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Abstract
For a given graph G, modularity gives a score to each vertex partition, with higher values taken
to indicate that the partition better captures community structure in G. The modularity q∗(G)
(where 0 ≤ q∗(G) ≤ 1) of the graph G is defined to be the maximum over all vertex partitions
of the modularity value. Given the prominence of modularity in community detection, it is an
important graph parameter to understand mathematically.

For the Erdős-Rényi random graph Gn,p with n vertices and edge-probability p, the likely
modularity has three distinct phases. For np ≤ 1 + o(1) the modularity is 1 + o(1) with high
probability (whp), and for np → ∞ the modularity is o(1) whp. Between these regions the
modularity is non-trivial: for constants 1 < c0 ≤ c1 there exists δ > 0 such that when c0 ≤ np ≤ c1
we have δ < q∗(G) < 1 − δ whp. For this critical region, we show that whp q∗(Gn,p) has order
(np)−1/2, in accord with a conjecture by Reichardt and Bornholdt in 2006 (and disproving another
conjecture from the physics literature).
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1 Introduction

We start this section with some background and definitions, and then present our results on
the modularity of the random graph Gn,p.After that, we sketch previous work on modularity,
and then give a plan of the rest of the paper, which essentially consists of the proofs of the
three phases. The remaining proofs will be given in the extended version of this paper.

1.1 Definitions
The large and increasing quantities of network data available in many fields has led to great
interest in techniques to discover network structure. We want to be able to identify if a
network can be decomposed into communities or highly clustered components.

Modularity was introduced by Newman and Girvan in 2004 [27]. It gives a measure of
how well a graph can be divided into communities, and now forms the backbone of the most
popular algorithms used to cluster real data [18]. Here a ‘community’ is a collection of nodes
which are more densely interconnected than one would expect – see the discussion following
the definition of modularity below. There are many applications, including protein discovery,
identifying connections between websites, and mapping the onset of schizophrenia on neuron
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clusters in the brain [2]. Its widespread use and empirical success in finding communities in
networks makes modularity an important function to understand mathematically. See [11]
and [28] for surveys on the use of modularity for community detection in networks.

Given a graph G, modularity gives a score to each vertex partition: the modularity q∗(G)
(sometimes called the ‘maximum modularity’) of G is defined to be the maximum of these
scores over all vertex partitions. For a set A of vertices, let e(A) be the number of edges
within A, and let the volume vol(A) be the sum over the vertices v in A of the degree dv.

I Definition 1.1 (Newman & Girvan [27], see also Newman [26]). Let G be a graph with
m ≥ 1 edges. For a vertex partition A of G, the modularity of A on G is

qA(G) = 1
2m

∑
A∈A

∑
u,v∈A

(
1uv∈E −

dudv

2m

)
= 1
m

∑
A∈A

e(A)− 1
4m2

∑
A∈A

vol(A)2;

and the modularity of G is q∗(G) = maxA(G), where the maximum is over all partitions A
of the vertices of G.

Isolated vertices are irrelevant. We need to give empty graphs (graphs with no edges)
some modularity value. Conventionally we set q∗(G) = 1 for each empty graph G [5] (though
the value will not be important). The second equation for qA(G) expresses modularity as
the difference of two terms, the edge contribution or coverage qE

A(G) = 1
m

∑
A e(A), and the

degree tax qD
A (G) = 1

4m2

∑
A vol(A)2. Since qE

A(G) ≤ 1 and qD
A (G) > 0, we have qA(G) < 1

for any non-empty graph G. Also, the trivial partition A0 with all vertices in one part has
qE
A0

(G) = qD
A0

(G) = 1, so qA0(G) = 0. Thus we have

0 ≤ q∗(G) ≤ 1.

Suppose that we pick uniformly at random a multigraph with degree sequence (d1, . . . , dn)
where

∑
v dv = 2m. Then the expected number of edges between vertices u and v is

dudv/(2m−1). This is the original rationale for the definition: whilst rewarding the partition
for capturing edges within the parts, we should penalise by (approximately) the expected
number of edges.

A differentiation between graphs which are truly modular and those which are not can ...
only be made if we gain an understanding of the intrinsic modularity of random graphs. –
Reichardt and Bornholdt [30]. In this paper we investigate the likely value of the modularity
of an Erdős-Rényi random graph. Let n be a positive integer. Given 0 ≤ p ≤ 1, the random
graph Gn,p has vertex set [n] := {1, . . . , n} and the

(
n
2
)
possible edges appear independently

with probability p. Given an integer m with 0 ≤ m ≤
(

n
2
)
, the random graph Gn,m is sampled

uniformly from the m-edge graphs on vertex set [n]. These two random graphs are closely
related when m ≈

(
n
2
)
p : we shall investigate only q∗(Gn,p) here, but in the extended version

of the paper we shall also deduce corresponding results for q∗(Gn,m).
For a sequence of events An we say that An holds with high probability (whp) if P(An)→ 1

as n→∞. For a sequence of random variables Xn and a real number a, we write Xn
p→ a if

Xn converges in probability to a as n→∞ (that is, if for each ε > 0 we have |Xn − a| < ε

whp).

1.2 Results on the modularity of the random graph Gn,p

Our first theorem, the Three Phases Theorem, gives the big picture. The three phases
correspond to when (a) the expected vertex degree (essentially np) is at most about 1, (b)
bigger than 1 but bounded, or (c) tending to infinity.
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I Theorem 1.2. Let p = p(n) satisfy 0 ≤ p ≤ 1.
(a) If n2p→∞ and np ≤ 1 + o(1) then q∗(Gn,p) p→ 1.
(b) Given constants 1 < c0 ≤ c1, there exists δ = δ(c0, c1) > 0 such that if c0 ≤ np ≤ c1 for

n sufficiently large, then whp δ < q∗(Gn,p) < 1− δ.
(c) If np→∞ then q∗(Gn,p) p→ 0.

We are able to confirm the (np)−1/2 growth rate conjectured to hold for the critical region
in [30]. The edge probabilities p correspond to parts (b) or (c) of Theorem 1.2.

I Theorem 1.3. There exists b such that for all 0 < p = p(n) ≤ 1 we have q∗(Gn,p) < b√
np

whp. Also, given 0 < ε < 1, there exists a = a(ε) > 0 such that, if p = p(n) satisfies np ≥ 1
and p ≤ 1− ε for n sufficiently large, then q∗(Gn,p) > a√

np whp.

Observe that the upper bound here on q∗(Gn,p) implies part (c) of Theorem 1.2. As an
immediate corollary of Theorem 1.3 we have:

I Corollary 1.4. There exists 0 < a < b such that, if 1/n ≤ p = p(n) ≤ 0.99 then

a
√
np

< q∗(Gn,p) < b
√
np

whp.

This result confirms the Θ((np)−1/2) growth rate predicted to hold in this range by Reichardt
and Bornholdt [30]: further details of their prediction are given in Section 1.3.

In this extended abstract we give a full proof of the Three Phases Theorem, Theorem 1.2.
For Theorem 1.3 we give a proof of the upper bound. We also give a sketch proof of the
lower bound, based on an algorithm we call Swap, which whp outputs a bipartition achieving
the required modularity.

A higher modularity score is taken to indicate a better community division. Thus to
determine whether a clustering A in a graph G shows significant community structure we
should compare qA(G) to the likely (maximum) modularity for an appropriate null model,
that is, to the likely value of q∗(G̃) for null model G̃. It is an interesting question which null
model may be most appropriate in a given situation. For example, real networks have been
shown to exhibit power law degree behaviour and so null models which can mimic this have
been suggested; for example the Chung-Lu model [1] and random hyperbolic graphs [17].
However, a natural minimum requirement is not to consider a community division of a real
network as statistically significant unless it has higher modularity than the Erdős-Rényi
random graph of the same edge density.

1.3 Previous work on Modularity
The vast majority of papers referencing modularity are papers in which real data, clustered
using modularity based algorithms, are analysed. Alongside its use in community detection,
many interesting properties of modularity have been documented. A basic observation is
that, given a graph G without isolated vertices, in each optimal partition, for each part the
corresponding induced subgraph of G must be connected.

Properties and modularity of graph classes

The idea of a resolution limit was introduced by Fortunato and Barthélemy [12] in 2007: in
particular, if a connected component C in an m-edge graph has strictly fewer than

√
2m

edges, then every optimal partition will cluster the vertices of C together. This is so even
if the connected component C consists of two large cliques joined by a single edge. This
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property highlights the sensitivity of modularity to noise in the network: if that edge between
the cliques, perhaps a mistake in the data, had not been there, then the cliques would be in
separate parts in every optimal partition.

The complexity is known. Brandes et al. showed in 2007 that finding the (maximum)
modularity of a graph is NP-hard [4]. The reduction required some properties of optimal
partitions; for example it was shown that a vertex of degree 1 will be placed in the same part
as its neighbour in every optimal partition. Indeed, every part in every optimal partition has
size at least 2 or is an isolated vertex, see Lemma 1.6.5 in [31]. The paper [4] also began the
rigorous study of the modularity of classes of graphs, in particular of cycles and complete
graphs. Later Bagrow [3] and Montgolfier et al. [9] proved that some classes of trees have
high modularity, and this was extended in [21] to all trees with maximum degree o(n), and
indeed to all graphs where the product of treewidth and maximum degree grows more slowly
than the number of edges. There is a growing literature concerning the modularity behaviour
of different classes of graphs, see for example [3, 9, 20,21,29,32].

Franke and Wolfe in [13] look at a very different topic, namely the distribution of the
modularity of a random partition of a graph or random graph, rather than the modularity
of the graph, which is the maximum modularity of a partition. The paper covers some
random weighted models where the probability of an edge is proportional to the product of
the weights of the end-vertices, including the case of the Erdős-Rényi random graph Gn,p for
np→∞. They show that the modularity of a random partition is asymptotically normally
distributed. Their results do not imply anything about the (maximum) modularity q∗(Gn,p);
see also the discussion in the conclusion of [21].

Statistical Physics predictions

In 2004 Guimera et al. [15] observed through simulations that the modularity of random
graphs can be surprisingly high. In [15] they conjectured that, for each (large) constant
c > 1, if p = c/n then whp q∗(Gn,p) ≈ c−2/3. In 2006 Reichardt and Bornholdt [30] made a
different conjecture for the modularity in this range. They assumed that an optimal partition
will have parts of equal size, then approximated the number of edges between parts using
results from [16], where the authors give spin glass predictions for the minimum number
of crossing edges in an equipartition of a random graph. For p = c/n their prediction was
q∗(Gn,c/n) ≈ 0.97 c−1/2(1+o(1)) whp and we confirm this growth rate. Indeed they predicted
q∗(Gn,p) ≈ 0.97

√
(1− p)/np which is Θ((np)−1/2) for 1/n ≤ p ≤ 0.99. Hence Corollary 1.4

proves that for a large range of p the prediction of Reichardt and Bornholdt [30] is correct
up to constant factors (and refutes that of of Guimera et al.).

1.4 Plan of the paper
The three phases theorem Theorem 1.2 gave an overview of the behaviour of the modularity
q∗(Gn,p), with the three parts (a), (b) and (c) corresponding to increasing edge-probability p,
starting with the sparse case. Theorem 1.3, gave more detailed results for the critical region
and confirmed the (np)−1/2 growth rate conjectured in the physics community.

Our proofs are organised by starting with the sparse case. In Section 2 we prove
Theorem 1.2 part (a), by showing that the partition C into connected components satisfies
qC(Gn,p) p→ 1 in the sparse case. We prove Theorem 1.2 part (b) in Section 3: the lower
bound follows quickly from counting isolated edges in Gn,p, and to prove the upper bound
we use expansion properties of the giant component. Section 4 concerns the a(np)−1/2 lower
bound on q∗(Gn,p) in Theorem 1.3, and we a give a sketch of the proof. In Section 5, we use
a robustness result and spectral methods to prove the upper bound b(np)−1/2 on q∗(Gn,p) in
Theorem 1.3.
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2 The sparse phase: proof of Theorem 1.2 (a)

We can prove that sufficiently sparse random graphs whp have modularity near 1 without
developing any extra theory, and we do so here. Lemma 2.2 gives part (a) of the three phases
result Theorem 1.2. It is convenient to record first one standard preliminary result on degree
tax.

I Lemma 2.1. Let the graph G have m ≥ 1 edges, and let A be a k-part vertex partition.
If A has k parts then qD

A(G) ≥ 1/k; and if x, y are respectively the largest, second largest
volume of a part, then qD

A (G) ≤ x/2m and qD
A (G) ≤ (x/2m)2 + y/2m.

Proof. All the bounds follow from the convexity of f(t) = t2. Let xi be the volume of the
ith part in A. For the lower bound, observe that x1, . . . , xk ≥ 0 and

∑k
i=1 xi = 2m together

imply that
∑k

i=1 x
2
i ≥ k (2m/k)2 = 4m2/k ; and thus qD

A (G) =
∑

i x
2
i /(2m)2 ≥ 1/k.

For the upper bounds, observe that 0 ≤ x1, . . . , xk ≤ x and
∑k

i=1 xi = 2m together
imply that

∑k
i=1 x

2
i ≤ (2m/x)x2 = 2mx; and so qD

A (G) ≤ x/2m. Similarly, supposing that
xk = x and xi ≤ y for i = 1, . . . , k − 1, we have

∑k−1
i=1 x

2
i ≤ (2m − x)y ≤ 2my; and so

qD
A (G) ≤ (x2 + 2my)/(2m)2 = (x/2m)2 + y/2m. J

I Lemma 2.2. Let 0 < ε ≤ 1/4, and let p = p(n) satisfy n2p → ∞ and np ≤ 1 + ε for n
sufficiently large. Then q∗(Gn,p) ≥ qC(Gn,p) > 1− (4ε)2 whp.

Proof. Let m = e(Gn,p), and let X be the maximum number of edges in a connected
component of Gn,p. Note that for the connected components partition C, the edge contribution
is 1, and so by the first upper bound on the degree tax in Lemma 2.1, we have qC(Gn,p) ≥ 1−X

m .
We shall see that when np ≤ 1 we have X/m = o(1) whp, and so qC(Gn,p) = 1− o(1) whp.
To prove this we break into three ranges of p. The final range, when 1 < np ≤ 1 + ε will
require a little more care. Observe that since n2p→∞ we have m ∼ n2p/2 whp.

Range 1: n2p→∞ and np ≤ n−3/4. Whp Gn,p consists of disjoint edges. This follows
by the first moment method, since the expected number of paths on three vertices is Θ(n3p2).
Hence whp X/m = 1/m = o(1).

Range 2: n−3/4 ≤ np ≤ 1/2. Whp all components are trees or unicyclic and have
O(logn) vertices. Hence whp X = O(logn) and whp X/m = O

(
logn/n2p

)
= o(1).

Range 3: 1/2 ≤ np ≤ 1. Since np ≤ 1, whp the maximum number of edges in any
component is o(n) (see the next range). But whp m = Θ(n), and so whp X/m = o(1).

Range 4: 1 < np ≤ 1 + ε/4. Let c = 1 + ε. Let x = x(c) be the unique root in (0, 1) of
xe−x = ce−c. Then, for Gn,c/n, whp X = (1 + o(1)) (1− x2/c2)c n/2 and each component
other than the giant has O(logn) edges (see for example Theorem 2.14 of [14]). We claim
that

(1− x2/c2) c < 4ε/(1+ε). (1)

To see this, let f(t) = (1 + t)e−(1+t) − (1− t)e−(1−t) for t ≥ 0. Then f(0) = 0; and for t > 0,

f ′(t) = e−(1+t)(−(1 + t) + 1)− e−(1−t)((1− t)− 1) = te−1(et − e−t) > 0;

AofA 2018



31:6 Modularity of Erdős-Rényi Random Graphs

and so f(t) > 0 for all t > 0. Then f(ε) > 0, that is (1− ε)e−(1−ε) < (1 + ε)e−(1+ε), and it
follows that 1− x < ε. Hence, 1− x2/c2 < 1− (1− ε)2/(1 + ε)2. But now

(1− x2/c2) c < (1− (1−ε)2/(1+ε)2)(1+ε) =
(
(1+ε)2 − (1−ε)2)/(1+ε) = 4ε/(1+ε),

and we have proved (1). Hence, for Gn,c/n, whp X ≤ 4ε
1+ε

n
2 ; and so by monotonocity

this holds also for Gn,p (with p ≤ cn as here). Also, e(Gn,1/n) ≥ 1+ε/2
1+ε

n
2 whp, and so by

monotonocity this holds also for Gn,p. Now by the last part of Lemma 2.1, whp

qC(Gn,p) ≥ 1− (X/m)2 −O((logn)/n) ≥ 1− ( 4ε
1+ε/2 )2 −O((logn)/n) > 1− (4ε)2.

This completes the proof of the lemma. J

3 The middle phase: proof of Theorem 1.2 (b)

It is straightforward to use known results to prove Theorem 1.2 part (b). First we show that
the connected components partition C yields the lower bound. The lower bound will follow
also from the lower bound in Theorem 1.3 part (b), but that has quite a long and involved
proof, whereas the proof below is only a few lines. As we noted earlier, the upper bound in
Theorem 1.3 part (b) will give the upper bound in Theorem 1.2 part (b) for large np, but
not when np is small.

3.1 Proof of lower bound
There is a simple reason why the modularity q∗(Gn,p) is bounded away from 0 whp when
the average degree is bounded, namely that whp there is a linear number of isolated edges.
First, here is a deterministic lemma.

I Lemma 3.1. Let the graph G have m ≥ 2 edges, and i ≥ ηm isolated edges, where
0 < η ≤ 1

2 . Then qC(G) ≥ η.

Proof. Note first that if i = m then qC(G) = 1− 1/m ≥ η. Thus we may assume that i < m,
and so i ≤ m − 2. Since there are in total m − i edges in the components which are not
isolated edges,

qC(G) ≥ 1− (m− i)2

m2 − i

m2 .

Treating i as a continuous variable and differentiating, we see that the bound is an increasing
function of i for i ≤ m− 1; and so, setting i = ηm,

qC(G) ≥ 1− (1− η)2 − η/m = η + η(1− η − 1/m) ≥ η,

as required. J

Assume that 1 ≤ np ≤ c1. Let X be the number of isolated edges in Gn,p. Then

E[X] =
(
n

2

)
p(1− p)2n−4 = n · ( 1

2 + o(1))np e−2np ≥ n · ( 1
2 + o(1))c1e

−2c1 ,

since f(x) = xe−2x is decreasing for x > 1
2 . A simple calculation shows that the variance

of X is o((E[X])2): thus by Chebyshev’s inequality, whp X ≥ n · 1
3c1e

−2c1 . Similarly, whp
m = e(Gn,p) ≤ 2

3c1n; and so whp X/m ≥ 1
2e
−2c1 . Finally, Lemma 3.1 shows that whp

qC(Gn,p) ≥ η = 1
2e
−2c1 . This completes the proof of the lower bound.
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3.2 Proof of upper bound
It is convenient to spell out the upper bound in Theorem 1.2(b) as the following lemma.

I Lemma 3.2. Given constants 1 < c0 < c1, there exists ε = ε(c0, c1) > 0 such that, if
c0 ≤ np ≤ c1 for n sufficiently large, then whp q∗(Gn,p) < 1− ε.

For the proof of this lemma we use a result from [19] concerning edge expansion in the
giant component. Define a (δ, η)-cut of G = (V,E) to be a bipartition of V into V1, V2
such that both sets have at least δ|V | vertices and e(V1, V2) < η|V |. We need only the case
δ = 1/3.

Proof of Lemma 3.2. We employ double exposure. Let G′ ∼ Gn,c0/n. For each non-edge of
G′ resample with probability p′ = (p− c0/n)/(1− c0/n) to obtain G, so G ∼ Gn,p. Let A be
an optimal partition of G. Observe that whp m = e(G) < c1n, and then

1− q∗(G) = 1
2m

∑
A∈A

(
eG(A, Ā) + volG(A)2

2m

)
>

1
2c1n

∑
A∈A

(
eG′(A, Ā) + volG′(A)2

2c1n

)
.

Thus it suffices to show that whp, for each vertex partition A,

∑
A∈A

(
eG′(A, Ā) + volG′(A)2

2c1n

)
≥ 2εc1n. (2)

We will now work solely with G′, so we shall drop the subscripts. Whp G′ has a unique giant
component H, such that H does not admit a (1/3, η)-cut for a constant η = η(c0) > 0 by [19]
[Lemma 2], and such that |V (H)| ∼ (1− t0/c0)n where t0 < 1 satisfies t0e−t0 = c0e

−c0 [10].
Let F be the event that G′ has a unique giant component H, such that H does not admit a
(1/3, η)-cut, and |V (H)| ≥ 1

2 (1− t0/c0)n+ 3. Then the event F holds whp. Let W be a set
of vertices such that |W | ≥ 1

2 (1 − t0/c0)n + 3, and let FW be the event that F holds and
V (H) = W . To prove the lemma, it suffices to show that, conditioning on FW holding, the
inequality (2) holds with

ε = min{(1− t0/c0)2/36c2
1, η(1− t0/c0)/2c1}.

Let A be any vertex partition which minimises the left side of (2), and let H be the
partition of the giant component H induced by A, that is, H consists of the parts A ∈ A
with A ∩ W non-empty (since the induced subgraph on A is connected). Relabel H as
{W1, . . . ,Wh} where h ≥ 1 and |W1| ≥ . . . ≥ |Wh|. We will restrict our attention to H.
There are two cases to consider.

Case 1. Suppose |W1| ≥ |W |/3. As the subgraph induced by W1 is connected,

vol(W1) ≥ 2(|W1| − 1) ≥ (1− t0/c0)n/3;

and so∑
A∈A

vol(A)2

2c1n
≥ vol(W1)2

2c1n
≥ (1− t0/c0)2n2

18c1n
≥ 2εc1n,

which yields (2).
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Case 2. Now suppose that |Wi| < |W |/3 for all Wi ∈ H. We group the parts to make a
bipartition W = B1 ∪B2 with B1 and B2 of similar size. We may for example start with B1
and B2 empty, consider the Wi in turn, and each time add Wi to a smaller of B1 and B2.
This clearly gives ||B1| − |B2|| < |W |/3. Since there is no (1/3, η)-cut of H in G′, we have
e(B1, B2) ≥ η|W |. But each edge between B1 and B2 lies between the parts of A, and so∑

A∈A
e(A, Ā) ≥ 2e(B1, B2) ≥ 2η|W | > η(1− t0/c0)n ≥ 2εc1n,

which again yields (2), and completes the proof. J

4 The a(np)−1/2 lower bound on the modularity q∗(Gn,p)

We consider a simple algorithm Swap which, given a graph G, runs in linear time (in time
O(n + m) if G has n vertices and m edges), and yields a balanced bipartition A of the
vertices. The theorem below shows that qA(Gn,p) yields a good lower bound for q∗(Gn,p).

I Theorem 4.1. There are constants c0 and a > 0 such that (a) if p = p(n) satisfies
c0 ≤ np ≤ n− c0 for n sufficiently large, then whp qA(Gn,p) ≥ 1

5

√
1−p
np ; and (b) if p = p(n)

satisfies 1 ≤ np ≤ n− c0 for n sufficiently large, then whp qA(Gn,p) ≥ a
√

1−p
np .

The idea of the proof of Theorem 4.1 is as follows. The algorithm Swap starts with a
balanced bipartition of the vertex set into A∪B, which has modularity very near 0 whp. By
swapping some pairs (ai, bi) between A and B, whp we can increase the edge contribution
significantly, without changing the distribution of the degree tax (and without introducing
dependencies which would be hard to analyse). We give a sketch proof below but defer the
full proof to the extended paper.

Proof of Theorem 4.1 (sketch of the main ideas). Let n ≥ 6, and let V = [n]. We start
with the initial bipartition A of V into A = {j ∈ V : j is odd} and B = {j ∈ V : j is even}.
Let k = k(n) = bn/6c. Let V0 = [4k], let V1 = {4k + 1, . . . , 6k} and let V2 = {6k + 1, . . . , n}.
Note that 0 ≤ |V2| ≤ 5: we shall essentially ignore any vertices in V2. Let Ai = A ∩ Vi and
Bi = B ∩ Vi for i = 0, 1, 2. The six sets Ai, Bi are pairwise disjoint with union V . Currently
V0 is partitioned into A0 ∪ B0: the algorithm Swap ‘improves’ this partition, keeping the
other 4 sets fixed. For i = 1, . . . , 2k let ai = 2i− 1 and bi = 2i, so A0 = {a1, . . . , a2k} and
B0 = {b1, . . . , b2k}. The way that we improve the partition V0 = A0 ∪B0 is by swapping ai

and bi for certain values i.
Consider the initial bipartition A. Write G for Gn,p. It is not hard to show that whp

qA(G) is very near 0. For each i ∈ [2k] let

Ti = e(ai, B1)− e(ai, A1) + e(bi, A1)− e(bi, B1),

and note that the random variables T1, . . . , T2k are iid. Observe that if Ti > 0 and we swap
ai and bi between A0 and B0 (that is, replace A0 by (A0 \ {ai}) ∪ {bi} and similarly for
B0) then e(A,B) decreases by Ti, so the edge contribution of the partition increases. The
algorithm Swap makes all such swaps (looking only at possible edges between V0 and V1). For
each i ∈ [2k], let (a′i, b′i) = (bi, ai) if we perform a swap, and let (a′i, b′i) = (ai, bi) if not; and
let A′0 = {a′1, . . . , a′2k} and B′0 = {b′1, . . . , b′2k}. Let us call the resulting balanced bipartition
A′ = (A′, B′), where A′ = A′0 ∪A1 ∪A2 and B′ = B′0 ∪B1 ∪B2. We shall see that qA′(G) is
as required.
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A1 B1

ai biA0 B0 swap if Ti > 0

A1 B1

bi ai
A′0 B′0

Figure 1 An illustration of the constructed partition in the proof of Theorem 4.1.

Let T ∗ =
∑

i∈[2k] |Ti|. Observe that

e(A′0, A1) + e(B′0, B1)− (e(A′0, B1) + e(A1, B
′
0)) = T ∗,

so

e(A′0, B1) + e(A1, B
′
0) = 1

2e(V0, V1)− 1
2T
∗. (3)

This is where A′ will gain over A. The main technical part of the proof is to show that whp
T ∗ is large and we leave this to the full version of the paper. We will also show that the
degree tax for A′ has exactly the same distribution as for the initial bipartition A, and it
will follow that it is very close to 1/2 whp. J

5 Upper bounds on modularity

In this section we prove the upper bound on q∗(Gn,p) in Theorem 1.3, which establishes both
part (c) of Theorem 1.2, and the upper bound in part (b) of Theorem 1.2. In Section 5.1 we
give bounds on the modularity of a graph G in terms of the eigenvalues of its normalised
Laplacian L(G). In Section 5.2, these results are used, together with spectral bounds from [7]
and [8], and a ‘robustness’ result on modularity, to complete the proof.

5.1 Spectral upper bound on modularity
The main task of this subsection is prove that the modularity of a graph is bounded above
by the spectral gap of the normalised Laplacian. We begin with a definition. For an
n-vertex graph G with adjacency matrix AG and no isolated vertices define the degrees
matrix D to be the diagonal matrix diag(d1, . . . , dn) and the normalised Laplacian to be
L = I −D−1/2AGD

−1/2. Here D−1/2 is diag(d−1/2
1 , . . . , d

−1/2
n ). Denote the eigenvalues of L

by 0 = λ0 ≤ . . . ≤ λn−1(≤ 2), see [6]. We call

max
i 6=0
|1− λi| = max{|1− λ1|, |λn−1 − 1|}

the spectral gap of G, and denote it be λ̄(G). (In terms of the eigenvalues λ̃0 ≥ · · · ≥ λ̃n−1
of D−1/2AGD

−1/2, we have λ̃i = 1− λi and so λ̄(G) = maxi 6=0 |λ̃i| = max{|λ̃1|, |λ̃n−1|}.)

AofA 2018
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I Lemma 5.1. Let G be a graph with at least one edge and no isolated vertices. Then

qA(G) ≤ λ̄(G) (1− 1/k) ≤ λ̄(G)

for each k-part vertex partition A, and so q∗(G) ≤ λ̄(G).

The proof of Lemma 5.1 relies on a corollary of the Discrepancy Inequality, Theorem 5.4
of [6], which is an extension of the Expander-Mixing Lemma to non-regular graphs. Write
S̄ = V \S where V = V (G).

I Lemma 5.2 (Corollary 5.5 of [6]). Let G be a graph with at least one edge and no isolated
vertices. Then for each S ⊆ V

e(S, S̄) ≥ (1− λ̄(G)) vol(S)vol(S̄)/vol(G).

Proof of Lemma 5.1. Let G have m ≥ 1 edges. Let A = {A1, . . . , Ak} be a vertex partition
of G. Lemma 5.2 guarantees many edges between the parts of A. The edge contribution
satisfies

1− qE
A(G) = 1

2m
∑

i

e(Ai, Āi) ≥ (1− λ̄) 1
4m2

∑
i

vol(Ai)vol(Āi);

and
1

4m2

∑
i

vol(Ai)vol(Āi) = 1
4m2

∑
i

vol(Ai)(2m− vol(Ai)) = 1− qD
A (G).

Hence

1− qE
A(G) ≥ (1− λ̄)(1− qD

A (G)),

and so

qA(G) = qE
A(G)− qD

A (G) ≤ λ̄(1− qD
A (G)) ≤ λ̄(1− 1

k )

(since qD
A (G) ≥ 1/k by Lemma 2.1). This completes the proof. J

5.2 The b(np)−1/2 upper bound on the modularity q∗(Gn,p).
We are now ready to prove the spectral upper bound for q∗(Gn,p). Let us restate the upper
bound in Theorem 1.3 as a lemma.

I Lemma 5.3. There is a constant b such that for 0 < p = p(n) ≤ 1

q∗(Gn,p) ≤ b
√
np

whp.

Proof. Notice first that it suffices to show that there exist c0 and b such that for np ≥ c0
whp q∗(Gn,p) ≤ b/√np, and then replace b by max{√c0, b}.

For p� log2 n/n, the result follows directly from Lemma 5.1, and Theorem 3.6 of Chung,
Vu and Lu [7] (see also (1.2) in [8]), which shows that

λ̄(Gn,p) ≤ 4(np)−1/2(1 + o(1)) whp.

For the remainder of the proof we assume that c0/n ≤ p ≤ 0.99 for some large constant
c0 ≥ 1. We will use the spectral bound in Lemma 5.1 on a subgraph H which is obtained
from the random graph G = Gn,p by deleting a small subset of the vertices (and the incident
edges).

Following the construction in [8], let H be the induced subgraph of G obtained as follows.
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Initially set H = G \ {v ∈ V (G) : dv < (n− 1)p/2}.
While there is a vertex v ∈ V (H) with at least 100 neighbours in V (G) \ V (H), remove v
from H.

Let V ′ be the set of deleted vertices, and let E′ be the set of deleted edges (the edges
incident with vertices in V ′). Then by Theorem 1.2 of Coja-Oghlan [8], assuming that c0 is
sufficiently large, there are positive constants c1 and c2 such that whp |V ′| ≤ ne−np/c2 and
λ̄(H) ≤ c1(np)−1/2.

We want a bound on |E′|, not |V ′|. By the proof of Corollary 2.3 in [8], whp in Gn,p

we have vol(S) ≤ 2np|S|+ ne−np/1500 simultaneously for each set S of vertices. (The result
is stated with vol(S) replaced by |NG(S)|, the number of neighbours of S outside S, but
the proof actually shows the result for vol(S).) Hence, noting also that np ≥ 1 and setting
c3 = max{c2, 1500}, whp

|E′| ≤ vol(V ′) ≤ 2n2p e−np/c2 + ne−np/1500 ≤ 3n2p e−np/c3 ≤ e(G) · 9e−np/c3 ,

where the last inequality follows since whp e(G) ≥ n2p/3. By making c0 larger if necessary,
we can ensure that 9e−np/c3 ≤ (1/3)(np)−1/2, and so whp |E′|/e(G) ≤ (1/3)(np)−1/2. Now,
by Lemma 5.1, whp

q∗(G \ E′) = q∗(H) ≤ λ̄(H) ≤ c1(np)−1/2.

One of the ‘robustness’ results in the full paper says that, if H is a graph and E′ is a proper
subset of the edges, then |q∗(H)− q∗(H\E′)| ≤ 3|E′|/e(H). Using this result, whp

q∗(G) ≤ q∗(G \ E′) + 3|E′|/e(G) ≤ (c1 + 1)(np)−1/2,

and the proof is complete. J

6 Concluding remarks

We have presented results on q∗(Gn,p), focussing on the three phases as the average degree
moves past 1 and then grows to ∞, and on the Θ((np)−1/2) result. The full paper [24] (as
mentioned earlier) also contains corresponding results for q∗(Gn,m); and it contains some
other results, including concentration for both q∗(Gn,p) and q∗(Gn,m).

There is further related work in progress: concerning the modularity of very dense graphs
and random graphs, see [25]; concerning modularity and edge-sampling (it may be expensive
to test if an edge is present), see [23]; and concerning extreme values of modularity (to set
random results in context), see [22].
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