
ar
X

iv
:1

80
7.

10
26

2v
1

 [
cs

.L
G

]
 2

6
Ju

l 2
01

8

Seeded Graph Matching via Large Neighborhood Statistics

Elchanan Mossel
MIT

elmos@mit.edu

Jiaming Xu
Duke University

jiaming.xu868@duke.edu

July 27, 2018

Abstract

We study a well known noisy model of the graph isomorphism problem. In this model, the
goal is to perfectly recover the vertex correspondence between two edge-correlated graphs, with
an initial seed set of correctly matched vertex pairs revealed as side information. Specifically,
the model first generates a parent graph G0 from Erdős-Rényi random graph G(n, p) and then
obtains two children graphs G1 and G2 by subsampling the edge set of G0 twice independently
with probability s = Θ(1). The vertex correspondence between G1 and G2 is obscured by
randomly permuting the vertex labels of G1 according to a latent permutation π∗. Finally, for
each i, π∗(i) is revealed independently with probability α as seeds.

In the sparse graph regime where np ≤ nǫ for any ǫ < 1/6, we give a polynomial-time
algorithm which perfectly recovers π∗, provided that nps2− logn → +∞ and α ≥ n−1+3ǫ. This
further leads to a sub-exponential-time, exp

(
nO(ǫ)

)
, matching algorithm even without seeds. On

the contrary, if nps2−logn = O(1), then perfect recovery is information-theoretically impossible
as long as α is bounded away from 1.

In the dense graph regime, where np = bna, for fixed constants a, b ∈ (0, 1], we give a
polynomial-time algorithm which succeeds when b = O(s) and α = Ω

(
(np)−⌊1/a⌋ logn

)
. In

particular, when a = 1/k for an integer k ≥ 1, α = Ω(log n/n) suffices, yielding a quasi-
polynomial-time nO(logn) algorithm matching the best known algorithm by Barak et al. for
the problem of graph matching without seeds when k ≥ 153 and extending their result to new
values of p for k = 2, . . . , 152.

Unlike previous work on graph matching, which used small neighborhoods or small subgraphs
with a logarithmic number of vertices in order to match vertices, our algorithms match vertices
if their large neighborhoods have a significant overlap in the number of seeds.

1

http://arxiv.org/abs/1807.10262v1

1 Introduction

In this paper, we study a well-known model of noisy graph isomorphism. Our main interest is
in polynomial time algorithms for seeded problems where the matching between a small subset
of the nodes is revealed. For seeded problems, our result provides a dramatic improvement over
previously known results. Our results also shed light on the unseeded problem. In particular, we
give (the first) sub-exponential time algorithms for sparse models and an nO(logn) algorithm for
dense models for some parameters, including some that are not covered by recent results of Barak
et al. [BCL+18].

We recall that two graphs are isomorphic if there exists an edge-preserving bijection between
their vertex sets. The Graph Isomorphism problem is not known to be solvable in polynomial
time, except in special cases such as graphs of bounded degree [Luk80] and bounded eigenvalue
multiplicity [BGM82]. However, a recent breakthrough of Babai [Bab16] gave a quasi-polynomial
time algorithm.

In a number of applications including network security [NS09, NS08], systems biology [SXB08],
computer vision [CFSV04, SS05], and natural language processing [HNM05], we are given two
graphs as input which we believe have an underlying isomorphism between them. However, they
are not exactly isomorphic because they have each been perturbed in some way, adding or delet-
ing edges randomly. This suggests a noisy version of Graph Isomorphism also known as graph
matching [LR13], where we seek a bijection that minimizes the number of edge disagreements.

Given two graphs with adjacency matrices G1 and G2, if our goal is to minimize the ℓ2 distance
between G1 and some permuted version of G2, then graph matching can be viewed as a special
case of the quadratic assignment problem (QAP) [BCPP98]: namely,

min
Π

‖G1 −ΠG2Π
⊤‖2F , (1)

where Π ranges over all n × n permutation matrices, and ‖A‖2F =
∑

ij A
2
ij denotes the Frobenius

norm. QAP is NP-hard in the worst case. There are exact search methods for QAP based on branch-
and-bound and cutting planes, as well as various approximation algorithms based on linearization
schemes, and convex/semidefinite programming relaxations (see [FQRM+16] and the references

therein). However, approximating QAP within a factor 2log
1−ǫ(n) for ǫ > 0 is NP-hard [MMS10].

These hardness results only apply in the worst case, where the two graphs are designed by
an adversary. However, in many aforementioned applications, we are not interested in worst-case
instances, but rather in instances for which there is enough information in the data to recover
the underlying isomorphism, i.e., when the amount of data or signal-to-noise ratio is above the
information-theoretic limit. The key question is whether there exists an efficient algorithm that
is successful all the way down to this limit. In this vein, we consider the following random graph
model denoted by G(n, p; s) [PG11].

Definition 1 (The Correlated Erdős-Rényi model G(n, p; s)). Suppose we generate a parent graph
G0 from the Erdős-Rényi random graph model G(n, p). For a fixed realization of G0, we generate
two subgraphs G1 and G2 by subsampling the edges of G0 twice. More specifically,

• We let G∗
1 be a random subgraph of G0 obtained by including every edge of G0 with probability

s independently.

• We repeat the above subsampling procedure, but independently to obtain another random sub-
graph of G0, denoted by G2.

2

To further model the scenario that we do not know the vertex correspondence between G1 and G2

a prior, we sample a random permutation π∗ over [n] and let G1 denote the graph obtained by
relabeling every vertex i in G∗

1 as π∗(i).

The goal is to exactly recover π∗ from the observation of G1 and G2 with high probability, i.e.,
to design an estimator π̂ based on G1 and G2 such that

P {π̂(G1, G2) = π∗} → 1, as n → ∞.

As a motivating example, we can model G0 as some true underlying friendship network of n
persons, G1 is an anonymized Facebook network of the same set of persons, and G2 is a Twitter
network with known person identities. If we can recover the vertex correspondence between G1 and
G2, then we can de-anonymize the Facebook network G1 (this example ignores many important
facts such as additional graph structures in real life networks).

Note that s is equal to the probability of e ∈ E(G2) conditional on e ∈ E(G1), and hence can be
viewed as a measure of the edge correlations. Throughout this paper, without further specifications,
we shall assume s = Θ(1).

In the fully sampling case s = 1, graph matching under G(n, p; 1) reduces to the Graph Auto-
morphism problem for Erdős-Rényi graphs. In this case, a celebrated result [Wri71] shows that if
log n+ ω(1) ≤ np ≤ n− log n− ω(1), then with probability 1− o(1), the size of the automorphism
group of G0 is 1 and hence the underlying permutation π∗ can be exactly recovered; otherwise,
with probability 1 − o(1), the size of the automorphism group of G0 is strictly bigger than 1 and
hence exact recovery of the underlying permutation is information-theoretically impossible. Recent
work [CK16, CK17]1 has extended this result to the partially sampling case s = Θ(1) and p ≤ 1/2,
showing that the Maximum Likelihood Estimator, or equivalently the optimum of QAP (1), coin-
cides with the ground truth π∗ with high probability, provided that nps2 ≥ log n + ω(1); on the
contrary, any estimator is correct with probability o(1), if nps2 ≤ log n− ω(1).

From a computational perspective, in the fully sampling case s = 1, there exist linear-time
algorithms which attain the recovery threshold, in the sense that they exactly recover the under-
lying permutation with high probability whenever np = log n + ω(1) [Bol82, CP08]. However, in
the partially sampling case, it is still open whether any efficient algorithm can succeed close to
the threshold. A recent breakthrough result [BCL+18] obtains a quasi-polynomial-time (nO(logn))
algorithm which succeeds when np ≥ no(1) and s ≥ (log n)−o(1). However, this is still far away from
the information-theoretic limit nps2 ≥ log n+ ω(1).

Another line of work [PG11, YG13, KL14, LFP13, FAP18, SGE17] in this area considers a
relaxed version of the graph matching problem, where an initial seed set of correctly matched vertex
pairs is revealed as side information. This is motivated by the fact that in many real applications,
some side information on the vertex identities are available and have been successfully utilized to
match many real-world networks [NS09, NS08]. Formally, in this paper, we assume the seed set is
randomly generated as follows.

Definition 2 (Seeded graph matching under G(n, p; s, α)). In addition to G1, G2 that are generated
under G(n, p; s) with a latent permutation π∗, we have access to π0 such that π0(i) = π∗(i) with
probability α and π0(i) =? with probability 1 − α independently across different i. The goal is to
recover π∗ based on G1, G2, and π0.

The vertex i such that π0(i) = π∗(i) is called seeded vertices and the set of seed vertices
is denoted by I0. Note that according to our model, the number of seeds |I0| is distributed as

1 In fact, a more general correlated Erdős-Rényi random graph model is considered in [CK16, CK17], where
P {G1(i, j) = a,G2(i, j) = b} = pa,b for a, b ∈ {0, 1}.

3

Binom(n, α). For a given size K, we could also consider a deterministic size model where I0 is
chosen uniformly at random from all possible subsets of [n] with size K. The main results of this
paper readily extend to this deterministic size model with K = ⌊nα⌋.

The results of the seeded graph matching turn out to be useful for designing graph matching
without seeds. On the one hand, when a seed set of size K is not given, we could obtain it
in nO(K) steps by randomly choosing a set of K vertices and then enumerating all the possible
mapping. This is known as the beacon set approach to graph isomorphism [Lip78]. On the other
hand, we could first apply a seedless graph matching algorithm and then apply a seeded graph
matching algorithm to boost its accuracy. This two-step algorithms have been successful both
theoretically [BES80] [Bol01, Section 3.5] and empirically [LFP13].

In the sparse graph regime np = Θ(log n), it is shown in [YG13] that if α = Ω(1/ log2 n),
or equivalently, the size of the seed set is Ω(n/ log2 n), then a percolation-based graph matching
algorithm correctly matches n−o(n) vertices in polynomial-time with high probability. In the dense
graph regime np = nδ for some constant δ ∈ (0, 1), a seed set of size Θ(n1−δ) suffices as shown
in [YG13]. Another work [KL14] shows that if nps2α ≥ 24 log n, then one can match all vertices
correctly in polynomial-time with high probability based on counting the number of “common”
seeded vertices. Note that this exact recovery result requires the seed set size to be linear in n in
the sparse graph regime np = Θ(log n).

In summary, despite a significant amount of previous work on seedless and seeded graph match-
ing, the following two fundamental questions remain elusive:

Question 1. In terms of graph sparsity, can we achieve the information-theoretic limit nps2 −
log n → +∞ in sub-exponential, or polynomial time?

Question 2. In terms of seed set, what is the minimum number of seeds required for exact recovery
in sub-exponential, or polynomial time?

Our main results shed light on this two questions by improving the state-of-the-art of seeded
graph matching. First, we show that it is possible to achieve the information theoretic limit
nps2 ≥ log n + ω(1) of graph sparsity in polynomial-time. Then, we show the number of seeds
needed for exact recovery in polynomial-time can be as low as nǫ in the sparse graph regime
(np ≤ nǫ) and Ω(log n) in the dense graph regime.

1.1 Main Results

We first consider the sparse graph regime.

Theorem 1. Suppose np ≤ n1/2−ǫ for a fixed constant ǫ > 0 and s = Θ(1). Assume

nps2 − log n → +∞ (2)

α ≥ n−1/2+3ǫ. (3)

Then there exists a polynomial-time algorithm, namely Algorithm 1, which outputs π̂ = π∗ with
probability at least 1− o(1) under the seeded G(n, p; s, α) model.

Notice that (4) is the information-theoretic limit for graph matching under the seedless G(n, p; s)
model. In fact, Theorem 2 shows that (4) is necessary for seeded graph matching as long as α is
bounded away from 1. Its proof is standard and can be found in Appendix A.

4

Theorem 2. If
nps2 − log n = O(1),

then any algorithm outputs π̂ 6= π∗ with at least a probability of Ω
(
(1− α)2

)
under the seeded

G(n, p; s, α) model.

Also, the condition (5) requires that the size of the seed set is n1/2+3ǫ compared to the best
previously known results that required the seed set to be almost linear in n.

It is natural to ask if n1/2 seeded nodes are required for polynomial time algorithm. While from
the proof of Theorem 1, it might look that n1/2 is optimal due to the birthday paradox effect, it
turns out we can do better!

The following result relaxes the size of seed set needed to n3ǫ.

Theorem 3. Suppose np ≤ nǫ for a fixed constant ǫ < 1/6 and s = Θ(1). Assume

nps2 − log n → +∞ (4)

α ≥ n−1+3ǫ. (5)

Then there exists a polynomial-time algorithm, namely Algorithm 3, which outputs π̂ = π∗ with
probability at least 1− o(1) under the seeded G(n, p; s, α) model.

We next consider the dense graph regime, where we assume the average degree np is parame-
terized as:

np = bna (6)

for some fixed constants a, b ∈ (0, 1]. Let

d =

⌊
1

a

⌋
+ 1, (7)

Theorem 4. Consider the dense graph regime (6). Assume

b ≤ s

16(2 − s)2
, (8)

and

α ≥ 300 log n

(nps2)d−1
, (9)

where d is given in (7). Then there exists an polynomial-time algorithm, namely Algorithm 2, which
outputs π̂ = π∗ with probability 1− 4n−1 under the seeded G(n, p; s, α) model.

Our results for seeded graph matching also imply the results for graph matching without seeds.

Theorem 5. Suppose a Seeded Graph Matching algorithm outputs π̂ = π∗ with high probability
under the seeded graph matching model G(n, p; s, α). Assume nps2 − log n → +∞ and αn →
+∞. Then there exists an algorithm, namely Algorithm 4, which calls the Seeded Graph Matching
algorithm nO(αn) times and outputs π̂ = π∗ under the seedless model G(n, p; s) with high probability.

5

Remark 1. Consider the dense regime (6) with a = 1/k for an integer k ≥ 1. Then d = k+1 and
(np)d−1 = bkn. Hence, as shown by Theorem 4, αn ≥ 300 log n(bs2)−k, or equivalently Ω(log n)
number of seeds, suffice for exact recovery in polynomial-time. Since we can enumerate over all
possible matchings for log n seeds in quasi-polynomial nO(logn) time, this implies a quasi-polynomial
time matching algorithm even without seeds, as shown by Theorem 5. The previous work [BCL+18]
gives a quasi-polynomial time matching algorithm in the range

np ∈
[
no(1), n1/153] ∪ [n2/3, n1−ǫ

]
.

Our results complement their results by filling in gaps in the above range with points np ∈ {bn1/k :
1 ≤ k ≤ 152}.

1.2 Key Algorithmic Ideas and Analysis Techniques

Most previous work [PG11, YG13, KL14, LFP13, FAP18, SGE17] on seeded graph matching ex-
ploits the seeded information by looking at the number of seeded vertices that are direct neighbors
of a given vertex. Since the average degree of a vertex is np, npα ≫ 1 is needed so that there are
sufficiently many seeded vertices that are direct neighbors of a given vertex.

Our idea is to explore much bigger (“global”) neighborhoods of a given vertex up to radius ℓ
for a suitably chosen ℓ, and match two vertices by comparing the set of seeded vertices in their ℓ-th
local neighborhoods. This idea was used before in the noiseless and seedless case, in [Bol82, CP08]
but to the best of our knowledge was not used in the noisy and seeded case. Since we are looking at
global neighborhoods, we can only perform very simple tests. Indeed, the test we perform to check
if two vertices are matched is just to count how many seeded vertices do the two neighborhoods
have in common. Thus, our algorithms are very simple.

The main challenge in the analysis is to control the size of neighborhoods of the coupled graphs
G0, G1 and G2. In this regard, we draw on a number of tools from the literature on studying
subgraph counts [JLR11] and the diameter in random graphs [Bol01]. See Appendix D for details.

2 Our Algorithms

Before presenting our algorithms, we first explain why (4) is needed for graph matching under
G(n, p, s). Denote the intersection graph and the union graph by G∗

1 ∧G2 and G∗
1 ∨G2. Then

G∗
1 ∧G2 ∼ G(n, ps2) and G∗

1 ∨G2 ∼ G(n, ps(2− s)).

Notice that G∗
1 ∧ G2 contains the statistical signature for matching vertices, as a subgraph in

G∗
1 ∧G2 will appear in both G1 and G2. If nps

2− log n = O(1), then classical random graph theory
implies that with high probability, G∗

1 ∧ G2 contains isolated vertices. The underlying true vertex
correspondence of these isolated vertices cannot be correctly matched; hence the impossibility of
exact recovery. See Appendix A for a precise argument.

In contrast, if nps2 − log n → +∞, then G∗
1 ∧G2 is connected with high probability. Moreover,

for a high-degree vertex i in G∗
1 ∧ G2, its local neighbhorhood grows like a branching process. In

particular, the number of vertices at distance ℓ from i is approximately (nps2)ℓ. Furthermore, for a
pair of two vertices i, j chosen at random in G∗

1 ∨G2, the intersection of the local neighborhoods of
i and j is typically of size O

(
(nps)2ℓn−1

)
. Therefore, if (nps2)ℓ ≫ (nps)2ℓn−1 and α(nps2)ℓ ≫ 1,

a large number of vertices can be distinguished with high probability based on the set of seeded
vertices in their ℓ-th local neighborhoods. This is the key idea underlying our algorithms.

6

We shall use the following notations of local neighborhoods. For a given graph G, we denote
by ΓG

k (u) the set of vertices at distance k from v in G:

ΓG
k (u) = {v ∈ V (G) : d(u, v) = k} (10)

and write NG
k (u) for the set of vertices within distance k from u:

NG
k (u) = ∪k

i=0Γi(u). (11)

When the context is clear, we abbreviate ΓG
k (u) and NG

k (u) as Γk(u) and Nk(u) for simplicity.

2.1 A Simple Algorithm in Sparse Graph Regime

We first present a simple seeded graph matching algorithm which succeeds up to the information-
theoretic limit in terms of graph sparsity when the initial seed set is of size n1/2+3ǫ.

The idea of the algorithm is based on matching ℓ-th local neighborhoods of two vertices by
finding independent paths (vertex-disjoint except for the starting vertex) to seeded vertices. The ℓ
is chosen such that (np)ℓ ≈ n1/2−ǫ. In this setting, we expect that if i in G1 and j in G2 are true
matches, then their local neighborhoods intersect a lot; if i and j are wrong matches, then their
local neighborhoods barely intersect. Hence, if α(nps2)ℓ ≫ 1, then we can find a sufficiently large
number of, say m, independent (vertex-disjoint except for i) paths of length ℓ from i to m seeded

vertices in Γ
G∗

1
∧G2

ℓ (i). Such m paths of length ℓ form a starlike tree T in G∗
1 ∧G2 with root vertex

i and a set of m seeded leaves, denoted by L (See Fig. 1 for an example of m = 3 and ℓ = 2). Note
that T will appear in G2 with root vertex i and the set of seeded leaves L; it will also appear in
G1 with root vertex π∗(i) and the corresponding set of seeded leaves π∗(L). However, since the
ℓ-th local neighborhoods of two distinct vertices barely intersect, T will not appear in G∗

1 ∨ G2

with a root vertex other than i. Therefore, we can correctly match the vertex π∗(i) in G1 with the
high-degree vertex i in G2 by finding such a starlike tree T , or equivalently m independent ℓ-paths
to a set of m common seeded vertices.

Algorithm 1 Graph matching based on counting independent ℓ-paths to seeded vertices

1: Input: G1, G2, π0, m, ℓ ∈ Z

2: Output: π̂.
3: Match high-degree vertices: For each pair of unseeded vertices i1 ∈ V (G1) and i2 ∈ V (G2),

if there are m independent ℓ-paths in G2 from i2 to a set of m seeded vertices L ⊂ ΓG2

ℓ (i2), and
there are m independent ℓ-paths in G1 from i1 to the corresponding set of m seeded vertices
π0(L) ⊂ ΓG1

ℓ (i1), then set π̂(i2) = i1. Declare failure if there is any conflict.
4: Match low-degree vertices: For every i2 ∈ I0, set π̂(i2) = π0(i2). For all the pairs of

unmatched vertices (i1, i2), if i1 is adjacent to a matched vertex j1 in G1 and i2 is adjacent to
vertex π̂(j1) in G2, set π̂(i2) = i1. Declare failure if there is any conflict.

5: Output π̂ to be a random permutation when failure is declared or there is any vertex unmatched.

There are two tuning parameters ℓ and m in Algorithm 1. Later in our analysis, we will
optimally choose

ℓ =

⌊(
1

2
− ǫ

)
log n

log(nps2)

⌋
≥ 1 (12)

and

m =

⌈
2

ǫ

⌉
. (13)

7

Note that when nps2 − log n → +∞, there may exist vertices with small degrees. In fact,
classical random graph results say that the minimum degree of G(n, p) is k with high probability
for a fixed integer k, provided that

(k − 1) log log n+ ω(1) ≤ nps2 − log n ≤ k log log n− ω(1),

see, e.g., [FK15, Section 4.2]. Hence, due to the existence of low-degree vertices, we may not be
able to match all vertices correctly at one time based on the number of independent paths to seeded
vertices. Our idea is to first match high-degree vertices and then match the remaining low-degree
vertices with the aid of high-degree vertices matched in the first step. In particular, we let

τ =
nps2

log(nps2)
. (14)

We say a vertex i high-degree, if its degree di ≥ τ in G∗
1 ∧G2; otherwise, we say it is a low-degree

vertex. As we will see in Section 3, conditioning on that G∗
1 ∧G2 and G∗

1 ∨G2 satisfy some typical
graph properties, all low-degree vertices can be easily matched correctly given a correct matching
of high-degree vertices.

In passing, we remark on the time complexity of Algorithm 1. Note that for ease of presentation,
in Algorithm 1, we do not specify how to efficiently find out whether there exist m independent
ℓ-paths in G2 from i2 to seed set L ⊂ ΓG2

ℓ (i2), and m independent ℓ-paths in G1 from i1 to the

corresponding seed set π0(L) ⊂ ΓG1

ℓ (i1). It turns out for a given pair of vertices i1, i2, this task can
be reduced to a maximum flow problem in a directed graph, which can be solved via Ford–Fulkerson
algorithm [FF56] in O(nα) time steps (see Appendix E for details). Since there are at most n2 pairs
of vertices i1, i2 to consider, Step 3 of Algorithm 1 taks at most O(n3α). The Step 4 of matching
low-degree vertices in Algorithm 1 takes at most O(n3p) time steps. Hence, in total Algorithm 1
takes at most O

(
n3(α+ p)

)
time steps.

2.2 A Simple Algorithm in Dense Graph Regime

In this subsection, we consider the dense graph regime given in (6), where np = bna and d =
⌊1/a⌋ + 1. In this setting, since pdnd−1 − 2 log n → +∞ and pd−1nd−2 − 2 log n ≤ −∞, it follows
from [Bol01, Corollary 10.12] that G(n, p) has diameter d with high probability. Thus, when
s = Θ(1), both G∗

1 ∧G2 and G∗
1 ∨G2 have diameter d with high probability. Therefore, we present

an algorithm based on matching the d− 1-th local neighborhood of two vertices. More specifically,
our algorithm matches i1 ∈ V (G1) and vertex i2 ∈ V (G2) based on the number of seeded vertices
within distance d− 1 from i1 in G1 and within distance d− 1 from i2 in G2.

Algorithm 2 Graph matching based on (d− 1)-hop witness in dense regime

1: Input: G1, G2, π0, d ∈ Z.
2: Output: π̂.
3: Match all vertices: For each pair of unseeded vertices i1 ∈ V (G1) and i2 ∈ V (G2), compute

wi1,i2 =
∣∣∣
{
j ∈ I0 : π0(j) ∈ NG1

d−1(i1), j ∈ NG2

d−1(i2)
}∣∣∣ . (15)

Set π̂(i2) ∈ argmaxi1 wi1,i2 . Set π̂(i2) = π0(i2) for each seeded vertex i2 ∈ I0. Declare failure if
there is any conflict.

Algorithm 2 runs in polynomial-time. The precise running time depends on the data structures
for storing and processing graphs. To be specific, let us assume it takes one time step to fetch the

8

set of direct neighbors of a given vertex. Then fetching the set NG
ℓ (i) of all vertices within distance

ℓ from a given vertex i takes a total of O(|NG
ℓ (i)|) = O(n) time steps. Thus computing wi1,i2 in

(15) for a given pair of vertices i1, i2 takes at most O(n) time steps. Hence, in total Algorithm 2
takes O(n3) time steps. One could possibly obtain a better running time via a more careful analysis
or a better data structure.

The difference in the analysis compared to the first algorithm is that the (d − 1)-th local
neighborhoods are not tree-like anymore. Instead, we have to analyze the exposure process of the
two neighborhoods, for which we use a previous result of [Bol01, Lemma 10.9] in studying the
diameter of random graphs.

2.3 An Improved Algorithm in Sparse Graph Regime

In the sparse regime where np is poly-logarithmic, Algorithm 2 does not perform well. This is
because for two distinct vertices u, v that are close by, their ℓ-th local neighborhoods have a large
overlap, i.e., |NG

ℓ (u) ∩NG
ℓ (v)| is not much smaller than |NG

ℓ (u)| or |NG
ℓ (v)|, rendering wi1,i2 given

in (15) ineffective to distinguish u from v.
However, in the sparse regime, distinct vertices u, v only have very few common neighbors.

Moreover, if we remove vertices u, v, the non-common neighbors become far apart, and for distinct
vertices far apart, their local neighborhoods only have a small overlap. Therefore, we expect
most of u, v’s neighbor’s ℓ-th local neighborhoods (after removing vertices u, v) do not have large
intersections for a suitably chosen ℓ. This gives rise to Algorithm 3.

Algorithm 3 Graph matching based on (d− 1)-hop witness in sparse regime

1: Input: G1, G2, π0, ℓ ∈ Z, η ∈ R+.
2: Output: π̂.
3: Match high-degree vertices: For all the pairs of unseeded vertices (u, v) and for each pair

of their neighbors (i, j) with i ∈ ΓG1

1 (u) and j ∈ ΓG2

1 (v), compute

wu,v
i,j = min

x∈V (G1),y∈V (G2)

{∣∣∣
{
k ∈ I0 : π0(k) ∈ N

G1\{u,x}
ℓ (i), k ∈ N

G2\{v,y}
ℓ (j)

}∣∣∣
}
, (16)

where G\S denotes G with set of vertices S removed. Let

Zu,v =
∑

i∈Γ
G1
1

(u)

∑

j∈Γ
G2
1

(v)

1{wu,v
i,j ≥η}. (17)

If Zu,v ≥ log n/ log log n− 1, set π̂(v) = u. Declare failure if there is any conflict.
4: The remaining two steps are the same as Algorithm 1.

Note that in computing the number of seeded vertices within distance ℓ from both vertex i in
G1 and vertex j in G2 in (16), we remove vertices u, x in G1 and vertices v, y in G2, and take the
minimum over all possible choices of x and y. As a result,

wu,v
i,j ≤

∣∣∣
{
k ∈ I0 : π0(k) ∈ N

G1\{u,v}
ℓ (i), k ∈ N

G2\{u,v}
ℓ (j)

}∣∣∣ , (18)

where the right hand side becomes independent from the edges incident to u and v in G∗
1∨G2. This

independence is crucial in our analysis to ensure that Zu,v is small for u 6= π∗(v) via concentration
inequalities of multivariate polynomials [Vu02].

9

There are two tuning parameters ℓ and η in Algorithm 3. In our analysis later, we will optimally
choose

ℓ =

⌊
(1− ǫ) log n

log(np)

⌋
, (19)

and

η = 42ℓ+2n1−2ǫα. (20)

As for time complexity, Algorithm 3 takes at most O(n5+2ǫ) time steps. To see this, similar to
Algorithm 2, if we assume one unit time to fetch a set of direct neighbors of a given vertex, then it
takes at most O(n3) time steps to compute (18) for given pairs of vertices (u, v) and (i, j). There
are at most n2+2ǫ such pairs. The step of matching low-degree vertices as specified in Algorithm 1
takes O(n3p) time steps in total. Thus in total Algorithm 3 takes at most O(n5+2ǫ) time steps.

2.4 Graph Matching without Seeds

Even without an initial seed set revealed as side information, we can select a random subset of
vertices I0 in G1 and enumerate all the possible mappings f : I0 → [n] from I0 to vertices in G2 in
at most n|I0| steps. Each of the possible mappings can be viewed as seeds; thus we can apply our
seeded graph matching algorithm. Among all possible n|I0| mappings, we finally output the best
matching which minimizes the edge disagreements. See Algorithm 4 for details.

Algorithm 4 Seedless Graph matching via Seeded Graph Matching

1: Input: G1, G2

2: Output: π̂.
3: Select a random subset I0 of V (G1) by including each vertex with probability α.
4: For every possible mapping f : I0 → [n], run Seeded Graph Matching Algorithm with a seed

set I0, and output πf .
5: Output

π̂ ∈ argmin
πf

‖G1 −ΠfG2Π
⊤‖2F ,

where Πf is the permutation matrix corresponding to πf .

Since one of the possible mapping f will correspond to the underlying true matches of vertices
in I0, it follows that if our seeded graph matching succeeds with high probability and we are above
the information-theoretic limit (so that the true matching minimizes the edge disagreements with
high probability), the final output will coincide with the true matching with high probability, as
stated in Theorem 5. More specifically, the proof is sketched below.

Proof of Theorem 5. If f : I0 → [n] is such that f(i) = π∗(i) for all i ∈ I0, then since our seeded
graph matching succeeds with high probability, it follows that πf = π∗ with high probability.

Moreover, since we are above the information-theoretic limit, it follows from [CK17, Theorem
1] that with high probability,

π∗ ∈ argmin
π

‖G1 −ΠG2Π
⊤‖2F ,

where Π is the permutation matrix corresponding to π.
Therefore, π̂ = π∗ with high probability. Finally, since αn → ∞, it follows that |I0| is at most

2αn with high probability. Hence, Algorithm 4 calls the Seeded Graph Matching algorithm at most
nO(αn) times with high probability.

10

3 Analysis of Algorithm 1 in Sparse Graph Regime

In this and next two sections, we give the analysis of our algorithms and prove our main theorems.
For the sake of analysis, we assume π∗ = id, i.e., π∗(i) = i for all i ∈ [n], without loss of generality.

Our analysis of Algorithm 1 uses the technique for analyzing small subgraph containment [JLR11].
Let T denote a starlike tree formed by m independent (vertex-disjoint expect the root vertex) paths
of length ℓ from root vertex to m distinct leaves for ℓ,m ≥ 1. Note that T consists of mℓ+1 vertices
and mℓ edges (See Fig. 1 for an example of m = 3 and ℓ = 2). Let r(T) denote the root vertex
of T and L(T) denote the set of leaves of T. We say T is a subgraph of G, denoted by T ⊂ G, if
V (T) ⊂ V (G) and E(T) ⊂ E(G). The key of our proof is to show that under certain conditions
with high probability:

1. For every vertex i, there exists a copy of T rooted at i with all leaves seeded in the intersection
graph G∗

1 ∧G2;

2. There is no copy of T1 ∪ T2 in the union graph G∗
1 ∨G2.

65 7

32 4

1

T

65 7

32 4

1

98 10

11

T1 ∪ T2

65 7

32 4

1

9 10

11

T1 ∪ T2

Figure 1: Left: T is a starlike tree with m = 3, ℓ = 2, r(T) = 1 and L(T) = {5, 6, 7}. Middle
and Right: Two examples of T1 ∪ T2 such that T1, T2 are isomorphic to T , r(T1) 6= r(T2), and
L(T1) = L(T2) = {5, 6, 7}. For the middle, V (T1)∩V (T2) = {5, 6, 7}; for the right, V (T1)∩V (T2) =
{2, 5, 6, 7}.

3.1 Success of Algorithm 1 on the Intersection of Good Events

We first introduce a sequence of “good” events on whose intersection, Algorithm 1 correctly matches
all vertices. We need the following graph properties:

(i) there is no isolated vertex;

(ii) for any two adjacent vertices, there are at least τ vertices adjacent to at least one of them;

(iii) For all vertices i with di ≥ τ , there are at least 2m independent ℓ-paths from i to 2m distinct
vertices in I0;

(iv) There is no pairs of subgraphs T1, T2 ⊂ G that are isomorphic to T such that r(T1) 6= r(T2),
and L(T1) = L(T2) (See Fig. 1 for an illustration).

11

(v) For every vertex i, there exist at most m − 1 independent ℓ-paths from i to m − 1 distinct
vertices in NG

ℓ−1(i).

Let

• E1 denote the event such that G∗
1 ∧G2 satisfy properties (i)–(iii);

• E2 denote the event such that G∗
1 ∨G2 satisfy properties (iv) and (v);

• E3 denote the event such that for any two vertices i, j that are connected by a 2-path in
G∗

1 ∨G2, at least one of the two vertices i, j must be a high-degree vertex in G∗
1 ∧G2.

We claim that on event E1 ∩ E2 ∩ E3, Algorithm 1 correctly matches all vertices. Recall that we
can assume π∗ = id and thus G1 = G∗

1 without loss of generality.
First, since G∗

1 ∧ G2 satisfy graph property (iii), it follows that in G∗
1 ∧ G2, for all high-degree

vertices i, there exist 2m independent ℓ-paths to a set S ⊂ Γ
G∗

1
∧G2

ℓ (i) of 2m seeded vertices. Let

S̃ = S\NG∗
1∨G2

ℓ−1 (i). Since G∗
1 ∨ G2 satisfy graph property (v), and G∗

1 ∧ G2 ⊂ G∗
1 ∨ G2, it follows

that ∣∣∣S ∩N
G∗

1
∨G2

ℓ−1 (i)
∣∣∣ ≤ m− 1

and thus |S̃| ≥ m+ 1. Moreover, since G∗
1 ∧G2 ⊂ G1, G2, it follows that

S̃ ⊂ Γ
G∗

1
∧G2

ℓ (i)\NG∗
1
∨G2

ℓ−1 ⊂ Γ
G∗

1

ℓ (i) ∩ ΓG2

ℓ (i).

Therefore, in both G1 and G2, there are at least m+1 independent ℓ-paths from i to Γ
G∗

1

ℓ (i)∩ΓG2

ℓ (i).
Second, note that on event E2, G∗

1∨G2 satisfy graph property (iv). For the sake of contradiction,
suppose there exist a pair of distinct vertices i, j and a set L of m seeded vertices such that there
exist m independent ℓ-paths from i to set L in G1 and m independent ℓ-paths from j to set L in
G2. Let Tk denote the starlike tree formed by the m independent ℓ-paths in Gk for k = 1, 2. Then
T1, T2 ⊂ G∗

1 ∨G2 are isomorphic to T such that r(T1) = i, r(T2) = j and L(T1) = L(T2) = L. This
is in contradiction with the fact that G∗

1 ∨G2 satisfy graph property (iv).
It follows from the above two points that Algorithm 1 correctly matches all high-degree vertices

i in G∗
1 ∧G2, i.e., π̂(i) = i.

Next, we show that all low-degree vertices are matched correctly. Fix a low-degree vertex i.
Since G∗

1∧G2 satisfy graph properties (i) and (ii), it must have a high-degree neighbor j in G∗
1∧G2.

Since the high-degree vertex j has been matched correctly, i is adjacent to j in G1 and i is also
adjacent to π̂(j) = j in G2. Moreover, for the sake of contradiction, suppose there exists a pair of
two distinct low-degree vertices i1 and i2 such that i1 is adjacent to a matched vertex j1 in G1 and
i2 is adjacent to vertex π̂(j1) in G2. Since π̂(j1) = j1, it follows that (i1, j1, i2) form a 2-path in
G∗

1 ∨G2. However, on event E3, i1 and i2 cannot be low-degree vertices simultaneously in G∗
1 ∧G2,

which leads to a contradiction. As a consequence, π̂(i) = i for every low-degree vertex i.
Finally, to prove Theorem 1, it remains to show that under the theorem assumptions, P {Ei} → 1

for all i = 1, 2, 3, which is done in the next subsection.

3.2 Bound the Probability of Good Events

It is standard to prove that G∗
1∧G2 satisfies properties (i)–(ii) with high probability and P {E3} → 1

using union bounds. For completeness, we state the lemmas and leave the proofs to appendices.

Lemma 1. Suppose G ∼ G(n, p) with np− log n → +∞.

12

(i) There is no isolated vertex in G with probability at least 1− o(1);

(ii) Assume τ = o(np). With probability at least 1−n−1+o(1), for any two adjacent vertices, there
are at least τ vertices adjacent to at least one of them in G.

Lemma 2. Assume

nps2 ≥ log n and τ = o(nps2) and log(np) = o(nps2).

With probability at least 1 − n−1+o(1), for any two vertices i, j that are connected by a 2-path in
G∗

1 ∨G2, at least one of the two vertices i, j must have degree at least τ in G∗
1 ∧G2.

It remains to show with high probability, G∗
1∧G2 satisfy graph property (iii) and G∗

1∨G2 satisfy
graph properties (iv) and (v).

We will apply the following lemma to show that with high probability, for every high-degree
vertex i in G∗

1 ∧ G2, we can always find at least 2m independent paths of length ℓ from i to 2m
distinct seeded vertices in I0.

Lemma 3. Suppose G ∼ G(n, p) and each vertex in G is included in I0 independently with proba-
bility α. Assume

α(np/2)ℓ−2τ(τ − 2m)− 2m log τ ≥ 2 log n.

and
p(4np)ℓ = o(1)

and τ → +∞. Then with high probability, for all vertices i with di ≥ τ , there are at least 2m
independent ℓ-paths from i to I0.

Proof. In view of Proposition 1, we have P {H} ≥ 1−3n−1+o(1), where on event H, for every vertex
i, there exists a tree Tℓ(i) ⊂ G of depth ℓ rooted at i such that:

1. Root i has at most one children j who has fewer than τ children in T (i), i.e., |Π1(j)| ≤ τ .

2. For each children j of i with |Π1(j)| ≥ τ , the subtree Tℓ−1(j) of depth ℓ− 1 rooted at j has
at least τ(np/2)ℓ−2 leaves, i.e., |Πℓ−1(j)| ≥ τ (np/2)ℓ−2.

Fix a vertex i in G. Then i has at least di − 1 children j such that |Π1(j)| ≤ τ . For each such
j, define Yij = 1 if there is a path of length ℓ − 1 from j to some vertex in I0 in Tℓ(i). Then the

number of independent paths from i to I0 is at least
∑di−1

j=1 Yij .
Since each leaf vertex of Tℓ−1(j) is included in I0 with probability α independently across

different vertices and from graph G, it follows that

P {Yij = 1 | di ≥ τ,H} = 1− (1 − α)|Πℓ−1(j)| ≥ 1− exp
(
−ατ (np/2)ℓ−2

)
,

13

where we used 1− x ≤ e−x and |Πℓ−1(j)| ≥ τ (np/2)ℓ−2 on event H. Therefore,

P





di−1∑

j=1

Yij ≤ 2m− 1|di ≥ τ,H



 ≤ P





τ−1∑

j=1

Yij ≤ 2m− 1





≤ P

{
Binom

(
τ − 1, 1− e−ατ(np/2)ℓ−2

)
≤ 2m− 1

}

=
2m−1∑

k=0

(
τ − 1

k

)
e−ατ(np/2)ℓ−2(τ−1−k)

≤ e−ατ(np/2)ℓ−2(τ−2m)
m−1∑

k=0

τk

≤ 2e−ατ(np/2)ℓ−2(τ−2m)τ2m ≤ 2n−2,

where the last equality holds due to the assumption α(τ − 2m) (np/2)ℓ−2 − 2m log τ ≥ 2 log n.
Define event

Fi = {di ≥ τ} ∩





di−1∑

j=1

Yij ≤ 2m− 1



 .

Then we have that

P {Fi ∩H} ≤ P





di−1∑

j=1

Yij ≤ 2m− 1|di ≥ τ,H



 ≤ 2n−2.

Let F = ∪iFi. By the union bound,

P {F} = P {F ∩ H}+ P {Hc} ≤
∑

i

P {Fi ∩H}+ P {Hc} ≤ 2n−1 + 3n−1+o(1) ≤ 5n−1+o(1).

Therefore, with high probability, for all vertices i with di ≥ τ ,
∑di−1

j=1 Yij ≥ 2m.

The following lemma will be useful to conclude that in G∗
1 ∨ G2, with high probability, there

is no pair of subgraphs T1, T2 ⊂ G∗
1 ∨ G2 that are isomorphic to T , such that r(T1) 6= r(T2) and

L(T1) = L(T2). See Fig. 1 for an illustration of T1 and T2 isomorphic to T such that r(T1) 6= r(T2)
and L(T1) = L(T2).

Lemma 4. Suppose G ∼ G(n, p) and ℓ,m ≥ 1. Then it holds that

P {∃ T1, T2 ⊂ G that are isomorphic to T : r(T1) 6= r(T2), L(T1) = L(T2)}

≤
(
2 +

8

np

)m(ℓ−1)

n2mℓ+2−mp2mℓ.

Proof. Let T denote the set of all possible subgraphs that are isomorphic to T in the complete
graph Kn. By the union bound, we have

P {∃ T1, T2 ⊂ G that are isomorphic to T : r(T1) 6= r(T2), L(T1) = L(T2)}
≤

∑

T1,T2∈T : r(T1)6=r(T2),L(T1)=L(T2)

P {T1, T2 ⊂ G}

14

For each such pair of T1, T2,

P {T1, T2 ⊂ G} = p|E(T1)|+|E(T2)|−|E(T1∩T2)| = p2mℓ−|E(T1∩T2)|,

where the last equality holds because T1 and T2 are isomorphic to T and |E(T)| = 2mℓ.
Next for any given unlabelled graph S, we enumerate all the possible distinct pairs of T1, T2 ∈ T

such that T1 ∩ T2 is isomorphic to S, r(T1) 6= r(T2), and L(T1) = L(T2). Let κS denote the
number of subgraphs S′ in T such that S′ is isomorphic to S, L(T) ⊂ V (S′), and r(T) /∈ V (S′).
Then there are at most κ2S ways of intersecting T1 and T2 such that T1 ∩ T2 is isomorphic to S,
r(T1) 6= r(T2), and L(T1) = L(T2). For each such type of intersection, there are at most n|V (S)|

different choices for vertex labelings of T1 ∩ T2, and n2(|V (T)|−|V (S)|) different choices for vertex
labelings of (T1\T2) ∪ (T2\T1). Hence, the total number of distinct pairs of T1, T2 ∈ T such that
T1 ∩ T2 is isomorphic to S, r(T1) 6= r(T2), and L(T1) = L(T2) is at most

κ2Sn
|V (S)|n2(|V (T)|−|V (S)|) = κ2Sn

2mℓ+2−|V (S)|,

where the last equality holds due to |V (T)| = mℓ+ 1.
Combining the last two displayed equations yields that

∑

T1,T2∈T : r(T1)6=r(T2),L(T1)=L(T2)

P {T1, T2 ⊂ G} ≤
∑

S

κ2Sn
2mℓ+2−|V (S)|p2mℓ−|E(S)|.

Note that if κS ≥ 1, then by the definition of κS , S is isomorphic to some S′ ⊂ T such that
L(T) ⊂ V (S′) and r(T) /∈ V (S′). By the starlike tree property of T , S′ is a forest with at least m
disjoint trees; hence so is S. See Fig. 1 for two illustrating examples. Therefore,

E(S) ≤ V (S)−m.

Hence,
∑

S

κ2Sn
2mℓ+2−|V (S)|p2mℓ−|E(S)| ≤

∑

S

κ2Sn
2mℓ+2−|V (S)|p2mℓ+m−|V (S)|.

Finally, we break the summation in the right hand side of the last displayed equation according to
|V (S)|. In particular, let |V (S)| = m + k for 0 ≤ k ≤ m(ℓ − 1). Note that

∑
S κS is at most the

number of distinct subgraphs S′ of T such that L(T) ⊂ V (S′), r(T) /∈ V (S′) and |V (S′)| = m+ k,

which is further upper bounded by
(m(ℓ−1)

k

)
2k, because there are at most

(m(ℓ−1)
k

)
different choices

for V (S′)\L(T) and at most 2|V (S′)|−m choices for determining whether to include the edges induced
by V (S′) in T into S′. Hence,

∑

S

κ2Sn
2mℓ+2−|V (S)|p2mℓ+m−|V (S)|

=

m(ℓ−1)∑

k=0

n2mℓ+2−m−kp2mℓ−k
∑

S:|V (S)|=m+k

κ2S

(a)

≤
m(ℓ−1)∑

k=0

n2mℓ+2−m−kp2mℓ−k

((
m(ℓ− 1)

k

)
2k
)2

(b)

≤ n2mℓ+2−mp2mℓ2m(ℓ−1)

m(ℓ−1)∑

k=0

n−kp−k

(
m(ℓ− 1)

k

)
4k

= n2mℓ+2−mp2mℓ2m(ℓ−1)

(
1 +

4

np

)m(ℓ−1)

,

15

where (a) follows from
∑

S κS ≤
(m(ℓ−1)

k

)
2k, and (b) holds due to

(m(ℓ−1)
k

)
≤ 2m(ℓ−1).

Finally, we need a result to conclude that with high probability, for every vertex i, there exist

at most m− 1 independent ℓ-paths from i to m− 1 distinct vertices in N
G∗

1∨G2

ℓ−1 (i).
Fix m, ℓ ≥ 1. We start with any vertex i and m independent (vertex-disjoint except for i) paths

of length ℓ from i to m distinct vertices j1, . . . , jm, denoted by P1, . . . , Pm. Let P̃k denote any path
of length at most ℓ− 1 from i to jk for k = 1, . . . ,m. Let H = ∪m

k=1(Pk ∪ P̃k) and Hm,ℓ denote the
family of all possible graphs H with V (H) ⊂ [n] obtained by the above procedure.

Note that if there is no subgraph isomorphic to some H ∈ Hm,ℓ in G∗
1∨G2, then for every vertex

i, there exist at most m − 1 independent ℓ-paths from i to m − 1 distinct vertices in N
G∗

1∨G2

ℓ−1 (i).
Hence, our task reduces to proving that with high probability, G∗

1 ∨ G2 does not contain some
H ∈ Hm,ℓ as a subgraph.

We first need a lemma showing that any H ∈ Hm,ℓ is so “dense” that it appears as a subgraph
in G(n, p) with a vanishing small probability.

Lemma 5. Fix m, ℓ ≥ 1. For any H ∈ Hm,ℓ,

|E(H)| ≥ |V (H)|+m− 1.

Proof. Recall that H = ∪m
k=1(Pk ∪ P̃k), where P1, . . . , Pm is a set of m (vertex-disjoint except for i)

paths of length ℓ from i to m distinct vertices j1, . . . , jm, and P̃k is a path of length at most ℓ− 1
from i to jk for k = 1, . . . ,m.

Note that we order the vertices and edges in paths starting from i. For each k = 1, . . . ,m,
let vk denote the first vertex after which Pk and P̃k completely conincide, and ek denote the edge
incident to vk in P̃k. Then by definition, vk 6= i and ek ∈ P̃k\Pk. Let dist(u, v) denote the longest
distance between u and v in H, and σ denote any permutation on [m] such that

dist
(
i, vσ(1)

)
≥ dist

(
i, vσ(2)

)
· · · ≥ dist

(
i, vσ(m)

)
.

Without loss of generality, we assume σ = id, i.e., σ(k) = k. We claim that ej /∈ Pk ∪ P̃k for any
1 ≤ j < k ≤ m. In fact, ej /∈ Pk, because otherwise Pj and Pk share a common vertex vj 6= i, which

violates the assumption that Pj and Pk are vertex-disjoint except for i. Also, ej /∈ P̃k\Pk, because

otherwise, ej is ordered before ek in path P̃k starting from i, which implies dist(i, vk) > dist(i, vj)
and leads to a contradiction.

Finally, we recursively define H0 = H and Hk such that V (Hk) = V (Hk−1) and E(Hk) =
E(Hk−1)\{ek} for k = 1, . . . ,m. We prove that Hm is connected by induction. For the base case
k = 0, clearly H0 = H is connected. Suppose Hk−1 is connected. Since we have shown that
ej /∈ Pk ∪ P̃k for any 1 ≤ j < k ≤ m, it follows that Pk ∪ P̃k ⊂ Hk−1. Note that there is a path

through i between the two endpoints of ek in Pk ∪ P̃k. Hence, the two endpoints of ek are still
connected in Hk. Moreover, by the induction hypothesis, Hk−1 is connected. Therefore, Hk is
connected. and it follows from induction that Hm is connected. Thus, |E(Hm)| − |V (Hm)| ≥ −1.
Since |E(H)| = |E(Hm)|+m and |V (H)| = |V (Hm)|, it follows that |E(H)| − |V (H)| ≥ m− 1.

Next we state a lemma which upper bounds the number of isomorphism classes in Hm,ℓ. This
upper bound is by no means tight, but suffices for our purpose.

Lemma 6. Fix m, ℓ ≥ 1. Denote by Um,ℓ the set of unlabelled graphs (isomorphism classes) in
Hm,ℓ. Then

|Um,ℓ| ≤ (3ℓ)m32m
2ℓ.

16

Proof. Recall that H = ∪m
k=1(Pk ∪ P̃k), where P1, . . . , Pm is a set of m (vertex-disjoint except for

i) paths of length ℓ from i to m distinct vertices j1, . . . , jm, and P̃k is a path of length at most
ℓ− 1 from i to jk for k = 1, . . . ,m. Let T = ∪m

k=1Pk. Then T is a starlike tree rooted at i with m
branches as depicted in Fig. 1.

We fix a sequence of {ℓ1, . . . , ℓm} with 1 ≤ ℓk ≤ ℓ − 1. Let Uℓ1,...,ℓm denote all the possible

unlabelled graphs formed by the union of T and P̃k of length ℓk for k ∈ [m]. For ease of notation, let
P̃0 = T . We enumerate Pℓ1,...,ℓm according to the pairwise intersections P̃j ∩ P̃k for 0 ≤ j < k ≤ m.
Specifically, for any given sequence {Sjk : 0 ≤ j < k ≤ m} of unlabelled graphs, we enumerate all

the possible sequences of (P̃1, . . . , P̃k) such that P̃j ∩ P̃k is isomorphic to Sjk for 0 ≤ j < k ≤ m.
Let κℓ(S) denote the number of possible different subgraphs that are isomorphic to S in an ℓ-path.
Recall β(S) denote the number of possible different subgraphs that are isomorphic to S in P̃0 = T .

Then across all 1 ≤ j < k ∈ [m], there are at most κℓj(S)κℓk (S) ways of intersecting P̃j and P̃k

such that P̃j ∩ P̃k is isomorphic to S. Also, for all k ∈ [m], there are at most β(S)κℓk(S) ways of

intersecting P̃0 and P̃k such that P̃0 ∩ P̃k is isomorphic to S. Hence, the total number of distinct
sequences of (P̃1, . . . , P̃k) such that P̃j ∩ P̃k isat most the the number nℓ of distinct subgraphs in
an ℓ-path isomorphic to Sjk for 0 ≤ j < k ≤ m is at most

∏

1≤j<k∈[m]

κℓj (Sjk)κℓk(Sjk)
∏

k∈[m]

β(S0k)κℓk(S0k).

Therefore,

|Uℓ1,...,ℓm | ≤
∑

{Sjk:0≤j<k≤m}

∏

j<k∈[m]

κℓj (Sjk)κℓk(Sjk)
∏

k∈[m]

β(S0k)κℓk(S0k)

≤
∏

1≤j<k∈[m]


∑

Sjk

κℓj (Sjk)




∑

Sjk

κℓk(Sjk)


 ∏

k∈[m]


∑

S0k

β(S0k)




∑

S0k

κℓk(S0k)




≤
∏

j<k∈[m]

nℓjnℓk

∏

k∈[m]

n(T)nℓk = (n(T))m
∏

k∈[m]

(nℓk)
m ,

where the last inequality holds because
∑

S κℓ(S) is at most the the number nℓ of distinct subgraphs
S′ in an ℓ-path, and

∑
S β(S) is at most the the number n(T) of distinct subgraphs S′ in T. Note

that

nℓ ≤
ℓ∑

k=0

(
ℓ

k

)
2k = 3ℓ,

because if |V (S′)| = k, then there are at most
(
ℓ
k

)
different choices for V (S′) and at most 2k choices

for determining whether to include the edges induced by V (S′) in an ℓ-path into S′. Also,

n(T) ≤
mℓ+1∑

k=0

(
mℓ+ 1

k

)
2k = 3mℓ+1.

Combinining the last three displayed equations yields that

|Uℓ1,...,ℓm | ≤ 32m
2ℓ+m.

Therefore,

|U| =
∑

(ℓ1,...,ℓm):1≤ℓk≤ℓ−1

|Uℓ1,...,ℓm | ≤ (3ℓ)m32m
2ℓ.

17

With Lemma 5 and Lemma 6, we are ready to bound the probability that G(n, p) contains some
H ∈ Hm,ℓ as a subgraph.

Lemma 7. Suppose G ∼ G(n, p) with np ≥ 1 and m, ℓ ≥ 1. Then it holds that

P {∃H ∈ Hm,ℓ : H ⊂ G} ≤ n2mℓ−2m+1p2mℓ−m(3ℓ)m32m
2ℓ. (21)

Proof. Note that for any H ∈ Hm,ℓ,

mℓ+ 1 ≤ |V (H)| ≤ mℓ+ 1 + (ℓ− 2)m = 2mℓ− 2m+ 1,

where the lower bound holds because H contains a starlike tree with mℓ+ 1 distinct vertices, and
the upper bound holds when Pk and P̃k are all vertex-disjoint except for the source vertex and sink
vertices.

For any given integer mℓ+ 1 ≤ t ≤ 2mℓ− 2m+ 1, define

Hm,ℓ,t = {H ∈ Hm,ℓ : V (H) ⊂ [n], |V (H)| = t} .

and let Um,ℓt denote the number of unlabelled graphs (isomorphism class) in Hm,ℓ. Since V (H) ⊂
[n] and |V (H)| = t, there are at most nt different vertex labelings for a given unlabelled graph
U ∈ Um,ℓ,t. Hence,

|Hm,ℓ,t| ≤ |Um,ℓ,t|nt. (22)

By the union bound, we have

P {∃H ∈ Hm,ℓ : H ⊂ G} ≤
2mℓ−2m+1∑

t=mℓ+1

∑

H∈Hm,ℓ,t

P {H ⊂ G}

=

2mℓ−2m+1∑

t=mℓ+1

∑

H∈Hm,ℓ,t

p|E(H)|

(a)

≤
2mℓ−2m+1∑

t=mℓ+1

∑

H∈Hm,ℓ,t

pt+m−1

(b)

≤
2mℓ−2m+1∑

t=mℓ+1

ntpt+m−1 |Um,ℓ,t|

(c)

≤ n2mℓ−2m+1p2mℓ−m |Um,ℓ|
≤ n2mℓ−2m+1p2mℓ−m(3ℓ)m32m

2ℓ,

where (a) holds in view of Lemma 5; (b) holds in view of (22) (c) holds because np ≥ 1 and
t ≤ 2mℓ− 2m+ 1; the last inequality holds due to Lemma 6.

3.3 Completing the Proof of Theorem 1

Recall that the choices of ℓ in (12), m in (13), and τ in (14). In particular,

(
nps2

)ℓ ≤ n1/2−ǫ.

18

Recall that G∗
1 ∧G2 ∼ G(n, ps2). Under the assumption that α ≥ n−1/2+3ǫ, we get that

α(nps2/2)ℓ−2τ(τ −m)−m log τ ≥ 2 log n.

Hence, applying Lemma 3, we conclude that G∗
1 ∧ G2 satisfy graph property (iii). Combing this

result with Lemma 1, we get that P {E1} ≥ 1− o(1).
Note that G∗

1∨G2 ∼ G(n, ps(2−s)). We first apply Lemma 4 to G∗
1∨G2. In view of nps2 ≥ log n

and n ≥ e, we get that nps(2− s) ≥ log n ≥ 1 and thus

(
2 +

8

nps(2− s)

)m(ℓ−1)

n2mℓ+2−m (ps(2− s))2mℓ

≤ 10mℓn2−2ǫm

(
2− s

s

)2ml

= n−2+o(1),

where the first inequality holds due to (nps2)ℓ ≤ n1/2−ǫ; the last equality holds by our choice of ℓ
and m and s = Θ(1). Hence, applying Lemma 4 to G∗

1∨G2, we conclude that with high probability,
there is no pair of subgraphs T1, T2 ⊂ G∗

1 ∨ G2 that are isomorphic to T such that r(T1) 6= r(T2)
and L(T1) = L(T2).

Then we apply Lemma 7 to G∗
1 ∨G2. Note that

n2mℓ−2m+1 (ps(2− s))2mℓ−m (3ℓ)m32m
2ℓ

≤ nm(1−2ǫ)−m+1(np)−m

(
2− s

s

)2mℓ−m

(3ℓ)m32m
2ℓ ≤ n−3+o(1),

where the first inequality holds due to (nps2)ℓ ≤ n1/2−ǫ; the last equality holds by our choice of ℓ
and m and s = Θ(1). Hence, applying Lemma 7 to G∗

1∨G2, we conclude that with high probability,
G∗

1 ∨ G2 does not contain any graph H ∈ Hm,ℓ as a subgraph. By the construction of Hm,ℓ, it
further implies that with high probability, for every vertex i, there exist at most m−1 independent

paths from i to m− 1 distinct vertices in N
G∗

1∨G2

ℓ−1 .
Combining the above two points, we get that P {E2} → 1. Finally, in view of Lemma 2, we get

that P {E3} ≥ 1− o(1), completing the proof of Theorem 1.

4 Analysis of Algorithm 2 in Dense Graph Regime

Recall that Γk
G(u) and NG

k (u) denotes the set of vertices at and within distance k from u in graph

G, respectively, as defined in (10) and (11). The key is to show that |NG∗
1
∧G2

d−1 (u)| is larger than

|NG∗
1
∨G2

d−1 (u) ∩ N
G∗

1
∨G2

d−1 (v)| for u 6= v by a constant factor, so that we can matches two vertices
correctly based on the number of common seeded vertices in their two large neighborhoods.

Proof of Theorem 4. Define event

A =

{∣∣∣NG∗
1
∧G2

d−1 (u)
∣∣∣ ≥ 3

4
(nps2)d−1, ∀u

}
.

In view of claim (i) in Lemma 11 with G = G∗
1 ∧G2 and the fact that ΓG

k (u) ⊂ NG
k (u), we get that

P {A} ≥ 1− n−10.
Define event

B =

{∣∣∣NG∗
1
∨G2

d−1 (u) ∩N
G∗

1
∨G2

d−1 (v)
∣∣∣ ≤ 1

2
(nps2)d−1, ∀u 6= v

}
.

19

Note that due to assumption (8),

1

2
(nps2)d−1 ≥ 8n2d−3 (ps(2− s))2d−2 .

Hence, applying claim (ii) in Lemma 11 with G = G∗
1 ∨G2, we get that P {B} ≥ 1− n−10.

Recall that I0 is the initial set of seeded vertices. Define event

C =

{∣∣∣NG∗
1∧G2

d−1 (u) ∩ I0

∣∣∣ > 3

5
(nps2)d−1α, ∀u

}
.

Since each vertex is seeded independently with probability α, it follows that

P {Cc} ≤ P {Ac}+ P {Cc | A}

≤ n−10 +
∑

u

P

{∣∣∣NG∗
1∧G2

d−1 (u) ∩ I0

∣∣∣ ≤ 3

5
(nps2)d−1α | A

}

≤ n−10 + nP

{
Bin

(⌈
3

4
(nps2)d−1

⌉
, α

)
≤ 3

5
(nps2)d−1α

}

≤ n−10 + n exp

(
− 3

200
(nps2)d−1α

)
≤ 2n−1,

where the last inequality holds due to assumption (9).
Similarly, define event

D =

{∣∣∣NG∗
1
∨G2

d−1 (u) ∩N
G∗

1
∨G2

d−1 (v) ∩ I0

∣∣∣ < 3

5
(nps2)d−1α, ∀u 6= v

}
.

It follows that

P {Dc} ≤ P {Bc}+ P {Dc | B}

≤ n−10 +
∑

u

P

{∣∣∣NG∗
1
∨G2

d−1 (u) ∩N
G∗

1
∨G2

d−1 (v) ∩ I0

∣∣∣ ≥ 3

5
(nps2)d−1α | B

}

≤ n−10 + nP

{
Bin

(⌈
1

2
(nps2)d−1

⌉
, α

)
≤ 3

5
(nps2)d−1α

}

≤ n−10 + n exp

(
− 1

150
(nps2)d−1α

)
≤ 2n−1,

where the last inequality holds again due to assumption (9). Hence, P {C ∩ D} ≥ 1− 4n−1.
Finally, since G∗

1 ∧G2 is a subgraph of both G∗
1 and G2, it follows that

N
G∗

1∧G2

d−1 (i2) ⊂
{
j ∈ I0 : π0(j) ∈ NG1

d−1 (π
∗(i2)) , j ∈ NG2

d−1(i2)
}
.

Similarly, both G∗
1 and G2 are subgraphs of G∗

1 ∨G2, it follows that
{
j ∈ I0 : π0(j) ∈ NG1

d−1 (i1) , j ∈ NG2

d−1(i2)
}
⊂ N

G∗
1∨G2

d−1

(
(π∗)−1(i1)

)
∩N

G∗
1∨G2

d−1 (i2).

Thus, on event C ∩ D, for every vertex i2 ∈ V (G2) \ I0,

wi1,i2

{
> 3

5(nps
2)d−1α if i1 = π∗(i2)

< 3
5(nps

2)d−1α o.w. .

Hence, Algorithm 2 outputs π̂ = π∗ on event C ∩ D.

20

5 Analysis of Algorithm 3 in Sparse Graph Regime

Recall that we assume π∗ = id without loss of generality in the analysis. Before proving Theorem 3,
we present two key lemmas.

The first lemma will be used later to conclude that the test statistic Zu,u given in (17) is large
for all high degree vertices u.

Lemma 8. Suppose G ∼ G(n, p) with log n ≤ np ≤ nǫ, and each vertex is included in I0 with
probability α. Recall that ℓ and η are given in (19) and (20), respectively. Assume η ≥ 4 log n. Let
G\S denote the graph G with set of vertices S removed. Then with probability at least 1−n−1+o(1),

∑

j∈ΓG
1
(i)

1{
|Γ

G\S
ℓ

(j)∩I0|≥η
} ≥ di − 1, ∀S s.t. i ∈ S, |S| ≤ 3.

Proof. For every vertex i and its neighbor j ∈ ΓG
1 (i), define

aij = 1{
|Γ

G\S
ℓ

(j)|≥4η/α
}.

and
bij = 1{

|Γ
G\S
ℓ

(j)∩I0|≥η
}.

Define event

A =

{
|ΓG\S

ℓ (j)| ≥ (np)ℓ

2ℓ−1 log(np)
, ∀S s.t. |S| ≤ 3, ∀j s.t.

np

log(np)
≤ |ΓG\S

1 (j)| ≤ 4np

}
.

Note that G\S ∼ G(n − |S|, p) and (4np)ℓ = o(n). Applying Corollary 1 together with union
bounds, we get that

P {A} ≥ 1− n|S| exp
{
−Ω

(
(np)2/ log(np)

)}
≥ 1− nω(1).

Define event B such that for every vertex i, there is at most 1 neighbor j in G such that |ΓG\S
1 (j)| ≤

(np)/ log(np). Recall E is the event that the maximum degree in G is at most 4np. In view of
Lemma 16, we have that P {B ∩ E|} ≥ 1− n−1+o(1).

Recall that ℓ = ⌊ (1−ǫ) logn
log(np) ⌋ and η = 42ℓ+2n1−2ǫα. Then for sufficiently large n,

(np)ℓ

2ℓ−1 log(np)
≥ 4η

α
.

Hence, on event A∩ B ∩ E , ∑

j∈ΓG
1
(i)

aij ≥ di − 1, ∀i.

Let
X = ∪i,j ({aij = 1} ∩ {bij = 0})

Then on event X c, for all i, j such that aij = 1, bij = 1; thus aij ≤ bij for all i, j. Hence, on event
A ∩ B ∩ E ∩ X c, we have ∑

j∈ΓG
1
(i)

bij ≥ di − 1, ∀i.

21

It remains to show P {A ∩ B ∩ E ∩ X c} ≥ 1−n−1+o(1), which further reduces to proving P {X} ≤
n−1+o(1) by the union bound. Note that

P {aij = 1, bij = 0} ≤ P {bij = 0 | aij = 1}
≤ P {Bin (⌊4η/α⌋, α) ≤ η}
≤ e−η,

where the last inequality follows from the Binomial tail bound (32). By the union bound, we have

P {X} ≤
∑

i,j

P {aij = 1, bij = 0} ≤ n2e−η ≤ n−2,

where the last inequality holds due to the assumption that η ≥ 4 log n.

The second lemma is useful to conclude that the test statistic Zu,v given in (17) is small for all
distinct vertices u, v.

Lemma 9. Assume the same setup as Lemma 8. With probability at least 1− 4/n, for all distinct
u, v, there exists a constant C depending only on ǫ such that

∑

i∈ΓG
1
(u)

∑

j∈ΓG
1
(v)

1{
|N

G\{u,v}
ℓ

(i)∩N
G\{u,v}
ℓ

(j)∩I0|≥η
} ≤ C.

Proof. For two vertices i, j, define

cij = 1{|NG
ℓ
(i)∩NG

ℓ
(j)|≥η/(4α)}

and an event

C =



max

i

∑

j

cij ≤ 2n4ǫ



 ∩

{
max

j

∑

i

cij ≤ 2n4ǫ

}

In view of Lemma 14, P {C} ≥ 1− 2/n.
Define

aij = 1{|NG
ℓ
(i)∩NG

ℓ
(j)∩I0|≥η}.

and an event

A =



max

i

∑

j

aij ≤ 2n4ǫ



 ∩

{
max

j

∑

i

aij ≤ 2n4ǫ

}

Moreover, let
Y = ∪i,j [{cij = 0} ∩ {aij = 1}]

Then on Yc, for all i, j such that cij = 0, aij = 0; thus aij ≤ cij for all i, j. Hence, C ∩ Yc ⊂ A and
thus

P {A} ≥ P {C ∩ Yc} ≥ P {C} − P {Y} .
Note that

P {cij = 0, aij = 1} ≤ P {aij = 1 | cij = 0}
≤ P {Bin (⌊η/4α⌋, α) ≥ η}
≤ e−2η

22

By the union bound, we have

P {Y} ≤
∑

i,j

P {cij = 0, aij = 1} ≤ n2e−2η ≤ n−6,

where the last inequality follows from the assumption that η ≥ 4 log n. Thus P {A} ≥ 1− 3/n.
Fix a pair of vertices u 6= v in the sequel, and let

bij = 1{
|N

G\{u,v}
ℓ

(i)∩N
G\{u,v}
ℓ

(j)∩I0|≥η
}

and

Bu,v =



max

i

∑

j

bij ≤ 2n4ǫ



 ∩

{
max

j

∑

i

bij ≤ 2n4ǫ

}

Then by construction, bij ≤ aij and thus A ⊂ Bu,v.
Let Xi = G(u, i) for i ∈ [n] and Xn+j = G(v, j) for j ∈ [n]. Define

Ru,v =
∑

i,j∈[n]\{u,v}

bijXiXn+j,

which is a degree-2 polynomial of Xi’s. Note that {bij ; i, j ∈ [n]\{u, v}} only depends on G\{u, v}
and hence is independent from Xi’s. Moreover, Xi’s are i.i.d. Bern(p).

We condition on {bij} such that event Bu,v holds. Let

µ0 = E [Ru,v | b] = p2
∑

ij

bij ≤ 2p2n1+4ǫ ≤ 2n−1+6ǫ.

and

µ1 = max



max

i
E


∑

j

bijXj | b


 ,max

j
E

[
∑

i

bijXi | b
]
 ≤ 2pn4ǫ ≤ 2n−1+5ǫ.

By a concentration inequality for multivariate polynomials [Vu02, Corollary 4.9], there exists a
constant C > 0 depending only on ǫ such that

P {Ru,v ≥ C | b} ≤ n−3.

Thus P {Ru,v ≥ C | Bu,v} ≤ n−3. Define event Ru,v = {Ru,v ≤ C} and R = ∩u 6=vRu,v. It follows
that

P {Ru,v ∩ Bu,v} ≤ P {Ru,v | Bu,v} ≤ n−3.

Since A ⊂ Bu,v, it further follows that P {Ru,v ∩ A} ≤ n−3. By a union bound over u, v, we have
P {R ∩ A} ≤ n−1. Hence, P {R} ≤ P {R ∩A}+ P {Ac} ≤ 4/n.

With Lemma 8 and Lemma 9, we are ready to finish the proof of Theorem 3.

Proof of Theorem 3. Recall that τ is given in (14) and the definition of high-degree vertices. We first
prove that Algorithm 2 correctly matches the high-degree vertices in G∗

1∧G2 with high probability.
Recall the definition of Z give in (17). Applying Lemma 8 with G = G∗

1 ∧G2, we get that with
high probability, for all high-degree vertices u,

Zu,u ≥ τ − 1 =
nps2

log(nps2)
− 1.

23

Moreover, by definition,

wu,v
i,j ≤

∣∣∣
{
k ∈ I0 : π0(k) ∈ N

G1\{u,v}
ℓ (i), k ∈ N

G2\{u,v}
ℓ (j)

}∣∣∣

≤
∣∣∣NG∗

1
∨G2\{u,v}

ℓ (i) ∩N
G∗

1
∨G2\{u,v}

ℓ (j) ∩ I0

∣∣∣ .

Applying Lemma 9 with G = G∗
1 ∨G2, we get that with high probability,

Zu,v ≤ C, ∀u 6= v

for a constant C > 0 only depending on ǫ. Since for sufficiently large n, τ ≥ C + 1, it follows that
Algorithm 2 correctly matches all high-degree vertices with high probability.

The proof of correctness for matching low-degree vertices is the same as Algorithm 1 and thus
omitted.

Appendix A Proof of Theorem 2

Proof of Theorem 2. Suppose nps2 − log n = c for c < +∞. Since G∗
1 ∧ G2 ∼ G(n, ps2), classical

random graph theory shows that the distribution of the number of isolated vertices in G∗
1 ∧ G2

converges to Pois(e−c), see, e.g., [Bol01, Theorem 3.1]. Let F1 denote the event that there are at
least two isolated vertices in G∗

1 ∧G2. Then P {F1} = Ω(1).
Let F2 denote the event that there are at least two isolated vertices that are unseeded in G∗

1∧G2.
Since each vertex is seeded with probability α independently across different vertices and from the
graphs G1 and G2, it follows that P {F2} ≥ P {F1} (1− α)2 = Ω

(
(1− α)2

)
.

Since the prior distribution of π∗ is uniform, the maximum likelihood estimator π̂ML minimizes
the error probability P {π̂ 6= π∗} among all possible estimators and thus we only need to find when
MLE fails.

Recall that I0 is the seed set. Let S denote the set of all possible permutations π such that
π(i) = π∗(i) for i ∈ I0. Under the seeded model G(n, p; s, α), the maximum likelihood estimator
π̂ML is given by the minimizer of the (restricted) quadratic assignment problem, namely,

π̂ML ∈ argminmin
π∈S

‖G1 −ΠG2Π
⊤‖2F ,

where Π is the permutation matrix corresponding to permutation π; or equivalently,

π̂ML ∈ argmax
π∈S

〈
G1,ΠG2Π

⊤
〉
.

Let I denote the union of the initial seed set and the set of all non-isolated vertices in G∗
1 ∧G2.

Then Ic is the set of isolated vertices that are unseeded in G∗
1 ∧ G2. Let S̃ denote the set of all

possible permutations π such that π(i) = π∗(i) for i ∈ I. Then π∗ ∈ S̃ ⊂ S. Note that for any
π ∈ S̃, we have

〈
G1,ΠG2Π

⊤
〉
≥

∑

(i,j)∈I×I

G1(π(i), π(j))G2(i, j)

(a)
=

∑

(i,j)∈I×I

G1(π
∗(i), π∗(j))G2(i, j)

=
∑

(i,j)

G1(π
∗(i), π∗(j))G2(i, j),

24

where (a) follows from π(i) = π∗(i) for i ∈ I; the last equality holds due toG1(π
∗(i), π∗(j))G2(i, j) =

0 for all (i, j) /∈ I× I. Hence, there at at least |Ic|!−1 different permutations in S̃ whose likelihood
is at least as large as the ground truth π∗, and hence the MLE is correct with probability at most
1/(|Ic|!− 1). Note that on event F2, |Ic| ≥ 2; hence, MLE is correct with probability at most 1/2.
In conclusion, MLE is correct with probability at most (1/2)P {F2} = Ω((1− α)2).

Appendix B Proof of Lemma 1

Proof. Claim (i): For each vertex i, its degree di ∼ Binom(n − 1, p). By the union bound, the
probability that G has an isolated vertex is

n(1− p)n−1 ≤ ne−(n−1)p = o(1),

where the last equality holds due to the assumption that np− log n → +∞.

Claim (ii): Fix any pair of two distinct vertices i, j, define

Eij = {G(i, j) = 1} ∩ {di ≤ τ} ∩ {dj ≤ τ} .

It suffices to show
P {∪i 6=jEij} ≤ n−1+o(1).

Note that

P {d(i) ≤ τ, d(j) ≤ τ |G(i, j) = 1} = (P {Bin(n − 2, p) ≤ τ − 1})2

≤ (P {Bin(n − 2, p) ≤ τ})2

In view of Binomial tail bounds given in Theorem 6 and τ = o(np), we have that

P {Bin(n− 2, p) ≤ τ} ≤ exp

(
−(n− 2)p

(
1−

√
τ

(n− 2)p

)2
)

= exp (−(1− o(1))np) .

Combining the last two displayed equations yields that

P {Eij} = P {G(i, j) = 1}P {d(i) ≤ τ, d(j) ≤ τ |G(i, j) = 1}
≤ p exp (−2(1− o(1))np)

By the union bound,

P {∪i 6=jEij} ≤ n2
P {Eij}

≤ n2p exp (−2(1 − o(1))np) = n−1+o(1),

where the last equality holds due to np− log n → +∞.

25

Appendix C Proof of Lemma 2

Proof. Let di denote the degree of vertex i in G∗
1∧G2 and A denote the adjacency matrix of G∗

1∨G2.
For every pair of three distinct vertices i, j, k, define

Fijk = {Aik = 1, Ajk = 1} ∩ {di ≤ τ} ∩ {dj ≤ τ} .

It suffices to show that P {∪i,j,kFij} ≤ n−1+o(1). Since G∗
1 ∨G2 ∼ G(n, ps(2− s)), it follows that

P {Aik = 1, Ajk = 1} = P {Aik = 1}P {Ajk = 1} = (ps(2− s))2 ≤ p2.

Moreover, since G∗
1 ∧G2 ∼ G(n, ps2), it follows that

P {{di ≤ τ} ∩ {dj ≤ τ} | Aik = 1, Ajk = 1} ≤
(
P
{
Binom(n− 3, ps2) ≤ τ

})2
.

In view of Binomial tail bound (32) and τ = o(nps2), we have that

P
{
Binom(n− 3, ps2) ≤ τ

}
≤ exp

(
−(n− 3)ps2

(
1−

√
τ

(n− 3)ps2

)2
)

= exp
(
−nps2 (1− o(1))

)

It follows that
P {Fijk} ≤ p2 exp

(
−2nps2 (1− o(1))

)

By the union bound, we have that

P {∪i,j,kFij} ≤ n3p2 exp
(
−2nps2 (1− o(1))

)
= n−1+o(1).

where the last equality holds due to nps2 ≥ log n and log(np) = o(nps2).

Appendix D Neighborhood Exploration in G(n, p)
Throughout this section, we assume graph G ∼ G(n, p) with np ≥ log n. We first claim that the
max degree in G is at most 4np with probability at least 1− 1/n.

Lemma 10. Assume graph G ∼ G(n, p) with np ≥ log n. Let

E =

{
max

v∈V (G)
dv ≤ 4np

}
. (23)

Then
P {E} ≥ 1− n−1.

Proof. By the Binomial tail bound (33),

P {di ≥ 4np} = P {Binom(n− 1, p) ≥ 4np} ≤ exp(−2np).

The proof follows by the union bound and the assumption that np ≥ log n.

We fix a vertex u throughout this section, and abbreviate ΓG
k (u) as Γk(u) and NG

k (u) as Nk(u)
for simplicity. We are interested in studying the growth of |Γk(u)| as k increases. Note that |Γ1(u)|
is the degree du of vertex u in G. Since the average degree is (n− 1)p, we expect typically |Γk(u)|
grows as (np)k. This is indeed true in the dense regime with np ≥ nǫ.

26

D.1 Dense Regime

The following lemma is adapted from [Bol01, Lemma 10.9].

Lemma 11. Suppose np ≥ nǫ for an arbitrarily small constant ǫ > 0 and d is chosen such that

(np)d−1 ≤ n

8
and (np)d ≥ n log n

If n is sufficiently large, then with probability at least 1− n−10, the following claims hold:

(i) For every vertex u, ∣∣∣Γk(u)− (np)k
∣∣∣ ≤ 1

4
(np)k. ∀0 ≤ k ≤ d− 1.

(ii) For every two distinct vertices u and v,

|Nd−1(u) ∩Nd−1(v)| ≤ 8n2d−3p2d−2.

Lemma 11 also upper bounds |Γd−1(u) ∩ Γd−1(v)| for two distinct vertices u, v by 8p2d−2n2d−3.
To see this intuitively, note that in the dense regime, Γd−2(u)∩Γd−2(v) is typically of a much smaller
size comparing to either Γd−2(u) or Γd−2(v). Hence, the majority of vertices w in Γd−1(u)∩Γd−1(v)
are connected to some vertex in Γd−2(u) \ Γd−2(v) and to some vertex in Γd−2(v) \ Γd−2(u). For
a given vertex w /∈ Nd−2(u) ∪ Nd−2(v), since |Γd−2(u) \ Γd−2(v)| ≤ |Γd−2(u)| ≤ 2(np)d−2 and
similarly for |Γd−2(v)\Γd−2(u)|, w connects to some vertex in Γd−2(u)\Γd−2(v) with probability at
most 2p(np)d−2, and connects to some vertex in Γd−2(v) \ Γd−2(u) independently with probability
2p(np)d−2. Moreover, there are at most n such potential vertices w to consider. Hence, we expect
|Γd−1(u) ∩ Γd−1(v)| to be smaller than 2n[2p(np)d−2]2 = 8p2d−2n2d−3.

D.2 Sparse Regime

In contrast, in the sparse regime where

np− log n → +∞.

there exist vertices with small degrees, i.e., |Γ1(u)| is much smaller than np. Hence, we cannot
expect |Γk(u)| grows like (np)k for all vertices u. Nevertheless, the following lemma shows that
conditional on |Γ1(u)| is large, then |Γk(u)| ≍ (np)|Γk−1(u)| for all 2 ≤ k ≤ d for some d with high
probability.

Lemma 12. Suppose

np ≥ log n and p(4np)d−1 = o(1). (24)

Let u be a fixed vertex. For each 1 ≤ k ≤ d, define

Qk =

{
|Γk(u)| ∈ Ik =

[
τ
(np

2

)k−1
, (4np)k

]}

for 1 ≤ τ ≤ np. Then for 2 ≤ k ≤ d,

P {Qk | Q1, . . . ,Qk−1} ≥ 1− exp

(
−Ω

(
τ
(np

2

)k−1
))

.

It readily follows that

P {Qd ∩Qd−1 ∩ · · · ∩ Q2 | Q1} ≥ 1− exp (−Ω (τnp)) .

27

Proof. Fix 2 ≤ k ≤ d. Conditional on Γk−1(u) and Nk−1(u), the probability of a given vertex
v /∈ Nk−1(u) being connected to some vertices in Γk−1(u) is

pk , 1− (1− p)|Γk−1(u)|.

Therefore, conditional on |Γk−1(u)| and |Nk−1(u)|,

|Γk(u)| ∼ Bin (n− |Nk−1(u)|, pk)

Note that conditional on Q1, . . . ,Qk−1,

|Nk−1(u)| =
k−1∑

i=0

|Γi(u)| ≤
k−1∑

i=0

(4np)i =
(4np)k − 1

4np− 1
= o(n),

where the last equality holds due to the assumption (24) and k ≤ d. Moreover, in view of the
assumption (24), conditional on Q1, . . . ,Qk−1,

(1− o(1)) pτ
(np

2

)k−2
≤ pk ≤ p(4np)k−1.

Hence, for 2 ≤ k ≤ d,

P {|Γk(u)| /∈ Ik | Q1, . . . ,Qk} ≤ P

{
Bin

(
n− o(n), (1− o(1)) pτ

(np
2

)k−2
)

≤ τ
(np

2

)k−1
}

+ P

{
Bin

(
n, p(4np)k−1

)
≥ (4np)k

}

≤ exp

(
−Ω

(
τ
(np

2

)k−1
))

+ exp
(
−4k−1(np)k

)

≤ exp

(
−Ω

(
τ
(np

2

)k−1
))

.

Finally, we note that

P {Qd ∩ Qd−1 ∩ · · · ∩ Q2 | Q1} = P {Q2 | Q1}P {Q3 | Q1,Q2} · · · P {Qd | Q1, . . . ,Qd−1}

≥
d−1∏

i=0

(
1− exp

(
−Ω

(
τ
(np

2

)k−1
)))

≥ 1−
d−1∑

i=0

exp

(
−Ω

(
τ
(np

2

)k−1
))

≥ 1− exp (−Ω (τnp)) .

With Lemma 12, we have the following immediate corollary.

Corollary 1. Suppose (24) holds. Define event

Q = {|Γk(u)| ∈ Ik, ∀1 ≤ k ≤ d, ∀u s.t. τ ≤ |Γ1(u)| ≤ 4np}

Then
P {Q} ≥ 1− n exp (−Ω (τnp)) .

28

Proof. Note that

Qc = ∪u ({τ ≤ |Γ1(u)| ≤ 4np} ∩ {|Γk(u)| /∈ Ik, ∀1 ≤ k ≤ d}) .

Hence, it follows from the union bound that

P {Qc} ≤
∑

u

P {{τ ≤ |Γ1(u)| ≤ 4np} ∩ {|Γk(u)| /∈ Ik, ∀1 ≤ k ≤ d}}

≤
∑

u

P {|Γk(u)| /∈ Ik, ∀1 ≤ k ≤ d | τ ≤ |Γ1(u)| ≤ 4np}

≤ n exp (−Ω (τnp)) ,

where the last inequality follows from Lemma 12.

Next, we upper bounds |Nd(u) ∩Nd(v)| for two distinct vertices u, v in the sparse regime. We
need to introduce

Γ∗
k,ℓ(u, v) = {w ∈ Γk(u) ∩ Γℓ(v) : Γ1(w) ∩ (Γk−1(u) \ Γℓ−1(v)) 6= ∅, Γ1(w) ∩ (Γℓ−1(v) \ Γk−1(u)) 6= ∅}

and we abbreviate Γ∗
k,k(u, v) as Γ

∗
k(u, v) for simplicity. By definition, for any d ≥ 1,

Γd(u) ∩ Γd(v) ⊂ ∪d
k=1Γd−k (Γ

∗
k(u, v)) .

and
Nd(u) ∩Nd(v) ⊂ ∪d

ℓ=−d ∪d
k=0 Nd−k−max{ℓ,0}

(
Γ∗
k+ℓ,k(u, v)

)
.

The following lemma gives an upper bound to
∣∣∣Γ∗

k,ℓ(u, v)
∣∣∣ in high probability.

Lemma 13. For two distinct vertices u, v, define

∆k,ℓ =
{
|Γk−1(u)| ≤ (4np)k−1, |Γℓ−1(v)| ≤ (4np)ℓ−1

}
.

For all k ≥ 1,

P
{∣∣Γ∗

k,ℓ(u, v)
∣∣ ≥ γk+ℓ | ∆k,ℓ

}
≤ 1

n8
, (25)

where

γk =

{
24 log n if np2(4np)k−2 ≤ 4 log n

4np2(4np)k−2 o.w.
(26)

Proof. Conditional on Nk−1(u),Γk−1(u) and Nℓ−1(v),Γℓ−1(v), the probability that a vertex w /∈
Nk−1(u) ∪ Nℓ−1(v) being connected to some vertex in Γk−1(u) \ Γℓ−1(v) is

1− (1− p)|Γk−1(u)\Γℓ−1(v)| ≤ p|Γk−1(u) \ Γℓ−1(v)| ≤ p|Γk−1(u)|.

Similarly, the probability that w is connected to some vertex in Γℓ−1(v) \ Γk−1(u) is

1− (1− p)|Γℓ−1(v)\Γk−1(u)| ≤ p|Γℓ−1(v) \ Γk−1(u)| ≤ p|Γℓ−1(v)|.

29

Since Γk−1(u) \ Γℓ−1(v) is disjoint from Γℓ−1(v) \ Γk−1(u), the probability that w ∈ Γ∗
u,v is at most

p2|Γk−1(u)||Γℓ−1(v)|. Moreover, there are at most n vertices w /∈ Nk−1(u) ∪ Nℓ−1(v). Hence,

P
{∣∣Γ∗

k,ℓ(u, v)
∣∣ ≥ γk+ℓ | ∆k,ℓ

}
≤ P

{
Bin

(
n, p2(4np)k+ℓ−2

)
≥ γk+ℓ

}
.

If np2(4np)k+ℓ−2 ≤ 4 log n, then by the choice of γk+ℓ = 24 log n, we have γk+ℓ ≥ 6np2(4np)k+ℓ−2.
It follows from (34) that

P

{
Bin

(
n, p2(4np)k+ℓ−2

)
≥ γk+ℓ

}
≤ 2−γk+ℓ = 2−24 logn ≤ 1

n8
.

If np2(4np)k+ℓ−2 ≥ 4 log n, then by the choice of γk+ℓ = 4np2(4np)k+ℓ−2, it follows from (33) that

P

{
Bin

(
n, p2(4np)k+ℓ−2

)
≥ γk+ℓ

}
≤ exp

(
−2np2(4np)k+ℓ−2

)
≤ 1

n8
.

With Lemma 13, we are ready to upper bound |Nd(u) ∩Nd(v)| for d large enough.

Lemma 14. For a given small constant ǫ > 0, choose an integer 1 ≤ d ≤ n such that

(4np)d ≥ n1−ǫ

For each vertex u, define event

Ru =

{
∑

v

1{|Nd(u)∩Nd(v)|>42d+1p2dn2d−1} ≤ 2n4ǫ

}

and R = ∩uRu. Then

P {R} ≥ 1− 2n−1. (27)

Proof. Define an event

A = ∩u 6=v ∩1≤k≤d ∩1≤k≤ℓ

{
|Γ∗

k,ℓ(u, v)| ≤ γk+ℓ

}

Recall E defined in (23). Note that

(A ∩ E)c = (Ac ∩ E) ∪ Ec.

Therefore,
P {(A ∩ E)c} ≤ P {Ac ∩ E}+ P {Ec} .

Note that P {Ec} ≤ 1/n. Moreover,

P {Ac ∩ E} ≤
∑

u 6=v

∑

1≤k≤d

∑

1≤ℓ≤d

P
{{

|Γ∗
k,ℓ(u, v)| ≥ γk+ℓ

}
∩ E
}

(a)

≤
∑

u 6=v

∑

1≤k≤d

∑

1≤ℓ≤d

P
{{

|Γ∗
k,ℓ(u, v)| ≥ γk+ℓ

}
∩∆k,ℓ

}

≤
∑

u 6=v

∑

1≤k≤d

∑

1≤ℓ≤d

P
{
|Γ∗

k,ℓ(u, v)| ≥ γk+ℓ | ∆k,ℓ

}
≤ n−4,

30

where (a) follows from E ⊂ ∆k and the last inequality holds in view of Lemma 13 and d ≤ n.
Therefore, P {(A ∩ E)c} ≤ 2/n.

To prove the lemma, it suffices to argue that A∩ E ⊂ R. To see this, let us assume that A∩ E
holds in the sequel. Note that

Nd(u) ∩Nd(v) ⊂ ∪d
ℓ=−d ∪d

k=0 Nd−k−max{ℓ,0}

(
Γ∗
k+ℓ,k(u, v)

)
.

It follows that

|Nd(u) ∩Nd(v)| ≤
d∑

ℓ=−d

d∑

k=0

∣∣Γ∗
k+ℓ,k(u, v)

∣∣ (4np)d−k−max{ℓ,0}

Set k0

k0 =

⌊
2ǫ log n

log(4np)

⌋

Then

|N2k0(u)| ≤
2k0∑

k=0

(4np)k =
(4np)2k0+1 − 1

4np− 1
≤ 2(4np)2k0 ≤ 2n4ǫ,

where the second-to-the-last inequality holds due to 2np ≥ 1. Note that for all v /∈ N2k0(u), we
have

|Γ∗
k,ℓ(u, v)| = 0, ∀0 ≤ k + ℓ ≤ 2k0

and thus

|Nd(u) ∩Nd(v)| ≤
d∑

ℓ=−d

d∑

k=0

1{0≤k+ℓ≤d}1{2k+ℓ≥2k0+1}γ2k+ℓ(4np)
d−k−max{ℓ,0}

≤
d∑

ℓ=−d

d∑

k=0

1{0≤k+ℓ≤d}1{2k+ℓ≥2k0+1}

(
24 log n+ 4np2(4np)2k+ℓ−2

)
(4np)d−k−max{ℓ,0}

≤ 192 log n(4np)d−k0−1/2 + 32np2(4np)2d−2

≤ 64np2(4np)2d−2 = 42d+1p2dn2d−1,

where the last inequality holds due to (4np)d+k0+1/2 ≥ 6n log n for n sufficiently large. Hence, for
every u, ∑

v

1{|Nd(u)∩Nd(v)|>(4)2d+1p2dn2d−1} ≤ |N2k0(u)| ≤ 2n4ǫ.

As a consequence, A ∩ E ⊂ R.

D.3 Graph Branching in Sparse Regime

In this subsection, we describe a branching process to explore the vertices in Nk(u). See, e.g.,
[AS08, Section 11.5] for a reference.

Definition 3 (Graph Branching Process). We begin with u and apply breadth-first-search to explore
the vertices in Nk(u). In this process, all vertices will be “live”, “dead”, or “neutral”. The live
vertices will be contained in a queue. Initially, at time 0, u is live and the queue consists of only
u, and all the other vertices are neutral. At each time step t, a live vertex v is popped from the
head of the queue, and we check all pairs {v,w} for all neutral vertices w for adjacency. The poped
vertex v is now dead and those neutral vertices w adjacent to v are added to the end of the queue
(in an arbitrary order) and now are live. The process ends when the queue is empty.

31

Note that such a branching process constructs a tree T (u) rooted at u. In particular, at each
time step, those neutral vertices w adjacent to the poped vertex v can be viewed as children of v.
For each vertex v in T (u), abusing notation slightly, we let Tk(v) denote the subtree rooted at v of
depth k in T (u) and Πk(v) denote the set of vertices at distance k from root v in subtree Tk(v).
Note that by construction, Πk(u) = Γk(u) for root u.

We are interested in bounding |Πk(v)| for each children v of root u. The following lemma shows
that with high probability, for all childen v of root u such that |Π1(v)| ≥ τ , |Πk(v)| grows at least
as τ (np/2)k−1.

Lemma 15. Let u be the root vertex and 1 ≤ τ ≤ np. Define

F1 = {|Π1(u)| ≤ 4np} ∩ {|Π1(v)| ≤ 4np,∀v ∈ Π1(u)} ,

and for each 2 ≤ k ≤ d define

Fk =
{
|Πk(v)| ≤ (4np)k,∀v ∈ Π1(u)

}
∩
{
|Πk(v)| ≥ τ (np/2)k−1 ,∀v ∈ Π1(u) s.t. |Π1(v)| ≥ τ

}

Suppose

np ≥ log n and (4np)d+1 = o(n). (28)

Then for 2 ≤ k ≤ d,

P {Fk | F1, . . . ,Fk−1} ≥ 1− 8np exp

(
−Ω

(
τ
(np

2

)k−1
))

.

It readily follows that

P {Fd ∩ Fd−1 ∩ · · · ∩ F2 | F1} ≥ 1− 8np exp (−Ω (τnp)) .

Moreover, by letting
Au = (Fd ∩ Fd−1 ∩ · · · F2) ∪ Fc

1 ,

we have
P {Ac

u} ≤ 8np exp (−Ω (τnp)) .

Proof. Fix 2 ≤ k ≤ d. Suppose the neighbors of root vertex u are added to the queue in the
order of v1, v2, . . . , vdu , where du = |Π1(u)|. Then by the branching process aforementioned,
Πk(v1), . . . ,Πk(vi−1) are revealed before Πk(vi).

Fix 1 ≤ i ≤ du and define

Fk,i =
{
|Πk(vj)| ≤ (3np)k, ∀j ∈ [i]

}
∩
{
|Πk(vj)| ≥ τ

(np
2

)k−1
,∀j ∈ [i] s.t. |Π1(vj)| ≥ τ

}
.

Then Fk = Fk,du.
Conditional on Πk−1(vi), the probability of a given neutral vertex w being connected to some

vertices in Πk−1(vi) is
pk , 1− (1− p)|Πk−1(vi)| ≤ p|Πk−1(vi)|.

On the one hand, there are at most n neutral vertices. Therefore, conditional on |Πk−1(vi)|,
|Πk(vi)| is stochastically dominated by Bin (n, p |Πk−1(vi)|) and hence

P

{
|Πk(vi)| ≥ (4np)k | F1, . . . ,Fk−1,Fk,i−1

}
≤ P

{
Bin

(
n, p(4np)k−1

)
≥ (4np)k

}

≤ exp
(
−4k−1(np)k

)
, (29)

32

where the last inequality follows from the Binomial tail bound (33).
On the other hand, in view of assumption (28), conditional on F1, . . . ,Fk−1,Fk,i−1 there are at

least

n− 1−
du∑

i=1

k−1∑

ℓ=0

|Πℓ(vi)| −
i−1∑

j=1

|Πk(vj)| ≥ n− 1− 4np

k∑

ℓ=0

(4np)ℓ = n− (4np)k+2 − 1

4np− 1
= n− o(n)

neutral vertices to be connected to some vertices in Πk−1(vi), and for each vi such that |Π1(vi)| ≥ τ ,

pk = 1− (1− p)|Πk−1(vi)| ≥ (1− o(1)) pτ
(np

2

)k−2
.

Therefore, conditional on F1, . . . ,Fk−1,Fk,i−1, |Πk(vi)| is stochastically lower bounded by

Bin

(
n− o(n), (1− o(1)) pτ

(np
2

)k−2
)

and hence for 2 ≤ k ≤ d,

P

{
|Πk(vi)| ≥ τ

(np
2

)k−1
| F1, . . . ,Fk−1,Fk,i−1

}

≤ P

{
Bin

(
n− o(n), (1− o(1)) pτ

(np
2

)k−2
)

≤ τ
(np

2

)k−1
}

≤ exp

(
−Ω

(
τ
(np

2

)k−1
))

. (30)

Combining (29) and (30) yields that

P {Fk,i | F1, . . . ,Fk−1} ≥ P {Fk,i−1 | F1, . . . ,Fk−1}
(
1− 2 exp

(
−Ω

(
τ
(np

2

)k−1
)))

.

Therefore,

P {Fk | F1, . . . ,Fk−1} ≥ 1− 8np exp

(
−Ω

(
τ
(np

2

)k−1
))

.

Finally, we note that

P {Fd ∩ Fd−1 ∩ · · · ∩ F2 | F1}
= P {F2 | F1}P {F3 | F1,F2} · · ·P {Fd | F1, . . . ,Fd−1}

≥
d∏

k=2

(
1− 8np exp

(
−Ω

(
τ
(np

2

)k−1
)))

≥ 1− 8np
d∑

k=2

exp

(
−Ω

(
τ
(np

2

)k−1
))

≥ 1− 8np exp (−Ω(τnp)) .

Moreover, by the definition of Au, we have

Ac
u = (Fd ∩ Fd−1 ∩ · · · ∩ F2)

c ∩ F1.

33

Hence,

P {Ac
u} = P {F1}P {(Fd ∩ Fd−1 ∩ · · · ∩ F2)

c | F1}
≤ P {(Fd ∩ Fd−1 ∩ · · · ∩ F2)

c | F1}
≤ 8np exp (−Ω(τnp)) ,

completing the proof.

The following lemma shows that with high probability, for all possible root vertex u, it has at
most one children v with |Π1(v)| ≤ τ for τ = o(np). Let A denote the adjacency matrix of G. For
three distinct vertices u, v, w, define

Bu,v,w = {Au,v = 1, Au,w = 1} ∩ {|Π1(v)| ≤ τ} ∩ {Π1(w) ≤ τ}.
and B = ∪u,v,wBu,v,w.

Lemma 16. Assume

np ≥ log n, and np = o(n1/2), and τ = o(np). (31)

Then
P {B ∩ E} ≤ n−1+o(1).

Proof. By the union bound,

P {B ∩ E} ≤
∑

u,v,w

P {Bu,v,w ∩ E}

it reduces to bounding P {Bu,v,w ∩ E} .
Let Nv and Nw denote the number of neutral vertices in the branching process when v and w

are popped from the head of the queue, respectively. Then conditional on Nv and Nw, |Π1(v)| and
|Π1(w)| are independent and |Π1(v)| ∼ Binom(Nv, p) and |Π1(w)| ∼ Binom(Nw, p). On event E ,
both Nv and Nw is at least n−1−4np− (4np)2 = n−o(n) in view of the assumption np = o(n1/2).
Therefore,

P {{|Π1(v)| ≤ τ,Π1(w) ≤ τ} ∩ E | Au,v = 1, Au,w = 1}

=

n−o(n)∑

i,j=1

P {{|Π1(v)| ≤ τ,Π1(w) ≤ τ,Nv = i,Nw = j} ∩ E | Au,v = 1, Au,w = 1}

≤
n∑

i,j=n−o(n)

P {|Π1(v)| ≤ τ,Π1(w) ≤ τ,Nv = i,Nw = j | Au,v = 1, Au,w = 1}

=

n∑

i,j=n−o(n)

P {Nv = i,Nw = j | Au,v = 1, Au,w = 1}P {|Π1(v)| ≤ τ,Π1(w) ≤ τ | Nv = i,Nw = j}

=

n∑

i,j=n−o(n)

P {Nv = i,Nw = j | Au,v = 1, Au,w = 1} (P {Binom (n− o(n), p) ≤ τ})2

≤ exp (−2(1− o(1))np) ,

where the last inequality holds due to the Binomial tail bound (32) and the assumption that
τ = o(np). It follows that

P {Bu,v,w ∩ E} ≤ p2 exp (−2(1− o(1))np) = o(1/n3),

where the last equality holds due to np ≥ log n.

34

Now we are ready to prove our main proposition. Let Hu denote the event that tree T (u)
satisfies

1. u has at most one children v such that |Π1(v)| ≤ τ .

2. For each children v of u with |Π1(v)| ≥ τ , |Πk(v)| ≥ τ
(np

2

)k−1
for all 1 ≤ k ≤ d.

Define H = ∩uHu.

Proposition 1. Suppose (28) and (31) hold and τ → ∞. Then

P {H} ≥ 1− 3n−1+o(1).

Proof. Note that
(∩uAu) ∩ (Bc ∪ Ec) ∩ E ⊂ H.

Hence,

P {H} ≥ 1−
∑

u

P {Ac
u} − P {B ∩ E} − P {Ec} .

In view of Lemma 15, we have
P {Ac

u} ≤ n−ω(1).

By Lemma 16, we have
P {B ∩ E} ≤ n−1+o(1).

By Lemma 1, we have P {E} ≥ 1− 1/n. Then the conclusion readily follows.

Appendix E Time Complexity of Algorithm 1

Recall that in Algorithm 1, we need to efficiently check whether there exist m independent ℓ-paths
from a given vertex i2 to a set of m seeded vertices L ⊂ ΓG2

ℓ (i2) in G2 and m independent ℓ-paths

from a given vertex i1 to the corresponding seed set π0(L) ⊂ ΓG1

ℓ (i1) in G1. Below we give the
specific procedure to reduce this task to a maximum flow problem in a directed graph with source
i1 and sink i2.

First, we explore the local neighborhood NG1

ℓ (i1) of i1 in G1 up to radius ℓ. We delete all the
edges (u, v) found if (u, v) are at the same distance from i1. Also, we direct all the edges (u, v)
from u to v if u is closer to i1 than v by distance 1. Afterwards, we get a local neighborhood of
i1, denoted by ÑG1

ℓ (i1), with edges pointing away from i1. Note that ÑG1

ℓ (i1) is not exactly a tree
because a vertex may have multiple parents.

Next, we repeat the above procedure for vertex i2 in G2 in exactly the same manner except
that the edges are directed towards i2. Let Ñ

G2

ℓ (i2) denote the resulting local neighborhood of i2.

Finally, we take the graph union of ÑG1

ℓ (i1) and ÑG2

ℓ (i2), by treating seeded vertex u ∈ ΓG2

ℓ (i2)

with its correspondence π0(u) ∈ ΓG1

ℓ (i1) as the same vertex. All the other vertices, seeded or non-
seeded, from the two different local neighborhoods are treated as distinct vertices. We denote the
resulting graph union as Nℓ(i1, i2).

Recall that we aim to find independent (vertex-disjoint except for i1) ℓ-paths from i1 to seeded
vertices in ΓG1

ℓ (i1). Thus, we need to enforce the constraint that every vertex other than i1 can
appear at most once. Similarly for i2. To this end, we apply the following procedure.

1. Split each vertex u in Nℓ(i1, i2) into to two vertices: uin and uout;

35

2. Add an edge of capacity 1 from uin to uout;

3. Replace each other edge (u, v) in Nℓ(i1, i2) with an edge from uout to vin of capacity 1;

4. Find a max-flow from i1out to i2in.

The idea behind this construction is as follows. Any flow path from the source vertex i1out to
the sink vertex i2in must have capacity 1, since all edges have capacity 1. Since all capacities are
integral, there exists an integral max-flow in which all flows are integers [FF56]. No two flow paths
can pass through the same intermediary vertex, because in passing through a vertex u in the graph
the flow path must cross the edge from uin to uout, and the capacity here has been restricted to
one. Also, the flow path must pass exactly 2ℓ distinct uout vertices (including the source vertex
i1out, because all the edges are pointing away from i1out and towards i2in. Thus each flow path
from i1out to i2in represents a vertex-disjoint 2ℓ-path from the source vertex i1 to sink vertex i2 in
Nℓ(i1, i2). As a consequence, the max-flow from i1out to i2in corresponds to the maximum number,
m, of independent ℓ-paths from i2 to a set of seeded vertices L ⊂ ΓG2

ℓ (i2) in G2, and of independent

ℓ-paths from i1 to the corresponding seed set π0(L) ⊂ ΓG1

ℓ (i1) in G1.
As for time complexity, we can find a max-flow from i1out to i2in via Ford–Fulkerson algo-

rithm [FF56] in O(|E|f) time steps, where |E| is the total number of edges of Nℓ(i1, i2) after vertex
splitting and edge replacement, and f is the max flow. Under the choice of ℓ given in (12), the
total number of vertices and edges in Nℓ(i1, i2) are O(n1/2−ǫ). Hence, |E| = O(n1/2−ǫ). More-
over, the max flow f is upper bounded by the number of seeded vertices in ΓG1

ℓ (i1) which is at
most O(n1/2−ǫα) with high probability. Hence, in total it takes O(nα) time steps to compute the
max-flow from i1out to i2in via Ford–Fulkerson algorithm.

Appendix F Tail Bounds for Binomial Distributions

Theorem 6 ([Oka59, MU05]). Let X ∼ Bin(n, p). It holds that

P {X ≤ nt} ≤ exp

(
−n
(√

p−
√
t
)2)

, ∀0 ≤ t ≤ p (32)

P {X ≥ nt} ≤ exp

(
−2n

(√
t−√

p
)2)

, ∀p ≤ t ≤ 1. (33)

P {X ≥ nt} ≤ 2−nt, ∀6p ≤ t ≥ 1. (34)

Acknowledgment

J. Xu would also like to thank Cris Moore, Jian Ding, Zongming Ma, and Yihong Wu for inspiring
discussions on graph matching and isomorphism. J. Xu was supported by the NSF Grant CCF-
1755960.

References

[AS08] Noga Alon and Joel H. Spencer. The probabilistic method (the third edition), 2008.

[Bab16] László Babai. Graph isomorphism in quasipolynomial time [extended abstract]. In
Proceedings of the Forty-eighth Annual ACM Symposium on Theory of Computing,
STOC ’16, pages 684–697, New York, NY, USA, 2016. ACM.

36

[BCL+18] Boaz Barak, Chi-Ning Chou, Zhixian Lei, Tselil Schramm, and Yueqi Sheng. (nearly)
efficient algorithms for the graph matching problem on correlated random graphs.
arXiv preprint arXiv:1805.02349, 2018.

[BCPP98] Rainer E Burkard, Eranda Cela, Panos M Pardalos, and Leonidas S Pitsoulis. The
quadratic assignment problem. In Handbook of combinatorial optimization, pages
1713–1809. Springer, 1998.

[BES80] László Babai, Paul Erdos, and Stanley M Selkow. Random graph isomorphism. SIaM
Journal on computing, 9(3):628–635, 1980.

[BGM82] László Babai, D Yu Grigoryev, and David M Mount. Isomorphism of graphs with
bounded eigenvalue multiplicity. In Proceedings of the fourteenth annual ACM sym-
posium on Theory of computing, pages 310–324. ACM, 1982.

[Bol82] Béla Bollobás. Distinguishing vertices of random graphs. North-Holland Mathematics
Studies, 62:33–49, 1982.

[Bol01] Béla Bollobás. Random Graphs (2nd Edition). Cambridge Studies in Advanced Math-
ematics, 2001.

[CFSV04] Donatello Conte, Pasquale Foggia, Carlo Sansone, and Mario Vento. Thirty years of
graph matching in pattern recognition. International journal of pattern recognition
and artificial intelligence, 18(03):265–298, 2004.

[CK16] Daniel Cullina and Negar Kiyavash. Improved achievability and converse bounds for
erdos-rényi graph matching. In Proceedings of the 2016 ACM SIGMETRICS Interna-
tional Conference on Measurement and Modeling of Computer Science, pages 63–72.
ACM, 2016.

[CK17] Daniel Cullina and Negar Kiyavash. Exact alignment recovery for correlated erdos
renyi graphs. arXiv preprint arXiv:1711.06783, 2017.

[CP08] Tomek Czajka and Gopal Pandurangan. Improved random graph isomorphism. Jour-
nal of Discrete Algorithms, 6(1):85–92, 2008.

[FAP18] Donniell E. Fishkind, Sancar Adali, and Carey E. Priebe. Seeded graph matching.
arXiv preprint arXiv:1209.0367, 2018.

[FF56] Lester R Ford and Delbert R Fulkerson. Maximal flow through a network. Canadian
journal of Mathematics, 8(3):399–404, 1956.

[FK15] Alan Frieze and Micha Karoski. Introduction to Random Graphs. Cambridge Univer-
sity Press, 2015.

[FQRM+16] Soheil Feizi, Gerald Quon, Mariana Recamonde-Mendoza, Muriel Médard, Mano-
lis Kellis, and Ali Jadbabaie. Spectral alignment of networks. arXiv preprint
arXiv:1602.04181, 2016.

[HNM05] Aria D Haghighi, Andrew Y Ng, and Christopher DManning. Robust textual inference
via graph matching. In Proceedings of the conference on Human Language Technology
and Empirical Methods in Natural Language Processing, pages 387–394. Association
for Computational Linguistics, 2005.

37

[JLR11] Svante Janson, Tomasz Luczak, and Andrzej Rucinski. Random Graphs. John Wiley&
Sons, Inc., 2011.

[KL14] Nitish Korula and Silvio Lattanzi. An efficient reconciliation algorithm for social
networks. Proceedings of the VLDB Endowment, 7(5):377–388, 2014.

[LFP13] Vince Lyzinski, Donniell E. Fishkind, and Carey E. Priebe. Seeded graph matching
for correlated Erdős-Rényi graphs. Journal of Machine Learning Research, 15, 2013.

[Lip78] R. J. Lipton. The beacon set approach to graph isomorphism. Technical report, Yale
University, 1978.

[LR13] Lorenzo Livi and Antonello Rizzi. The graph matching problem. Pattern Analysis &
Applications, 16(3):253–283, 2013.

[Luk80] Eugene M Luks. Isomorphism of graphs of bounded valence can be tested in poly-
nomial time. In 21st Annual Symposium on Foundations of Computer Science, pages
42–49. IEEE, 1980.

[MMS10] Konstantin Makarychev, Rajsekar Manokaran, and Maxim Sviridenko. Maximum
quadratic assignment problem: Reduction from maximum label cover and lp-based
approximation algorithm. Automata, Languages and Programming, pages 594–604,
2010.

[MU05] Michael Mitzenmacher and Eli Upfal. Probability and Computing: Randomized Algo-
rithms and Probabilistic Analysis. Cambridge University Press, New York, NY, USA,
2005.

[NS08] Arvind Narayanan and Vitaly Shmatikov. Robust de-anonymization of large sparse
datasets. In Security and Privacy, 2008. SP 2008. IEEE Symposium on, pages 111–
125. IEEE, 2008.

[NS09] Arvind Narayanan and Vitaly Shmatikov. De-anonymizing social networks. In Security
and Privacy, 2009 30th IEEE Symposium on, pages 173–187. IEEE, 2009.

[Oka59] Masashi Okamoto. Some inequalities relating to the partial sum of binomial proba-
bilities. Annals of the Institute of Statistical Mathematics, 10(1):29–35, Mar 1959.

[PG11] Pedram Pedarsani and Matthias Grossglauser. On the privacy of anonymized net-
works. In ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pages 1235–1243, 2011.

[SGE17] F Shirani, S Garg, and E Erkip. Seeded graph matching: Efficient algorithms and
theoretical guarantees. arXiv preprint arXiv:1805.02349, 2017.

[SS05] Christian Schellewald and Christoph Schnörr. Probabilistic subgraph matching based
on convex relaxation. In EMMCVPR, volume 5, pages 171–186. Springer, 2005.

[SXB08] Rohit Singh, Jinbo Xu, and Bonnie Berger. Global alignment of multiple protein
interaction networks with application to functional orthology detection. Proceedings
of the National Academy of Sciences, 105(35):12763–12768, 2008.

[Vu02] V. H. Vu. Concentration of non-lipschitz functions and applications. Random Struct.
Algorithms, 20(3):262–316, May 2002.

38

[Wri71] Edward M Wright. Graphs on unlabelled nodes with a given number of edges. Acta
Mathematica, 126(1):1–9, 1971.

[YG13] Lyudmila Yartseva and Matthias Grossglauser. On the performance of percolation
graph matching. In Proceedings of the first ACM conference on Online social networks,
pages 119–130. ACM, 2013.

39

	1 Introduction
	1.1 Main Results
	1.2 Key Algorithmic Ideas and Analysis Techniques

	2 Our Algorithms
	2.1 A Simple Algorithm in Sparse Graph Regime
	2.2 A Simple Algorithm in Dense Graph Regime
	2.3 An Improved Algorithm in Sparse Graph Regime
	2.4 Graph Matching without Seeds

	3 Analysis of Algorithm ?? in Sparse Graph Regime
	3.1 Success of Algorithm ?? on the Intersection of Good Events
	3.2 Bound the Probability of Good Events
	3.3 Completing the Proof of Theorem ??

	4 Analysis of Algorithm ?? in Dense Graph Regime
	5 Analysis of Algorithm ?? in Sparse Graph Regime
	A Proof of Theorem ??
	B Proof of Lemma ??
	C Proof of Lemma ??
	D Neighborhood Exploration in G(n,p)
	D.1 Dense Regime
	D.2 Sparse Regime
	D.3 Graph Branching in Sparse Regime

	E Time Complexity of Algorithm ??
	F Tail Bounds for Binomial Distributions

