arXiv:1803.04958v1 [math.CO] 13 Mar 2018

SPANNING TREES IN RANDOMLY PERTURBED GRAPHS

FELIX JOOS AND JAEHOON KIM

ABSTRACT. A classical result of Komlés, Sdrkozy and Szemerédi states that every n-vertex graph
with minimum degree at least (1/2 + o(1))n contains every n-vertex tree with maximum degree
O(n/logn) as a subgraph, and the bounds on the degree conditions are sharp. On the other hand,
Krivelevich, Kwan and Sudakov recently proved that for every n-vertex graph G, with minimum
degree at least an for any fixed a > 0 and every n-vertex tree 7' with bounded maximum degree,
one can still find a copy of T in G, with high probability after adding O(n) randomly-chosen edges
to Go. We extend their results to trees with unbounded maximum degree. More precisely, for a
given n°® < A < en/logn and a > 0, we determine the precise number (up to a constant factor)
of random edges that we need to add to an arbitrary n-vertex graph GG, with minimum degree an
in order to guarantee a copy of any fixed n-vertex tree 7" with maximum degree at most A with
high probability.

1. INTRODUCTION

One central theme of extremal combinatorics deals with the question which conditions on a ‘dense’
graph G imply the existence of a ‘sparse’/‘small’ graph H as a subgraph of G. The earliest results
of this type include Mantel’s theorem and its generalisation by Turdn, which states that G contains
a complete graph on r vertices whenever its number of edges is at least (1 —1/(r — 1) 4+ o(1))(}).
Another cornerstone in the area is due to Dirac [11] who proved that whenever the minimum degree
d(G) of G is at least n/2, the graph G contains a spanning cycle, known as a Hamilton cycle, and
thus also a spanning path.

This was improved 40 years later, when Komlds, Sarkozy and Szemerédi [18] proved in a seminal
paper that the condition of §(G) > (1/2 + o(1))n ensures the containment of every bounded-degree
n-vertex tree as a subgraph, and in [19], they enormously extended this result to any n-vertex tree of
maximum degree O(n/logn); for refinements of the statement see [10]. In 2009, Bottcher, Schacht
and Taraz [8] found a minimum degree condition which implies the containment of a subgraph H
from a more general graph class (than trees) of bounded maximum degree graphs (known as the
bandwidth theorem).

We emphasise that the mentioned minimum degree conditions cannot be further improved; in
particular, the disjoint union of two complete graphs K, » contains neither a Hamilton cycle nor
any spanning tree. Similarly, the almost balanced complete bipartite graph K, /5_1 /241 also does
not contain a Hamilton cycle nor most n-vertex trees. However, these extremal examples admit
very specific structures. Indeed, ‘typical’ graphs, as binomial random graphs, which we denote by
G(n,p), with a fixed edge density p > 0 contain many Hamilton cycles as well as any fixed spanning
tree of maximum degree O(n/logn) with high probability. More precisely, it is known that the
choice p > logn/n ensures the existence of a Hamilton cycle and recently Montgomery announced a
proof showing that for any n-vertex tree T with bounded maximum degree, G(n, p) contains T' with
high probability whenever p > ¢’ logn/n where ¢ depends on A(T'). Krivelevich [20] showed that
the condition p = Q(A(T')logn/n) ensures the containment of any fixed T' whenever A(T) > n®
for some small € > 0. We remark that there is an n-vertex tree T of maximum degree O(n/logn)
such that G(n,0.9) does not contain 7" as a subgraph with high probability; in particular, there are
graphs of minimum degree at least 0.8n that do not contain 7" as a subgraph.

As an interpolation of both aforementioned models, Bohman, Frieze and Martin [5] considered
the following question, which has initiated a lot of research since then [2, 3, 4, 6, 7, 13, 21, 23, 24].
Given any fixed @ > 0 and any n-vertex graph G, with §(G) > an, which lower bound on p
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F1GURE 1. An illustration of the statement of Theorem 1.1. The graph shows the
magnitude of np in terms of A.

guarantees with high probability a Hamilton cycle in G, U G(n,p)? This type of question combines
extremal and probabilistic aspects in one graph model, which is nowadays known as dense randomly
perturbed graph model. In fact, Bohman et al. proved that p = 0©,(1/n) is the right answer to
their question. Thus, in this case p can be taken smaller by a log n-factor in comparison to the
purely random graph model. Interestingly, it turns out that for several settings the omission of a
log n-factor is the correct answer.

Exactly this phenomenon also appears in the work of Krivelevich, Kwan and Sudakov in [22].
They proved the natural generalisation of Bohman et al. by showing that for a given n-vertex tree
T with bounded maximum degree, say bounded by A, if p = O, a(1/n), then G4 UG(n,p) contains
T with high probability. Hence they translate the setting of the first paper of Komlods, Sarkozy, and
Szemerédi into this randomly perturbed graph model. Here we consider trees of arbitrary maximum
degree. Interestingly, the optimal value for p exhibits a certain threshold behaviour.

Theorem 1.1. For each k € N and o > 0, there exists M > 0 such that the following holds. Sup-
pose that G is an n-vertex graph with §(G) > an and T is an n-vertex tree with n*/ 1) < A(T) <

c(o1/k _n : R -5 k+1,,—2
min{n'/* Mlogn}’ and R € G(n, Mp) is a random graph on 'V (G) with p = max {n JA(T)F =21,

then T C G U R with probability 1 — o(1).

Let us add here a few remarks.

e The bound on p is sharp up to a constant factor for any aw < 1/2. (If & > 1/2, then p =0
is enough.) See Proposition 3.11 for further details.

e Whenever A = ©(n'/*), we can only omit a log n-factor in comparison to the G (n, p)-model.
However, in all other cases p can be taken (significantly) smaller.

e In certain ranges for A, increasing A does not lead to a change in the bound on p. For
example, the class of trees with maximum degree at most n'/2 requires the same bound on
p as the class of trees with maximum degree n3*. See Figure 1 for an illustration.

To see that the condition A = O(n/logn) is needed, observe that G(n,0.9) does not contain
vertex sets of size o(logn) that dominate the graph. Hence the tree that arises from the disjoint
union of o(logn) stars with (n/logn) leaves by adding a vertex and joining it to the centres of
the stars is not a subgraph of G(n,0.9) (with probability 1 — o(1)).

We want to point out here that randomly perturbed graphs can also be seen from a different angle
as discussed above. Let us equip the set of n-vertex graphs with a metric, namely the edit-distance.
Given G, and a tree T, we investigate how many graphs G’ in the m-neighbourhood of G, contain
T as a subgraph. This can be easily modelled by adding m edges at random to G, which is almost
exactly the graph model we consider in this paper.! Hence, the randomly perturbed graph model
measures how ‘typical’ a property is from a local point of view.

Randomly perturbed model appears also in theoretical computer science. In their ground-
breaking work [25], Spielman and Teng introduced the notion of smoothed analysis of algorithms.

lwe gloss here over the technicality that graphs in the neighbourhood of G, may also contain fewer edges, but as
this does not affect the results, we ignore this for now.



SPANNING TREES IN RANDOMLY PERTURBED GRAPHS 3

They evaluate the performance of algorithms in more ‘realistic’ settings by using randomly per-
turbed inputs and a combination of worst-case and average-case analysis.

2. OUTLINE OF THE PROOF

Assume, as in the setting of Theorem 1.1, we have an n-vertex graph G with minimum degree at
least an, an n-vertex tree T with maximum degree at most A, and a random graph R = G(n, Mp)
on the vertex set V(G). We aim to embed T into G U R. We extensively use the following facts.

(al) For any set U C V(QG) of size which is linear in n, a (1—¢)|U|-vertex forest ' with maximum
degree O(np) embeds into R[U] (see Lemma 4.1 and Lemma 4.2). Moreover, the image of
V(F) is a random subset of U (see Remark 1).

(a2) For any set U C V(G) of size which is linear in n, a |U|-vertex forest F' with maximum
degree O(=L-) embeds into R[U] (see Lemma 3.6).

logn
(b1) Suppose G’gis a bipartite graph with vertex partition (Vi,V2) and F is a star-forest with at
most |Va| leaves. If the centres of F' are already ‘quasi-randomly’ mapped to V3 and A(F') =
o(|Vz]), then we can extend the mapping to an embedding of F' into G’ by embedding L(F),
the leaves of F', into V5. (see Lemma 4.4 and Lemma 4.5). Moreover, in our embedding, we
can ensure that L(F') is ‘quasi-randomly’ mapped into V5 (see Lemma 4.4).

Our approach is as follows. We first apply the regularity lemma to G to obtain a subgraph G’
and a partition {Vi}icpixy of V(G) such that G'[V{; 1), Vi;,2)] is (¢, d)-super-regular for all i € [r].
We decompose T into subforests Fi, ..., Fyi1, F{,..., F}, L1 and L!'*5t such that A(F) = O(np) for
all F € {F,...,Fy11,L1} and F{, ..., F|, Ly, L'* are star-forests. We embed the edges of F} into
R by using (al) as it has maximum degree O(np) and we embed V (F]) onto the ‘unused’ vertices
of G’ by using the super-regularity of G’ and (b1). Iteratively, we embed Fb, Fy, ..., F}, Fy41 onto
‘unused’ vertices of V(G). Finally, we want to complete the exact embedding by embedding L; by
using (al), and L'** by using (b1) onto the remaining vertices of G.

For this approach, we need to make sure that we can repeat this procedure until the end. We
can use (al) for any subset U of V(G), thus we can always embed F; into the remaining vertices.
However, in order to use (bl), we need to ensure that the centre vertices are ‘quasi-randomly’
embedded. In order to ensure this, we extensively use the ‘moreover part’ of (al) and (b1). Every
time we embed F; or F! into G’, we always make sure that the image of the embedding is chosen in
a ‘quasi-random’ way (see (®4) and (®5) in Section 7).

One big obstacle for this approach is that as T" and G both contain exactly n vertices; in particular,
we need to find an exact embedding of L'*** into G’ at the last step. Suppose first that T contains
many ‘light’ leaves, that is, leaves whose neighbour has degree at most O(np/log n), or many vertices
of degree 2. Then the situation is easier as we can reserve such ‘light’ vertices for the last step and
in the last step, we embed them into R using (a2) or Lemma 3.7 (see Section 8).

Suppose now that T does not have many ‘light’ leaves nor many vertices of degree 2. This implies
that there are many ‘heavy’ leaves, that is, leaves whose neighbour has degree Q(np/logn). As (al)
does not apply to spanning trees, it is necessary to use (bl) to find an exact embedding of these
‘heavy’ leaves at the last step. For this purpose, we reserve some leaves L'* at the beginning and
we embed them at the last step by using (b1) to finish the algorithm. In order to use (b1) for L't
the graph L' must be a star-forest of 7' which only consists of leaf-edges of T' so that we do not
have to embed any more edges after embedding L'est.

There are several further obstacles. For example, after all the centres x,...,zs of L%t are
embedded into V; 1, the number Zie[s} driast(x;) of leaves attached to the centres might not equal
to the number of vertices left in V; . In this case, it is impossible to find an exact embedding using
(b1). To overcome this, we reserved a set L of leaf-edges of T in the beginning. Furthermore, we
will reserve a small subgraph F° of L%, Before we embed L'*$! into G’, we embed exactly the
right number of leaf-vertices of Ly U F*° into each V; for each i € [r] x [2] by using (al). Hence this
problem does not occur when we are about to embed L't \ F°.

We may also face the problem that |L'**| is too small (say, size of O(1)). Then we may not be
able to guarantee that the remaining small number of vertices still induces super-regular pairs in
G’ which is required to use (b1). However, by a clever choice of the edge decomposition F(T) into
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the forests described above, it is possible to ensure that [L!%*| = Q(n/logn) (see the definition of
L%t and (F12) in Section 5).

Another problem is that we might not be able to obtain strong enough ‘quasi-randomness’ on the
distribution of images of centre vertices of L'*s* to apply (b1). This happens when most of centre
vertices of L!%* embedded on V; are embedded using (b1) rather than (al). To better estimate
the ‘quasi-randomness’, we define subsets Uz‘e[k] A; C L%t of vertices whose parents are embedded

using (al). As parents of these vertices (which form the centre vertices of L!%%!) are embedded by
(al) rather than (b1) (that is, they are embedded into R rather than G), the distribution of the
images of these centre vertices of L'®* satisfies strong ‘quasi-random’ assumptions. Thus as long as
enough of such vertices are embedded into each V;, we have a sufficiently strong ‘quasi-randomness’
distribution to apply a weaker version of (b1) (see Lemma 4.5). We can actually ensure that each
V; contains enough images of such parents (see (6.7) in Section 6).

The organisation of the paper is as follows. In Section 3, we introduce notation, state some
probabilistic tools, and present some results involving the graph regularity set up. In Section 4, we
prove (al)—(bl) and we prove Lemma 4.6 which we use in Section 6 to assign the vertices of T' to
the different sets in {V}}ic[yx[2- In Section 5, we construct the (edge) decomposition F, ..., Fiy1,
Fi,...,F], Ly, L't of T, and we verify several properties of this decomposition for later use. In
Section 6, by using Lemma 4.6, we determine for each vertex x in T into which V; it will be
embedded. In Section 7, finally we construct the actual embedding of T" into G U R. In Section 8§,
we consider the case when either T contains many vertices of degree 2 or not many ‘heavy’ leaves.
Both cases can be easily deduced from the results before.

3. PRELIMINARIES

3.1. Basic definitions. Let N denote the set of all positive integers and let Ny denote the set of all
non-negative integers. We often treat large numbers as integers whenever this does not affect the
argument. For n € N, let [n] := {1,...,n}. For a,b,c € R, we writea =b+cifb—c<a<b+ec.
We write logx := log, x for all x > 0. The constants in the hierarchies used to state our results
are chosen from right to left. More precisely, if we for example claim that a result holds whenever
0 <a < b< c<1, then this means that there are non-decreasing functions f*: (0,1] — (0, 1] and
g" : (0,1] — (0,1] such that the result holds for all 0 < a,b,c < 1 with b < f*(c) and a < ¢g*(b).
Every asymptotic notation refers to the parameter n if not stated otherwise.

For a finite set A, a function f : A — R, and p € N, we define || f||, := (3, c4|f(a)P)/P and
| flloo := maxqea |f(a)|]. Fori= (i,h) € N x [2], we define i := (i,3 — h).

Let A, B be two disjoint finite sets. For a function ¢ : A — B and a set A’, we denote by 9| 4,
the restriction of ¥ on A’ N A. For an injective function 9 : A — B, a function f : A — R, and a
set B’, we define

fFWB)= Y  fla) (3.1)
a€A: Y(a)eB'NB
Note that if B’ is disjoint from B, then f* (1, B') = 0.

Let G be a graph. We slightly abuse notion by identifying a graph with its edge set. For a
collection E' of edges, we treat it as a graph with vertex set |J,,cp{u,v} and edge set E. Let
e(@) be the number of edges of G. Let u,v € V(G) and let U,V C V(G) be disjoint. We write
G|U, V] to denote the bipartite (multi-)subgraph of G induced by the edges joining U and V and
let eq(U,V) := e(G[U,V]). In addition, let deng(U,V) = eq(U,V)/(|U||V|). We define the
degree dg(v) of v in G by |Ng(v)|. We further define dg(u,v) := |Ng(u) N Ng(v)|. We define
dau(v) == |Ng(v)NU| and dg,u(u,v) := |Ng(u) N Ng(v)NU|. We interpret the dg(-) as a function
de : V(G) — Ny and so we have d% (¢, V') = D veV N (U) da(v¥~1(v)) for any injective function
P:U—=Vand V' CV.

We say that a bipartite graph G with vertex partition (A, B) is (¢, d)-regular if for all sets A" C A,
B’ C B with |A'| > ¢|A|, |B'| > ¢|B|, we have

|deng(A’, B') — d| < .

If G is (e,d)-regular for some d € [0,1], then we say G is e-regular. If G is (g,d)-regular and
dg(a) = (d £ ¢)|B| for all a € A and dg(b) = (d + ¢)|A| for all b € B, then we say that G is
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(e,d)-super-regular. For a bipartite graph G with vertex partition (A, B), let Jg(A,d,€) be a graph
(that may contain loops) defined by

V(Jg(A,d,e)) = A and E(Jg(A,d,¢)) = {ad': a € A,d' € A,dg(a,a’) # (d* + 3¢)|B|}.  (3.2)

We call Jg(A,d,e) an irreqularity-graph (with respect to A) of G.

We say that a forest F' is a star-forest if every component of F' is a star. A vertex of degree 1 is
a leaf and for a forest F', we denote by L(F') the set of leaves of F. For a forest F, let C'(F') be the
collection of components of F' that contain at least one edge. For a tree T, we let Pp(u,v) be the
unique path in 7' connecting u and v and |Pr(u,v)| be the number of edges in the path.

A tree T is rooted if it contains a distinguished vertex r — its root; we often write (7,7) for a
rooted tree with root . We say a tuple (F, R) is a rooted forest if F' is a forest and R C V(F)
contains exactly one vertex of every component of F' — their roots. For a vertex u € V(T) in a
rooted tree (T',7), we let T'(u) be the subtree of T' induced all vertices w such that u € V(Pp(r,w)).
For any subtree T” of (T, r), we let r(T") be the root of T”, which is the unique vertex = € V(T")
such that V(Pr(r,z)) N V(T') = {z} and we always consider 7" as a rooted tree (T”,r(T")). For
any subforest F' of (T,r), let R(F) := {r(T') : T" € C(F)}. For a rooted tree (T,r), we define
the height of T to be the length of the longest path between r and a leaf of T. Moreover, let
Dr(u) := Np(u)NV (T (u)) be the set of descendants (children) of u and let ar(u) := Np(u)\V (T (u))
be its ancestor (which does not exist if u is the root of T'). Let D (u) := {w € T(u) : |Pr(u, w)| = £}
and let Sp(u) := {uv’ : ' € Dr(u)}. In addition, let D(u) := {u}. For a star-forest F, we let
Cen(F') be the set of centres of all star-components of F' (if a star has only one edge, we assume
that one vertex is given as a centre).

For a tree T and a vertex v € V(T), let (Ap(v), Br(v)) be the unique bipartition of V(7T') such
that v € Ar(v) and v ¢ Br(v). For a tree T, we say a path P = uy ... uy is a bare path if dp(u;) = 2
for all + € [k]. For £ € N and edge-disjoint paths Py,..., Py, we write P = Py P,... P, for the
concatenation of Pi,..., P, provided E(P) = Ule E(P;) forms a path.

3.2. Probabilistic tools. A sequence Xj,..., Xy of random variables is a martingale if X is
a fixed real number and E[X,, | Xo,...,X,—1] = X1 for all n € [N]. Our applications of
Azuma’s inequality will involve exposure martingales. These are martingales of the form X; :=
E[X | Y1,...,Y;], where X and Y7,...,Y; are some previously defined random variables.

Theorem 3.1 (Azuma’s inequality [1, 14]). Suppose that A > 0 and that Xy, ..., XN is a martingale
such that | X; — X;-1] < ¢; for all i € [N]. Then

52
P[| Xy — Xo| > ] < 2e*TieinF |

For n € Nand 0 < p <1, we write Bin(n,p) to denote the binomial distribution with parameters
n and p. For m,n, N € N with m,n < N, the hypergeometric distribution with parameters N, n
and m is the distribution of the random variable X defined as follows. Let S be a random subset
of {1,2,...,N} of size n and let X := [SN{1,2,...,m}|. We will use the following bound, which
is a simple form of Chernoff-Hoeffding’s inequality.

Lemma 3.2 (Chernoff-Hoeffding’s inequality, see [15, Remark 2.5 and Theorem 2.10]). Suppose
that X ~ Bin(n,p), then P[|X —E(X)| > t] < 2¢77/Grm) if ¢ < 3np/2. If X has a hypergeometric
distribution with parameters N,n,m, then P[|X —E(X)| > t] < 2¢~2*/n,

Let X = (x1,...,2N) be a finite ordered collection of N not necessarily distinct real numbers. A
random sample (X7i,...,X,,) drawn without replacement of size n < N from X can be generated
as follows: First let I := [N], and for each j € [n], we sequentially choose ¢; uniformly at random

from [; and set [j 1 := I; \ {i;} and X := x;,.

Theorem 3.3 (Bernstein’s inequality, see [9]). Let X = (z1,...,2n) be a finite collection of N real

numbers and let (X1,...,X,) be a random sample drawn without replacement from X. Let a :=
n

minge(n) z; and b := max;en) xi. Let p:=E[ " Xi] = & SN i and 0? == + > ie[N] (z;—p/N)%

Then for all A > 0, we have P[> | X; — p] > A] < exp <—m) )
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Theorem 3.4 ([17]). Suppose n € N with 0 < 1/n < e < d < 1. Let G be an (g,d)-super-regular
bipartite graph with vertex partition (U, W) such that [U| = |W| = n. Suppose o : U — W is a
perfect matching in G chosen uniformly at random (where we treat a perfect matching as a bijection),
then for any edge uwv € E(G) with u € U and v € W, we have Plo(u) = v] = (1 +£/20)/dn.

The following three lemmas are explicitly stated in [20]; however, the first one is elementary and
the third is a special case of multipartite version of the seminal result of Johansson, Kahn, and

Vu [16].

Lemma 3.5. Suppose k,0,n € N and T is an n-vertex tree with at most £ leaves. Then T contains
a collection of at least n/k — 20 vertex-disjoint k-vertex bare paths.

Lemma 3.6. Suppose k,n,A € N and d1,...,d; are non-negative integers such that d; < A and
Zle di = n. Let A = {ai,...,ax} and B be a set of n wvertices that is disjoint from A. Let
G = G(|[AUB|,p) with V(G) = AUB. Ifp > 2Alogn/n, then G contains with probability 1 — o(1)
a collection S1, ..., Sk of vertex-disjoint stars such that a; is the centre of S; and S; has d; neighbours
in B.

Lemma 3.7. Let k > 4 and 0 < 1/n < 1/M < 1/k. Let G = G(kn,p). Let S = {s1,...,8n},
T = {t1,...,tn} be disjoint vertex subsets of V(G). If p > M(ﬁ%)l/(kfl), then G contains a
family {P; : i € [n]} of vertex-disjoint paths where each P; is k-vertex path connecting s; and t; with
probability 1 — o(1).

3.3. Results involving e-regularity. The following lemma shows that if G is an e-regular bipar-
tite graph, then its irregularity-graph is small.

Lemma 3.8. Suppose 0 < 2¢ < d < 1, and that G is an (g,d)-super-reqular graph with vertex
partition (A, B). Then A(Jg(A,d,e)) < 2¢|A|.

Proof. For each u € A, let Al = {u/ € A : dg(u,u’) > (d*> + 3¢)|B|} and A, = {u' € A :
do(,u') < (@ — 3)|Bl}. Then dyaqe(w) = [A3] + |45

It is easy to see that deng (A}, Ng(u)) > d + ¢ and deng(A;,, Ng(u)) < d — e (observe that
u ¢ A;). Since G is (g,d)-super-regular and |Ng(u)| > (d — €)|B| > ¢|B|, we conclude that
|Af| < elA| and |A | < ] Al. Thus dj, a4, (u) = |AL| +]A, | < 2¢|A| for any u € A. O

Next theorem is proved in [12]. (In [12] it is proved in the case when |A| = |B| with 16c'/® instead
of €'/6. The version stated below can be easily derived from this.) This with the previous lemma
together asserts that a bipartite graph G being e-regular is roughly equivalent to an appropriate
irregularity-graph of G being small.

Theorem 3.9. Suppose n € N with 0 < 1/n < e < a,p < 1. Suppose G is a bipartite graph with
vertex partition (A, B) such that an < |A| < a™n, |B| =n and |E(Ja(A,d,e))| < en?. Then G is
(€Y%, d)-regular-

The following lemma is proved in [22]. Note that our definition of super-regularity is slightly
different from theirs. (Their definition ensures that a super-regular pair has a lower bound on
minimum degree, on the other hand our definition ensures that a super-regular pair has both
an upper and a lower bound on the degree of a vertex. This notion is required when we use
Theorem 3.4.) So we introduce a subgraph G’ to adjust the statement to our setting.

Lemma 3.10 ([22]). Suppose 0 < 1/C <« 1/C",e,d, 1/t < «. Let G be an n-vertex graph with
6(G) > an. Then there exists a partition {Vi}ticpixpy of v(G) and a subgraph G' C G such that
C' < r < C and G'[Viiy, Vi)l is a (g,d)-super-regular bipartite graph and n/(tr) < |V | <
Vi) < tn/r for alli € [r].

3.4. Sharpness example. We also prove the following proposition which shows that the bound
on p in Theorem 1.1 is sharp up to a constant factor.

Proposition 3.11. Suppose n,k € N with 0 < 1/n < ¢ < 1/k < 1 and suppose G = K%,%.
If n¥/EHD) < A < nl/F ] then there emists an n-vertex tree T with A(T) < A such that T ¢
G U R with probability 1 — o(1) where R € G(n,cp/2) is a random graph on V(G) and p =
max{nik%l,Ak*ln’Q}.
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Proof. Let € be the event that every vertex v € V(R) satisfies dr(v) < cnp. It is easy to see that
P[] > 1 —n~1. Tt is enough to show that there exists an n-vertex tree T with A(T) < A such that
whenever £ holds then ' ¢ G U R.

k42 k
First, assume that A > n*+0?, Then p = A* =2 > p7k+1. Let s € {f(A/LQ)kL f(A/LQ);J +1}
be an odd integer. Thus s > 3 as A¥ < n. Let m := |(n — 1)/s| and consider an m-vertex tree T"
with root & of height k such that every internal vertex has degree at least A/5 and at most 2A/3.

Note that such a tree exists as Z?:o@A/?’ —1f>m > ZEZO(A/E))K > AF/5. Hence

DE,(2)| > V(T — DL (2) > m — AF L > (1 —5A Hm. 3.3
T T
¢e{0,....,k—1}

We consider s vertex-disjoint copies T1,...,Ts of T" with the roots x1,...,zs, respectively. We
add a vertex x and edges xx; for all i € [s] and further at most s vertices and edges in such a way
that the new graph 7' is an n-vertex tree with A(7") < A. Assume, for a contradiction, £ holds and
there exists an embedding ¢ of T" into G U R.

For each i € [s], we let U; be the set of all vertices y € D%, (x;) such that all edges of the path
that joins z; and y are embedded into F(G); that is,

Ui = {y € D}, () : E(é(Pr,(zi,y))) € E(G)}.

Let (A, B) be the bipartition of G. As for each y € U;, every edge in E(¢(Pr,(zi,y))) joins a vertex
in A with a vertex in B , it is easy to see that either ¢(U;) C A or ¢(U;) C B holds depending on
whether ¢(z;) € A or ¢(x;) € B. Observe that for each y € V(T;) \ U;, the vertex y is contained in
T;(Z") for some z € V(T;) and 2’ € Dr,(z) such that ¢(z2z") C E(R). Hence

Uil > D ()]~ > IT:(2)]

2€V(T;),2' €D, (2): ¢(22')CE(R)

PACHIED DS > ITi(=)]

Le[k] zeDlefl(mi) z'€ D, (z)NNg($(2))

> D) - > 28" dp(6(2))

Lelk] zeD?;l(mi)

Y

(3.3)
> (1-5A"Ym — Z 2AFL 9enp > (1 — 5BA™Hm — JeA%n L,

Le(k]
Here, we obtain the third inequality as |Tj(z)| < 2AF~¢ for z € D%, (7). As s is an odd integer

and each U; entirely belongs to A or B, without loss of generality, we can assume that there exists
I C [s] such that |I| > (s +1)/2 and (J;c; U; € A. Then

U Ui <(1 —5A " HYm — \/EAZkTL_1>

el

s+1
2

>

>n/2+m/2 —s5—10n/A — sy/cA%n1

2n
>n/2+ A%/4—20n/A — S - VeAFnT!
> 2+ /1= 2008 = S ey

> n/2+ AF/8.

This is a contradiction as either all vertices of ¢(|J;c; Us) belong to A or all vertices of ¢(|U;c; Us)
belong to B whereas |A| = |B| = n/2.
k42

Now assume that A < n*+D?, Thus p = nikfil. Consider an n-vertex tree 1" with root r of
height k + 1 such that every internal vertices has degree at least np/2 = n=1/(*+1) /2 and at most
onp = 2n /(1) Tt is easy to see that such a tree T exists. We assume for a contradiction that T
embeds into G U R and £ holds. It is easy to check (by a similar, but much a simpler argument as
before) that at least (1 — 10kc)n > n/2 vertices are embedded into one of either A or B. However,
this is a contradiction as |[A| = |B| = n/2. O
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4. EMBEDDING AND DISTRIBUTING LEMMAS

In this section, we state and prove several lemmas, which we use later in the proof of our main
result. In Lemma 4.1, we show that if p is large enough, then a rooted forest can be embedded
into G(n,p) in such a way that certain additional properties hold; in particular, we can specify
target sets for every vertex and also require that the vertices are well-distributed with respect to a
specified weight function.

Lemma 4.1. Suppose 0 < 1/n,1/w < &,1/r,1/t and w < log*n. Suppose that (F, R) is a rooted

forest and (R, X1,..., X, X1{,...,X]) is a partition of V(F). Suppose V is a set of n vertices,
(U, Vi,..., Vi, Vi .00 V) is a partition of V, and G = G(n,p) is a random graph on V. Suppose
that ¢’ : R — U is an injective function and f : Uz‘e[r} X! — [0,1]. Suppose that for each i € [r], we
have a multiset B; of subsets of V! and suppose that the following hold for each i € [r]:

(Al)g 1 |Vi] > X5 + 12p7LA(F) + 30p~! log n,

(A2)4 1 |V/| > p~tlogn and | X!| <log?n,

(A3)4 1 for each B € B;, we have |B| < ¢|V/|, and

(Ad)44 Zm/exg f(2") <1 and for each x € X!, we have 0 < f(z) < w1 .
Then with probability at least 1—n~2, there exist a multiset B, C B; for each i € [r] and an embedding
¢ of F into G which extends ¢' such that the following hold for each i € [r]:

(Bl)g.1 ¢(X:) CVi and ¢(X]) CV;,

(B2)y1 B} <275"|By], and

(B3)4 1 for each B € B; \ B!, we have f* (¢, B) < /2.

Proof. For each i € [r], let n; := |V/|, m; := |X]| and ¢; := Y,/ c s f(2'). Note that (A2), 1 implies
n; = |V/| > log®n > w® and m; = |X}| < log®n. (4.1)

By adding some vertices to some sets B € B; if necessary, we may assume that |B| = en; for all
i € [r] and B € B;. Note that if we obtain a function ¢ and a multiset B satisfying (B1)4 1-(B3)4 1
for these multisets, then ¢ also satisfies (B1), 1—(B3)4 1 for the original multisets.

For each component T of F', we consider a breath-first-search ordering (z7 ... ,xﬁ/(T”) of each
component of F, starting with its root {7} = RNV (T). Whenever we have the choice, we give
the vertices in X7 U --- U X, priority over the vertices in X U ---U X/; that is, for every vertex x
in T', the children of x in the former set precede the children of x in the latter set. We consider an
ordering ™ = (21,..., 2y (r)|) such that R = {x1,..., 2z} and (¥|g41,---,Zjv(F)) is an arbitrary
concatenation of (z1... ,xﬁ/(T”) of all components T of F'. Then for all j € [|[V(F)|] \ [|R]],

the ancestor of x; precedes x; and all children of x; appear consecutively after x;. (4.2)

We remark that if we dropped the conditions (B2),4 1 and (B3)4 1, then a simply greedy algorithm
would yield the desired statement.

As for all @ € [r], we have X! C V(F), the ordering 7 naturally gives rise to an ordering
(@i1,...,Tim,) of vertices in X/ such that if x;; = x; and z; 7 = zp for some j < j' € [my],
then ¢ < ¢'. For each s € [my], let X . := {zi1,...,Tis}.

For all i € [r], s < s € [m;]U{0}, and ¢ € [0,¢], let W := (f(zist1)s---, f(Zim,),0,...,0) €

R™~% and let (W ,,...,W,, ) be a random sample drawn without replacement from W. Let

pi(s’,q) = ]P’[q + Z W]’ > 51/2]. (4.3)
j€leni]\[s']

First we estimate p?(0,0). We have

1
= E[ Z W{] =c Z f(xi;) = eqi and o? := - Z (f (i) — eqi/ni)* + Z (0 — eq;/n;)>.
Jj€Elen] j€lma) J€[mi) J€[ns]\[m;]
Then by the convexity of sums of squares, we conclude that

o’ < l(#(ma}(ﬂﬂv/)_%>2+(n’_#)(%>2>

ni \IMaX,sex! fa") \aex! n; maxgsc x/ f(@)/ \n;
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(A24‘1 i(wqi(wfl B %>2 + (ns _wqi)(%)z) < 2 .

Here, we obtain the final equality since (4.1) implies n; > w? and (A4), 1 implies ¢; < 1. As
u = eq; < ¢, Bernstein’s inequality (Theorem 3.3) implies that
(61/2 _ 6)2
4w+ (2/3) (w1 — 0)el/?

pi(0,0) < exp < - ) < exp(—ew/5). (4.4)

Moreover, it is easy to see that the following holds for any s" € [m;]:

1 ifg>el/?

e / _

Recall the notation introduced in (3.1). Suppose B € B; and ¢ : X; , — V/ is an injective function
such that |Bﬂ1/)(XZ(,S)| = 5" and > (1, B) = q. Suppose ¢ is an injective function chosen uniformly
at random among all injective functions from X/ to V;/ extending . Let £p be the event that
¥ (', B) > €'/2. Then

P[Es] = p;(s', q).
Furthermore, we observe that

pi(s',q) =P[Y/ (zis1) € BIP[E | ¥/ (wis11) € B] + P[4 (i 511) & B|P[Ep | ¢ (wiss1) ¢ B)

/

en; — s 1—¢en; —s+s
= S 4 1t fla) + DS
(2 (2
= (1100 m) (ep (s + L+ F@iern)) + (L Op (5 0)). (46)

Here, we obtain the final equality from (4.1) as s, < m,;. For all i € [r], s € [m;] and an injective
function ¢ : X[ — Vj, we define

E@(¢) = pruB ﬂT/)(XZI,s)LfE (T/J,B))

BeB

Moreover, for i € [r] and an empty function g : ) — (), we have

(4.9)
Ei(yo) = p}(0,0)|B] < exp(—ew/5)|B]. (4.7)

Roughly speaking, E;(1) measures how ‘good’ the partial embedding v is. To ensure (B2), 1 and
(B3)4.1, we aim to choose ¢ such that E;j(¢[x:) is not too large.

Let G1,Go be pairwise independent random graphs such that Gy U Gy € G and Gy1,Gy =
G(n,p/3). Let & be the event that for all i € [r], v € V(G) and B € B; , we have

dg, v (v) =np £ (nip)®’® and dg,,B(v) =p|B| £ (nip)/® = enip £ (nip)®/°. (4.8)
Note that (A2), 1 implies that n;p > log® n. Thus Chernoff’s inequality (Lemma 3.2) implies that
P[&) >1—n"% (4.9)

Now we begin our algorithm which gradually extends ¢’ to our desired embedding ¢ of F' into G
in at most n steps, and each step will be successful with probability at least 1 —n~%. The success of
each step only depends on whether a potential set of edges in G; or G2 contains roughly as many
edges as we expect it to have. These potential sets of edges will be disjoint.

First, assume that & holds (this is the only property of G1 we will use). Let ¢ := ¢'. Assume we

have defined ¢y, for some h € [|[V(F)|] \ [|R| — 1] satisfying the following, where X" := {x1,... 23}
®1)} | én embeds F[X"] into G,

®2)j | for each i € [r], we have ¢, (X; NX") C Vi, and ¢, (XN Xh) C V/,

®3)} 1 for each i € [r], we have Ei(¢h|X{) < (14 3log™2 n)'XhﬁXZ{| exp(—ew/5)|B;|, and

@4)2.1 for each h' € [h], either all children or no child of z;, lie in X".

(
(22)j
(23)]
(
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Clearly, @|g| satisfies (<I>1)‘f|1, (<1>2)|4R‘1 and (<I>4)‘f|1 By (4.7), (93 )‘R| holds as well. Let x be

the unique neighbour of zj.1 in {x1,...,z,} (the ancestor of th) and y = ¢p(z). By (4.2)
and (@4)2.1, the set of children of = is {xp41,...,Zhta} for some d € [A(F)]. For each i € [r], let

Vi :=V; \ ¢n(X"). By our choice of the ordering (z1, ... ,Z|v(F))), there exists d’ € [d] such that

{weys s, } = {Thg1 - Tagal N U X;, where (;:=h+d—d +j for each j € [d].
i€[r]
Now we expose the neighbours of y in Gy and let &, be the event that dGQ,@(y) > A(F) for each
i € [r]. Note that

h
_(®2)1 (ADg1 B
Vil > Vil — | X;] > 12p  A(F) 4+ 30p~ " logn.

Thus, by Chernoff’s inequality (Lemma 3.2), we have
_ (3A(F)+10log n)> 3.9

P[&] > 1 —rP[Bin(|Vi| — | Xi|,p/3) < A(F)] <1 — ¢ 5GATF00EN < 1 —p 22
Now, assume that &, holds. For each j € [d — d'], we embed vertices in {ﬂ:h+1, e Thad—a N X
onto distinct vertices in Ng,(y) N V We denote the new embedding by qﬁo and by construction
¢o embeds X" U{xp,1...2p1q_a} into G. Note that by construction ¢o satisfies (<1>1)4 1 (@2)301
where ¢y := h 4+ d — d'. Moreover, (@3)4 1 also holds by (@1)4.1 as X% N X; = X" N X; for each
ielr]

Now we want to iteratively extend ¢; to ¢j41 for j € {0,...,d" — 1} in such a way that ¢;
satisfies (@1)2 17(<1>3)ff 1- We assume now that for some j € [d']U {0} we have defined $j satisfying
(<I>1)ff 17(<I>3)ff 1- Let ‘7@'/ =V/\ @(Xﬁj). Note that since & holds, for each i € [r] and B € B;, we
have .

(4.1)

c o) =" dayvins(y) +log edg, v (y) £ 2(nip)®/
(A2)41

= (L+log ?n)edg, vi(y). (4.10)

8),(A
d Qn(48)’(:2)4'1

We next embed To ensure (<I>3)4”11, we want to use a vertex u € N := N ¢ ,(y) as the image

1
for zy, , which does not increase the ‘E;-value’ too much. We now show that such a vertex ex1sts
Note that there exist i € [r] and s € [m; — 1] U {0} such that =y, = z; ¢41. We define ¢ :=

:= u. For each B € B;,

1
and for each u € N, let v, be a function extending v by defining ), (z,
we write bp := |B N (X )|. Hence

Z Ez(wu) = Z Z p8+1 ‘B N wu(Xl(,erl)‘? fz (ww B))

1)

ueN ueN BeB
— Z Z S (bp + 1, f (1, B) + flae,.,)) Z Z (b, £ (1, B))

BeBueNNB BeBueN\B

s 1 b s 1 b))

= ZdGl sy (05 + 1,7 (4, B) + f(xe,,)) ZdGl\/\B i (b, f7 (4, B)).

BeB BeB

(4.11)
Therefore,
de, o)1 Eilth)
ueN

(4.10),(4.11) i ot n s+1 s
< (1+2log n)Z(spZ (0B + 1, f* (¢, B) + f(241)) + (1 = &)p; " (b, [~ (¢, B) )
BeB
4.6) s
< (14 3log™*n)E;(¢).
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This shows that there exists a choice u € N such that
(@),
Ei(yy) < (L+3log?n)Ei(y) < (1+3log™*n)* " exp(—c*w/5)|Bi|.
We let $J+1 be a function which arises from ;ﬁgj by defining $J+1($zﬁ1) = u. Observe that (@H
extends ¢j and (<I>1) s (<I>3) G0 1old. By repeating this, as ¢y = h + d, we obtain ¢d/ satisfy-
ing (<I>1)Z+1d (CI)?’)ZTle' Let qﬁh+d .= ¢g. Then (<I>4)Z+1d also holds by the choice of the ordering

(@15 s Ty (Ry))-
Observe that the algorithm completes the embedding of F whenever £ A /\xwé L( F){Eh} hold,

which happens with probability at least 1 — n~2. In this case, we define ¢ := ®v(r)| and for each
€ [r], let B :={B € B;: f* (¢, B) > '/2}. Hence (B3), 1 holds. Note that (4.5) implies that

(@3)) (7! (@1) )
Bl = Ei(¢) < (1+3log™*n)™ exp(—ew/5)|Bi| =" 100exp(—ew/5)|B;| < 277 "|By|.
Therefore, (B2)4 1 holds and (‘1>1)|V( ) and (‘1>2)|4VEF)| imply that (B1), 1 hold. O

Remark 1. One can use Lemma 4.1 to verify that there exists an embedding ¢ of (F,R) into
a random graph satisfying (Bl)4 1-(B3)4 1. For any permutation o acting on V(G) such that
(Vi) = Vi and oy, is identity map for each i € [r], the injective map o o ¢ also satisfies (B1)y 1~
(B3)4.1. For any Z;ermutation o, 0(QG) is again a random graph with the same distribution as G.
Let € be the event that there exists an embedding ¢ satisfying (B1)y 1 ~(B3)4 1. Thus, for any two
permutations o and o' on V;, conditional on &, if we choose an embedding ¢ satisfying (Bl)4 1-
(B3)y4.1 uniformly at random then we have P[¢|,, = o | E] = P[¢|y, = o' | £]. In addition, once we
assume € holds and we have chosen ¢ uniformly among all functions satisfying (B1)4 1 -(B3)4 1, for
a function g : V(F) = N and any set U' C V;, the random variable Y,y g(¢~ " (w)) is distributed
as a random variable which is sampled without replacement from a multiset {f(v) : v € ¢~ 1(i)}
exactly |U’| times.

Note that by essentially same proof as Lemma 4.1, we can prove the following lemma. We omit
the proof here. Note that the above remark also applies for Lemma 4.2.

Lemma 4.2. Suppose 0 < 1/n < 1/r. Suppose that (F,R) is a rooted forest and (Xi,...,X,)
is a partition of V(F)\ R, and {U} U{V; : i € [r]} is a collection of pairwise disjoint sets and
|Usep Vi WU = n. Suppose the graph G = G(n, p) is a random graph on vertez set ;e ViU U.
Suppose the following hold:
(Al) g9 |Vi| > |X;| + 12p7A(F) + 30p~tlogn for each i € [r], and
(A2)4 9 ¢ is an injective map of R into U.
Then with probability at least 1 — n=2, there exists an embedding ¢ of F into G which extends ¢'
such that ¢(X;) CV; for all i € [r].

Suppose U,V are two disjoint sets with |U| < |V| and f is a weight function on U. The next
lemma shows that a random injective function ¢ : U — V behaves nicely with respect to f* (o, B)
for some priorly specified sets B C V.

Lemma 4.3. Suppose 0 < 1/n < ¢ < 1/s,1/t,1/k. Suppose that U,V are disjoint sets such that
|U| < |V| = n. Suppose that fi,...,fs : U = Ng and wy,...,ws € N such that ||fi]1 < tn and
I filloo < n/w; as well as w; > e~ 3logn for each i € [s]. Suppose B, ...,Bs are multisets of subsets
of V and |B;| < nF for each i € [s]. Let o : U — V be an injective function chosen uniformly at
random among all possible injective functions from U into V. Then with probability at least 1 —n~3,

for each i € [s] and B € B, we have

Bl |f;
20,5 = P & o AT

Proof. We assume for now that i € [s] is fixed. For each v € V, let X,, := f¥ (0,v) be the random
variable which equals f;(u) if o(u) = v for some u € U and 0 otherwise. For any B C V', we define

up =3 E[X] = Hfz||1’

beB |V|
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and observe that

> (60— 2)" 4 vi- 100 (0 - £2)" < 13+ 22 < 17 + LB < 2
uelU

Bernstein’s inequality (Lemma 3.3) implies that
2
e win| filloo
PU > Xy~ | > e\/wmnfinoo] <exp (- : )
= 1/2 3/2
iep 4SRN fllos + (2/3)ewy*n 2] i1
2, 1/2 1/2
< exp < — min {E wl, e ?/2 }> < p 1Ok,
8 4 fillot

Here, we obtain the second inequality since || f;||1 < tn and because z/(y + z) > min{z/(2y),x/(22)}
for all ,y,2 € RT. We obtain the final inequality since ||fil|oo < n/w; and w; > e 3logn. A union

bound over all i € [s] and B € B implies that with probability at least 1—n =1 Dicps 1Bil = 1 —n=3,
for each B € B;, we have
> = LD s o AT
beB
U

Note that in the above lemma, we may take w; smaller than n/| fill to obtain a stronger
concentration bound.

The next lemma shows that we can embed a star-forest with weights on its leaves into a ‘quasi-
random’ bipartite graph such that the weights are distributed nicely.

Lemma 4.4. Suppose 0 < 1/n < ¢ < d,1/t,1/k < 1, and s < n. Suppose that G is a bipartite
graph with vertex partition (U,V) and |V| = n. Suppose By,...,Bs are multisets of subsets of V
and |B;| < n*. Suppose F is a star-forest with at most n leaves and v : Cen(F) — U is an injective
function. Suppose fi,..., fs: L(F) — Ny are functions such that the following hold:
(Al 4 Ifilloo < €*n/log®n and || fi]l1 < tn for alli € [s].
(A2)4 4 For each u € U, we have dg(u) = (d £ €)n and for each v € V, we have dz (¢, Ng(v)) =
2 reV(F): p(z)eNg () WP (2) = d|L(F)| £ en.
(A3)4 4 We have Z dp(z)dp(2') < en®.
za': P(@)y(a)eE(Ja(U,de))

Then there exists an embedding ¢ of F' into G which extends v and satisfies the following:
(Bl)4 4 For alli € [s] and B € B;, we have

£5(6,B) = Z Z fi(y)’NG;ﬁ(x)) N B| 4 1/200,,

zeCen(F) yeNF(z)

Proof. Observe that we may assume that 1 is a bijection by ignoring the vertices in U outside the
image of 1. Our strategy for the proof is as follows. We replace every vertex u € U by dp(¢~1(u))
distinct copies of v and obtain a new bipartite graph G’. Clearly, there is a bijection between the
matchings in G’ covering all the copies of vertices in U and the embeddings of F into G.

We write £ := |L(F)| and {u1,...,up} = U. Let U* := {u;j: i € [m],j € [dr(¢ " (u;))]} U
{uo1,...,u0n—r}. We claim that there exists a bipartite graph G’ with vertex partition (U*,V)
such that the following hold:

(al) |E(Jg (U*,d,2¢))| < 2en?,

(a2) for each w € U* UV, we have dg/(w) = (d £ 2¢)n, and

(a3) for each u;; € U* with ¢ > 0, we have N¢/(u; ;) = Na(u;).

To see that such a graph G’ exists, we let Ngr(u; ;) := Ng(u;) for each u; ; € U* with i > 0, and
for each j € [n— /], let Ngv(up ;) be a subset of V' of size dn chosen independently and uniformly at
random. Chernoff’s inequality (Lemma 3.2) implies that with probability at least 1 —n™", we have
the following for all j € [n —¢],v € V and w; ;» € U* \ {ug;}:

der(v) = A3 (1, Ne(v)) + d(n — 0) £ en 24 (4 1 90y,
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dG”(UO,ja um/) = (d2 + 2€)n.
These bounds on the (co)degrees imply that

(A3)4.4
|E(Jer (U*,d, 2€))| = {uijus g : wiuy € E(Jo(U,d, 2))| <) dp(x) < en?

Here, the summation in the third term is over all (x,z’) with ¢(m)¢(ﬂ: ) € E(Jg(U, d,e)). Therefore,
(al)—(a3) hold and in particular such a G’ exists.

We fix a bijection 7: {u;; : i € [m],j € [dp(¥ " (u;))]} — L(F) such that 7(u; ;) € Np(b~(u;))
for all i € [m] and j € [dr(»"!(u;))]. Observe that any matching o : U* — V in G’ covering
{u;j:i € [m],j € [dp(¥~'(u;))]} yields an embedding of F into G' by mapping = € L(F) onto
o(t7(z)). We will show that a perfect matching of G’ chosen uniformly at random among a large
set perfect matching leads to an embedding with the desired properties with probability a least 1/2.

For each u € U*, let g;(u) be the ‘f;-value’ of the corresponding leaf given by 7; that is,

| filr(w)) if u=wy j for some 7 > 0,
gi(u) := { 0 if u = g for some j' € [n —£].
Let T := ¢ 'logn. Next we partition U* into sets U, ..., U and V into sets V1,..., VT such that
the following hold for all u,u' € U*,v € V,i € [s],¢' € [T] and B € B;:

(a4) U7 = V| = [(n+ ¢ = 1)/T],

(a5) dgr e (u), dgr o (v) = (d £ 3¢)|U*| and der ye (u,u') = der v (u, ') /T £ n?/3,

(ab) Zu”eUW gi(u")y =m;/T £ en/T, where m; := erL(F) fi(z),

(a7) |[V¥ N B| =|B|/T +n*? and [Ng(u) N BN VY| = |Ng(u) N B|/T +n*?, and

(a8) [E(Jgupey (U, d,20))| < 3e|UY[.

Indeed, such a partition exists, because a random partition Uy,...,Upr of U* and Vq,...,Vp of
V' chosen uniformly at random such that |U;| = |Vi| = [(n+i—1)/T] satisfies (ad)—(a8) with
probability at least 1/2. Indeed, that property (a4) holds by construction, (a5) and (a7) holds with
probability at least 1 —n~! by Lemma 3.2, (a6) holds with probability at least 1 —n~! by Bernstein’s
inequality (Lemma 3.3) and (a8) holds with probability at least 1 —n~! by Lemma 3.2 (for example
by showing that every vertex u € U™ satisfies d; ;0 (u) < dy(u)/T + n?/3 for each ¢' € [T] where
J = Jg(U*,d,2¢) with probability at least 1 —n=2.)

By Theorem 3.9, (a5) and (a8) imply that for each ¢ € [T, the bipartite graph G[U* U*] is
(17, d)-super-regular. For each ¢’ € [T, we select a perfect matching oy : UY — V¥ of G[UY, V]
uniformly at random and let o := {Jyepyor. (We aim to define later ¢ = o o 7~1.) Hence, for all
B € B; and i € [s], we conclude

wp = E[Y gi(a_l(b))]:iE[ > gle7'e))] = ZZgz Plov(u) € BN VY]

beB U=1 peBnV¥ U=1yey?
T 1/140
Thm 3.4 142 p
=N gi(“)w’NG'(u)ﬂBmV |
=1 eUZ/
@7) (‘NG’ (u) N B|/T +n?*? 1/140)
+
Z > 9 in]T 3¢
U=1yeu?
9i(w)|Ner(w) NB| | 15150, fi(y)|[Na(é(x) N Bl | /150
) in e/ = 3" N y + /1505 (4.12)
uelU* z€Cen(F) yeNp(x)

For each (' € [T, let X}(¢') = E[X,cpgi(c' (b)) | o1,...,00]. Then {X}(¢")}peqo,..1} is an
exposure martingale. Also it is easy to see that ]X;:(E’) — X;(ﬁ/ —1)] < 2tn/T as changing oy can
change the value of X]i»(ﬁ’) at most Y, yyer gi(u) < my/T +en/T < 2tn/T (by (a6)). Thus Azuma’s
inequality shows that

£1/90,,2

(a1 — 1180, ] < 1 _ _ -1 _—1/2 ‘
P{%gz(a (b)) =pip*e n]_l 2€Xp( 2T(2tn/T)2>_1 exp(—e logn)
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Thus a union bound over all i € [s], B € B; together with (4.12) shows that there exists a perfect
matching o of G'[U*, V] such that for any B € B; and i € [s] the following holds:

_ _ fiy)INg(é(x)) N B'| | 1180
fP(oor ™ B) =) ai(o7'() = £eMn.(413)
bEZB :BEC%(F) yeg(m) dn

This also yields an embedding ¢ = o o 7! of F into G as desired. U

The following is an easy lemma showing the existence of an embedding of a star-forest into a
bipartite graph that satisfies mild quasi-random properties.

Lemma 4.5. Suppose 0 < 1/n < ¢ € d < 1 and 0 < v < e. Suppose that G is a bipartite

graph with vertex partition (U, V') and |V| = n. Let F be a star-forest with at most n leaves and

¥ : Cen(F) — U is an injective map. Suppose the following hold:

(Al)y 5 For each u € U, we have dg(u) = (d + e)n.

(A2)4 5 For allv € V, we have d% (¢, Ng(v)) > vn, and for all v € V except at most vn vertices,
we have dy (1, Ng(v)) = (d & &)n.

(A3)4 5 We have

> dp(z)dp(z') < en.
z,x’: P(x)Y(a’)eE(Jq(Udg))
Then there exists an embedding ¢ of F' into G which extends 1.

Proof. We may assume that v is a bijection by ignoring the vertices in U outside the image of
Y. Let {u1,...,un} = U. Next we replace each vertex u; € U by dp(»"!(u)) copies of u;. Let
U* :={u;j i € [m],j € [dr(¢"1(u;))]} and let G’ be the bipartite graph with vertex partition
(U*,V) and E(G") := {u; v : ujv € E(G)}. Then (A3), 5 implies that |E(Jg (U*,d,€))| < en?.
Consequently, Theorem 3.9 implies that G’ is (¢!/9, d)-regular.

Let V' := {v € V : d} (¢, N¢(v)) < (d — €'/6)n}. Then (A2), 5 implies that |V’| < vn. Since all
v € V' satisty dg(v) > vn, we can greedily pick a matching M’ in G’ of size |V’| covering V'. As
v < g, the graph G’ \ V(M) is still (261/, d)-regular, and every vertex u € V(G') \ V(M) satisfies
|Ngr () \ V(M')| = (d 4 2¢Y/%)n. Theorem 3.4 implies that G\ V(M) contains a perfect matching
M". Hence M’ U M" is a perfect matching in G’, which leads to the desired embedding ¢. O

The following lemma provides a partition of a collection of vectors in N8 into well-balanced parts.
We use this lemma later to assign subforests of 7" to different clusters of the regularity partition (see
Section 6). Recall that for i = (i,h) € N x [2], we write i for (i,3 — h). To be a bit more precise, for
a graph G, suppose we have a partition {Vi}ie[r}x[z} of V(G) as given by Lemma 3.10 and suppose
we decide to embed a subtree 7" into G[V4, Vi|. Suppose (4, B) is the unique vertex bipartition of
T’ such that r(T") € A and we further decide that r(7”) shall be embedded into V;. Then A has
to be embedded into V; and B into V;. We associate a vector q € N® with such a decision (one for
each subtree) where each coordinate captures how many vertices of a certain type are embedded
into certain clusters due to this decision. Then a partition of the decision vectors corresponds to a

assignment of subtrees to vertex classes.

Lemma 4.6. Suppose r,A1,A3,A3 € N and 0 < 1/r < B < 1/t < 1. Suppose F C N§ and
{aitiepixpg 8 a probability distribution on [r] x [2]. Suppose the following holds for all q =
(q1,...,q6) € F:
(Al)46 1 =00rqg2=0 or g—; > 2r2 or g—f > 2r2,
(A2)46 q1,92 < A1, g3,94 < Dg, g5,96 < A3, and
(A3)46 1/(2tr) < o4 < 2t/r for each i€ [r] x [2].
Then there exists a partition {Fi}ie[r}X[Q} of F such that the following hold:

(Bl)4.6 For each i,i’ € [r] x [2], we have

a;1<qu+zq2) —a;l( ST q2>

q€F; q€F; qeFy q€Fy

< T5A1)

(B2)4.6 ZqEFi q3 + ZqEFL qa4 = ai/ﬁQ ZqGF(% +qa) — T2A2’ and
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(B3)4.6 Lqer, &5 + Laer, 86 > % Xqer (g5 + a6) — 723,

Proof. Our strategy for the proof is as follows. We first assign a few vectors of F randomly to the 2r
parts of the future partition to ensure that (B2)4 g and (B3), ¢ already hold for every i € [r] x [2].
Afterwards we greedily assign the rest according to some target function that ensures that (Bl)y g
holds.

For j € [3], let mj; := 3 cp(q2j—1+q2;). For each vector g, we choose an index iq € [r] x [2]U{0}
independently at random such that i € [r] x [2] is chosen with probability 5/(2r) and 0 is chosen
with probability 1 — 8. For each I € [r] x [2]U {0}, i € [r] x [2], and j € [3], let

hi={q:iq=1} and Tij = Z q2j—1 + Z q2;- (4.14)
q€F] qEFE

Note that for each i € [r] x [2] and j € [3], we have
B g pm;
[‘] 2rzq2] 1+2TZ(]2] 2r
qeF qeF
For each j € [3],i € [r] x [2], let £(j,1) be the event that
. Bm; Bm; ﬂrQA»
T =—"+ —2,—5.
Py T U 2

Let Tij(s) = E[Tf | ig(1)s- -+ »iq(s)] be an exposure martingale where q(1),...,q(|F|) is an arbi-
trary ordering of F. It is easy to check that |T7(s + 1) — T7(s)| < max{q(s)2j—1,4q(s)2;}. Thus
Azuma’s inequality (Theorem 3.1) implies that

-B? max{m?/(16r2), T4A?/4}
2§:quInaX{(qu1)2a(qZﬂ2}>
—B? max{m?/(16r2),r4A?/4}
2m;A;

PE(j,1)] =1 —2exp <

> 1—2exp< ) > 1 — 2~ F/50,

The final inequality is easy to verify by considering the case m; > r3A; and m; < r®A; separately.
Thus, a union bound over all i € [r] x [2] with the fact that 1—2r-2e#°7/50 > 0 as 1/r < 3 ensures
that there exists an assignment such that £(j,1) holds for all j € [3] and i € [r] x [2]. By some
abuse of notation, we let {F}};cjyx[g be a such choice and let F(y := F\ {Fj :i € [r] x [2]}. Observe
that provided Fj C F; for every i € [r] x [2] and some partition {F;}ic[,x2 of F, by (A3)4 g, both
(B2)4.6 and (B3)4 ¢ hold.

For a partition F = {F{ }icjy)x[g of Fp (vecall that T} is defined in (4.14)), let

wr@):== D o+ Y @, tr(i) =T +wr(i),

qcF; q<F}
tmax(F) := max oflt; i), tmin(F) := min oflt; i),
(%) ier]x[2] ' (1) (%) ie[r]x[2] ' (1)

Inmax(F) == {i € [r] x [2] 1 o] "t£ (i) = tmax(F)},  Tmin(F) == {i € [r] x [2] : o5 "t (1) = trmin(F)}-
Later we aim to take F; = F{ UF}. In order to achieve (Bl), g, we select F such that tmax(F) —
tmin(F) is minimal.
To this end, choose a partition F = {F} : i € [r] x [2]} of F{, such that

® tmax(F) — tmin(F) is minimal, and subject to this,

o [Inax(F)| + [Imin(F)| is minimal.
Let

Fl:={qe€F,:q>q@}and F?:={q€F\:q > q}.

If tmax(F) — tmin(F) < r°A; holds, then clearly we may set F; := F{ UF} for each i € [r] x [2]
and we found the desired partition satisfying (B1)4 6—(B3)4 g. If m1 < r3Aq holds, then we obtain
tmax(F) — tmin(F) < r2my < rA; as ai_l < r? by (A3)4.6- We will show that at least one of these
scenarios always applies and assume for a contradiction that

my > r3A; and tmax (F) — tmin(F) > rPA;. (4.15)
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Since £(1,1) and (4.15) hold, for each i € [r] x [2], we obtain

T! < @ (4.16)
We choose two indices i* € Iax(F), ix € Inmin(F). Note that

tr(i*) = tx(@i" Z o = Qi+ Z oo 1*115_7: ) > Z aja; 1t]-‘ ) > ag=my. (4.17)

IE[T]X[ ] ie[r]x[2] ie[r]x[2]
Note that (A1) g implies that
ﬁm1
Z @ = 27’2 —|— 1 - 27“ - and Z N = : (4.18)
qeF! qceF?2
Note that
tr(i) = Ti1+ZQ1+ZQ2=T11+ Z q + Z @+ Z q2 + Z 12
q€Fy q€Fy qeF;NF! qeF;NF? q€F;NF! q€F;NF?
(4.16),(4.18) 98m,
< o a+ D e+ iz
q€eF;NF! qEF;NF?

Thus, if tz(i) > 35m; /7, then

(4.15)
m
o+ D q2>ﬁ L> A (4.19)

q€eFNF! qu*mF2

For each i € [r] x [2] with tx(i) > 38m1 /r, we choose a set X; C (Ff NF1) U (Fin F?) such that

2A: < Z (@1 + q2) < 4A;.
qeX;

Indeed, this is possible by (A2), g and (4.19). Note that by (4.17) and the fact that § < 1/t and
a; > 1/(2tr), we have tx(i*) > 38my/r. Now we consider the following three cases. In each case
we construct a partition that contradicts our choice of F by reallocating X+, Xj .

CASE A. a;'t7(i") < tmax(F) — r?Ay.

In this case we use that ai_*lt #(1*) is not too large and reallocate X;- accordingly. We define
Fﬁ = F. AX-, inE = Fi. AX;+, and Ffﬁ = F} for each i € [r] x [2]\ {i",i"}

and let F7# := {F#}ie[r}x[z}- Then, since 1/(2tr) < o4+, o4« < 2t/r, we have

4.15 (Al)gg 4A
tnin (F) ( < )a;l(tf(i*) —4A1) < aizltf#(i*) < a;} <t;(i ) —2A1 + 5 21> < tmax(F),

4A
7fmin(]:) < OZ;*I <t]:(l*) + 2A1 - ?;) < ai:lt]:# (1*) < a;*l(t]:(i*) + 4A1) < tmax(]:)'

Since F and F# coincides on [r] x [2]\ {i*,i*}, either tpax (F7) = tmin(F7) < tmax(F) — tmin(F) or
tmax(F#) = tmin(F7) = tmax(F) — tmin(F) as well as Inax (F?) C Imax(F) \ {i*} and Inin(F#) C

Inin(F). In either way, we obtain a contradiction to the choice of F.

CASE B. o; 't (i,) > tmax(F) — 72A1.
Observe that

1
t]:(i*) > o5, ((Xi_*lt]-‘(i*) — T2A1) > 4—t2t]:(i*) — 2tr\q

(417)  qun (4.15)
S RPN 0y
4¢2 r
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Thus X;j_is defined. Then similarly as in the Case 1, we can construct F # as

F{ .=F; AX;, F}

L,

=F{ AX; , and Ffﬁ = F} for each i € [r] x [2] \ {is,i,}
and let F# := {Fi#}ie[r]xp]- Similarly as in the Case 1, we obtain either tpa(F7) — tmin(F7) <
tmax(F) — tmin(F) o tmax(F7) = tmin(F7) = tmax(F) — tmin(F) and Inax(F7) C Ipax(F) while
Iin (F#) = Inin(F) \ {i.}, we derive a contradiction.
CASE C. ai'tr(i*) > tmax(F) — r2A1 and o5 't£(i,) < tmax(F) — r2A1.
Note that in this case, by (4.15) we have i* ¢ {i,i,}. We let
FlL = F{\Xp, FL=Fj\ X, Ff =F] U(Xp- 0F'), F} :=F} U(X; NF?), and
F7 .= F} for each i € [r] x [2] \ {i*,i*, 1,1, }-
Let F7 := {F?}ie[r]x[g]. Then, since 1/(2tr) < aj«, o4+, a4, , 5, < 2t/r, we have
(4.15)

tmin(F) < apt(tr(i*) —4A1) < apltz4 (1) < ap'tr7 (1) < tmax(F),
4.15)
tmin(F) ( < tmax (F) — 72y — 8trA; < o Y ra (i*) < aizlt;(i*) < tmax(F),
ot o . . . (4.15)
7fmin(]:) t}'(l*) Q;, t]—‘#(l*) < Q. (t]-'(l*) ‘|’4A1) < tmax(]:),
75min(~7:) lt}'( *) ;ltf#(i ) < O"il(t]-'(i )+4A1) < tmaX(]:)-

Since F and F# coincides on [r] x [2] \ {i*,i%,ix,1,}, either tma(F7) — tmin(F7) < tmax(F)
7fmin(]:) or tmax(]:#) mln(]:#) = max(]:)_tmm(]:) and Imax(]:#) - Imax( )\{1 }and Imln(]:#)
Imin(F#) \ {i.}. In both cases, we obtain the final contradiction.

ain

5. PREPARATION

We start this section by setting up some terminology, constants and notation for the proof of
Theorem 1.1. For given k and «a, we choose constants so that

1 1 1 1
M*<<5<<5<<6<<61<< <<6k<<,u<<77<<d,z<<E,a. (5.1)

Let M := 10kM. The roles of C,C’,¢,d,t are explained in (G1)-(G3) and ¢y, ...,e are ‘error’
parameters for the k steps of our embedding process. Recall that we are given an n-vertex graph

G with minimum degree at least an and n > ng, a binomial random graph R € G(n, Mp), and an
n-vertex tree 7" with A(T') < A. Note that in the setting of Theorem 1.1 we assume that

1
0< —<x
no

nt ) < A < min {nl/k, MlZgn} and p:= max {n_k/(k“), Ak“n_Q}. (5.2)
Let p’ :== MSp. It will be convenient to consider mutually independent random graphs Ry, ..., Ry43 C

R such that R; € G(n, M,p'). Such random graphs exist by standard probabilistic arguments.

First, we apply Lemma 3.10 to obtain a partition {V;}icpxjg of V(G) and a subgraph G' C G
satisfying the following for all ¢ € [r|:

(G1) G'|W, V4] is (e, d)-super-regular,

(G2) n/tr <|Vi| <tn/r, and

(G3) ' <r<C.

Later we will embed T into G’ U Uk+3 R;. For the remainder of the section, we focus on finding an
appropriate edge-decomposition Fi,..., Fyy1, Fy,..., F}, L, Llest of T. The tree T will be a fixed
tree for the rest of the paper and we denote by .Z the set of leaves of T. Choose a leaf x1 of T" as
the root of T" and consider a breath-first-search ordering z1,...,z, of V(T'). From now on, for any
subtree 7" C T', we always consider T” as a rooted tree (1", x;) where ¢ = min{j : x; € V(T")}.

As explained in Section 2, we need to decide whether we use Lemma 4.5, Lemma 3.6 or Lemma 3.7
at the last step to finish the embedding. We introduce some more terminology. For a leaf x of T
and its ancestor y, we say that the vertex x and the edge xy are heavy if |Dp(y) N.Z| > np'/logn
and light otherwise. Let £ be the set of all light leaves of T" and let H be the set of all heavy leaves
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of T. Thus, if a vertex has one heavy leaf as a child, then it has at least np’/logn heavy leaves as
children.

If |'H| < 4nn holds, we will use Lemma 3.6 or Lemma 3.7 to finish the embedding. This case is
much simpler than the remaining one. We will deduce it from the case |H| > 4nn in Section 8.

We assume now that

|H| > 4nn. (5.3)

We aim to decompose E(T) into forests Fi,..., Fyy1,Fy,..., F}, L1, L't and embed the edges
in F; and L; into R by using Lemma 4.1, and the edges in F and L!** into G’ by using Lemma 4.4.
We embed each forest one by one in the following order Fy, F{, Fo, F3, ... F}, Fyy1, L1, L't We
also ensure that the roots of a forest in this list belong to the forests that precedes it in this list.
In order to use Lemma 4.1, we want Fy,...,Fjy1, L1 to have maximum degree at most O(np’).
Next, we inductively define an edge colouring c¢: E(T') — [2] and two functions h: V(T') — Ny and
B V(T) — Ny and use them to find the decomposition of F(T') promised above.

We first sketch the ideas behind our approach. We define an edge colouring ¢ such that every
path between x; and a leaf of T' contains at most k edges of colour 2 (see Claim 3). We define
E(F;) as the collection of edges e of colour 1 such that the path between z; and e contains ¢ — 1
edges of colour 2 and define E(F}) as the collection of edges of colour 2 such that the path between
x1 and e (including e) contains ¢ edges of colour 2. This definition ensures that all the roots of
F! belong to ‘previous’ forests. For each x € V(T), h(x) measures the height of the vertex x in
the component induced by edges colour 2 (see Claim 3), and h/(z) roughly measures the maximum
number of heavy-leaf children of a descendant y of x in a component induced by edges of colour
2. At the end of the section, we prove several properties of this decomposition for later use (see
Claim 4 and 5).

Assume that for some i € [n] we already have defined h(z;),h'(z;) and c(e) for all j € [n] \ [7]
and e € Sp(x;). Now we will define h(z;), ' (z;) and c(e) for all e € Sp(z;). If z; is a leaf of T,
then we simply define

h(z;) := 0 and K (z;) := 0. (5.4)

Assume now that x; is not a leaf. Then h(z), h’(z) are defined for all vertices © € Dy (z;). For each
£>0, welet H := {z € Dp(x;) : h(z) = £} and

0 if |.Z N Dr(x;)| < np' and |HY| < 10np’ for all £ > 0,
h(z;) =< 1 if |- N Dr(x;)| > np' and |Hf| < 10np’ for all £ > 1,
max{f +1: |H{| > 10np'} otherwise.
(5.5)
Observe that h(xz;) > 0 if and only if x; has either more than np’ leaf-children or at least 10np’
children of a particular h-value. If this applies, we must colour some edges in St(x;) with colour 2

as otherwise the degree of F; becomes too large.
Next we define ¢ and h'. If h(x;) = 0, then we simply define for each x € Dp(x;)

c(z;z) =1 and ' (x;) := |H N Dr(z;)|. (5.6)
If h(z;) > 0, then we want to colour the edges z;y € Sr(z;) with colour 1 if either |T'(y)| is large,
h'(y) is large, or |Dr(y) N H| is large. Exactly for this purpose, we define sets A;, B;, B] below. To
this end, let {y1,...,ys} :={y € Hl.h(g”)_1 : B (u) >0} with 2/(y1) > -+ > B/ (ys), and let z1,..., 2y
be ordering of Dy(z;) \ & such that |H N Dyp(z;)| > |H N Dr(zy)] for 1 < j < j <. Let

L N N1 ' {1 < <2np'} i s> By
A :={x € Dp(x;): |T(z)| > (np") " |T(xs)|}, Bi:= { (1< < s} if s < Bny,

Bl :={zy: 1 <4 <min{s',np'}}. (5.7)
Now we define h'(z;) and the edge colouring ¢ on St(x;). For each x € Dp(z;), let

1 ifz e Z and |Z N Dr(x;)| <nyp,
c(riz) =4 1 ifzxe A;UB;UB;UJ,. \Hflﬁlonp'(Hf \2), (5.8)
2 otherwise
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and we also define

h(xz;)—1

b (z;) := max{h'(z): x € H; yo(xix) = 2}, (5.9)

By repeating the above for each i = n,...,1, we obtain edge colouring ¢, functions h and h'. We
continue with observations regarding c,h and h’ for later use. By the definition of A’ and H, if a
vertex has one heavy leaf child, then it has at least np’/log n heavy children. Thus for any z € V(T),

we have
/

’ np
_ 1
W (z) € {0} U [bgn,n} (5.10)
Since |T'(x)| > Y- ca, IT(x)] > [Asl(np’) 1T (x;)], we conclude that
|4;] < np'. (5.11)

Moreover, if ¢(z;z) = 2 for some = € Dp(x;), then x ¢ A;. Thus we have
if © € Dr(x;) with c(z;x) = 2, then |T(z)| < (np’) YT (x;)|. (5.12)
For each i € [2], we define A
F':={ecT:c(e) =1i}.
Let C! be the component of F'! which contains the root z;. We collect further properties of h, b’
and c.

Claim 1. Suppose y € Dr(x;) for some i € [n]. Suppose h(x;) = £ > 0 and c(z;y) = 2, then
h(y) < £. Moreover, Dr(x;) contains at least np' vertices y such that c(z;y) = 2 and h(y) =€ — 1.

Proof. By (5.5) and (5.8), we have c(z;y) = 2 only if h(y) < h(z;) = ¢.

For the second part of the claim, we first consider the case that h(x;) = 1 and [ £ N Dp(x;)| > np'.
By (5.4) and (5.7), we have £ N (A4; U B; U B}) = (). Thus (5.4) and (5.8) imply that the edges z;y’
for all ' € £ N Dp(z;) are coloured 2 and h(y’') = h(x;) — 1, and the claim holds.

If |.Z N Dr(z;)| < np’ or h(x;) > 1, then (5.5) implies that |H | > 10np’. Hence

(5.7),(5.11)
|H7\ (A UB,UBUZ) > 100 — (np’ + 5np +np' +np') > np.

Since (5.8) implies c(z;y') = 2 for each y' € H{ 1\ (4; UB;UB/U.Z), there are at least np’ vertices
y' such that ¢(xy’) = 2 and h(y') = ¢ — 1. O
Claim 2. Suppose i € [n], ' (xz;) > 0 and h(z;) =€ > 0. Then Drp(x;) contains at least np’ vertices

y with c(x;y) = 1 as well as K'(y) > h'(z;) and h(y) = £ — 1. Moreover, Dy (x;) contains at least
np' vertices y with c(x;y) = 2 as well as W' (y) > np'/logn and h(y) =€ — 1.

Proof. Let {y1,...,ys} := {y € H : B/ (y) > 0} with &/ (y1) > --- > h'(ys). By (5.7), (5.8) and
(5.9), the assumption that A'(x) > 0 implies that B; C {y1,...,ys} and so s > 5np’. Hence

1, 0} \ (AU B U BY| = {gmprsns e} \ (A UB)| > 3 — (AU BY] 5 .
Note that by (5.7) and (5.9), for any j" € [2np], we have
c(zyj) =1 and h'(z;) = max{h'(y;) : 2np < j < s,y; & A; U B;} < W/ (yjr).

Thus, there are at least 2np’ vertices y such that c(z;y) = 1, h'(y) > h'(x;) and h(y) = 1
Furthermore, for any ¥ € {yanp/+1, - - -, Ys }\(A;UB)), we have c¢(zy’) = 2, ' (y') > 0 and h(y') = (1.
This with (5.10) implies A'(y’) > np’/logn and so proves the claim. O
Claim 3. Suppose T' € C(F?). Then for any vertex y € V(T"), the tree T'(y) has height h(y) and
\D;ﬂgy) (y)| > (np" )W), In particular, the height of T' equals £ = h(r(T")) and | D% (r(T"))| > (np')’.
Moreover, for any y € V(T'), we have 0 < h(y) < k.

Proof. Suppose y € V(T"). We proceed by induction on ¢ := h(y). If ¢ = 0, then by (5.5) and
(5.8), for every vertex z € Dr(y), we have c¢(yz) = 1. Thus T”(y) has height 0 and |D2,(y)| =
Hy} =1 = (np')°. Hence the statement holds for ¢ = 0.

Assume that the claim holds for ¢ — 1 > 0. Suppose h(y) = ¢’. Then Claim 1 ensures that any
z € Dpi(y) satisfies h(z) < ¢ — 1. This with the induction hypothesis shows that height of 7"(y)
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is at most ¢’. Moreover, by Claim 1, there are at least np’ vertices yi,...,yny € Dr(y) which
satisfy h(y;) = ¢ — 1 for i« € [np']. Thus by the induction hypothesis, 7" has height at least ¢,
and |DY, (y)| > Zlni)ll IDE ()| = (np!)(np!)! ! = (np/)?. This proves the first part of Claim 3.
Moreover, for any y' € V(T'), we conclude that

R+ 2 ) < DR () < 1,

Thus 0 < h(y') < k. O

If there are many heavy leaves attached to a component of F?2, then the A'-value of a vertex
in V(F?) is high. Claim 2 shows that there are also many heavy leaves attached to a nontrivial
component of F'!. To better describe this phenomena later in (F12), we define the following vertex

set B* and star-forests L1, Eg, Eg (recall that C' is the component in F'' which contains z1):

B := |J D)), Ly= |J {ay:y € Dr(x)nH}, (5.13)
T'eC(F2) zEB*

Ly := U {zy:y e Dp(x)NH}, and Ls:= U {zy:y € Dr(x)NH}. (5.14)
zeV(C1) zeV(T)\(B*UCT)

Note that B* and V(C?) are disjoint, as for any x € B* and y € V(C*), the path Pr(z1, ) contains
exactly k£ > 0 edges of colour 2 and Pp(z1,y) contains no edge of colour 2. As every edge in Ly, Eg
and Eg is incident to a leaf, the star-forests L1, EQ, Eg are pairwise vertex-disjoint.

Observe that by Claim 3, all edges e € L; satisfy c(e) = 1. For each i € {2,3}, we partition the
edges in L; into two sets L; and L, in such a way that the following holds for all z € V/(T') \ B*:

1 1
Su(@)NF' = §; ()N F' and Z[Sp (@) N F?| |8, (@) N F? < SISp (@) N F?. (5.15)

This is possible as (5.10) implies that either |Sz ()] = 0 or |Sf (2)] = np'/logn > 2, and by
(5.8) we have c(e) = c(€’) for all e, e’ € Sz,(x). Then it is easy to see that for each i € {2,3} and
z € V(T)\ B*, we have dy;(x)/2 < dp,,(x) and dz (¢)/3 < dp, (). Thus we have

L] > ZIEi. (5.16)
As Ly, Eg, Eg are pairwise vertex-disjoint star-forests and L; C EZ for each i € {2, 3}, the star-forests
Ly, Lo, L3 are vertex-disjoint such that L(Lq U Lo U L3) C H.

Note that as C'! will be embedded into the random graph R, so the images of the centre-vertices of
Lo will possess very strong ‘quasi-random’ properties. Thus, if |Ls| is sufficiently large, the images
centre vertices of Lo carry enough ‘quasi-randomness’ to apply later Lemma 4.5 for the sake of
embedding Ly at the end of algorithm. Indeed, by using (5.3) with property (F12) in Claim 5, we
can guarantee that |Ls| is never too small. To show this, we use some relations among L1, Ly and
Ls. The only purpose we defined L), L is to avoid making the trees in F, too ‘unsymmetrical’.

Recall that, as stated in (5.3), we assume that T has at least 4nn heavy leaves. We will adapt
our analysis of T" according to the following two cases.

CASE 1. |Li| > nn.
In this case, we let L5t .= L.

CASE 2. |Li| < nn.
In this case, we let L% := Ly U L.

Observe that in Case 2, (5.3) and (5.16) imply that |Lo U L3| > nn.
Let

A¥ — L(Llast)

be the set of all leaf-vertices of L!?!. The vertices in A* (and so the edges on L!?*!) will be embedded
the final round of our embedding algorithm.
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Next, we partition T — (L; U L'**) into edge-disjoint forests Fy, ..., Fj4; and Fg, ..., F] based
on the colouring c. For every edge z2’ € E(T) with 2/ € Dp(z), let
f(za') .= |{e € E(Pr(z1,2")) : c(e) = 2}|.
We claim that for any e = xz’ € E(T), we have
fle) <k. (5.17)
Indeed, suppose Pr(z1,z') contains exactly s = f(zz’) edges which are coloured by 2. Then (5.12)
implies that 1 < |T'(z')| < (np')~%|T(x1)| < n'~5p'~°. As (5.2) implies np’ > n'/*+1) we obtain
(5.17). For each i € [k + 1] and ' € [k], let
Fi:={ec E(FY)\ (LiUL"Y"): f(e)=1i—1} and F} := {e € B(F?)\ (L1 U L") f(e) =1'}.
(5.18)
By (5.17), Fi, ..., Fp1, FY, ..., F}, L't L form a partition of E(T). It will be convenient to define
V(EFy) := {x1} with E(Fy) = 0 and R(Fp) := 0 as well as Fjj := (). Moreover, let
"= |J F and F¥.=FurL'
1€[k]
Observe that F2 C F# and F# may contains some edges in Ly U L3 of colour 1. We also want to
classify the components of F' and F# according to where their roots attach. For each i € [k + 1],
let H;(F') be the components of F' whose root lies in V(F;) and let H;(F#) be similarly defined;
that is,
Hi(F"):={T" € C(F'): 7(T") € V(F;)} and H;(F#):={T' € C(F#): r(T") € V(F})}.

For a vertex y € A*, if x := ar(y) belongs to V(F;) \ R(F;), then it is easier to use Lemma 4.5
as z is randomly embedded using the random graph R (as opposed to the case when zar(z) is
embedded into an edge of G'). We distinguish such vertices as A; as follows and we partition A*
into Af,...,A;,, as follows. For each i € [k], let

Af:=A"N U L(T") and A;:=A*N U Diiast(y)
T/ H;(F#) YyEV (Fi)\R(F;)
We collect further properties of our decomposition of E(T) in the following two claims.

Claim 4. The following statements hold for each i € [k]:

(FO1) The forests Fi,..., Fyi1 are vertex-disjoint.
(F02) The forest F is a star-forest that is either empty or each component has size at least np'/2.

F03) <UVFt U VF') ( U veu V(Fg)):R(F;).

te(i] te[i—1] te[k+1]\[4] telk]\[i—1]
/ /
(F04) < Uv)u U V(Ft)) N < U veyu U viF ) R(Fi+1) U R(F ).
te(i] teli] te[k+1]\[4] te[k]\[4]

(F05) For each T' € H;(F') U H;(F#), we have r(T") € V(F;) \ R(F}).

Proof. The statement (F01) follows directly from the definition.
Observe that for each i € [k], by definition, F/ is a star-forest. By Claim 1, in the graph F?2, for
every vertex x € V(F?), |Dp2(z)] is either 0 or at least np’. Suppose dp2(x) > np’, then we have

(5.15) 1 1 np’
dFQ(IE) — dLlast(.’E) > dF2(fE) — d(LQULg)ﬂF2 (,I) > dFQ (,I) — §d(ZQU23)ﬂF2 (,I) > §dF2( ) > 7
As |Dp(z)] € {0,dp2(2) — dpwsi(z)}, we obtain (F02). The statements (F03) and (F04) follow
easily from (5.18). To see (F05), let 7" € H;(F") U H;(F#) for some i € [k]. As 7(T") is a root of a
component of F’ or F#, the edge e between r(T") and its parent (which exists as 7(T") # x1 and
x1 is a leaf and ¢(z129) = 1.) satisfies ¢(e) = 1. Hence z € V(F;) and r(T") ¢ R(F;). O

Note that (F05) shows that Hy(F"), ..., Hy1(F') form a partition of C(F') and Hy(F#),..., Hy,1(F7%)
form a partition of C(F#), thus A}, ... ,Aj, form a partition of A*.

Claim 5. The following holds for all i € [k + 1] and j € [k]:



22 FELIX JOOS AND JAEHOON KIM

L2 C Llast

2 o ﬂ\ Ls
Ill':‘l‘\ F2/
ﬂ\ L

Fy

ey ]
/I =

FI1GURE 2. Illustration of our edge decomposition of T'. With dashed lines we indi-
cate (parts of) a component of Hj(F").

Fr 1

(F11) A(F;) < 40knp'.

(F12) If Ly # 0, then Ly contains at least (np')* vertex-disjoint star-components of size at least
A(Ly)/3. Moreover, A(Ly) < np'.

For any component T of F#, we have |T'| < min{2AF n/M.,}.

For any T' € C(F') U C(F#), we have max{ A (r(T7))] lBT/(T(T/B‘l} > M,.

(F13)

(F14) B (r(T)]> A (r(T7
(F15) U Asf > mn - min{ "%, 1}.

(F16)

(F17)

—
[y
A~ o

F16) Suppose x € L(F}) for some £ € [k], then |T(x)| < n'~1/(:+1),
17) If Case 1 applies, then A < n®*/*logn.
Proof. Suppose z € V(F;) and h(zy) = £. By (5.8), we have that

611,67 , /
< np+(A+5+1+10(k+1))np’ < 40knp’ —1.

=

1
£/ HE | <10np!

|DF'L('IZ/)| < np’—|— AZ‘IUBZ-/UBZ{/U U HY

We obtain the penultimate inequality since Claim 3 implies |HS| = 0 for each £ > k. As dp,(zy) <
|Dp, ()| + 1 for all ¢/ € [n], we obtain (F11).

Suppose that Ly # () and let © € B* be a vertex such that dr, (z) = A(Ly) > 0. Since = € B*,
by (5.13), the vertex x is contained in a component 7" € C(F') with h(r(7")) = k (i.e. T’ has
height k) and h(x) = 0. Thus (5.6) implies that have h'(x) = |Dp(z) N H| = dr,(x) = A(Ly).
Let © = yoy1...yr = r(T") be the path Pp(r(T'),z) between x and r(7”). Claim 1 implies that
h(ye) = ¢ for each ¢ € [k] U{0}. Since c(y¢—1ys) = 2 for each ¢ € [k], the definition (5.9) ensures
that W' (yx) > h'(z) > A(Lq).

Also ¢(ys—1ye) = 2 for each ¢ € [k], (5.17) implies that Pr(z1, yx) contains no edge e with c(e) = 2,
thus thus g € V(C'). Claim 2 shows that Dp, (y;) contains at least np’ vertices y with b/ (y) > K (yx.)
and h(y) = k—1 as well as c¢(yry) = 1. So all these vertices y belong to V(C!). Repeatedly applying
Claim 2 to vertices y € D%, (yg) with h/(y) > W (y) and h(y) = k — £ for cach ¢ € [k], we conclude
that D, (yx) C V(C1) contains at least (np)* vertices / with #'(y') > h'(yx) > I'(x) > A(L;) and
h(y') = 0. Since h(y") = 0 and h'(y') > 0, we have

(5.15) 5.14 5.6
d () = dp, ()3 "2 e De)13 ) ()3 = AL /3.
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Thus there are at least (np/)* distinct vertices y” with dr,(y") > A(L1)/3. As (np')*(A(Ly)/3) <
|La| <m, (5.2) implies that we have A(L1) < np’. Thus we obtain (F12).

Note that any tree T € C(F") with the root r(7") has height h(r(7")) < k by Claim 3. Anedgee €
LsULj3 does not join any two non-trivial components of F’ as e contains a leaf vertex. Also, by (5.13)
and (5.14), no edge in Lo U L3 is incident to B*. Thus for any component 7" € C(F#) (its height
is at most k), we have |V (T")| < Z];:o |DE(r(T™))| < Z];:o A < 2AF. Suppose 2AF > n/M,, then
(5.2) with (5.1) implies k > 2 and we have np’ = MSAF1n=1 > MS(n/2M,)F+D/kp=1 > 4012p1/k,
For any y € Dp(r(T")), (5.12) implies that |T(y)| < (np')~n. As V(T") C Uyen iy T(y) U
Dyiaste(r(T")), we have

V< S T+ drrT) < A(np) 1)l FQL 204 4 1) < n/M..

YED i (r(T"))

Thus (F13) holds.

To verify (F14), consider first some 7" € C(F') with a root x := r(T”) and ¢ := h(z). Claim 3
implies 1 < £ < k. As F' = F?\ A*, there exists a unique 7" € C(F?) such that 7" C T”. Since
every vertex in A* is a leaf of T', we know x = r(T"). Since A* C L(Ly U L3), we have

) ) (5.15),(5.14) ’ 1 ¢ Claim 3 e
1D1(@)] 2 [Dpu(2) \ L(L2 U Ls)| - = |Dpe(@) \ M|+ 5|Dpu(@)NH]| = (p)/2.

On the other hand, | Js_, DY (z)| < Zg,_:l Al < 2AY~1. Since exactly one of Agv(z) and Byi(x)

contains all vertices in D%, (z), we have max{lg;:gil ﬁ;: ‘} > (;Zf /2 > M, by (5.2).

Now we consider some 77 € C(F#). If h(r(T")) = 1, then Claim 3 implies that T’ is a star
component of F’ or F' U Ly U L3. By (F02), (5.14) and (5.15), it is easy to see that T” has size
at least np'/(3logn) > M,; thus (F14) holds in this case. If (T’,z) with z := r(7”) has height
¢ € [k] \ {1}, then there exists a unique nontrivial component 7" € C(F?) such that 7' NT" # ()
and x = r(T"). If T" = T'\ L'** has height £ — 1, then there exists a vertex y € V(T") such that
y € D5 (), h(y) = 0 and | Dyiase(y)| > 0. However,

(5.15)
[Dr (W) 2 [D g5 W 2 2[D(r0rg)nr2 ()] 2 2| Dpies (y)] > 0,

a contradiction. Hence T” also has height ¢. Then |D%,(z)| > ]DT,,( )| while |45, D& ()] <
2A*~1. Thus, as before, by (5 2) we have max{}g;: } IE;:E;;I} > ;Z‘f) /2 > M,. Thus (F14) holds.
Note that {D2(z;) NH : i € [n]} forms a partition of H, as x is a leaf and hence x5 is not in H.
For all i € [n] and y € Bg,y' € Dr(x;) \ B, by (5.7) we know |H N Dr(y)| > |H N Dr(y'")|. This
implies that ZyeB; |H N Dr(y)| > min{%p/,lﬂD%(xi) N H| as either |B}| > min{%”/,l}dT(mi) or

UyGBg HN DT(y) = D%(.%’Z) Thus

U U H N Dr(y Z |DT Z; ﬂ’H‘ mln{ ,1}— |H] - mln{— 1} > 4nn - mln{ 1}
A

i€[n] yeB] i€[n]

For all i € [n] and y € B}, (5.8) implies that c(z;y) = 1, thus y € Uyepppq) V(Fr) \ R(Fr). Then
(5.15) implies that at least one third of the vertices in H N Dr(y) belong to Ay. Since this holds for
every y € B!, the above calculation shows (F15).

Suppose x € L(F}) for some ¢ € [k|. By the definition of F}, we have c¢(zar(x)) = 2. Thus (5.12)
implies that |T(x)| < n(np’)~t < n'~YE+D thus (F16) holds.

To show (F17), assume for a contradiction that A > n%%logn and |Li| > nn. Then (5.2)
implies k = 1, and np’ > %k“ > nl/2log?n. As every vertex with at least one heavy child,
has at least np’/logn heavy children, and as Lj, Lo, L3 are vertex-disjoint star-forests, we conclude
that A(L;) > np'/logn. However, (F12) implies |La| > (np')?/(3logn) > nlog®n > n which is a
contradiction. Therefore, (F17) holds. O



24 FELIX JOOS AND JAEHOON KIM

6. DISTRIBUTION OF V(T)

In Section 5, we defined the graph G’ and a partition {Vi}icpixpz of V(G). In this section,
we define a partition {X;}icxfg of V(T)\ L(L1), a partition {Ly;}iepxg of L(L1), a subgraph
F° of L'%! and a partition {Yitiep x|y of L(F°). Later we aim to embed the vertices in (Xj \
L(F°))UY;U Ly ;) into V; for each i € [r] x [2]. Having in mind the edge-decomposition of T into
Fi,...,Fp1, F|,...,F], L, L't which we defined in Section 5, and the intention that the edges
in F1,..., Fry1, L1 mainly are embedded into R while the others are embedded into G’, we need to
take care of several issues. For example, assigning a vertex x of 1" to X; forces us later to embed
all y € Dp(z) with ¢(zy) = 2 into X;. We also want that each X; contains enough vertices of A*
and Uze[k +1] Ay so that we have enough freedom at the end of embedding process.

In order to find a suitable collection {Xj}ic,x[2) of vertices of V(T') \ L(L1), we first describe an
algorithm that proceeds in k + 2 rounds. For each i € [r] x [2], let

n; := |Vil.
For each ¢ € [k+1]U{0}, in ¢-th round, we will distribute vertices in V' (F;)\V (R;) and V(T")\ R(T")
for each T € Hy(F*) to build a collection {Zf}ie[r]x 2] of pairwise disjoint sets such that (Z1),~(Z5),
hold (see below), and at the end we will set Xj := U]g;r& Z¢£. Our main tool is Lemma 4.6.

Zi 1% 2r5AF P
(Z1)p max {‘%_u}gmin{ Tn ,;4—*}

i,i’er]x[2] ny
2. J U 4= U veyv U va).

JE[U{0} ielr]x[2] JE[qu{o} T'eH;(F#),jell]
(Z3); In Case 2, for each i € [r] x [2], we have |Z{ N A*| > 2p?|A;|% — min{2r2A*, r?n/M.}.
(Z4), For all j € [¢], T' € H;(F#), and x € V(T"), if x € Z}, then Dy/(z) C Z;.
(25); For each i € [r] x [2], we have |Zf N Ag| > 2n%| A, — r2A.

Condition (Z1), ensures that relative sizes of sets Zf resembles the relative sizes of the sets Vj.
Condition (Z2), ensures that we actually assign every vertex to a set whereas the conditions (Z3),
and (Z5)y ensure that enough vertices in A* and vertices in Ay are assigned to each Zf, respectively.
Condition (Z4), ensures that for every vertex x assigned to be embedded into Vj for some i € [r] x[2],
its child y with c(zy) = 2 is assigned to be embedded into V;.

Distribution algorithm.
Next we describe our distribution algorithm, which relies on Lemma 4.6. In Round 0, we let

70 .— {1‘1} ifi= (17 1)7

v 0 ifie[r] x 2]\ {(1,1)}.
Clearly, (Z1)o and (Z2)o hold. We simply define Ay, Aj := () and so also (Z3)y and (Z5)g hold. As
Nr(xz1) = {z2} and ¢(x129) = 1, also (Z4) holds. We proceed to Round 1.

Round /. We define a set of vectors in F C N§ so that each vector q, € JF represents the
implications of the assignment of a vertex z to a certain set Z{. For each z € V(F}) \ R(F}), we
define a vector q, € Ng. The first two coordinates of q, measure how many vertices are forced to
be assigned to Zf and to Zf , respectively, if we assign = to Zf whereas the remaining coordinates

measure how many vertices of Aj and A, are then forced to be assigned in Zf and Zf, respectively.

To this end, for each x € V(Fy) \ R(Fy), if x is not the root of any non-trivial component in F#,
then we let q, := (1,0,0,0,0,0) and otherwise let q, be as follows, where = r(T”) for some
T' € C(F*):

A = (|Ar(2)|, | By (2)|, [ A7 () N A7, [ By (2) N AGL, [Azr(2) 0 Agl, [ By () 0V Ad]).
Recall that (A7 (z), Brs(z)) is the bipartition of 7" such that x € A (z). We also define

F = A{dabaev(m)\R(F)-
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Note that
D (a3 +a1) =147 and > (g5 +d6) = |Adl. (6.1)

We apply Lemma 4.6 with the following objects and parameters to obtain a partition {fi}ie[r]xp]
of F.

object/parameter | F | ni/n | ¢ | r | min{2A% n/M.} | min{2A% n/M,} | A |29

playing the role of | F | g [t ] 7| Ay | Aoy | As | B

Indeed, we have 1/r < 2n < 1/t. By (F14) and the definition of F, (A1) g holds. Condition
(A2)4 g holds by (F13) and (A3)4 g holds by the definition of n; and (G2). Then Lemma 4.6

provides a partition {F;}iepx[2 of F satisfying the following:
qu]—'i q + qu]—'i q2 zqefi/ q+ qu]-'i/ q2 . P SA
max — — - < min AL (6.2)
n *

i,i'e[r]x[2] ni ny

2
ni 2 : 24k T
qu-i-zthzg-éln Z(q3+q4)—m1n{2rA ’M*}’ and (6.3)
qeF; qeF; qeF
o2 .2
doast Y a6 >4’y (a5 +as) —r7A. (6.4)
qcEF; qui qEF

For each i € [r] x [2] and q, € F;, we add A (x) to Zf and By (z) to Zf; that is,

Z{:={x:q, € i} U U Api(z) U U By ().
(T',x): qz€F;, (T"2): azeFi,
TYEH, (F#), r(T") =2 T'EH, (F#),r(T") =2

This definition naturally yields (Z4),. Property (Z2),_1 together with the above definition im-
plies (Z2),. From the above, we have |Z{| = Yoqer O+ D oger, 92, 50 (6.2) implies (Z1),. By (6.1),
(6.3), (6.4) and the fact that n; < n, imply (Z3), and (Z5),. If £ = k+ 1, then we end the algorithm.
Otherwise, we proceed to Round (¢ + 1).

Once the above distribution algorithm has terminated, for each i € [r] x [2], we let X; := [Ji=3 ZL.
Recall that Ule ]2 ]Xi consists of all vertices in T' except the leaves incident to edges in Lj.

We observe that (Z1)p—(Z1)g+1 and (Z2)g41 imply that the following holds in Case 2:

n — | Li)ns
> Xil=n—|Li, and ]Xi\:%

ie[r]x[2]
In Case 1, (Z2)g41 with the fact that |Li| > nn implies that

Yo IXl=n—|Ll<1-nn

5
+ (k + 2) min {27°5Ak, ?\/j—n} (6.5)

i€[r]x[2]
This together with (Z1)o—(Z1)x1 implies that the following holds in Case 1:
1Xi| < (1 —n)ns + (k+2)min{2r°AF rPn/M,} < (1 —2n/3)n;. (6.6)

In Case 2, we have |A*| > nn. Thus (Z3)p—(Z3)x+1 imply that in Case 2, for each i € [r] x [2], we
have
k+1

r’n 3 3
* > [ A e )
R ED) 0:(277 815 =) = 5 (6.7)
Also (Z5)1-(Z5) k1 imply that, for each i € [r] x [2], we have
kt1 (F15) ’
200 (M2 3 ) np
) = > . £ 90 i
‘Xlﬂ U Ag| > E <277 |As] T A) > n°ny mln{ A ,1} (6.8)

Lelk+1] =0
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Now we have a partition {Xj}ic[, x[2 of vertices which is almost well-distributed. However, later
we need that exactly n; vertices are embedded into V;. To ensure this we consider a subgraph F°
of L% and sets Ly ; and Y; for each i € [r] x [2] such that the following statements hold:

(L1) L(L1) = Usepyxqg L1 and L(F?) = Usepixgg Vi

(L2) For each i € [r] x [2], we have | X; \ L(F°)| + |Ly | + |Yi| = ns.

(L3) We have F° = () in Case 1 and A(F°) < np in Case 2.

(L4) [L(F°)| < min{r7AF, 20},
Note that (L2) implies that the number of vertices which are assigned to V; is exactly n;. Condi-
tion (L3) and (L4) ensure that A(F°) is small so that we can embed it into R while L't \ F° is
not too small.

Indeed, such a graph F° and sets Ly 3, Yj exist by the following claim.

Claim 6. There exists a partition {Ly;}iciix[2 of L(L1) and a subgraph F° C L'*' and a partition
{Yiticpxpg of L(F°) satisfying (L1)—~(L4).

Proof. Let T := {i € [r] x [2] : |X}| > n;} and T~ := {i € [r] x [2] : |X]*| < m3}. In Case 1, by
(6.6), we have ZT = (). Thus, if Z+ # 0 holds, then Case 2 applies and (6.5) implies that for each
i [r] x[2], we have | Xj| < n; + (k + 2) min{2r°AF, 5n/M,}. For each i € ZT, we choose a set
M; C X; N A* such that

|M;| = | X;| — g < (k +2) min{2r°AF #5n /M0 (6.9)
and for any z € R(L!%*") N X;, we have
|M; N Npast (x)| < np'. (6.10)
Indeed, since djus(z) < A for all z € R(L!%*) and Case 2 applies, we have
. / . ’I’Lp, * . np/
Z min{np’, dris ()} > mln{K,l} Z driast(x) > | X5 N AT -mln{K,l}
mGR(Ll“St)ﬂVi :BER(Lla“)ﬂVi
(6.7) np’ (5.2) r°n
> 3n: - min 4 == > : 5 Ak ‘
> n'ng mln{A,l} > (k+2)m1n{2rA,M*}

Thus, by (6.9) we can choose the desired set M; of size | Xj| — n; satisfying (6.10). For each i € 77,
let M; := 0. By (6.5), we have

S = 3 (Xl - m) = 3 (o~ 1K) — L1 < 3 (s 1),

ieZ+ ieZ+ ieZ— iel—~
Thus, we can partition | J;cz+ Mj into {Yj}iez- such that |Yj| < ny — [Xj| for all i € Z7. For each
icZt, letY;:=0. Let F° be the graph with

viF) = |J nu {aLmt(x) ee Y} and E(F°) = E(L'! [V (F°)]).
i€lr]x [2] i€l x[2]
As Uie[r}x[ﬂ Y; € A%, we have that {Y]}ic[,x[2] forms a partition of L(F°). It is easy to see that by
the above definition, for each i € [r]| x [2], we have
X\ L(F)| + ] < s

By (6.5), we have [L(L1)| = X icpyxp(ni — |Xi \ Mi| + [Yi[). Hence there exists a partition
{L1i}iepxpg of L(L1) such that |Ly;| + |X; \ Mi| + |Yi| = n; for all i € [r] x [2]. The defini-
tion of Ly ; and ¥ trivially implies (L1) and (L2). Note that in Case 1, we have " = () and hence
F° = (). Thus, by (6.9) and (6.10), both (L3) and (L4) hold. This proves the claim. O

7. CONSTRUCTION OF EMBEDDING

In this section we describe our algorithm embedding T into G U R, which succeeds with high
probability. In the previous section, we assigned every vertex of T'\ L(L;) to a set Xj for some
i € [r] x [2] with the intention to embed (essentially) all vertices in X;j to V;. As discussed earlier,
we proceed in k + 1 rounds and an additional final round. In round ¢, we embed the vertices in
V(F,UF))\ R(F;) and in the final round we embed the vertices in L(L;) U L(L!e%).
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At the beginning we choose disjoint sets V; g, Vi/z and YA/i,g in V; of size ni,g,n;hﬁi,g, respectively
(see (7.1)). Later in round ¢, we embed the vertices of X; N (V(Fy) \ R(Fy)) and X; N L(F}) into
one of the sets V;, Vl' s Vi . ‘Leftover’ vertices in each of Vjg, Vl' ¢, and V;, will be covered in the
final round. While embedding the edges of F; and F; in each round, we keep track of how vertices
of T are distributed among neighbourhoods of vertices in G’ and among neighbourhoods of vertices
in an irregularity-graph of G’. This information will help us to maintain ‘super-regularity’ in the
graph induced by the ‘unused’ vertices in G’. For this, we introduce multi-collections B;, B}, B,
irregularity-graphs Jj and functions g1, g2, 93, 94, 95, g6-

Recall that |V;| = n; and L(L'**) = A*. For all £ € [k + 1] U {0}, ¢ € [k] and i € [r] x [2], we
define

nie = | X 0 (V(F) \ R(FD))| + pni, R = | X3 0 L(Fp)| + p,

n;g := png, and Ny kg2 1= Nj — ( Z (ni; + nij) + Z ﬁi,j>. (7.1)

jelk+1]u{o} j€lk]
Note that we have
xin( U EN\RE)U U L)) = Xin (VD) A7) = X\ A
¢e[k+1]u{0} velk]
Thus this with (7.1) gives
Nj k42 = Nj — ‘Xl‘ + ‘Xi ﬂA*’ — (3k + 4)un;.

Since u < 1, by (6.6) in Case 1 and by (6.5) and (6.7) in Case 2, we obtain for each i € [r] x [2]

niktal > n'ni. (7.2)
In order to keep track of the e-regularity of appropriate subgraphs of G’, for each i € [r] x [2], we
consider the irregularity-graph J; := Jg/v; v;(Vi, d, ). Recall that this is defined in (3.2). Lemma 3.8
together with (G1) implies that

A(J;) < 2en;. (7.3)

For each i € [r] x [2], we define the following multi-collections (that is, we consider multi sets here)
of subsets of V;:
Bi := {Ngr vi(u) : uw e Vi}, Bi:={Ny(u):ueVi} and Bi := {Ng v;(v,0") 1 v,0" € i}.
Now for each i € [r] x [2], we pick a partition
(Vig: L€k +20U{0}} U{W/,: €€ k+1U{0}} U{Vie: € [k]}
of V; satisfying the following for all £ € [k + 1] U {0}, ¢ € [k] and B € B; U B, U B!":
(V1) [Viel = nig, |V}l = nf, and [Vip| = fip,
(V2) [Vign B = 248 4 20 vr, Bl = BBl g 22 and [T, 0 B) = BBl 4 2y,
Indeed, if we choose a partition of V; uniformly at random among all partitions satisfying (V1),
then Lemma 3.2 yields that (V2) holds with probability at least 1 —n~%. Thus union bounds with
the fact that |B; U B, U BY| < n? imply that there exists a partition satisfying (V1) and (V2).

We need to take particular care of vertices with many grandchildren in F#. To this end, for all
telk+1]andie [r] x[2], let

Xiyi={o € Xin (V(F) \ R(F) : 1Dps (Dpr(@))] = 72—}

M logn
X' = U X{, and X :=V(T)\ X' (74)
Lek+1],i€lr] x[2]
(F16)
Also, if ¢ € [k] and = € L(F}), then |Dyp#(Dp(2))| < |T(z)] < n'=V&+D Thus
X'NL(F)) = 0. (7.5)

As D evir) 1Dp# (D (2))| < [V(T)], it is easy to see that
|X'| < Mlogn. (7.6)
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In fact, we prove below that if X’ # ), then k = 2. For all z € V(T) and i € [r] x [2], let

g1(z) == |Dp/()], 92(2) == |Dpiasi ()],

g3(x) == |D} ()] - Ix(), 94(z) := |Dpiast (Dpr (2))| - Ix7(2),

g5(x) == |Ds (2)] - Txr(a), 96(x) == |Dpast (Dpr(z))] - Lx(2),

BB :=B;UB, and B3 B .= B (7.7)

For each j € [2] and ¢ € [k], we consider the functions g;12 and g;y4 since gja(x) and gj14(z) for
x € V(Fy)\ R(F;) U L(Fy) provide information about values of g;(y) for y € L(F}, ). The functions
91,92, 93 and g4 will play the roles of dp(z) in Lemma 4.4 or Lemma 4.5, and g5 + g¢ will play the
role of f in Lemma 4.1. Note that if 2 € X', then we have g5(z) + g¢(z) = |Dp#(Dp/(x))|. The
above collections Bij will play the roles of B; in Lemma 4.1 or Lemma 4.4. One of our main concern
is that we need to guarantee that (A2)4 4 and (A3)4 4 or (A2)4 5 and (A3)4 5 hold for G'[V/,, V{,]
in each round. -

For all j € [6], £ € [k + 1], £ € [k] and i € [r] x [2], we define
m{’g = Z gj(z) and fh{’él = Z gj(x). (7.8)

zeXiN(V (F)\R(Fy)) T€XiNL(F),)
By (7.5), we have
>t =md = 0. (7.9)

Let fh{’o := 0 for all j € [6] and i € [r] x [2]. Note that by the definition of g; and (Z4), for all
Jj€ 2], 5/ €[6] and ¢ € [k], as R(F;) C (V(F) \ R(F;)) U L(F,_) by (F03) and (F04), we have

42,0 4,0 | 2,01 (19) gy WP (G2)
m —}—m] +mi T =" mJ" and m{ ", m{ " <2max{n;,ni} < 2in/r, (7.10)
and for each i € [r] x [2], we have
ST omPt+ > mt = X0 A, (7.11)
te[k+1] telk]

For technical reasons, we assume that maximum over the emptyset equals 0. For several applications
of concentration inequalities, it will be convenient to define the following for each j € [6],

Aj = max {gj(x) tx € U V(Fy) \R(Fg)} and ﬁj = max{ 1x € U }
Le[k+1] Le(k]
Note that if k =1 and j € {5,6} then for any vertex x € V(T'), we have
gj(xz) =0; thus A; = Kj =0and X' = 0. (7.12)

Indeed, if k = 1, we have g5(z) = 0 as F” is a star-forest, and we have gg(z) = 0 as L't C Ly U L
is not incident to any vertex in B* = L(F’). Thus, if X’ # (), then k > 2 (in fact k = 2) and for all
xeV(T),i€[r] x[2] and ¢ € [k + 1], we have

g1(x),g2(z) < nl/2, (7.13)

In order to not repeat the same argument for two cases and for each value of k, we define the

following parameters v and w,. Note that we always have w, > M, V2 Let

min{ M, logn M1/2n1/2/A} ifk=2 l/3 if Case 2 applies and k =1,
Wy 1= VI o and v = —1/10 .
M, logn otherwise, n otherwise.
(7.14)

Claim 7. For all j € [2], j’ € {3,4}, 7" € {5,6} and j. € [6], we have

Ajgmin{ ,nl/k}, A < il A <M and 3j*ﬁnz/?’.

n
Mlogn 7= Mlogn’ Wi
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Proof. First, consider the case k > 3. Then for each i € [2], we have A;, A; < n/* and for i € [6]\[2],
we have Ay, A; < A2 < n?/3 < min{ 3¢, 57.2- ) by (5.2). As this proves what we want, we may
assume k < 2.

For all j, € [6], £ € [k] and a vertex x € L(Fy), we have g;, (z) < |T(x)|. Thus (F16) implies

~

Aj, < n!7VEFD) < p2/3 For j € [2], (5.2) with the fact that Aj,ﬁj < A implies that for j € [2],
we have A; < min{;2—,n'/*}. For each j' € {3,4}, x ¢ X', we have gji(z) < |Dps(Dp/(x))| <
0

M logn?

Tlegn Py the definition of X" and the fact that F# = F'U L't Thus Aj < Tlegn @8 g5 (2) =

for z € X'.
Finally, for j” € {5,6}, if k =1, then (7.12) implies Aj» = 0. Assume k = 2 and A < nl/2 /M3,

1/2
Then we have w, > M2 by (7.14) and we obtain A < A2 < M. wfl/Q . ]\T;}//QQ < M:Lw*. If k=2 and

A > n1/2/M§/2, then we have w, < M2. For x € V(T), we have

(5.12) (5.2) n n
! N—1 /—1
IDp#(Dpr(@) < Y [T < [Dp(a)ln(np’) ™ < Ap'~ < M3 S Mo
2'€D g (x)
As gjr(x) < |Dpg(Dpr(z))| for all x € V(T'), we obtain Ajn < n/(M,w,). This proves the
claim. 0

Suppose next that ¢ is an injective map defined on a subset of V(T) into V(G) and &’ > 0
is a (small) error parameter. Next we define four types of sets of vertices which potentially ruin
certain ‘quasi-randomness’ properties of G’ on specified subsets of V;. These sets consist of vertices
whose neighbourhoods are not as we would like them to be. We later always want to ensure these
sets to be small (in some cases even empty). Recall the definition in (3.1). For all i € [r] x [2],
0e{0,....k+1} ¢ €[k+1], j€[6], and j' € [2], we define

Cij’g(¢, ') = {u eVi: gjz <¢7 NJi,X/i,gu‘/iﬁz(u)> > 51/27”{76 + alni}’

D.Ml(gb, ') = {u e Vi: gjz <¢a N‘]ij}i’z(u)) > ’51/27%{%, + ’5/ni}’

I (g,e) = {u eVi:gh <¢, NG“VLNV;’Z(U)) #(d+ 51/2)mg”/f + Elni}7
(

(4, ') = {u eVi: gjz, <¢, NG”,VM(U’)) # (d+ 81/2)1%{,’€, + a/ni}.

We start our embedding algorithm with a function ¢g that maps x; to an arbitrary vertex in
Vi1,1),0- Foreach £ € [k+1], we will iteratively extend the function ¢y_1 to ¢, satisfying the following
properties for all i € [r] x [2], j € {1,2}, j/ € {3,4} and j” € {5,6}:

(P1)p e Ug,ZO(Fg/ UF,)—G'U U§/:1 Ry is an embedding.

(22)¢ ¢o((Xi \ X') N (V(Fr) \ R(FY)) C Vi and Go(Xi N X)) N (V(Fe) \ R(FY)) € VY,

(®3)y if ¢ < k, then ¢y(X; N L(Fé)) C Vie

(@4); ) (61,v) = G (¢0,v) = €] “(d0,6) = 0 and 0] (r,€'/%)| < 27 .

(®5)y if £ < k, then DI (dy,e0) = DI (¢p,e0) = DI (dpee) =0 and DI (e, e0)| < 270 n.
Note that it is easy to see that ¢¢ satisfies (®1)¢— ($5)9. We proceed with Round 1.

(7.15)

Embedding algorithm.

Round ¢ with ¢ < k + 1. Assume we have defined ¢,_; satisfying (®1),_1—(®5),—;. We first
proceed to Step £.1 and then to Step £.2.

Step ¢.1. In this step, we embed V(Fy) \ R(F}) into Ry by using Lemma 4.1. Moreover, we use
Lemma 4.3 to ensure that the value of g; is well-distributed over the sets in B{; thus concluding
that (®4), holds.

Recall that Ry € G(n,M,p'). Let & be the event that there exist a map ¢; extending ¢y,
which embeds F} into R, and a multi-collection J; , C Bi’ satisfying the following.

(@'1) ¢((X; NV (F))\ X') € Vg and ¢(X; N V(F) N X') € VY,
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((I)IQ) |‘7:i7g| < 27,
(®'3) For allie [r] x [2], B € B\ Fi¢and j € {5,6}, we have gjZ (gb},B N Vitz) < £2/5p;.
We apply Lemma 4.1 with respect to the following graphs and parameters to estimate P[&] ¢].

object/parameter n (Fo, R(Fy)) | [r] x [2] | (XinV(F)) \ (R(F)UX') | V\(U;Vie UVY))
playing the role of n (F,R) [r] X; U
object/parameter | tM,w, /7 Ry Vie (XinV(F)NX)\R(Fy) |{BnV/,:BeB}
playing the role of w G Vi X! B;
object/parameter 3e M.p' Vi 57 (95() + g6(x)) be—1|Rr(F,)
playing the role of 3 D 17 f(x) @

Next, we check that conditions (Al)4 1—(A4)4 1 hold so that we can apply Lemma 4.1. Condition
(A1), 1 holds because
(7.1) (G2)
Vil = [Xi N (V(E) \ R(EFR))| + pny - = | X0 (V(EL) \ R(EFY))| + pn/ (2tr)

),(5.2)
> (XN V(E))\ (R(F) U X" 412 (M,p') ™t - 40knp’ + 30(M,p") " logn.
(7.1) (G2) (5.2)
Note that we have [V{,[ =" un; > nt =1/ 1060 n > (M,p') "' log® n. This with (7.6) implies
that (A2)4 1 holds.
For all i € [r] x [2] and B € B, we have

(V2),(11),(7.7) (7.1),(7.3)

BNV p|Bl£en; < 3e| VYl

Thus (A3)4 1 holds.
Condition (A4), 1 follows from (7.10) and the fact that As+ Ag < 2n/(M,w,) holds by Claim 7.

As (3¢)1/2. 2tn/;“ < e2/Pn; (by (5.1)), and (3¢)? - 2tM,w, /r > w,, Lemma 4.1 implies
P& >1—n""4 (7.16)

Recall that once &7 ¢ holds, then a desired embedding ¢ exists. Moreover, once &} ¢ holds, and if we
choose a embedding ¢, uniformly at random among all embeddings of Fy into R, extending ¢y_; and
satisfying (®'1)—(®’3), then such a chosen embedding satisfies more properties with high probability.
To prove this, we let II, be the set of all injective maps o : V(£y) \ (R(Fy) U X') = Uiepxz Vi
such that o((X; NV (Fy)) \ (R(Fp) U X') C Vi holds for each i € [r] x [2]. Let II; C II; be the set
of all o € II; satisfying the following for all j € [4],i € [r] x [2] and B € B{:

+ e/ M,Ajn;¢logn. (7.17)

Let (51’75 be the event that there exists a function ¢’g extending ¢y_1 which embeds Fy into R, sat-
isfying (®'1)~(®'3) and ¢y e Vie € IT,. Now we apply Lemma 4.3 for each i € [r] x [2] with
ie[r]x 1,

respect to the following objects and parameters.

‘VgﬂB‘m

Nie

)

(U BﬂVlg)

object/parameter | (X;\ X') N (V(F) \ R(F)) | 1g| | g | e | mie [ {BNVie:BeBl} | p? | Milogn

playing the role of| U | | | fi | € | n | B; | t | w;

Indeed, this is possible by Claim 7. As for i € [r] x [2] and a function o chosen uniformly at random
in among Iy, o|y, , is uniformly distributed among all injective maps from (X; \X)N(V(F)\R(Fp))
to Vi¢. Thus Lemma 4.3 implies that a map o € II; chosen uniformly at random will satisfy (7.17)
for all j € [4] and B € Bij with probability at least 1 — |V 4|™ > 1 — n /2. Moreover, the maps
U|Vi,1z are mutually independent over all i € [r] x [2] as their domains are disjoint. Thus a union

bound implies that a randomly chosen o lies in II}, with probability at least 1 —n~2. Consequently

I > (1 = n~?)[I0.
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Since Ry € G(n, M'p) is a binomial random graph, the distribution of Ry is invariant under vertex
permutations. Moreover, for all j € {5,6}, i € [r] x [2] and B € B! the value of gjE <¢2 oo,BN Vilz)
is invariant for any vertex permutation o which is the identity on V(G) \Uie[r]X[Q] Vie. Thus,

assuming &3 ¢, for any two permutation o, 0’ € I, if we choose a random embedding ¢} satisfying
(®'1)—(P'3) (if there are more than one such embedding, then we choose one uniformly at random),

then we have
Y N Y]
P[a - ¢€|Ui€[r]><[2lvi,£i| - P[a - (bAUiE[T]XP] VM}'

Therefore, we conclude

HI
eI | (5’1,419[(5’1,4 _| f’[@[@f"l,g] > (1—2n73/%). (7.18)

P& | > P| ¢,
[ 1,(] = [@g |Hg|

|Uiemx[z] Vi

Now we verify that once &} , holds, then there exists a map ¢} extending ¢,_; which satisfies ($2),
and (®4),. We continue with a simple claim for later use.

Claim 8.
/ e <
eV M Ajmilogn < { eny  ifj €[4\ [2].
Proof. Recall that M = 10kM]. By Claim 7, we have A; < n/(M logn) for all j € [4]. Thus

n
e/ MiAjngelogn < e\/M* logn - Mlogn -ny < eng.

This implies the claim for the case j € {3,4}. By (7.14), this also implies the claim if k¥ = 1 and
Case 2 applies.

Now we suppose j € [2]. Moreover, we suppose either k > 2 or Case 1 applies. Thus, by (F17)
and Claim 7, we conclude A < n3/*logn. As A; <A, we obtain

(7.14)
ey/ M. Ajn;logn < a\/M*n3/4 log?n-n; < wny/2.
This proves the claim. U
Note that for all j € [2],i€ [r] x [2] and B € Bij , we have
(®'1) (7.6),(7.13)
gjz (69, BN ‘/il’z) < Z gj(x) < " Mn'?logn. (7.19)
zeX’

Now, we assume that &} , holds, and demonstrate that an embedding ¢ satisfying &7 , also satisfies
(®4),. First, consider j € [4], i € [r] x [2] and v € V4. By (7.3) and (V2), we obtain

N vie (u)] < ey, (7.20)

By (7.7), we have Ny, v; ,(u) € Bf Consequently, &} , with (7.17) implies that

(7.20) )
97 (80 Nvi(w) < i + ey /MAjni o logn. (7.21)
If j € [2], then by Claim 8 we have
g_]Z <¢27 NJiﬂ/i,gU\/i”Z(u)) = gj2 (¢27NJ17‘/1,£(U)) + gj2 <¢27 NJi,‘/if[ (u))

(7.19),(7.21) A ,
< 81/2m€’£+1/ni/2+Mn1/2 logn < 51/2mg’€+yni.
If j € {3,4}, then by (7.7), we have g;(z) = 0 for all z € X’. Thus by Claim 8, we have
s (4 S (o T2 1 e
9; (¢Z7NJi,Vi,eUVit[ (U)) =05 (¢ Ny, () < e/*mi" +en;.

Thus we have C7(¢,v) = 0 if j € [2] and CP(¢p,e) = 0 if j € {3,4}.
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Now we consider j € [2], i € [r] x [2] and v € V;. Observe that (G1), (V2) and (7.7) imply that
ING' v, (v)] = (d £ 2¢)n; ¢ for all v € Vi. Hence, again by (7.7) and Claim 8, we conclude that &7,
implies

ml* :
(d=E2e)nip- —— +vni/2 = (d+ 61/2)171{’z + vn; /2.
Nie

)

(7.17),Claim 8

95 (64, Nov v, (v))

This implies

(7.19),(P'1) .
ng (QSIZ’ NJhVi,zUVi/,e (u)> S ng (QS/@’ NJhVi,z (u)) + Mn!/? logn = (d + 51/2)771?’6 + vn;.

Hence we have C?’K((ﬁg, v) = 0.

Consider j € {5,6}. By (7.7) we have g;(z) = 0 for any x € X’. Thus (®'1) implies gjZ (00, Ny vio(w) =
0. This implies that for any u € V; such that Ny (u) € B} \ Fig, by (®'1), we conclude that &,
implies

(@'3) |
¢
g5 (¢Z,NJi,Vi,ZuVi{Z(U)> = g7 (¢27NJi,‘/ifZ(u)> < &Mony < ePml +Viny

d'2
Thus ]Ci]/’g(@,al/‘g)] < |Fil ( < : 27%n. Therefore, if &7, occurs, then we have an embedding
¢, which extends ¢,_; and satisfies (®4),, otherwise we end the algorithm with failure. Note that
(®2), holds by the construction of ¢j. If £ = k + 1, then we proceed to the final round (observe
that then also (®1)x41,(®3)x+1 and ($5)x4; hold as they are implied from (®1)g, ($3); and (P5)%),

otherwise we proceed to Step £.2.

Step ¢.2. In this step, we embed X; N L(F}) into YA/i,g by using Lemma 4.4 in such a way that (®1),,
(®3), and (®5), hold. For this, we need to verify (Al)4 4—(A3)4 4.

By (F03), (®1)¢—1 and (®2),_1, the set R(F)) = Cen(F)) is already embedded by ¢ into
Usepxz (Vie U Vie U ‘/}i,z—l)- By (Z4)o—(Z4)k+1, we know that for all z € X; N L(F}), we have

ar(z) € X and so (92),—; implies that ¢}(ar(z)) € Vi UV, U T?Lg_l. Thus the parent of z is
already embedded into the ‘correct’ cluster. As the sum of the ‘gi-value’ of the neighbours of the
vertices in Dil ’K_l(qﬁg,l, g¢—1) is ‘wrong’, the vertices in Dil ’g_l(qﬁg,l, g¢—1) may not satisfy the second

condition in (A2)4 4. So we simply remove these vertices and consider the following objects:

Vie:=Vie\DP N doo1,60-1), F == FJ[R(F}) N X;, L(F}) N X, o~
N - N . " . 7.22
Gi = G'Vie UV, UVig1, Vigl and J; o= Jg (Vig UVY U Vi1 d,e)/Y).

Note that we aim to embed 1?’, into éi using Lemma 4.4. In such an application, j, will play the
role of Jg(U,d,¢).
Observe that (®5),—; implies that |Di1’zf1

(Pr—1,€0-1)] < 27" n, and so

_ | (7.1)
Viel = Ao 2700 "2V 1 ko), > pmi/2. (7.23)

Now we wish to apply Lemma 4.4 for each i € [r] x [2] with the followng objects and parameters.

object/parameter | G | Vi, U ViU Vies Vi Viel | B g
playing the role of | G U 1% n F £
object/parameter | 4 | {BNViy: B € B} | 4, |R(F))NX; 5%21 2t
playing the role of | s B; P € t

In order to apply Lemma 4.4, we first check that (A1) 4—(A3)4 4 hold with the above objects and
parameters. Indeed, Fj is a star-forest by (F02), and ¢} |p( F)nx; Is an injective map from R(F;) to
Vie UV, UVie 1 by (92); and (®3)_1.
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Note that for each j € [4], by (Z4),, (7.7) and the definition of Xj, we obtain

(G2),(6.5),
(6.6),(7.23) | -
Do giw) <max{|Xi|,|Xil} < T Vigl
u€L(F})
Moreover, we have
LE) = Y dm@= Y a@+ > g@=mtemgTh (124)
Z‘ER(Fé)ﬂXl Z‘EV(F@)\R(FZ)ﬁXi Z‘eL(Fé_l)ﬁXi

As ﬁj < n?/3 by Claim 7, this implies that (A1), 4 holds. For each u € V;,U Vitf U ‘71,@—1, we have
Ngrvi(u) € Bf. Thus (G1), (V2) and (7.23) yield that

(7.23),(:d>5)g_1

dgi (u) = (d £ &)|Vig| & (%05 + D (dr-1,20-1)]) (d+eDViel.  (7.25)

This verifies the first part of (A2)4 4.
To see the second part of (A2), 4, we fix a vertex v € Vi . By (7.7), we have NG/%(?}) € Bil. As

Ci“(¢e,v) = 0 by (24); and as v ¢ D;(¢¢—1,5¢), we conclude that

(7.15)
& (qsg,, Ng,yuu‘,i,e(v)) 2 (@4 eV?)mb Loy and
S (7.15) } (7.26)
<¢f’ ' Vie— 1(”)) = @d=emyT e an
Therefore
@z (60 Ng, ) = 5 (0h Norygov, (0)) + &5y (64 Nar gy, (0))
7.7)
= 912 (¢Z’NG/7\/L€UV’ (U)) <¢£’ Il Ve( ))
P20+ 2 b+ by £ 2egymy TEET Q|L(B)| £ )2 TRl

Hence also the second part of (A2), 4 holds.
Now we verify (A3)4 4. Recall the definition of .J; in (7.22). Note that for any u € Vi,zUVingVi,Z—h
by (V2) and (3.2), we have
N3 (u) € Ny(u) N (Ve UV UVigo1) and Ny (u) € B

By (7.15), (®4), and (®5)y_1, for each v € Vj U Vitf U Vi,z—l we have

<¢£a Jviuvy, (U )) < 51/27” +en; and g7 (@% JThen (u )) <2l pe s

(7.27)
Thus, we have
Z dﬁi(ﬂf)dﬁi (z') < Z Z dFé(y)dFé(CU)
R R ACACHIIACN z€Cen(Fy) ¥: ¢4 (y)EN (8)(2))
< Y dn@) (0 (90 Nav oy, (@0@) + gF (60N, 5, (64(2)) )
z€Cen(F})
(7.27) /2 101 (7.10) ) (7. ) 1/2
< Z dFé(x) <6 (m +m )+26g_1ni> < 265_1(7571/7“) |VgUV UV@ 1|
zeCen(F)

Hence (A3)4 4 holds as well.
Therefore, we can indeed apply Lemma 4.4 for each i € [r] x [2] and can extend qﬁé to qﬁg such

that for each i € [r] x [2], the function ¢¢ embeds F} into G’ in such a way that ¢¢(L(F})) C Vi ¢ and
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for each j € [4] and B € Bij , we have

5 9i(y)|Na(o(x)) ﬂBﬂ‘N/i,d 1/400
g7 (qﬁe,BmVi,g) = > Z 2 17 OO (7.28)

xcCen(F}) ?JEN

This immediately implies that (®1) r( ) ¢ hold and (®4), also holds as ¢y extends ¢,. Next we
only need to verify (®5),. We fix some u € V; and j € [4]. The definitions in (7.7) imply that
Ny, (u) € B]. Thus

<¢Z, JVlz( )) (7.28) Z Z 95 (W) Na(oe(x)) NNy (uw) N Vil 1/400“/12\

r&Cen(Fy) YENF, (@) d|V;. |

4
Z Z gj Enl 1£4100ni S 51/2m + £m;.
dung
xcCen(F}) ?JEN ()

(7.3),(7.23)
<

Here, the penultimate inequality holds since |[Ng(¢¢(x)) N Ny, (u) N ‘7i7g| < |Ny,(u)| and the final

inequality holds since
(7:8) ~j.¢
SN gw= Y. gily) = @
xECen(ﬁi) yENﬁi (x) yEXiNL(Fy)

Since this holds for all j € [4] and u € V;, we have Dij,ﬁ(@’w) = (). For each j € {5,6}, by (7.5), we
also have Dij’g(@, g¢) = 0. Hence the first part of (®5); holds.

Consider j € [2] and u € Vi\Cin’K(qﬁZ,al/?’). Since Ngry;(u) € Bij and u ¢ Cij+4’€(q§2,€1/3),
definition (7.15) implies that

. (7.10)
gf+4 (¢£7NJi7Vi ZUV-/Z (u)) S 81/2m‘i7+47£ + 81/3 l < 281/3 (729)
Also (95)y—1 with (7.15) implies that
> 1/2.~j+4,0 (7.10)
Giva | @, NJi,‘7i Z_l(u) < elimy +epng < 20 1m5. (7.30)

Also, (P4)y and (P5)y—1 imply that
. o (7.10)

Thus

, N
<¢€’ Ne g, (u )> 2 Z Z ot (1. 90(2) 1/400|Vz|

zeCen(F) yEN d“/l’z‘

(7_23)7(:@5”_1 Z ZyENﬁi (z) gj(y)(dG’/"’/\'i"Z (u, ¢£($)) 4+ 27 Wxn ) + 51/400/\‘
dﬁhg 4+ 27Wsn e

xECen(ﬁi)

gj+2(x) + gjya(z) o (1, ¢e(x))
(7.14),(7.7) Z (95 j )d L ;/4100 9

N dni ¢
¢y (2)EVA, UV UV 01
(V2) /2y, % S 1/2y % I
- (d+e/%)g54s (¢57 VieUV, U Vi,ffl> +(d+e/7)gj44 <¢£7 Vie UV, U Vi,éq)
-1 5 1/400 '
+2d 9j+2 (W’NJ;,%,euvi(eu\Z,e_l( )> +2d7 9]+4 <¢f’ T3, Vi 00V Vi 1( )> + 3¢, M0

(7.29),

(7.30),(7

31 ~
M (@4 e2)g%0 (60, Vi UV UThe ) + (= eY2)g% (00, Vie UV U T ) £ /5

_1,(7. ; ; G2),(7.10 s
(CI>2)z:17(78) (diem)(mi*”+m”“+ﬁzi+2’g’1) 4 ;/5100”1( ):( )(diem)m{’giemi.



Here, we obtain fourth equality because, by (V2) and the definition of .J;, if ¢¢(x) ¢

SPANNING TREES IN RANDOMLY PERTURBED GRAPHS

35

N g Vi sovy Ut o ()5

then dg, ¢ (u, de(x)) = (d* £ 4¢)ns ¢, and otherwise d, 7. ,(u,d¢(x)) < mie. This shows that
5{’6(@,6@) - C{+4’g(¢2,61/3). Combining this with (®4), leads to |Z~)ij’é(¢g,6g)| < |Cij+4’z(¢’g,51/3)| <
27%=n. Consequently, (®5); holds. We proceed to Round (¢ + 1).

Final round. At this stage, the algorithm completed Step (k+1).1. We have an embedding ¢}, 41
of T — L(L'%* U Ly) into V(G) satisfying (®1)g41-(P5)py1. Let ¢py1 := ®411- In the following we
complete the embedding by embedding the remaining edges in L' U L;. We proceed in two steps;
first we apply Lemma 4.2 to embed L; U F° and then Lemma 4.5 to embed L't \ F°,

Recall that A* = H N V(L) = L(L'%?). For every i € [r] x [2], we define yet not covered

vertices as

Vi = Vi\ Gt (V(T) \ (L(L1) U AT)).
Then (®2)17(®2)k+17 ((1)3)1*((1)3)k+1 imply that

Vikt2 C Vi and ng = |V°| = ny — | X5\ A7

(V1),(71

)

Njk+2 + (3k‘ + 4),uni. (7.32)

Note that if Case 1 holds, then L'®* = Ly. Thus (Z4); implies that for i € [r] x [2], all parents of
vertices in L(L2) N X; are in X; (recall that F'# = F' U L!%5%) and (®2), (5.14) and (5.15) imply

that

(E3) for each i € [r] x [2], we have ¢p4o(L1;UY;) C V.

orr1({ar(z) 2 € LIL"™) N Xi}) € Vi
Now we consider again both cases simultaneously. Recall that we have a partition {LLi}ie[r]X[Q]

of L(Ly), a subgraph F° C L' and a partition {Yitiepx (g of L(F°) satisfying (L1)—(L4).
Let &5 to be the event that there exists an embedding ¢ o satisfying the following.

(E1) ¢pt2 extends dp41,
(E2) ¢p42 embeds Ly U F° into Ry, and

(7.33)

First, we apply Lemma 4.2 with respect to the following graphs and parameters to estimate P[&3].

object/parameter | (L1 UF°, R(L1UF®)) | Rito Vi° [r] x [2] M.p'
playing the role of (F,R) G Vi [r] D
object/parameter | V(G)\ Uicpng Vi® | L1,iUYi | A(L1UF°) | $u1 |Rr@ziure)
playing the role of U X; A ¢’

Indeed, (A2), o trivially holds. Note that L; and F° C L't are vertex-disjoint. Now we verify

(Al1)y 9 for each case. Note that by (7.32), we have

VPl =i = X\ AT =" [Xa \ LOF)| + Lol + [V = [ X5\ A7

By (5.2), we have

(L2)

= X = XG0 L)+ [Lys U Y| = | XG] + [ XG0 AT

=  |LiiUYi|+ | Xin A" — | X5 N L(F?)|.

(np/)k > Mfknk/(k+1) > M*plil.

In Case 1, we have L!%** = L. Hence A, = Aj. Moreover, (L3) implies F° =

Hence we have

V77l

(7.34)

>
(7.35)
>

(25)1 n;
= ‘LLiUYvi’—i-‘XiﬂA*‘ > ‘L17iU}/}‘+2772’L2‘#—T2A

(G2),(F12)

A(L
|Ly,i UYi| + 20 - % (np)* 72— r?A

|L1; VY| + 772M*A(L1)p'71 . 7“72/2 —r2A

(L1 UYi| + 20 A (L) (M.p') ™! — r2A

(7.34)

(7.35)
) and so LyUF° = L.
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(F12)
|L1i UYi| 4+ 12A(L1) (Map') " + Manp' (Mop'logn) ™! — r?A
|L13 UYi| 4+ 12A(Lq) (Mp') ™ + 30(M.p')~* log n.

G2) . (52)
> M4 30nk/ () 1ogn > r2A+30(M,p') " logn.

logn =

>
>

Here, we obtain the final inequality since

Hence, (A1)4 9 holds in Case 1.
In Case 2, (F12) and (L3) imply that A(L; U F°) < 2np’. Thus

el 2 LU+ XN AT = XG0 L)
(6.7),(L4)
> |15 UYi| +n3n; — min{r’AF +7n/M.,}
> L UYi| +ni/2
> L1 UYi| 4+ 12A(Ly U FO)(M.p') ™' + 30(M.p')  log n.

Hence, in both case, (A1), 9 holds. Thus by Lemma 4.2, we have
P[&] >1—n"2 (7.36)
Assume that & holds, and we choose a function ¢yo uniformly at random among all functions
satisfying (E1)—(E3), and for each i € [r] x [2], we let
Vi = V2 \ bpy2(L(L1) U L(F°)) and F* := L'\ L(F°).
Thus it remains to embed F'* into Uie[r]x[z] Vi®. As ¢p42 is a random variable, V;* is also a random

variable. To be able to finish the embedding, we want to show that V;* are nicely chosen with high
probability. For each i € [r] x [2], we have

L] e] 7.34 * o o

nf = [V = V7] = (Ll = L2 XG0 AT\ L) = L(E) NGl (737)
(F12)

Next we estimate ny and we consider two cases. In Case 1, as we have A(Ly) > 10 — Llast = [,

and F° = (), we conclude that for each i € [r] x [2],

ni (Z§)1 Q"Z’LQ’% —rA (Fg) 2n2A(§;2) S 3r22771?;n N Mrli)zn H MlZg nt7-38)
Moreover, since F'* = L' (7.33) and (7.8) implies the following in the Case 1:
myt =g, (7.39)
In Case 2, we have
.(6'7)’( )33 : TAk T 3
ng > S —min{r' A%, r'n/M.} > n°n;. (7.40)

Let &, be the event that the following holds:

(V3) For each B € B; UB{UB!, we have |V;* N B| = w:& 4/5,
Lemma 3.2 together with (7.38) and (7.40) implies that the number of sets of size n that satisfy
(V3) is at least (1 —n~3) (Zi:) As the distribution of the random graph Ry o is invariant under any

vertex permutation (similar to Remark 1), for any two subsets A, B of V;° of size n{, we have
PV = A| &] = PV} = B | 6. (7.41)

As the number of all possible outcomes of the random variable (V;*)ic[jx[2 is Hie[r}x[z} (Zli), and

the number of outcomes (V;*)ig(y]x[2) satisfying (V3) is at least  [;c},,9(1 —n~3) (Zli), (7.41) implies

that

i

, (1-n=)(7) B
P &> [ —21-n?)
ic[r]x[2] (n)
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This together with (7.36) implies that
P&y A &) > 1 —2n72 (7.42)

From now on we assume that ¢y is an embedding satisfying & A &, because otherwise we end
the algorithm with failure. Recall that F'* = L!%*\ L(F°), so F*® is a star forest. Then by (L4), for
any i € [r] x [2], we have

> dpe(@) = > dpasi(z) £min{r"A* rTn/M,}. (7.43)

zER(F*)NX; z€R(F*)NX;

We wish to apply Lemma 4.5 for each i € [r] x [2] with the following objects and parameters to
obtain the final embedding ¢ which extends ¢y 2 and embeds T into G U R.

object/parameter | G'[Vi*, Vil | Vi | i* | FIL(F*) N X, Xi] | dns2 [repe)nx, | 072 | np | 27/2

playing the role of| G |U| \%4 | F | P | € | n | v

By (7.37), F*[L(F*) N Xj, Xj| has exactly n{ leaves. Note that (7.38) and (7.40) imply that in both
Case 1 and Case 2, we have 1/n{ < p!'/2, and we know that w;3 < p!'/2 by (7.14). In order to
apply the lemma, we need to verify that (A1), 5—(A3)4 5 hold with the parameters specified above.
To show (A1) 5, consider a vertex u € V;. As Ngi(u) € B; C B}, we have

(V3) dar ve (w)|V;® ’ 475

[Ner(u) NV 5
Vel

(G1).(V2).r:2

o= e

D (d £ €)nipsn + (3K + 4)ny) £ n/®

i

(7‘2),(7.32)é7.38),(7.40) (d 4 ,11,1/2)71;. (7.44)

Thus (Al)y 5 holds.
To show (A2), 5, first assume that Case 1 applies. In this case, we have F** = Llest — [, For
each v € V;*, we have

(1.7)

de <¢k+2,NG',\@1(U)) =gy (¢k+2aNG Vi (U ))

(7 14),(7.38),(7.39)

(7.33)

d¥e <¢k+2, NGQV;(”))

(P4)1,(7.15)

(d+ 81/2)m +tv (d + p?)ns

We obtain the penultimate equality since 512 ’1( ,v) = (). This shows that (A2)4 5 holds for Case 1.
Now assume Case 2 holds. For each i € [r] x [2], we let (see (7.15))

UD ¢g,€g CV

Le(k]

Thus, for any v € V;* \ D;, we have

(7.7),(7.43) r’n
dipe <¢k+2,NG’7Vi(U)) Z 95 <¢k+2,NG ‘/IZUV, ) Z 95 <¢k+2, G,Ve( )) + i
o€kt 1] telk] :
7
(7-15),(®4)e Z ((d+£ 81/2)m12’£ +vng) + Z ((d+ 81/2)1%12’£ +emy) £ an
tek+1] e[k] *
=  (d+e'/?) Z m —i—Zm o + png
Le(k+1] Le(k]
(7.11) (7.40),(L4)

(d+ )N NX| +puny = (d+pt?)ng. (7.45)
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Here we obtain the second inequality since @f (ppya,v) =0 for all £ € [k + 2] and because v ¢ D;.
On the other hand, again é?’g(¢k+2, v) =0 for all £ € [k + 2], so if u € V;* N Dj, then still we have

(7.7), (743) _
a7 (9n12 Ner i (0) > 65 (Gh2 Novy vy, (w) — mindr7AF, 1T /M, )
le[k+1]

(7.15),(®4)
> Z ((d — al/z)miu - yni> — min{r"A* #Tn/M,}

Le[k+1]
> (d—e'?) Z m (k + 1)vn; — min{r"A* r"n/M,}
tek+1]
7.7),(7.8 h
(1:(7.8) (d—eY?)|X;n U Ai| = (k + Dvng — min{r A +"n/M,}. (7.46)
/=1

1/2
By (7.14), w, € {M.logn, M=-7"2} If w, > 2logn, then D; = § by (®5);~(®5);. Thus (7.45)
M/ nl/2

implies that (A2), 5 holds. If w, = A < 2logn, then by (5.2), we have that k& = 2 and
3/2
D= —w]\f;m. Hence we have AF = % = ”T Also since k = 2, (7.14) implies that v = n~=1/10, As

p' = MPSp, we have

(7.14),(7.46) k+1 r'n2p r'n
d.< Nt v, ) > (d-<YH) XN no/10 _ { : }
Fe | Pr+2, Nory; (v) = U S N A
(6.8) 7020 .7
2./ 4.5 (5.2) M6 4.,
> min{;\z*pA, 774”1} > min{ *zn, 774”‘} > 2‘”*/2ni° (7.47)
Here we obtain the third inequality holds by considering the two case of np’ < A and np’ > A. We

(7.40)
obtain the final inequality as w, > M2, Since (®5)1—(P5)g imply that |D;| < (k+2)27%*n <

27w+/2p? we know (A2)4 5 holds in Case 2.

Now we only need to verify (A3)y 5. For each uu’ € ( : ) \ Ji, we have N¢v y;(u,v') € BY. Thus
the definition of J; implies that

(V) dawe(wd) o a5 (032 96w (W) £ BE+ Dumi o g
n? i nikt2 £ (3k + 4)un; 1

1

der e (u, )

(7‘2)iV2) (dz i,ul/z)n-'.

Here, we also use for last equality (7.38) in Case 1 and (7.40) in Case 2. Thus this implies that
I = Jave vy (Vi d i'/?) C ;.

Note that F'* C L', Hence have dps(z) < dpiase(z) = go(z) for all z € V(T). In Case 1, as
F* = [lst — [ we have

(7.7)

Z dptast(T)dpase (') < Z 92(x)g5 (¢k+2, NJ1(¢(95))>
2,2’ fp2(2)pi2(2)EE(SY) e X;N(V (F1)\R(F1))
(®4) ,(7 33)
" > ga(@)(ePmit + vmy)
r€X;
(7.8)27,14) 61/2(%271)2 L pl9/10

(7.38),(7.39)
< 0 pP(ny)
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In Case 2, we obtain

3 dre(@)dps (@) <30 p@)8 (r12 Noy((2))

2" Pppo(x)Prio(x’)EE( J' z: ppy2(r)EVQ
>
< 95 ¢k+27 BVi [uv' (@)) + Zgz <¢k+27NJi,‘7i’e(¢(9C)))
x: ¢k+2 Le[k+1] Lelk] o
(B4).(B5), k-+1 k
: ( (o) + 5 (25
€T ¢k+2 /=1 /=1
(7.10),(G2) (7.40)
< Yo wlp@n < L2,

xT: ¢k+2($)e‘/i

Thus (A3)4 5 holds. Hence, Lemma 4.5 yields the desired embedding ¢, and this finishes the
embedding algorithm.

If the above embedding algorithm succeeds, then we obtain the desired embedding ¢ of T into
GU Uk+2 Ry. Moreover, using a union bound together with (7.18) and (7.42) implies that the
embedding algorithm succeeds with probability at least 1 — 2(k + 2)n*3/ 2,

Observe that we did not use Ry, 3 so far. We will use it in the following section to deal with the
case where (5.3) does not hold.

8. TREES WITH FEW HEAVY LEAFS

Recall that H and £ denotes the set of heavy and light leaves in T, respectively. Observe that
we have assumed in the previous three sections that |H| > 4nn (see (5.3)). Now we may assume
that |#H| < 4nn. We split again into two cases; first we assume that |£| > 4nn and otherwise, T" has
at most 8nn leaves. In the latter case, we use Lemma 3.5 to conclude that 7' contains a collection
{P; :i € [2nn]} of vertex-disjoint (k + 3)-vertex bare paths. Indeed, observe that

n
— —16ngn > 2
Kt =S

CASE A. || > 4nn.

We proceed as follows. First we remove exactly 4nn light leaves from T and obtain a new tree
T'. Afterwards, we add 4nn leaves to T” in such a way that the new tree T* has at least 4nn heavy
leaves. As T* has at least 4nn heavy leaves, T has an embedding into G U Uk+2 R, with high
probability, as we showed in the previous sections, and so does T”. Since we only removed light
leaves of T to obtain T”, it is easy to extend the embedding of T' to an embedding of T' by using
the edges in Ry 3.

Now we turn to the details. Let L C L be a set of exactly 4nn light leaves and we set

T : =T —L.
Let 1,...,2Z4yn be 4nn new vertices. Since every m-vertex tree contains at least m/2 vertices of
degree 1 or 2 for every m > 2, the tree 7" contains at least 2nn vertices y, ..., Yynn of degree 1 or 2

(in 7). We partition {z1,...,Zan} into sets X1,..., Xoyogn/p Of size 2np’/logn £+ 1. Let T* be a
tree with

V(T*) =V (T')U{x1,...,249n} and E(T*) = E(T") U{y;x : = € X;,i € [2nlogn/p']}.
Hence, for each i € [2nlogn/p'], we have

/

2np’

2np
<dre(y) < -+ 3 <A

~ log
Thus z; is a heavy leaf in T for all j € [4nn] as well as A(T*) < A and T* has at least 4nn heavy
leaves.

logn
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Since T* satisfies (5.3), there exists an embedding ¢’ of T* into G U UI;LQ R, with probability
at least 1 — 2(k + 2)n=3/2. Now, let {ar, ... ;aq_apn} == ¢'(V(T")). For each i € [(1 — 4n)n], let
d; == dT,E(T/)(qb’_l(ai)). We apply Lemma 3.6 with the following objects and parameters.

object/parameter | ¢'(V(T")) | {a1,...,aq—apn} | Rigs | [¢'(V(T")] | Mup' | di | 49n | 2np’/logn
playing the role 0f| A | B | G | k | P |di| n | A

Note that »;c11_pn & = |L| = 4nn and
My > P logdnn S dnp" log dnn
= logn T logn 4nn

Lemma 3.6 ensures that, with probability 1 —o(1), ¢’ can be extended to an embedding ¢ of T into
k+3

CASE B. The tree T' contains a collection {P; : i € [2nn]} of vertex-disjoint (k + 3)-vertex bare
paths.

We proceed similarly as in Case A. This time, we remove the interior vertices of the paths in
{P; : i € [2nn]} and obtain a forest F', say s; and ¢; are the endvertices of P;, which are still
contained in F. Again, we consider a set of new vertices {z1,... ,:cQ(,,H_l)nn} and partition this set
into 2nlogn/p’ sets X7, ... ,Xén logn/p’ of size (k4 1)np'/logn + 1. Again, we construct a tree T*
which contains F' with many heavy leaves as follows

V(T*) = V(F) U {1’17 . 7x2(k+1)17n}
E(T*):= E(F)U{s;t; : i € [2nn]} U{siq : g € X}, i € [2nlogn/p]}.
Hence for each i € [2nn], we have

(k + 1)np’
logn
Thus x; is a heavy leaf for all j € [2(k + 1)nn] as well as A(T*) < A and T™ has at least 4nn heavy
leaves.
Since T™* satisfies (5.3), there exists an embedding ¢’ of T* into G U Ufilz Ry with probability
at least 1 — 2(k + 2)n=3/2. Now, let V' := V(G) \ ¢/(V(F)). Now we apply Lemma 3.7 with the
following objects and parameters.

(k+ 1)np’

+3 <A
logn

— 2 <dp«(8;),dp=(t;) <

object/parameter | ¢'(s;) | ¢'(t:) | Rievs[V' U ' ({s1,t1,- . Som, tan )] | K +3 | Mup' | n | M,
playing the role 0f| S; | t; | G | k | P | 2nn | M

As M,p' > M*(%)l/(k”) by (5.2), Lemma 3.7 ensures that, with probability 1 — o(1), ¢’ can
be extended to an embedding ¢ of T into G U U?;Lf’ Ry. This finishes the proof of Theorem 1.1.
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