/2.

We assume H is a nearly-disjoint l-graph (l-uniform hypergraph) with n
vertices and t edges, and M = {e1, . . . , em} is a random (uniform) m-subset
of H, and are interested in

ξ = ξH(m) = P(M is a matching).

(When we apply this to Theorem 1.5, t will be as in the theorem and m will
be something like tl/n.) Setting c = ml2/n, we again have a natural value
for ξ, namely,

(1 − l2/n)(
m

2
) ≈ exp[−cm/2], (11)

gotten by pretending independence of the events {ei ∩ ej 6= ∅}, the natural
value of whose probabilities is roughly 1 − l2/n. The next statement is
perhaps our main point.

Theorem 1.6. If t≫ n/l and c = min{ml2/n, tl/n}, then

P(M is a matching) <

{

exp[−Ω(cm)] if c ≤ e,
exp[−Ω((log c)m)] if c > e.

(12)

(We won’t get into t = O(n/l). Of course the theorem evaporates if t ≤ n/l,
since H itself can then be a matching.)

Note that here, unlike in Theorem 1.5, we may think of H as chosen
adversarially, and should adjust expectations accordingly; in particular the
probability in (12) can easily be zero, so at best we may hope that (11)
offers some guidance on upper bounds. It’s also true that, as shown by
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the following example, the probability of a matching can easily be about
(tl/n)−m, so even the second part of (12) (the one that differs more seriously
from (11)) can’t be much improved under the stated hypotheses. On the
other hand—and more interestingly—it could be that (11) is about right (as
an upper bound) if, say, log(tl/n) ≫ c (= ml2/n).

Example. For t = sn/l with l a prime power, let G consist of s parallel classes
of an affine plane of order l, and let H be the disjoint union of n/l2 copies
of G. Then for m≪ n/l and e1, . . . , em drawn uniformly and independently
from H,

P({e1, . . . , em} is a matching) > s−(1−o(1))m,

as follows from the observation that if {e1, . . . , ei} is a matching then the
number of edges disjoint from e1, . . . , ei is at least n/l − i (and exactly this
if {e1, . . . , ei} meets all copies of G).

Outline Theorems 1.5 and 1.6 are proved in Sections 3 and 4, following a
quick large deviation review (mainly for Theorem 1.5(b)) in Section 2. The
proof of Proposition 1.3 is sketched in Section 5.

Usage. For asymptotics we use a ≪ b and a = o(b) interchangeably. As is
common we pretend all large numbers are integers and always assume n is
large enough to support our arguments. As mentioned earlier, log is ln.

2 Preliminaries

We will need the following “Chernoff bounds” (see e.g. [8, Thm. 2.1 and
Cor. 2.4]; we won’t need to deal with lower tails).

Theorem 2.1. If X ∼ Bin(n, p) and µ = E[X] = np, then

Pr(X > µ+ t) < exp
[

−t2/(2(µ + t/3))
]

∀t > 0,

Pr(X > Kµ) < exp[−Kµ log(K/e)] ∀K.

(Of course the second bound is only of interest for slightly large K. We
won’t need to deal with lower tails.)

Though it could be avoided, the following less usual bit of machinery is
nice and will be convenient for us at one point. Recall that r.v.’s ξ1, . . . , ξn
are negatively associated if Efg ≤ EfEg whenever there are disjoint I, J ⊆
[n] for which f and g are increasing functions of {ξi : i ∈ I} and {ξi : i ∈ J}
(respectively). As observed in [6, Lemma 8.2], Chernoff-type bounds usually
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apply at the level of negatively associated r.v.’s; we state only what we need
in this direction:

Proposition 2.2. (a) If A1, . . . , At are drawn uniformly and independently

from
([n]
k

)

, then the degrees d(j) = |{i : j ∈ Ai}| (j ∈ [n]) are negatively
associated, as are any r.v.’s ξ1, . . . , ξn with ξj an increasing function of d(j).

(b) If ξ =
∑

ξi with the ξi’s negatively associated, then for any α and λ > 0,

P(ξ > α) < e−λα
Eeλξ ≤ e−λα

∏

Eeλξi . (13)

For (a) see [7, Propositions 3.1 and 3.2] (as remarked there, the statement
is probably not news to anyone interested in such things). The content of
(13) is the second inequality; the first, included here just for orientation, is
the usual use of Markov’s Inequality in proving Chernoff bounds.

3 Proof of Theorem 1.5

Proof of Theorem 1.5(a) (given Theorem 1.6). As mentioned in Section 1, a
crucial first idea is that we should choose the Ai’s in two stages. For simplic-
ity suppose k is even, say k = 2l. For i ∈ [t], let Ai = Bi∪Ci, withBi uniform

from
([n]

l

)

and Ci uniform from
([n]\Bi

l

)

(with the choices for different i’s inde-
pendent), and let H = {B1, . . . , Bt}. Let P = {A1, . . . , At form a packing}
(the event in (3)) and Q = {B1, . . . , Bt form a packing}. Of course Q is a
prerequisite for P, so we need only show

P(P|Q) <

{

exp[−Ω(D)tk] if D ≤ e (say),
exp[−Ω(logD)tk] if D > e.

(14)

From this point we fix a packing {B1, . . . , Bt} and consider the prob-
ability of P given {H = {B1, . . . , Bt}}. The problem is now more about
counting than probability: we want to bound the number of ways of choos-
ing G := {C1, . . . , Ct} so that the resulting Ai’s form a packing.

We may think of choosing the Ci’s by first choosing degrees dj := dG(j)
(j ∈ [n]) satisfying

∑

dj = tl (15)

and then sets
Sj := {i : j ∈ Ci}

satisfying, for each j ∈ [n],

{Bi : i ∈ Sj} is a matching
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(another prerequisite for P). Of course only a small fraction of such choices
correspond to legitimate Ci’s, but this overcount turns out to be affordable.

Given dj ’s the number of choices of Sj’s as above is
∏

j∈[n]N(dj), where
N(d) = NH(d) is the number of d-matchings in H.

Set u = tl/n (the average of the dj ’s). Since
∑{dj : dj ≤ u/2} ≤ un/2,

(15) implies
∑

{dj : dj > u/2} ≥ un/2 = tl/2. (16)

For bounding N(d) when d ≤ u/2, we use the trivial N(d) ≤
(t
d

)

. For larger
d, noting that u/2 = Dn/(16l2), we may apply Theorem 1.6 with m = d
and c ≥ D/(16) (and t = t, so tl/n = Dn/(8l2) ≫ D) to obtain

N(d) < e−Bd
(t
d

)

, (17)

where

B =

{

Ω(D) if D ≤ 16e,
Ω(logD) otherwise.

Thus for a particular set of dj ’s the number of ways to choose the Sj’s
is less than

exp[−B∑∗ dj] ·
∏

(

t
dj

)

< e−Btl/2
∏

(

t
dj

)

, (18)

where
∑∗ runs over j with dj > u/2 (and we use u = tl/n and (16)). For

the product we have, again using (15),

∏
( t
dj

)

< (et)
∑

dj
∏

d
−dj
j ≤ (et)tl(tl/n)−tl = (en/l)tl (19)

(since convexity of x log x implies that, given (15),
∏

d
dj
j is minimum when

dj = u for all j). The (negligible) number of ways to choose the dj ’s is

(tl+n−1
n−1

)

< nn. (20)

On the other hand, the (total) number of ways of choosing C1, . . . , Ct

(again, for given Bi’s) is

(n−l
l

)t
> l−t(en/l)tl

(since l ≪ √
n, Stirling’s formula gives

(n−l
l

)

∼ (2πl)−1/2(en/l)l), and com-
bining this with (18)-(20) we find that the probability of P (given the spec-
ified Bi’s) is less than

nnlte−Btl/2(en/l)tl(en/l)−tl = e−(1−o(1))Btl/2 .
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Proof of Theorem 1.5(b). Set t = εn2/k3 (so ε = o(1)). Let δ be some
sufficiently slow o(1) and set t0 = δt. (We need δ2 ≫ ε and, at (4),
exp[−Ω(δ2k)] ≪ δ.) Set Hi = {A1, . . . , Ai} and H = Ht, and write di
and d for degrees in Hi and H.

We first need to dispose of some pathological situations in which vertices
with very large degrees meet too many edges of H, to which end we set
a0 = δn/k2 and W = {j ∈ [n] : d(j) ≥ a0}, and consider the event

Q = {∑j∈W d(j) < δt0k}.

Claim 1. P(Q) < exp[−t2k4/n2]

Proof. Theorem 2.1 applied to d(j) ∼ Bin(t, k/n) is easily seen to imply
that for any a ≥ a0 (using δ ≫ ε to say a0 ≫ tk/n),

P(d(j) ≥ a) < (eε/δ)a

which for ξj := d(j)1{d(j)≥a0} implies

Eeξj < 1 +
∑

a≥a0
a(eε/δ)a < exp[εω(1)]. (21)

Moreover, by Proposition 2.2(a), the ξj ’s are negatively associated, so part
(b) of the proposition gives, for ξ =

∑

ξj ,

P(Q) = P(ξ > δt0k) < exp[−δt0k + nεω(1)] = exp[−(1 − o(1))δt0k],

which, since δ2 ≫ ε, is less than the bound in Claim 1. (Note also that
δt0k ≫ nεω(1) is the same as δ2εn/k2 ≫ εω(1).)

Now let Pi = {Hi is a packing}, P = Pt, Wi = {j ∈ [n] : di(j) ≥ a0}
and Qi = {∑j∈Wi

di(j) < δt0k}.
Claim 2. For i > t0, if A1, . . . , Ai−1 satisfy Pi−1Qi−1, then

P(|Ai ∩Aj | ≤ 1 ∀j < i) < exp[−(1 − o(1))ik4/(2n2)].

Once this is established, we have (noting that PQ = ∩(PiQi), since in fact
P1 ⊇ · · · ⊇ Pt = P and Q1 ⊇ · · · ⊇ Qt = Q),

P(P) ≤ P(Q) + P(PQ) ≤ P(Q) +
∏

i P(PiQi|Pi−1Qi−1),

≤ P(Q) +
∏t

i=t0
P(Pi|Pi−1Qi−1),

which, according to Claims 1 and 2, is less than

exp[− t2k4

n2 ] + exp[−(1 − o(1))
∑t−1

i=t0
ik4

2n2 ] = exp[−(1 − o(1))
(

t
2

)

k4

2n2 ],

completing the proof of Theorem 1.5(b).

9



Proof of Claim 2. Let S = {P1, . . . , Pm} be the set of pairs contained in (at
least one of) A1, . . . , Ai−1 and not meeting Wi−1, and

T = {X ⊆ [n] :
(X
2

)

∩ S = ∅} ⊇ {X ⊆ [n] : |X ∩Aj| ≤ 1 ∀j < i}.

It is enough to bound P(Ai ∈ T ). In view of Pi−1, the number of pairs
covered by A1, . . . , Ai−1 is (i − 1)

(k
2

)

, while Qi−1 says that the number of
these that meet Wi−1 is at most δt0k(k − 1); thus m (= |S|) ∼ ik2/2. Note
also that the number of non-disjoint (unordered) pairs from S is less than

∑

d2S(j)/2 < a0k
∑

dS(j)/2 ∼ δnik/2.

For a silly technical reason (see (23)) we now treat t≪ n2/k4 separately.
Let Rl = {Ai ⊇ Pl} (l ∈ [m]). Then using P(Ai ⊇ I) ∼ (k/n)|I| for fixed |I|
together with the above asymptotics yields

P(Ai 6∈ T ) ≥ ∑

P(Rl) −
∑∑

P(RlRl′) ∼ ik4/(2n2).

(The first sum is asymptotic to the r.h.s. and the double sum is asymptot-
ically at most (δnik/2)(k/n)3 + (ik2/2)2(k/n)4 = δik4/(2n2) + i2k8/(4n4),
which is o(ik4/n2) since we assume t≪ n2/k4.)

Now assume t = Ω(n2/k4) (so ε = Ω(1/k)). Set p = (1 − δ)k/n and
let B be the random subset of [n] gotten by including each element with
probability p, independent of other choices. According to the “Basic Janson
Inequality” ([9] or e.g. [3, Ch. 8])),

P(B ∈ T ) ≤ e−µ+∆, (22)

where (cf. the above discussion for t≪ n2/k4) µ = mp2 ∼ ik4/(2n2) and

∆ = 1
2

∑

j dS(j)(dS (j) − 1)p3 < (1 − o(1))δik4/(2n2) ≪ µ.

Thus (22) gives the desired bound with B in place of Ai; that is,

P(B ∈ T ) < exp[−(1 − o(1))ik4/(2n2)].

Finally, we combine this with P(|B| > k) < exp[−Ω(δ2k)] (see Theorem 2.1)
to obtain

P(Ai ∈ T ) ≤ P(B ∈ T ||B| ≤ k) < P(B ∈ T )/P(|B| ≤ k)

= P(B ∈ T )(1 + e−Ω(δ2k)) < exp[−(1 − o(1))ik4/(2n2)] (23)

(note ε = Ω(1/k) and the assumed exp[−Ω(δ2k)] ≪ δ give exp[−Ω(δ2k)] ≪
εδk = t0k

4/n2).
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4 Proof of Theorem 1.6

We will give two proofs; the second is easier and proves more (as far as we
can see, the first handles only the more interesting case of larger c), but
we include the first, which was our original argument, as it seems to us the
more interesting. We will not try to optimize the implied constants in (12).

In each proof the following observation, which is where we use near-
disjointness, will play a key role. For an l-graph G and set e (in practice a
member of G), let

I(e,G) = |{g ∈ G : e ∩ g 6= ∅}|.

Proposition 4.1. For any nearly-disjoint l-graph G on n vertices and δ > 0,

|{e ∈ G : I(e,G) < δ|G|l2/n}| < δ|G| + n/l. (24)

Proof. Writing S for the set in (24), we have
∑

x dS(x) = l|S|. On the other
hand, near-disjointness implies that for any e ∈ S,

∑

x∈e dG(x) < δ|G|l2/n+ l − 1,

yielding

∑

x dS(x)dG(x) =
∑

e∈S

∑

x∈e dG(x) < |S|(δ|G|l2/n+ l − 1)

and
n
∑

x d
2
S(x) ≤ n

∑

x dS(x)dG(x) < |S|(δ|G|l2 + n(l − 1)).

Combining and using Cauchy-Schwarz we have

l2|S|2 = (
∑

x dS(x))2 < |S|(δ|G|l2 + n(l − 1)),

which implies (24).

First proof of Theorem 1.6. Here M and S will always be matchings (of H)
of sizes m and γm respectively. As indicated above, we are now considering
only the second regime in (12), so may assume c is a bit large. To bound the
number of M’s we first want an S ⊆ M for which the number of possible
continuations M\S is “small.” (The parameters γ, δ, ϑ will be set below.)

Given S, set
R = RS = {e ∈ H : I(e,S) = 0},

B = BS = {e ∈ R : I(e,R) ≥ δ|R|l2/n}

11



and |R| = r. If M ⊇ S then, trivially,

M\ S ⊆ R; (25)

so the number of M’s containing S is at most

(

r
(1−γ)m

)

. (26)

Note also that Proposition 4.1 gives

|R \ B| < δr + n/l =: r∗. (27)

Since we will choose δ fairly small, (27) (with (25)) will limit possibilities
for (M \ S) \ B. We next show that for any M there is some S for which
(M\ S) ∩ B is small.

Given M and S ⊆ M, with R,B, r as above, let

R1 = {e ∈ R : I(e,M) < ϑml2/n}, R2 = R \R1,

A1 = {e ∈ M∩ B : I(e,R1) ≥ δrl2/(2n)}
and A2 = (M∩B) \ A1; thus e ∈ A2 implies I(e,R2) > δrl2/(2n).

We then want to bound |A1| and |A2|, the first in general, the second
for a suitable S. In each case we consider

Ni = |{(e, f) ∈ Ai ×Ri : e ∩ f 6= ∅}|.

For i = 1, we have |A1|δrl2/(2n) ≤ N1 < |R1|ϑml2/n, implying

|A1| ≤ 2mϑ/δ. (28)

For i = 2 we again have N2 ≥ |A2|δrl2/(2n), but our upper bound now
depends on S. Suppose S is chosen uniformly from

(M
γm

)

(so R, B, R1, and

R2 are also random). Set C = {f ∈ H : I(f,M) ≥ ϑml2/n} (the edges that
will be in R2 if they are in R). Then

EN2 <
∑

f∈C I(f,M)(1 − γ)I(f,M) <
∑

f∈C I(f,M)e−γI(f,M). (29)

Since xe−γx is decreasing for x ≥ 1/γ and—a very small point—we will
choose parameters so

ϑml2/n ≥ 1/γ, (30)

the r.h.s. of (29) is at most t(ϑml2/n)e−γϑml2/n. Thus each M admits some
S for which N2 is at most this value, implying

|A2| ≤ 2ϑ
δ

t
re

−γϑml2/nm
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and (recall (28))

|M ∩ B| ≤ 2ϑ
δ (1 + t

re
−γϑml2/n)m =: sr. (31)

Thus the number of choices for M is at most the number of ways to choose
S and then an M ⊇ S satisfying (31).

Remark. Note we are not choosing the Ri’s and Ai’s (which do depend on
M); these are just used in establishing existence of the desired S.

For a given S the number of choices for M ⊇ S satisfying (31) is at most

ψ = maxr min
{

( r
(1−γ)m

)

,
∑

a≤sr

(t−γm
a

)( r∗

m−γm−a

)

}

, (32)

where r = |RS | (see (27) for r∗) and the first bound is from (26). We may
thus bound the number of M’s by

( t
γm

)

ψ, and the probability in (12) by

( t
m

)−1( t
γm

)

ψ. (33)

Finally, we need to set parameters and discuss bounds. Set γ = 0.1,
δ = 100c−1 log c and ϑ = 0.1δ. (Note these support (30).) For r < δt we use
the first bound in (32) to say the expression in (33) is at most

( t
m

)−1( t
γm

)( δt
(1−γ)m

)

<
( m
γm

)

δ(1−γ)m < exp[−((1 − γ) log(1/δ) − 1)m].

For r ≥ δt, referring to (31), we have s := sr < 0.2[1 + 1/(δc)]m < 0.3m.
So, using the second part of (32), we may bound the expression in (33) by

s
( t
m

)−1( t
γm

)(t−γm
s

)( r∗

m−γm−s

)

< exp[−0.5 log(1/δ)m],

where we used

( t
m

)−1( t
γm

)(t−γm
s

)

=
( m
γm,s,m−γm−s

)( t−γm−s
m−γm−s

)−1

and, say, r∗ < 2δ(t − γm− s).

Second proof of Theorem 1.6. Here it will be easier to consider e1, . . . , em
drawn uniformly and independently from H and prove bounds as in (12) for
the probability that these ei’s form a matching. This is equivalent since

ζ = P(the ei’s form a matching)/P(the ei’s are distinct)

(recall ζ = P(M is a matching)), and the denominator (roughly exp[−m2

2t ])
doesn’t significantly affect the bounds in (12).

13



Let H0 = H and, for j ≥ 1,

Hj = {e ∈ H : e ∩ ei = ∅ ∀i ≤ j}.

(Thus H0 ⊇ H1 ⊇ · · · and the ei’s form a matching iff ei ∈ Hi−1 for all
∀i ∈ [m].) Set

δ =

{

e−1 if c ≤ e,
c−1 log c otherwise

(the precise values are not very important) and

Cj = {e ∈ Hj : I(e,Hj) < δ|Hj |l2/n},

and let Q be the event

{|{j ∈ [m/2] : ej ∈ Cj−1}| > m/3}.

Proposition 4.1 gives
|Cj | < δ|Hj | + n/l, (34)

so that we always (regardless of history) have

P(ej ∈ Cj−1) < δ + n/(lt) =: δ′ <

{

e−1 + o(1) if c ≤ e,
c−1 log c+ min{c−1, o(1)} otherwise,

and in either case δ′ < 1/2. Thus |{j ∈ [m/2] : ej ∈ Cj−1}| is stochastically
dominated by a r.v. with the distribution Bin(m/2, δ′), and Theorem 2.1
gives

P(Q) < exp[−Ω(log(1/δ′))m]. (35)

(Of course Ω(log(1/δ′)) is just Ω(1) until c is a bit large.) On the other
hand, if Q does not occur then

|Hm/2| < (1 − δl2/n)m/6t,

so the probability that we continue to a matching is less than

(1 − δl2/n)(m/6)·(m/2) < exp[−δcm/(12)]. (36)

The theorem follows.
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5 Lower bound

As noted earlier, Proposition 1.3 is an application of the following celebrated
result of Ajtai, Komlós and Szemerédi [1, 2].

Theorem 5.1. There is a fixed c > 0 such that α(Γ) > c(N logD)/D for
any triangle-free graph Γ with N vertices and average degree at most D.

(As usual α is independence number). The reduction to Theorem 5.1 is
quite routine and we will not give the full blow-by-blow.

In what follows we set M = f(k) (=
(n
k

)

2−(k
2
)). We want existence

of a large independent set in the graph Γ whose vertices are the k-cliques
of G (= Gn,1/2) and edges the pairs that share edges (of G). A standard
application of the second moment method (e.g. [3, Sec. 4.5 and Cor. 4.3.5]
gives |V (Γ)| > (1 − o(1))M w.h.p. (meaning, as usual, with probability
tending to 1 as n → ∞), and routine analysis shows that the expected
numbers of edges and triangles in Γ are respectively at most k4M2/(2n2) and
2k6M3/(3n4). (The main contributions are from edges consisting of pairs of
cliques with just one common edge and triangles composed of three cliques
sharing the same edge.) So Markov’s Inequality says that with probability
at least 1/6 − o(1), we have

|V (Γ)| ∼M, |E(Γ)| < k4M2/n2 and |T (Γ)| < 2k6M3/n4, (37)

where T denotes number of triangles. Thus Proposition 1.3 will follow from
the next assertion.

Claim. If (37) holds then α(Γ) > Ω(k−4n2 log k).

To see this let δ = n2/(2k3M) and consider the subgraph H of Γ induced
by W chosen uniformly from the subsets of V (Γ) of size δM ∼ n2/(2k3).
Then E|E(H)| < δ2|E(Γ)| and E|T (H)| < δ3|T (Γ)|, so (again using Markov)
there is a choice of W for which |E(H)| ≤ n2/k2 and |T (H)| ≤ n2/(3k3).
We may then find some triangle-free K ⊆ H on (1/3 − o(1))n2/k3 vertices

with average degree at most 2n2/k2

|V (K)| = O(k), and applying Theorem 5.1 gives
the claim.
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