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ASYMPTOTIC FOR THE CUMULATIVE DISTRIBUTION FUNCTION

OF THE DEGREES AND HOMOMORPHISM DENSITIES FOR RANDOM

GRAPHS SAMPLED FROM A GRAPHON

JEAN-FRANÇOIS DELMAS, JEAN-STÉPHANE DHERSIN, AND MARION SCIAUVEAU

Abstract. We give asymptotics for the cumulative distribution function (CDF) for degrees
of large dense random graphs sampled from a graphon. The proof is based on precise
asymptotics for binomial random variables.

Replacing the indicator function in the empirical CDF by a smoother function, we get
general asymptotic results for functionals of homomorphism densities for partially labeled
graphs with smoother functions. This general setting allows to recover recent results on
asymptotics for homomorphism densities of sampled graphon.

1. Introduction

The Internet, social networks or biological networks can be represented by large random
graphs. Understanding their structure is an important issue in Mathematics. Degree se-
quences is one of the key objects used to get informations about graphs. The degree sequences
of real world networks have attracted a lot of attention during the last years because their
distributions are significantly different from the Poisson degree distributions studied in the
classical models of random graphs such as the Erdös-Rényi model. They followed a power-law
distribution, see for instance, Newmann [26], Chung et al [10], Diaconis and Blitzstein [5] and
Newman, Barabasi and Watts [25]. See also Molloy and Reed [22, 23] and Newman, Strogatz
and Watts [27] in the framework of sparse graphs.

In this paper, we shall consider the cumulative distribution function (CDF) of degrees of
large dense random graphs sampled from a graphon, extending results from Bickel, Chen and
Levina [4]. The theory of graphon or limits of sequence of dense graphs was developped by
Lovász and Szegedy [20] and Borg, Chayes, Lovász, Sós and Vesztergombi [7]. The asymp-
totics on the empirical CDF of degrees, see the theorem in Section 1.1, could be used to test
if a large dense graph is sampled from a given graphon. This result is a first step for giving a
non-parametric test for identifying the degree function of a large random graph in the spirit
of the Kolmogorov-Smirnov test for the equality of probability distribution from a sample of
independent identically distributed random variables.

If we replace the indicator function in the empirical CDF by a smoother function, we get
general results on the fluctuations for functionals of homomorphism densities for partially

Date: April 30, 2019.
2010 Mathematics Subject Classification. 05C80, 05C07, 60F05, 60G57, 60C05.
Key words and phrases. Graphon, dense graph, homomorphism density, partially labeled graph, cumulative

distribution function of degrees, binomial distribution, random measure.
This work is partially supported by DIM RDMath IdF and by Agence Nationale de la Recherche via the

grant ANR-14-CE25-0014 “GRAAL”.

1

http://arxiv.org/abs/1807.09989v1
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labeled graphs. As an application, when considering homomorphism densities for sampled
graphon, we recover results from Féray, Méliot and Nikeghbali [14].

1.1. Convergence of CDF of empirical degrees for large random graphs. We con-
sider simple finite graphs, that is graph without self-loops and multiple edges between any
pair of vertices. We denote by F the set of all simple finite graphs.

There exists several equivalent notions of convergence for sequences of finite dense graphs
(that is graphs where the number of edges is close to the maximal number of edges), for
instance in terms of metric convergence (with the cut distance) or in terms of the convergence
of subgraph densities, see [7] or Lovász [19].

When it exists, the limit of a sequence of dense graphs can be represented by a graphon i.e.
a symmetric, measurable function W : [0, 1]2 → [0, 1], up to a measure preserving bijection. A
graphon W may be thought of as the weight matrix of an infinite graph whose set of vertices
is the continuous unit interval, so that W (x, y) represents the weight of the edge between
vertices x and y.

Moreover, it is possible to sample simple graphs, with a given number of vertices, from a
graphon W (called W -random graphs). Let X = (Xi : i ∈ N

∗) be a sequence of independent
random variables uniformly distributed on the interval [0, 1]. To construct the W -random
graph with vertices [n] := {1, . . . , n}, denoted by Gn, for each pair of distinct vertices i 6= j,
elements of [n], connect i and j with probability W (Xi,Xj), independently of all other edges
(see also Section 2.4). If needed, we shall stress the dependence in W and write Gn(W ) for
Gn. By this construction, we get a sequence of random graphs (Gn : n ∈ N

∗) which converges
almost surely towards the graphon W , see for instance Proposition 11.32 in [19].

We define the degree function D = (D(x) : x ∈ [0, 1]) of the graphon W by:

D(x) =

∫ 1

0
W (x, y)dy.

And we consider the empirical CDF Πn = (Πn(y) : y ∈ [0, 1]) of the normalized degrees of
the graph Gn defined by

Πn(y) =
1

n

n
∑

i=1

1{
D

(n)
i ≤D(y)

},

where nD
(n)
i is the degree of the vertex i in Gn.

Bickel, Chen and Levina [4], Theorem 5 (with m = 1), proved the convergence in distri-
bution and the convergence of the second moments of Πn(y) towards y. We improve the
results given in [4]: under the condition that D is increasing1 on [0, 1], we have the almost
sure convergence of Πn(y) towards y, uniformly on [0, 1]. This is a consequence of the more
general result given by Theorem 3.3 (see Subsection 1.2 and Remark 7.1 for more details).
In a different direction, Chatterjee and Diaconis [8] considered the convergence of uniformly
chosen random graphs with a given CDF of degrees towards an exponential graphon with
given degree function.

1Since the graphon is defined up to a measure preserving one-to-one map on [0, 1], there exists an equivalent
version of the graphon for which the degree function is non-decreasing. If the degree function is increasing,
then this version is unique in L1 and this is the version which is considered in this section.
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We also get the fluctuations associated to the almost sure convergence of Πn. If W satisfies
some regularity conditions given by (62), which in particular imply that D is of class C1, then
we have the following result on the convergence in distribution of finite-dimensional marginals
for Πn.

Theorem (Theorem 7.2). Assume that W satisfies condition (62). Then we have the fol-
lowing convergence of finite-dimensional distributions:

(√
n (Πn(y)− y) : y ∈ (0, 1)

) (fdd)−−−−−→
n→+∞

χ,

where (χy : y ∈ (0, 1)) is a centered Gaussian process defined, for all y ∈ (0, 1) by:

χy =

∫ 1

0
(ρ(y, u) − ρ̄(y))dBu,

with B = (Bu, u ≥ 0) a standard Brownian motion, and (ρ(y, u) : u ∈ [0, 1]) and ρ̄(y) defined
for y ∈ (0, 1) by:

ρ(y, u) = 1[0,y](u)−
W (y, u)

D′(y)
and ρ̄(y) =

∫ 1

0
ρ(y, u)du.

The covariance kernel Σ = Σ1 + Σ2 + Σ3 of the Gaussian process χ is explicitly given by
Equations (64), (65) and (66) which define respectively Σ1, Σ2 and Σ3. In particular, we
deduce that the variance of χ(y), for y ∈ (0, 1) is given by the elementary formula:

Σ(y, y) = y(1− y) +
1

D′(y)2

(
∫ 1

0
W (y, x)2dx−D(y)2

)

+
2

D′(y)

(

D(y)y −
∫ y

0
W (y, x)dx

)

.

The proof of this result relies on uniform Edgeworth expansions for binomial random
variables, see Bhattacharya and Rao [3], and Stein method for binomial random vectors,
see Bentkus [2]. The convergence of the process in the Skorokhod space could certainly be
proved using similar but more involved arguments. More generally, following van der Vaart
[33], Chapter 19 on convergence of empirical CDF of independent identically distributed ran-

dom variables, if would be natural to study the uniform convergence of 1
n

∑n
i=1 f(D

(n)
i ) when

f belongs to a certain class of functions.

The asymptotics on the CDF of empirical degrees appear formally as a limiting case of the

asymptotics of 1
n

∑n
i=1 f(D

(n)
i ) with f smooth. This is developed in Section 1.3. We shall in

fact adopt in this section a more general point of view as we replace the normalized degree
sequence by a sequence of homomorphism densities for partially labeled graphs.

1.2. Convergence of sequence of dense graphs towards graphons. Recall that one of
the equivalent notions of convergence of sequences of dense graphs is given by the convergence
of subgraph densities. It is the latter one that will interest us. We first recall the notion of
homomorphism densities. For two simple finite graphs F and G with respectively v(F ) and
v(G) vertices, let Inj(F,G) denote the set of injective homomorphisms (injective adjacency-
preserving maps) from F to G (see Subsection 2.2 for a precise definition). We define the
injective homomorphism density from F to G by the following normalized quantity:

tinj(F,G) =
|Inj(F,G)|

A
v(F )
v(G)

,

where we have for all n ≥ k ≥ 1, Ak
n = n!/(n − k)!. In the same way, we can define the

density of induced homomorphisms (which are injective homomorphisms that also preserve
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non-adjacency), see (24). Some authors study subgraph counts rather than homomorphism
densities, but the two quantities are related, see Bollobás and Riordan [6], Section 2.1, so
that results on homomorphism densities can be translated into results for subgraph counts.

A sequence of dense simple finite graphs (Hn : n ∈ N
∗) is called convergent if the sequence

(tinj(F,Hn) : n ∈ N
∗) has a limit for every F ∈ F . The limit can be represented by a graphon,

say W and we have that for every F ∈ F :

lim
n→∞

tinj(F,Hn) = t(F,W ),

where

t(F,W ) =

∫

[0,1]V (F )

∏

{i,j}∈E(F )

W (xi, xj)
∏

k∈V (F )

dxk.

According to [19], Proposition 11.32, the sequence of W -random graphs (Gn : n ∈ N
∗)

converges a.s. towards W , that is for all F ∈ F , a.s.:

(1) lim
n→∞

tinj(F,Gn) = t(F,W ).

In the Erdös-Rényi case, that is when W ≡ p is constant, the fluctuations associated to
this almost sure convergence are of order n: for all F ∈ F with p vertices and e edges, we
have the following convergence in distribution:

n (tinj(F,Gn(p))− pe)
(d)−−−→

n→∞
N
(

0, 2e2p2e−1(1− p)
)

,

where N (m,σ2) denotes a Gaussian random variable with mean m and variance σ2. There
are several proofs of this central limit theorem. Nowicki [28] and Janson and Nowicki [17] used
the theory of U-statistics to prove the asymptotic normality of subgraph counts and induced
subgraph counts. They also obtained the asymptotic normality of vectors of subgraph counts
and induced subgraph counts. In the particular case of the joint distribution of the count
of edges, triangles and two-stars, Reinert and Röllin [30], Proposition 2, obtained bounds on
the approximation. Using discrete Malliavin calculus, Krokowski and Thäle [18] generalized
the result of [30] (in a different probability metric) and get the rate of convergence associated
to the multivariate central limit theorem given in [17]. See also Féray, Méliot and Nikeghbali
[13], Section 10, for the mod-Gaussian convergence of homomorphism densities.

The asymptotics of normalized subgraph counts have also been studied when the param-
eter p of the Erdös-Rényi graphs depends on n, see for example Ruciński [31], Nowicki and
Wierman [29], Barbour, Karoński and Ruciński [1], and Gilmer and Kopparty [15].

In the general framework of graphon, the speed of convergence in the invariance principle
is of order

√
n, but for degenerate cases such as the Erdös-Rényi case. This result was given

by Féray, Méliot and Nikeghbali [14], Theorem 21: for all F ∈ F , we have the following
convergence in distribution:

(2)
√
n (tinj(F,Gn)− t(F,W ))

(d)−−−→
n→∞

N
(

0, σ(F )2
)

,

where, with V (F ) the set of vertices of F and v(F ) its cardinal,

σ(F )2 =
∑

q,q′∈V (F )

t
(

(F ⊲⊳ F )(q, q′),W
)

− v(F )2 t(F,W )2

and (F ⊲⊳ F ′)(q, q′) is the disjoint union of the two simple finite graphs F and F ′ where
we identify the vertices q ∈ F and q′ ∈ F ′ (see point (iii) of Remark 3.6, for more details).
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Notice that in the Erdös-Rényi case, that is when W is a constant graphon, the asymptotic
variance σ(F )2 is equal to 0, which is consistent with the previous paragraph since the speed
is of order n.

Using Stein’s method, Fang and Röllin [12] obtained the rate of convergence for the mul-
tivariate normal approximation of the joint distribution of the normalized edge count and
the corrected and normalized 4-cycle count. As a consequence, they get a confidence interval
to test if a given graph G comes from an Erdős-Rényi random graph model or a non con-
stant graphon-random graph model. Maugis, Priebe, Olhede and Wolfe [21] gave a central
limit theorem for subgraph counts observed in a network sample of W -random graphs drawn
from the same graphon W when the number of observations in the sample increases but the
number of vertices in each graph observation remains finite. They also get a central limit the-
orem in the case where all the graph observations may be generated from different graphons.
This allows to test if the graph observations come from a specified model. When considering
sequences of graphons which tend to 0, then there is a Poisson approximation of subgraph
counts. In this direction, Coulson, Gaunt and Reinert [11], Corollary 4.1, used the Stein
method to establish an effective Poisson approximation for the distribution of the number
of subgraphs in the graphon model which are isomorphic to some fixed strictly balanced graph.

Motivated by those results, we present in the next section an invariance principle for the
distribution of homomorphism densities of partially labeled graphs for W -random graphs
which can be seen as a generalization of (2).

1.3. Asymptotics for homomorphism densities of partially labeled graphs for large
random graphs. Let n ∈ N

∗ and k ∈ [n]. We define the set Sn,k of all [n]-words of length

k such that all characters are distinct, see (7). Notice that |Sn,k| = Ak
n = n!/(n − k)!.

We generalize homomorphism densities for partially labeled graphs. Let F,G ∈ F be two
simple graphs with V (F ) = [p] and V (G) = [n]. Assume n ≥ p > k ≥ 1. Let ℓ ∈ Sp,k and

α ∈ Sn,k. We define Inj(F ℓ, Gα) the set of injective homomorphisms f from F into G such
that f(ℓi) = αi for all i ∈ [k], and its density:

tinj(F
ℓ, Gα) =

|Inj(F ℓ, Gα)|
Ap−k

n−k

·

We define the random probability measure ΓF,ℓ
n on ([0, 1],B([0, 1])), with B([0, 1]) the Borel

σ-field on [0, 1], by: for all measurable non-negative function g defined on [0, 1],

(3) ΓF,ℓ
n (g) =

1

|Sn,k|
∑

α∈Sn,k

g
(

tinj(F
ℓ, Gα

n)
)

.

We prove, see Theorem 3.3, the almost sure convergence for the weak topology of the se-

quence
(

ΓF,ℓ
n (dx) : n ∈ N

∗
)

of random probability measure on [0, 1] towards the deterministic

probability measure ΓF,ℓ(dx) = E

[

ΓF,ℓ
n (dx)

]

.

- If we take g = Id in (3), we recover the almost sure convergence given in (1) as
according to (21):

tinj(F,Gn) =
1

|Sn,k|
∑

α∈Sn,k

tinj(F
ℓ, Gα

n).
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- If we take g = 1[0,D(y)] with y ∈ (0, 1) and F = K2 (where K2 denotes the complete

graph with two vertices) in (3) and using the expression of ΓF,ℓ given in Remark 3.2,
(ii), we have, with • any vertex of K2, that:

ΓK2,•
n (g) = Πn(y) and ΓK2,•(g) = y.

Then, by Theorem 3.3, under the condition that D is strictly increasing on (0, 1), we
have the almost sure convergence of Πn(y) towards y, see Remark 7.1.

We also have the fluctuations associated to this almost sure convergence, see Theorem 3.5
for a multidimensional version.

Theorem. Let W ∈ W be a graphon. Let F ∈ F be a simple finite graphs with V (F ) = [p],
ℓ ∈ Mp, with k = |ℓ|. Then, for all g ∈ C2([0, 1]), we have the following convergence in
distribution:

√
n
(

ΓF,ℓ
n (g)− ΓF,ℓ(g)

)

(d)−−−→
n→∞

N
(

0, σF,ℓ(g)2
)

,

with σF,ℓ(g)2 = Var(UF,ℓ
g ) and UF,ℓ

g is defined in (43).

Notice σF,ℓ(g)2 is an integral involving g and g′. The asymptotic results are still true
when we consider a family of d ≥ 1 simple graphs F = (Fm : 1 ≤ m ≤ d) ∈ Fd and

we define ΓF,ℓ
n on [0, 1]d, see Theorems 3.3 and 3.5 for the muldimensional case. The case

g = Id appears already in [14], see Corollary 3.7 for the graphs indexed version. We have the
following convergence of finite-dimensional distributions (or equivalently of the process since
F is countable).

Corollary (Corollary 3.7). We have the following convergence of finite-dimensional distri-
butions:

(√
n (tinj(F,Gn)− t(F,W )) : F ∈ F

) (fdd)−−−→
n→∞

Θinj,

where Θinj = (Θinj(F ) : F ∈ F) is a centered Gaussian process with covariance function Kinj

given, for F,F ′ ∈ F , by:

Kinj(F,F
′) =

∑

q∈V (F )

∑

q′∈V (F ′)

t
(

(F ⊲⊳ F ′)(q, q′),W
)

− v(F )v(F ′) t(F,W )t(F ′,W ).

As a consequence, we get the central limit theorem for homomorphism densities from
quantum graphs, see (52) and for induced homomorphism densities, see Corollary 3.9. In the
Erdös-Rényi case, the one-dimensional limit distribution of induced homomorphism densities
is not necessarily normal: it’s behaviour depends on the number of edges, two-stars and tri-
angles in the graph F , see [28] and [17].

Notice that because g = 1[0,D(y)] is not of class C2([0, 1]), we can not apply Theorem 3.5

(with F = K2 and k = 1) directly to get the convergence in distribution of
√
n(Πn(y) − y)

towards χ(y) given in Theorem 7.2. Nevertheless, the asymptotic variance can be formally
obtained by computing σK2,•(g) given in Theorem 3.5 with g = 1[0,D(y)] and g′(z)dz =

(D′(y))−1δD(y)(dz), with δD(y)(dz) the Dirac mass at D(y). However, the proofs of Theorems
3.5 and 7.2 require different approachs.

Similarly to Theorem 7.2 and in the spirit of Theorem 3.5, it could be interesting to
consider the convergence of CDF for triangles or more generally for simple finite graphs F ,
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V (F ) = [p], and ℓ ∈ Sp,k:




1

|Sn,k|
∑

α∈Sn,k

1{tinj(F ℓ,Gα
n)≤tx(F ℓ,W )} : x ∈ (0, 1)k



 ,

where tx(F
ℓ,W ) = E

[

tinj
(

F ℓ, G
[k]
n

)∣

∣ (X1, . . . ,Xk) = x
]

, see (31) and the second equality in
(37).

1.4. Organization of the paper. We recall the definitions of graph homomorphisms, gra-
phons, W -random graphs in Section 2. We present our main result about the almost sure

convergence for the random measure ΓF,ℓ
n associated to homomorphism densities of sampling

partially labeled graphs from a graphon in Section 3.2, see Theorem 3.3. The proof is given
in Section 5 after a preliminary result given in Section 4. The associated fluctuations are
stated in Theorem 3.5 and proved in Section 6. Section 7 is devoted to the asymptotics for
the empirical CDF of degrees Πn, see Theorem 7.2 for the fluctuations corresponding to the
almsot sure convergence. After some ancillary results given in Section 8, we prove Theorem 7.2
in Section 9. We add a notation index at the end of the paper for the reader convenience. We
postpone to the appendices some technical results on precise uniform asymptotics for the CDF
of binomial distributions, see Section 10, and a proof of Proposition 8.3 on approximation for
the CDF of multivariate binomial distributions.

2. Definitions

2.1. First notations. We denote by |B| the cardinal of the set B. For n ∈ N
∗, we set

[n] = {1, . . . , n}. Let A be a non-empty set of characters, called the alphabet. A sequence
β = β1 . . . βk, with βi ∈ A for all 1 ≤ i ≤ k, is called a A-word (or string) of length
|β| = k ∈ N

∗. The word β is also identified with the vector (β1, . . . , βk), and for q ∈ A,
we write q ∈ β if q belongs to {β1, . . . , βk}. The concatenation of two A-words α and β is
denoted by αβ.

We now define several other operations on words. Let β be a A-word of length p ∈ N
∗ and

k ∈ [p]. For α a [p]-word of length k, we consider the A-word βα, defined by

(4) βα = βα1 . . . βαk
·

The word β[k] = β1 . . . βk corresponds to the first k terms of β, where by convention, [k]
denote the N

∗-word 1 . . . k. We define, for i, j ∈ [p], the transposition word τij(β) of β,
obtained by exchanging the place of the ith character with the jth character in the word β:
for u ∈ [p],

(5) τij(β)u =











βu if u /∈ {i, j},
βi if u = j,

βj if u = i.

Finally, for q ∈ A and i ∈ [p], we define the new A-word Ri(β, q), derived from β by
substituting its ith character with q: for u ∈ [p],

(6) Ri(β, q)u =

{

βu if u 6= i,

q if u = i.
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Let n ∈ N
∗ and p ∈ [n]. We define the set Sn,p of all [n]-words of length p such that all

characters are distinct:

(7) Sn,p = {β = β1 . . . βp : βi ∈ [n] for all i ∈ [p] and β1, . . . , βp are all distinct} .
Notice that |Sn,p| = Ap

n = n!/(n − p)!, and that Sn,1 = [n]. Moreover, for n ∈ N
∗, Sn,n

is simply the set of all permutations of [n] which will be also denoted by Sn. With these
notations, for n ∈ N

∗, we define the set Mn of all [n]-words with all characters distinct:

(8) Mn =
⋃

p∈[n]
Sn,p.

Let n ≥ p ≥ k ≥ 1 and ℓ ∈ Sp,k. For α ∈ Sn,k, we define the set Sℓ,α
n,p of all [n]-words of length

k such that all characters are distinct and for all i ∈ [k], the ℓi-th character is equal to αi:

(9) Sℓ,α
n,p = {β ∈ Sn,p : βℓ = α} ·

We have |Sℓ,α
n,p| = Ap−k

n−k. As Ap
n = Ak

nA
p−k
n−k, that is |Sn,p| = |Sn,k| |Sα,ℓ

n,p| for any α ∈ Sn,k, we
get that for all real-valued function f defined on Sn,k:

(10)
1

|Sn,p|
∑

β∈Sn,p

f (βℓ) =
1

|Sn,k|
∑

α∈Sn,k

f(α)·

Let d ∈ N
∗. For x, y ∈ R

d, we denote by 〈x, y〉 the usual scalar product on R
d and

|x| =
√

〈x, x〉 the Euclidean norm in R
d.

We use the convention
∏

∅ = 1.

2.2. Graph homomorphisms. A simple finite graph G is an ordered pair (V (G), E(G)) of

a set V (G) of v(G) vertices, and a subset E(G) of the collection of
(v(G)

2

)

unordered pairs of
vertices. We usually shall identify V (G) with [v(G)]. The elements of E(G) are called edges
and we denote by e(G) = |E(G)| the number of edges in the graph G. Recall a graph G is
simple when it has no self-loops, and no multiple edges between any pair of vertices. Let F
be the set of all simple finite graphs.

Let F,G ∈ F be two simple finite graphs and set p = v(F ) and n = v(G). A homomorphism
f from F to G is an adjacency-preserving map from V (F ) = [p] to V (G) = [n] i.e. a map from
V (F ) to V (G) such that if {i, j} ∈ E(F ) then {f(i), f(j)} ∈ E(G). Let Hom(F,G) denote
the set of homomorphisms from F to G. The homomorphism density from F to G is the
normalized quantity:

(11) t(F,G) =
|Hom(F,G)|

np
·

It is the probability that a uniform random map from V (F ) to V (G) is a homomorphism.
We have similar definition when f is restricted to being injective. Let Inj(F,G) denote the
set of injective homomorphisms of F into G and define its density as:

(12) tinj(F,G) =
|Inj(F,G)|

Ap
n

·

For β ∈ Sn,p, we set, with V (F ) = [p] and V (G) = [n]:

(13) Y β(F,G) =
∏

{i,j}∈E(F )

1{{βi,βj}∈E(G)}.
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When there is no risk of confusion, we shall write Y β for Y β(F,G), and thus we have:

(14) tinj(F,G) =
1

|Sn,p|
∑

β∈Sn,p

Y β.

We recall from Lovász [19], Section 5.2.3, that:

(15) |tinj(F,G)− t(F,G)| ≤ 1

n

(

p

2

)

.

In the same way, we can define homomorphism densities from partially labeled graphs. See
Figure 1 for an injective homomorphism of partially labeled graphs. Assume p > k ≥ 1. Let
ℓ ∈ Sp,k and α ∈ Sn,k. We define Inj(F ℓ, Gα) the set of injective homomorphisms f from F
into G such that f(ℓi) = αi for all i ∈ [k], and its density:

(16) tinj(F
ℓ, Gα) =

|Inj(F ℓ, Gα)|
Ap−k

n−k

=
1

|Sℓ,α
n,p|

∑

β∈Sℓ,α
n,p

Y β.

F ℓ
Gα

ℓ1 ℓ2

α2

α1

Figure 1. Example of an injective homomorphism from partially labeled graphs.

Denote F [ℓ] the labeled sub-graph of F with vertices {ℓ1, . . . , ℓk} and edges:

(17) E(F [ℓ]) = {{i, j} ∈ E(F ) : i, j ∈ ℓ}.
For α ∈ Sn,k, we set:

(18) Ŷ α(F ℓ, Gα) = Y α(F [ℓ], G) =
∏

{i,j}∈E(F [ℓ])

1{{αi,αj}∈E(G)},

For β ∈ Sα,ℓ
n,p, we set Y β(F ℓ, Gα) = Ŷ α(F ℓ, Gα) Ỹ β(F ℓ, Gα) with:

(19) Ỹ β(F ℓ, Gα) =
∏

{i,j}∈E(F )\E(F [ℓ])

1{{βi,βj}∈E(G)}.
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Notice that Y β(F ℓ, Gα) is equal to Y β defined in (13) for β ∈ Sℓ,α
n,p. When there is no risk

of confusion, we shall write Ŷ α, Ỹ β and Y β for Ŷ α(F ℓ, Gα), Ỹ β(F ℓ, Gα) and Y β(F ℓ, Gα).

Remark that Ŷ α is either 0 or 1. By construction, we have:

(20) tinj(F
ℓ, Gα) = Ŷ α t̃inj(F

ℓ, Gα) with t̃inj(F
ℓ, Gα) =

1

|Sℓ,α
n,p|

∑

β∈Sℓ,α
n,p

Ỹ β.

Summing (16) over α ∈ Sn,k, we get using (10) and (12) that:

(21)
1

|Sn,k|
∑

α∈Sn,k

tinj(F
ℓ, Gα) = tinj(F,G).

We can generalize this formula as follows. Let n ≥ p > k > k′ ≥ 1, ℓ ∈ Sp,k, γ ∈ Sk,k′ and
α′ ∈ Sn,k′ . We easily get:

(22)
1

|Sγ,α′

n,k |
∑

α∈Sγ,α′

n,k

tinj(F
ℓ, Gα) = tinj(F

ℓγ , Gα′
).

Remark 2.1. Let K2 (resp. K•
2 ) denote the complete graph with two vertices (resp. one of

them being labeled). Let G ∈ F with n vertices. We define the degree sequence (Di(G) : i ∈
[n]) of the graph G by, for i ∈ [n]:

(23) Di(G) = tinj
(

K•
2 , G

i
)

=
1

n− 1

∑

j∈[n]\{i}
1{{i,j}∈E(G)}.

Remark 2.2. Let F ∈ F be a simple finite graph with V (F ) = [p]. Let ℓ ∈ Sp,k for some
k ∈ [p]. Assume F0 is obtained from F by adding p′ isolated vertices numbered from p + 1
to p + p′, and label ℓ′ of those isolated vertices so that ℓ′ is a {p + 1, . . . , p + p′}-word of
length say k′ = |ℓ′| ≤ p′ and ℓℓ′ ∈ Sp+p′,k+k′. By convention k′ = 0 means none of the added
isolated vertices is labeled. Assume n ≥ p + p′ and let α ∈ Sn,k and α′ be a [n]-word such
that αα′ ∈ Sn,k+k′. Then, it is elementary to check that:

tinj(F
ℓℓ′

0 , Gαα′
) = tinj(F

ℓ, Gα).

as well as, with δx the Dirac mass at x:

1

|Sn,k+k′ |
∑

αα′∈Sn,k+k′

δtinj(F ℓℓ′
0 ,Gαα′) =

1

|Sn,k|
∑

α∈Sn,k

δtinj(F ℓ,Gα).

In conclusion adding isolated vertices (labeled or non labeled) does not change the homomor-
phism densities.

Finally, we recall an induced homomorphism from F to G is an injective homomorphism
which preserves non-adjacency, that is: an injective maps f from V (F ) to V (G) is an induced
homomorphism if {i, j} ∈ E(F ) if and only if {f(i), f(j)} ∈ E(G). See Figure 2 for an
injective homomorphism which is not an induced homomorphism. Let Ind(F,G) denote the
set of induced homomorphisms; we denote its density by:

(24) tind(F,G) =
|Ind(F,G)|

Ap
n

·

We recall results from [19], see Section 5.2.3., which gives relations between injective and
induced homomorphism densities.
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F G

Figure 2. An example of an injective homomorphism but not an induced homomorphism.

Proposition 2.3. For F,G ∈ F , two simple finite graphs, we have:

(25) tinj(F,G) =
∑

F ′≥F

tind(F
′, G) and tind(F,G) =

∑

F ′≥F

(−1)e(F
′)−e(F )tinj(F

′, G),

where F ′ ≥ F means that V (F ) = V (F ′) and E(F ) ⊂ E(F ′), that is F ′ ranges over all simple
graphs obtained from F by adding edges.

2.3. Graphons. A graphon is a symmetric, measurable function W : [0, 1]2 → [0, 1]. Denote
the space of all graphons by W. Homomorphim densities from graphs can be extented to
graphons. For every simple finite graph F and every graphon W ∈ W, we define

(26) t(F,W ) = tinj(F,W ) =

∫

[0,1]V (F )

∏

{i,j}∈E(F )

W (xi, xj)
∏

k∈V (F )

dxk

and

(27) tind(F,W ) =

∫

[0,1]V (F )

∏

{i,j}∈E(F )

W (xi, xj)
∏

{i,j}/∈E(F )

(1−W (xi, xj))
∏

k∈V (F )

dxk.

A sequence of simple finite graphs (Hn : n ∈ N
∗) is called convergent if the sequence

(t(F,Hn) : n ∈ N
∗) has a limit for every simple finite graph F . Lovász and Szegedy [20]

proved that the limit of a convergent graphs sequence can be represented as a graphon, up
to a measure preserving bijection. In particular, a sequence of graphs (Gn : n ∈ N

∗) is said
to converge to a graphon W if for every simple finite graph F , we have

lim
n→∞

t(F,Hn) = t(F,W ).

As an extension, we can define homomorphism densities from a k-labeled simple finite graph
F to a graphon W which are defined by not integrating the variables corresponding to labeled
vertices. Let F ∈ F be a simple finite graph, set p = v(F ) and identify V (F ) with [p]. Let

p ≥ k ≥ 1 and ℓ ∈ Sn,k. Recall E(F [ℓ]) defined in (17). We set for y = (y1, . . . , yp) ∈ [0, 1]p:

(28) Z̃(y) =
∏

{i,j}∈E(F )\E(F [ℓ])

W (yi, yj)
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and for x = (x1, . . . , xk) ∈ [0, 1]k we consider the average of Z̃(y) over y restricted to yℓ = x:

(29) t̃x(F
ℓ,W ) =

∫

[0,1]p
Z̃(y)

∏

m∈[p]\ℓ
dym

∏

m′∈[k]
δxm′ (dyℓm′ ),

as well as the analogue of Ŷ α for the graphon:
(30)

t̂x(F
ℓ,W ) =

∏

{ℓi,ℓj}∈E(F [ℓ])

W (xi, xj) and t̂(F ℓ,W ) =

∫

[0,1]k
t̂x(F

ℓ,W ) dx = t(F [ℓ],W ).

Similarly to (20), we set for ℓ ∈ Sn,k and x ∈ [0, 1]k:

(31) tx(F
ℓ,W ) = t̂x(F

ℓ,W ) t̃x(F
ℓ,W ).

Let β and β′ be [k]-words such that ββ′ ∈ Sk, with k′ = |β′| and 1 ≤ k′ < k. We easily get:

(32)

∫

[0,1]k′
tx(F

ℓ,W ) dxβ′ = txβ
(F ℓβ ,W ).

The result also holds for k′ = k with the convention txβ
(F ℓβ ,W ) = t(F,W ) when β = ∅.

Remark 2.4. The Erdös-Rényi case corresponds to W ≡ p with 0 < p < 1, and in this case
we have t(F,W ) = tx(F

ℓ,W ) = pe(F ) for all x ∈ [0, 1]k.

Remark 2.5. The normalized degree function D of the graphon W is defined by, for all
x ∈ [0, 1]:

(33) D(x) =

∫ 1

0
W (x, y)dy.

We have for W ∈ W and x ∈ [0, 1]:

tx(K
•
2 ,W ) =

∫ 1

0
W (x, y)dy = D(x) and t(K2,W ) =

∫ 1

0
D(x)dx.

2.4. W -random graphs. To complete the identification of graphons as the limit object of
convergent sequences, it has been proved by Lovász and Szegedy [20] that we can always find
a sequence of graphs, given by a sampling method, whose limit is a given graphon function.

Let W ∈ W. We can generate a W -random graph Gn with vertex set [n] from the given
graphon W , by first taking an independent sequence X = (Xi : i ∈ N

∗) with uniform
distribution on [0, 1], and then, given this sequence, letting {i, j} with i, j ∈ [n] be an edge in
Gn with probability W (Xi,Xj). When we need to stress the dependence in W , we shall write
Gn(W ) for Gn. For a given sequence X, this is done independently for all pairs (i, j) ∈ [n]2

with i < j.
The random graphsGn(W ) thus generalize the Erdös-Rényi random graphsGn(p) obtained

by taking W ≡ p with 0 < p < 1 constant. (We recall that the Erdös-Rényi random
graph Gn(p) is a random graph defined on the finite set [n] of vertices whose edges occur
independently with the same probability p, 0 < p < 1.) Moreover, (Gn : n ∈ N

∗) converges
a.s. towards the graphon W , see for instance [19], Proposition 11.32.

Remark 2.6. We provide elementary computations which motivate the introduction in the
previous section of t̂x(F

ℓ,W ) and t̃x(F
ℓ,W ). Recall that Xγ = (Xγ1 , . . . ,Xγr ) with γ a N

∗-
word of length |γ| = r. Let n ≥ p ≥ 1 and F ∈ F with V (F ) = [p] and ℓ ∈ Sp,k. We set for



ASYMPTOTICS FOR RANDOM GRAPHS 13

x = (x1, . . . , xp) ∈ [0, 1]p:

Z(x) =
∏

{i,j}∈E(F )

W (xi, xj).

Let α ∈ Sp,k and β ∈ Sℓ,α
n,p. By construction, we have:

Z(Xβ) = E

[

Y β(F,Gn) |X
]

= E

[

Y β(F ℓ, Gα
n) |X

]

.

By definition of t̂x(F
ℓ,W ) and t̃x(F

ℓ,W ), we get:

t̂Xα(F
ℓ,W ) = E

[

Ŷ α(F ℓ, Gα
n) |X

]

= E

[

Y α(F [ℓ], Gα
n) |X

]

(34)

t̃Xα(F
ℓ,W ) = E

[

Z̃(Xβ) |Xα

]

= E

[

Ỹ β(F ℓ, Gα
n) |Xα

]

(35)

tXα(F
ℓ,W ) = E [Z(Xβ) |Xα] = E

[

Y β(F ℓ, Gα
n) |Xα

]

.(36)

By summing (35) and (36) over β ∈ Sℓ,α
n,p, we get, using (20) and (17), that

(37) t̃Xα(F
ℓ,W ) = E

[

t̃inj(F
ℓ, Gα

n) |Xα

]

and tXα(F
ℓ,W ) = E

[

tinj(F
ℓ, Gα

n) |Xα

]

.

Taking the expectation in the second equality of (37), we deduce that:

t(F,W ) =

∫

[0,1]k
tx(F

ℓ,W ) dx = E

[

tXα(F
ℓ,W )

]

= E

[

tinj(F
ℓ, Gα

n)
]

.

Thanks to (21), we recover that

t(F,W ) = E [tinj(F,Gn)] ,

see also [19], Proposition 11.32 or [21] Proposition A.1. We also have:

t(F,W ) = E [Z(Xβ)] = E

[

Y β(F,W )
]

.

By definition of t̂(F ℓ,W ), we get:

t̂(F ℓ,W ) = E

[

t̂Xα(F
ℓ,W )

]

= E

[

Ŷ α(F ℓ, Gα
n)
]

= E

[

Y α(F [ℓ], Gn)
]

= t(F [ℓ],W ).

Since Ŷ α(F ℓ, Gα
n) and Ỹ β(F ℓ, Gα

n) are, conditionally on X or Xβ or Xα, independent, we
deduce that:

tXα(F
ℓ,W ) = E

[

Ŷ α(F ℓ, Gα
n)Ỹ

β(F ℓ, Gα
n) |Xα

]

= E

[

Ŷ α(F ℓ, Gα
n) |Xα

]

E

[

Ỹ β(F ℓ, Gα
n) |Xα

]

= t̂Xα(F
ℓ,W ) t̃Xα(F

ℓ,W ).

This latter equality gives an other interpretation of (31).

3. Asymptotics for homomorphism densities of sampling partially labeled
graphs from a graphon

3.1. Random measures associated to a graphon. Let d ≥ 1 and I = [0, 1]d. We denote
by B(I) (resp. B+(I)) the set of all real-valued (resp. non negative) measurable functions
defined on I. We denote by C(I) (resp. Cb(I)) the set of real-valued (resp. bounded) con-
tinuous functions defined on I. For f ∈ B(I) we denote by ‖f‖∞ the supremum norm of f
on I. We denote by Ck(I) the set of real-valued functions f defined on I with continuous
k-th derivative. For f ∈ C1(I), its derivative is denoted by ∇f = (∇1f, . . . ,∇df) and we set
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‖∇f ‖∞ =
∑d

i=1 ‖∇if ‖∞.

Let F = (Fm : 1 ≤ m ≤ d) ∈ Fd be a finite sequence of simple finite graphs. Using
Remark 2.2, if necessary, we can complete the graphs Fm with isolated vertices such that for
all m ∈ [d], we have v(Fm) = p for some p ∈ N

∗ and consider that V (Fm) = [p]. We shall
write p = v(F ) Let ℓ ∈ Mp (where Mp is the set of all [p]-words with all characters distinct,
given by (8)) and set k = |ℓ|. We denote:

tinj(F
ℓ, Gα

n) =
(

tinj(F
ℓ
m, Gα

n) : m ∈ [d]
)

∈ [0, 1]d,

and similarly for t̃inj(F
ℓ, Gα

n). Let W be a graphon and x ∈ [0, 1]k. Similarly, we define

tx(F
ℓ,W ), and t̃x(F

ℓ,W ), so for example:

tx(F
ℓ,W ) =

(

tx(F
ℓ
m,W ) : m ∈ [d]

)

∈ [0, 1]d.

Notice that relabeling Fm if necessary, we get all the possible combinations of density of
labeled injective homomorphism of Fm into G for all m ∈ [d] (we could even take ℓ = [k]).

Recall F
[ℓ]
m is the labeled sub-graph of Fm with vertices {ℓ1, . . . , ℓk} and set of edges

E(F
[ℓ]
m ) = {{i, j} ∈ E(F ) : i, j ∈ ℓ} see (17). For simplicity, we shall assume the follow-

ing condition which states that F
[ℓ]
m does not depend on m:

(38) For m,m′ ∈ [d], i, i′ ∈ ℓ, we have: {i, i′} ∈ E(Fm) ⇐⇒ {i, i′} ∈ E(Fm′).

This condition can be removed when stating the main results from Section 3.2 at the cost of
very involved notations. Therefore, we shall leave this extension to the very interested reader.

Let Gn = Gn(W ) be the associated W -random graphs with n vertices constructed from
W and the sequence X = (Xi : i ∈ N

∗) of independent uniform random variables on [0, 1].

Under Condition (38), for α ∈ Sn,k and x ∈ [0, 1]k, we have that Ŷ α(F ℓ
m, Gα

n) and t̂x(F
ℓ
m,W )

do not depend on m ∈ [d]. We set Ŷ α(F ℓ, Gα
n) and t̂x(F

ℓ,W ) for the common values. When

there is no confusion, we write Ŷ α for Ŷ α(F ℓ, Gα
n). In particular, we deduce from (20) that:

(39) tinj(F
ℓ, Gα

n) = Ŷ α t̃inj(F
ℓ, Gα

n) with t̃inj(F
ℓ, Gα

n) =
(

t̃inj(F
ℓ
m, Gα

n) : m ∈ [d]
)

.

Remark 3.1. If |ℓ| = k = 1, then Condition (38) is automatically satisfied and we have by

convention that Ŷ α = t̂x(F
ℓ,W ) = 1 for α ∈ Sn,k and x ∈ [0, 1]k. If d = 1, then, Condition

(38) is also automatically satisfied.

We define the random probability measure ΓF,ℓ
n on ([0, 1]d,B([0, 1]d)) by, for g ∈ B+([0, 1]d):

ΓF,ℓ
n (g) =

1

|Sn,k|
∑

α∈Sn,k

g
(

tinj(F
ℓ, Gα

n)
)

(40)

=
1

|Sn,k|
∑

α∈Sn,k

Ŷ αg
(

t̃inj(F
ℓ, Gα

n)
)

+ (1− Ŷ α)g(0),

where we used (39) and the fact that Ŷ α takes values in {0, 1} for the second equality. For
k ∈ N

∗ and α an N
∗-word of length k, we recall the notation Xα = (Xα1 , . . . ,Xαk

) and
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X[k] = (X1, . . . ,Xk). Recall (29) and (30). We define the auxiliary random probability

measure Γ̂F,ℓ
n on [0, 1]d by, for g ∈ B+([0, 1]d):

(41) Γ̂F,ℓ
n (g) =

1

|Sn,k|
∑

α∈Sn,k

t̂Xα(F
ℓ,W ) g

(

t̃Xα(F
ℓ,W )

)

+
(

1− t̂Xα(F
ℓ,W )

)

g(0).

and the deterministic probability measure ΓF,ℓ, by, for all g ∈ B+([0, 1]d):

ΓF,ℓ(g) = E

[

Γ̂F,ℓ
n (g)

]

(42)

=

∫

[0,1]k
t̂x(F

ℓ,W ) g
(

t̃x(F
ℓ,W )

)

dx+
(

1− t̂(F ℓ,W )
)

g(0).

Remark 3.2.

(i) If d = 1 and g = Id, then we have thanks to (21) that:

ΓF,ℓ
n (Id) =

1

|Sn,k|
∑

α∈Sn,k

tinj(F
ℓ, Gα

n) = tinj(F,Gn)

and, thanks to (31) and (32):

ΓF,ℓ(Id) =

∫

[0,1]k
tx(F

ℓ,W )dx = t(F,W ).

Notice that ΓF,ℓ
n (Id) and ΓF,ℓ(Id) do not depend on ℓ.

(ii) If |ℓ| = 1, then according to Remark 3.1, we get:

ΓF,ℓ(g) =

∫

[0,1]
g
(

tx(F
ℓ,W )

)

dx.

3.2. Invariance principle and its fluctuations. We first state the invariance principle for

the random probability meausure ΓF,ℓ
n . The proof of the next theorem is given in Section 5.

Theorem 3.3. Let W ∈ W be a graphon. Let F ∈ Fd be a sequence of d ≥ 1 simple finite
graphs with V (F ) = [p], ℓ ∈ Mp. Assume that Condition (38) holds. Then, the sequence of

random probability measures on [0, 1]d,
(

ΓF,ℓ
n : n ∈ N

∗
)

converges a.s. for the weak topology

towards ΓF,ℓ.

The convergence of
(

ΓF,ℓ
n (Id) : n ∈ N

∗
)

, with d = 1, can also be found in [19], see Propo-

sition 11.32.

Remark 3.4. By Portmanteau Theorem, we have that a.s. for all bounded measurable func-
tion g on [0, 1]d such that ΓF,ℓ(Dg) = 0 where Dg is the set of discontinuity points of g,

limn→∞ ΓF,ℓ
n (g) = ΓF,ℓ(g).

For simplicity, consider the case d = 1 and W ≡ p with 0 < p < 1. Let ê(F ) denote the

cardinal of E(F [ℓ]). Because ΓF,ℓ = pê(F )δpe(F )−ê(F ) + (1 − pê(F ))δ0, with k = |ℓ|, then if g is

continuous at pe(F )−ê(F ) and at 0, we get that a.s. limn→∞ ΓF,ℓ
n (g) = ΓF,ℓ(g).

The next theorem, whose proof is given in Section 6, gives the fluctuations corresponding
to the invariance principle of Theorem 3.3. Notice the speed of convergence in the invariance
principle is of order

√
n.

For µ ∈ R and σ ≥ 0, we denote by N (µ, σ2) the Gaussian distribution with mean µ and
variance σ2.
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Theorem 3.5. Let W ∈ W be a graphon. Let F ∈ Fd be a sequence of d ≥ 1 simple finite
graphs with V (F ) = [p], ℓ ∈ Mp, with k = |ℓ|. Assume that Condition (38) holds. Then, for

all g ∈ C2([0, 1]d), we have the following convergence in distribution:

√
n
(

ΓF,ℓ
n (g)− ΓF,ℓ(g)

)

(d)−−−→
n→∞

N
(

0, σF,ℓ(g)2
)

,

with σF,ℓ(g)2 = Var(UF,ℓ
g ) and

(43) UF,ℓ
g =

k
∑

i=1

∫

[0,1]k
t̂Ri(x,U)(F

ℓ,W )
(

g
(

t̃Ri(x,U)(F
ℓ,W )

)

− g(0)
)

dx

+
∑

q∈[p]\ℓ

∫

[0,1]k
dx 〈txU (F ℓq,W ),∇g

(

t̃x(F
ℓ,W )

)

〉,

where U is a uniform random variable on [0, 1], and [p]\ℓ = {1, . . . , p}\{ℓ1, . . . , ℓk}.

Remark 3.6. Let U be a uniform random variable on [0, 1].

(i) Assume that |ℓ| = k = 1. Using Remark 3.1, we get for ℓ ∈ [p]:

(44) σF,ℓ(g)2 = Var



g
(

tU (F
ℓ,W )

)

+
∑

q∈[p]\ℓ

∫

[0,1]
〈txU (F ℓq,W ),∇g

(

tx(F
ℓ,W )

)

〉 dx



 .

(ii) Let F ∈ Fd with p = v(F ). Take ℓ = 1 with k = |ℓ| = 1. Let a ∈ R
d and consider

g(x) = 〈a, x〉 for x ∈ R
d. We deduce from (44) and (32) that:

(45) σF,ℓ(g)2 = Var



〈a,
p
∑

q=1

tU (F q,W )〉



 .

(iii) In the case d = 1, F ∈ F , and g = Id, the central limit theorem appears already in

[14]. In this case, we have ΓF,ℓ
n (Id) = tinj(F,Gn), Γ

F,ℓ(Id) = t(F,W ) and, thanks to
(45) (with d = 1 and a = 1):

(46) σF,ℓ(Id)2 = Var





p
∑

q=1

tU (F q,W )



 .

Let F,F ′ ∈ F be two simple finite graphs, let i ∈ V (F ) and i′ ∈ V (F ′). We define
a new graph (F ⊲⊳ F ′)(i, i′) = (F ⊔ F ′)/{i ∼ i′} which is the disjoint union of F and
F ′ followed by a quotient where we identify the vertex i in V (F ) with the vertex i′

in V (F ′), see Figure 3.



ASYMPTOTICS FOR RANDOM GRAPHS 17

F G (F ⊲⊳ G)(2, 4)

1

23

1

2

34

Figure 3. Example of two graphs connected by two vertices.

With this notation, we have:

σF,ℓ(Id)2 = E









p
∑

q=1

tU (F
q,W )





2

− E





p
∑

q=1

tU (F
q,W )





2

=

p
∑

q,q′=1

∫ 1

0
tx(F

q,W )tx(F
q′ ,W )dx−





p
∑

q=1

∫ 1

0
tx(F

q,W )dx





2

=

p
∑

q,q′=1

t
(

(F ⊲⊳ F )(q, q′),W
)

− p2 t(F,W )2.(47)

Thus, we recover the limiting variance given in [14].
(iv) Let d = 1. We consider the two degenerate cases where no vertex is labelled (k = 0)

or all vertices are labelled (k = p):
(a) for k = 0, we apply the δ-method to (46), to get that

√
n [g(tinj(F,Gn))− g(t(F,W ))]

(d)−−−→
n→∞

N
(

0, σF (g)2
)

,

where

(48) σF (g)2 = g′(t(F,W ))2σF,ℓ(Id)2.

(b) for k = p, we have ΓF,ℓ
n (g) = (g(1) − g(0))tinj(F,Gn) + g(0), ΓF,ℓ(g) = (g(1) −

g(0))t(F ℓ,W )dx+ g(0) and

(49) σF,ℓ(g)2 = (g(1) − g(0))2σF,ℓ(Id)2.

(v) Let d = 1 and F = K2. We have ΓK2,ℓ
n (Id) = t(K2, Gn) and we deduce from (46) that

σK2,ℓ(Id)2 = 4Var (D(U)).

(a) If k = 1, then we have Γ
K•

2 ,ℓ
n (g) = 1

n

∑n
i=1 g(D

(n)
i ) with D

(n)
i = Di(Gn) the

normalized degree of i in Gn, see (23). We deduce from (44) that:

σK•
2 ,ℓ(g)2 = Var

(

g(D(U)) +

∫ 1

0
W (x,U)g′(D(x)) dx

)

.
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(b) If k = 2, using (iv)-(2), we get from (49) that:

σK••
2 ,ℓ(g)2 = 4(g(1) − g(0))2 Var (D(U)) ,

where K••
2 denotes the complete graph K2 with two labeled vertices.

(c) Finally, if k = 0, using (iv)-(1), we get from (48) that

σK2(g)2 = 4 g′
(
∫ 1

0
D(x)dx

)2

Var (D(U)) .

(vi) Thanks to (15), we get that Theorems 3.3 and 3.5 also hold with tinj replaced by t.

(vii) It is left to reader to check that theorem 3.5 is degenerated, that is σF,ℓ(g) = 0, in the
Erdös-Rényi case, that is W ≡ p for some 0 ≤ p ≤ 1, or when

∫

[0,1]k t̂x(F,W ) dx = 0

and in particular when t(F,W ) = 0.

The next corollary gives the limiting Gaussian process for the fluctuations of (tinj(F,Gn) :
F ∈ F).

Corollary 3.7. We have the following convergence of finite-dimensional distributions:

(√
n (tinj(F,Gn)− t(F,W )) : F ∈ F

) (fdd)−−−−−→
n→+∞

Θinj,

where Θinj = (Θinj(F ) : F ∈ F) is a centered Gaussian process with covariance function Kinj

given, for F,F ′ ∈ F , with V (F ) = [p] and V (F ′) = [p′], by:

Kinj(F,F
′) = Cov





p
∑

q=1

tU(F
q,W ),

p′
∑

q=1

tU
(

F ′q,W
)



(50)

=

p
∑

q=1

p′
∑

q′=1

t
(

(F ⊲⊳ F ′)(q, q′),W
)

− pp′ t(F,W )t(F ′,W ).(51)

Proof. We deduce from (45) and standard results on Gaussian vectors, the convergence, for
the finite-dimensional distributions towards the Gaussian process with covariance function
given by (50). Formula (51) can be derived similarly to (47). �

Remark 3.8. In particular, Corollary 3.7 proves a central limit theorem for quantum graphs
(see Lovász [19], Section 6.1). A simple quantum graph is defined as a formal linear combina-
tion of a finite number of simple finite graphs with real coefficients. This definition makes it
possible to study linear combination of homomorphism densities. For F = (Fm : m ∈ [d]) ∈
Fd and a = (am : m ∈ [d]) ∈ R

d, we define the homomorphism density of F =
∑d

m=1 amFm

for a graph G and a graphon W ∈ W as tinj(F, G) = 〈a, tinj(F,G)〉 and t(F,W ) = 〈a, t(F,W )〉.
We deduce from Corollary 3.7 the following convergence in distribution:

(52)
√
n (tinj(F, Gn)− t(F,W ))

(d)−−−→
n→∞

N
(

0, σ(F)2
)

,

where σ(F)2 is given by (45) or equivalently σ(F)2 =
∑

m,m′∈[d] amam′ Kinj(Fm, Fm′).

We also have the limiting Gaussian process for the fluctuations of (tind(F,Gn) : F ∈ F).

Corollary 3.9. We have the following convergence of finite-dimensional distributions:

(√
n (tind(F,Gn)− tind(F,W )) : F ∈ F

) (fdd)−−−−−→
n→+∞

Θind,
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where Θind = (Θind(F ) : F ∈ F) is a centered Gaussian process with covariance function
Kind given, for F1, F2 ∈ F , with V (F1) = [p1] and V (F2) = [p2], by:

(53) Kind(F1, F2)

= Cov





∑

F ′
1≥F1

(−1)e(F
′
1)

p1
∑

q=1

tU
(

(F ′
1)

q,W
)

,
∑

F ′
2≥F2

(−1)e(F
′
2)

p2
∑

q=1

tU
(

(F ′
2)

q,W
)





=
∑

F ′
1≥F1, F ′

2≥F2

(−1)e(F
′
1)+e(F ′

2)





p1
∑

q=1

p2
∑

q′=1

t
(

(F ′
1 ⊲⊳ F ′

2)(q, q
′),W

)

− p1p2 t(F ′
1,W )t(F ′

2,W )



 ,

where F ′ ≥ F means that V (F ) = V (F ′) and E(F ) ⊂ E(F ′), that is F ′ ranges over all simple
graphs obtained from F by adding edges.

Proof. Notice that tind(F,Gn) is a linear combination of subgraph counts by Proposition 2.3.
We deduce from (45) and standard results on Gaussian vectors, the convergence, for the
finite-dimensional distributions towards the Gaussian process with covariance function given
by the first equality in (53) which is derived from the second formula of (25) and (45). The
second equality of (53) can be derived similarly to (51). �

4. A preliminary result

Let F = (Fm : m ∈ [d]) ∈ Fd be a sequence of d ≥ 1 simple finite graphs with p = v(F ),
ℓ ∈ Mp with |ℓ| = k such that Condition (38) holds. Let W ∈ W be a graphon and
X = (Xi : i ∈ N

∗) be a sequence of independent uniform random variables on [0, 1]. Let
n ∈ N

∗ such that n > p. Let Gn = Gn(W ) be the associated W -random graphs with vertices

[n], see Section 2.4. Recall definitions (13) of Y β(F,G), (18) of Ŷ α(F ℓ, Gα) and (19) of

Ỹ β(F ℓ, Gα) for a simple finite graph F . We set Y β = (Y β(Fm, Gn) : m ∈ [d]) for β ∈ Sn,p

and Ỹ β = (Ỹ β(F ℓ
m, Gα

n) : m ∈ [d]) as well as Y α = Y α(F ℓ
m, Gα

n) (which does not depend on

m ∈ [d]) for β ∈ Sℓ,α
n,p and α ∈ Sp,k. Notice that for α ∈ Sp,k and β ∈ Sℓ,α

n,p, we have that,

conditionally to X, Ŷ α and Ỹ β are independent, Ŷ α is a Bernoulli random variable and:

Y β = Ŷ α Ỹ β.

Recall that tinj
(

F ℓ, Gα
n

)

=
(

tinj
(

F ℓ
m, Gα

n

)

: m ∈ [d]
)

. With these notations, we get from equa-
tion (20) that for ℓ ∈ Mp with |ℓ| = k and α ∈ Sn,k:

(54) tinj

(

F ℓ, Gα
n

)

=
1

|Sℓ,α
n,p|

∑

β∈Sℓ,α
n,p

Y β = Ŷ α t̃inj

(

F ℓ, Gα
n

)

,

with

(55) t̃inj

(

F ℓ, Gα
n

)

=
1

|Sℓ,α
n,p|

∑

β∈Sℓ,α
n,p

Ỹ β.

We also set Zβ = E[Y β|X] and Z̃β = E[Ỹ β|X]. Recall (28). We have, for Zβ = (Zβ
m : m ∈

[d]) and Z̃β = (Z̃β
m : m ∈ [d]) that for m ∈ [d]:

Zβ
m =

∏

{i,j}∈E(Fm)

W (Xβi
,Xβj

) and Z̃β
m =

∏

{i,j}∈Ẽ(F ℓ
m)

W (Xβi
,Xβj

) = Z̃m(Xβ).
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We recall that t̂Xα(F
ℓ,W ) = E

[

Ŷ α|X
]

= E

[

Ŷ α|Xα

]

, see (34), to deduce that:

(56) Zβ = t̂Xα(F
ℓ,W ) Z̃β.

Lemma 4.1. Let F ∈ Fd be a sequence of d ≥ 1 simple finite graphs with p = v(F ), ℓ ∈ Mp

and W ∈ W be a graphon. Let (Mβ : β ∈ Sn,p) be a sequence of σ (X)-measurable R
d-valued

random variables and n > p. Assume Condition (38) holds and that there exists a finite
constant K such that for all β ∈ Sn,p, we have E

[

|Mβ |2
]

≤ K. Then we have:

E









1

|Sn,p|
∑

β∈Sn,p

〈Y β − Zβ, Mβ〉





2

 ≤ dK
p(p− 1)

8n(n − 1)
·

Proof. We first assume that d = 1. We denote by Cov( .|X) the conditional covariance given
X. We have:

E









1

|Sn,p|
∑

β∈Sn,p

(

Y β − Zβ
)

Mβ





2



=
1

|Sn,p|2
∑

β∈Sn,p

∑

γ∈Sn,p

E

[

E

[

(

Y β − E[Y β|X]
)(

Y γ − E[Y γ |X]
)

MβMγ

∣

∣

∣
X
]]

=
1

|Sn,p|2
∑

β∈Sn,p

∑

γ∈Sn,p

E

[

MβMγ Cov(Y
β, Y γ |X)

]

≤ 1

|Sn,p|2
∑

β∈Sn,p

∑

γ∈Sn,p

E

[

|MβMγ | |Cov(Y β, Y γ |X)|
]

.

If the [n]-words β and γ have at most one character in common, that is |β⋂ γ| ≤ 1, then,
by construction, Y β and Y γ are conditionally on X independent. This implies then that
Cov(Y β, Y γ |X) = 0. If |β⋂ γ| > 1, then as Y β and Y γ are Bernoulli random variables
and we have the upper bound |Cov(Y β, Y γ |X)| ≤ 1/4. The number of possible choices for

β, γ ∈ Sn,p such that |β⋂ γ| > 1 is bounded from above by Ap
n

(p
2

)

Ap−2
n−2. We deduce that:

E









1

|Sn,p|
∑

β∈Sn,p

(

Y β − Zβ
)

Mβ





2

 ≤ 1

4(Ap
n)2

Ap
n

(

p

2

)

Ap−2
n−2 E [|MβMγ |]

≤ K
p(p − 1)

8n(n− 1)
,

where we used the Cauchy-Schwarz inequality for the last inequality to get E [|MβMγ |] ≤ K.

In the case d ≥ 1, the term E [|MβMγ |] in the above inequalities has to be replaced by

E [|Mβ |1 |Mγ |1], where |·|1 is the L1 norm in R
d. Then, use that |x|21 ≤ d|x|2 and thus

E [|Mβ |1 |Mγ |1] ≤ dK to conclude. �

The proof of the next Lemma is similar and left to the reader (notice the next lemma is

in fact Lemma 4.1 stated for d = 1 and the graph F
[ℓ]
m of the labeled vertices, see Section 2.2

for the definition of F
[ℓ]
m , which thanks to condition (38), does not depend on m ∈ [d]). We

recall that t̂Xα(F
ℓ,W ) = E

[

Ŷ α|X
]

= E

[

Ŷ α|Xα

]

, see (34).
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Lemma 4.2. Let F ∈ Fd be a sequence of d ≥ 1 simple finite graphs with p = v(F ) and
W ∈ W be a graphon. Let k ∈ [p] and (Mα : α ∈ Sn,k) be a sequence of σ (X)-measurable

R
d-valued random variables and n > p. Assume Condition (38) holds and that there exists a

finite constant K such that for all α ∈ Sn,k, we have E
[

|Mα|2
]

≤ K. Then we have:

E









1

|Sn,k|
∑

α∈Sn,k

〈Ŷ α − t̂Xα(F
ℓ,W ), Mα〉





2

 ≤ dK
k(k − 1)

8n(n− 1)
·

We also state a variant of Lemma 4.1, when working conditionally onXα for some α ∈ Sn,k.

The next result is a key ingredient in the proof of Theorems 3.3 and 3.5. Recall t̃x
(

F ℓ,W
)

=
(

t̃x
(

F ℓ
m,W

)

: m ∈ [d]
)

with t̃x defined in (29). Notice that for all β ∈ Sℓ,α
n,p:

t̃Xα

(

F ℓ,W
)

= E

[

Z̃β|Xα

]

= E

[

t̃inj(F
ℓ, Gn)|Xα

]

.

Lemma 4.3. Let F ∈ Fd be a sequence of d ≥ 1 simple finite graphs with p = v(F ), ℓ ∈ Mp

with k = |ℓ|, α ∈ Sn,k and W ∈ W be a graphon. Assume Condition (38) holds. Then, we
have:

E

[

∣

∣

∣t̃inj

(

F ℓ, Gα
n

)

− t̃Xα

(

F ℓ,W
) ∣

∣

∣

2 ∣
∣

∣Xα, Ŷ
α

]

≤ d
(p − k)

4(n − k)
·

Proof. We consider the case d = 1. Recall the definition of t̃inj
(

F ℓ, Gα
n

)

given in (55). Set:

A = E







1

|Sℓ,α
n,p|2

(

∑

β∈Sℓ,α
n,p

(

Ỹ β − t̃Xα

(

F ℓ,W
))

)2
∣

∣

∣
Xα, Ŷ

α






.

Following the proof of Lemma 4.1 with Mβ = 1, and using also that E

[

Ỹ β
∣

∣Xα, Ŷ
α
]

=

t̃Xα

(

F ℓ,W
)

, and that Ỹ β and Ỹ γ are conditionally on Xα independent of Ŷ α for β, γ ∈ Sℓ,α
n,p,

we get:

A ≤ 1

|Sℓ,α
n,p|2

∑

β∈Sℓ,α
n,p

∑

γ∈Sℓ,α
n,p

|Cov(Ỹ β, Ỹ γ |Xα)|.

If β and γ have no more than α in common, that is β
⋂

γ = α, then Ỹ β and Ỹ γ are

conditionally on Xα independent and thus Cov(Ỹ β, Ỹ γ |X) = 0.

If |β⋂ γ| > |α|, then as Ỹ β and Ỹ γ are Bernoulli random variables, we have the upper

bound |Cov(Ỹ β, Ỹ γ |X)| ≤ 1/4. The number of possible choices for β, γ ∈ Sℓ,α
n,p such that

|β⋂ γ| > |α| is bounded from above by Ap−k
n−k(p− k)Ap−k−1

n−k−1. We deduce that:

A ≤ 1

4(Ap−k
n−k)

2
Ap−k

n−k(p− k)Ap−k−1
n−k−1 ≤

(p− k)

4(n− k)
·

The extension to d ≥ 1 is direct. �

5. Proof of Theorem 3.3

We first state a preliminary lemma.
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Lemma 5.1. Let F ∈ Fd be a sequence of d ≥ 1 simple finite graphs with p = v(F ), ℓ ∈ Mp

with k = |ℓ|, and W ∈ W be a graphon. Assume Condition (38) holds. Then, for all n > k
and g ∈ C1([0, 1]), we have:

E

[∣

∣

∣
ΓF,ℓ
n (g)− Γ̂F,ℓ

n (g)
∣

∣

∣

]

≤ d ‖g‖∞

√

k(k − 1)

2n(n− 1)
+

1

2
‖∇g‖∞

√

p− k

n− k
·

Proof. We first consider the case d = 1. Let g ∈ C1([0, 1]). We first assume that g(0) = 0.

Then, we deduce from the definition (40) of ΓF,ℓ
n and from (54) and (55), as Ŷ α ∈ {0, 1},

that:

ΓF,ℓ
n (g) =

1

|Sn,k|
∑

α∈Sn,k

Ŷ α g
(

t̃inj

(

F ℓ, Gα
n

))

.

And thus, using definition (41) of Γ̂F,ℓ
n , we get

∣

∣ΓF,ℓ
n (g)− Γ̂F,ℓ

n (g)
∣

∣ ≤ B1 +B2 with

B1 =
1

|Sn,k|
∣

∣

∣

∑

α∈Sn,k

(

Ŷ α − t̂Xα(F
ℓ,W )

)

g
(

t̃Xα(F
ℓ,W )

) ∣

∣

∣

and

B2 =
1

|Sn,k|
∑

α∈Sn,k

Ŷ α
∣

∣

∣
g
(

t̃inj(F
ℓ, Gα

n)
)

− g
(

t̃Xα(F
ℓ,W )

) ∣

∣

∣
.

Thanks to Lemma 4.2, we get E[B2
1 ] ≤ ‖g‖2∞ k(k − 1)/8n(n− 1). Thanks to Lemma 4.3, we

get using Jensen inequality that E[B2
2 ] ≤ ‖g′ ‖2∞(p− k)/4(n− k). This gives the result when

g(0) = 0, except there is a 1/2 in front of ‖g‖∞ in the upper bound of the Lemma. In general,

use that ΓF,ℓ
n and Γ̂F,ℓ

n are probability measures, so that
(

ΓF,ℓ
n − Γ̂F,ℓ

n

)

(g) =
(

ΓF,ℓ
n − Γ̂F,ℓ

n

)

(ḡ),

with ḡ = g − g(0). Then use that and ‖ ḡ ‖∞ ≤ 2 ‖g‖∞ to conclude. The case d ≥ 1 is
similar. �

We can now prove Theorem 3.3.

Proof of Theorem 3.3. We first consider the case d = 1. Let g ∈ C1([0, 1]). Using Lemma

5.1 and Borel-Cantelli lemma, we get that a.s. limn→∞
(

ΓF,ℓ
φ(n)(g)− Γ̂F,ℓ

φ(n)(g)
)

= 0, with

φ(n) = n4. We notice that Γ̂F,ℓ
n (g) is a U-statistics with kernel Φ1(X[k]) where for x ∈ [0, 1]k :

Φ1(x) = t̂x g
(

t̃x
)

+
(

1− t̂x
)

g(0),

with tx = tx(F
ℓ,W ) and the obvious variants for t̃x and t̂x.

Morover, because g is uniformly bounded on [0, 1], we get that Var
(

Φ1(X[k])
)

< +∞ and

we can apply the law of large numbers for U-statistics to obtain that a.s. limn→∞ Γ̂F,ℓ
n (g) =

E[Φ(X[k])] = ΓF,ℓ(g). We deduce that a.s. limn→∞ ΓF,ℓ
φ(n)(g) = ΓF,ℓ(g).
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Let n′ ≥ n > k. We have Sn,k ⊂ Sn′,k and Sℓ,α
n,p ⊂ Sℓ,α

n′,p for α ∈ Sn,k. Recall |Sℓ,α
n,k| = Ap−k

n−k.

We deduce that for α ∈ Sn,k:
∣

∣

∣tinj(F
ℓ, Gα

n)− tinj(F
ℓ, Gα

n′)
∣

∣

∣ ≤ 1

Ap−k
n′−k

∣

∣Ap−k
n′−k −Ap−k

n−k

∣

∣ +
∣

∣

∣

1

Ap−k
n′−k

− 1

Ap−k
n−k

∣

∣

∣A
p−k
n−k

= 2

(

1−
Ap−k

n−k

Ap−k
n′−k

)

≤ 2

(

1−
(

n− p

n′ − p

)p−k
)

.

We deduce that:
∣

∣ΓF,ℓ
n (g)− ΓF,ℓ

n′ (g)
∣

∣ ≤ 1

Ak
n′

∣

∣Ak
n′ −Ak

n

∣

∣ ‖g‖∞+
∣

∣

∣

1

Ak
n′

− 1

Ak
n

∣

∣

∣
Ak

n ‖g‖∞

+
1

|Sn,k|
∑

α∈Sn,k

∣

∣

∣
g
(

tinj(F
ℓ, Gα

n)
)

− g
(

tinj(F
ℓ, Gα

n′)
) ∣

∣

∣

≤ 2 ‖g‖∞

(

1−
(

n− k

n′ − k

)k
)

+ 2 ‖g′ ‖∞

(

1−
(

n− p

n′ − p

)p−k
)

.

This implies that a.s. limn→∞ supn′∈{φ(n),...,φ(n+1)}
∣

∣ΓF,ℓ
φ(n)(g)− ΓF,ℓ

n′ (g)
∣

∣ = 0.

With the first part of the proof, we deduce that for all g ∈ C1([0, 1]), a.s. limn→∞ ΓF,ℓ
n (g) =

ΓF,ℓ(g). Since there exists a convergence determining countable subset of C1([0, 1]), we get

that a.s. limn→∞ ΓF,ℓ
n = ΓF,ℓ for the weak convergence of the measures on [0, 1].

The proof for d ≥ 1 is straightforward. �

6. Proof of Theorem 3.5

Let ℓ ∈ Mp with k = |ℓ|. We assume Condition (38) holds.

Recall the random probabilities measures ΓF,ℓ
n , Γ̂F,ℓ

n and ΓF,ℓ are defined in (40), (41) and
(42). Let g ∈ C2([0, 1]d). We define the U-statistic

(57) Un(g) =
1

|Sn,p|
∑

β∈Sn,p

Φ2(Xβ),

with kernel Φ2(X[p]) given by, for x ∈ [0, 1]p:

(58) Φ2(x) = t̂xℓ
g
(

t̃xℓ

)

+
(

1− t̂xℓ

)

g(0) + t̂xℓ
〈∇g

(

t̃xℓ

)

, Z̃(x)− t̃xℓ
〉,

with t̂y = t̂y(F
ℓ,W ), t̃y = t̃y(F

ℓ,W ) for y ∈ [0, 1]k and Z̃(x) defined in (28). Notice that:

(59) E[Un(g)] = ΓF,ℓ(g).

We define the random signed measure ΛF,ℓ
n =

√
n
[

ΓF,ℓ
n − ΓF,ℓ

]

.

Lemma 6.1. Let W ∈ W be a graphon. Let F ∈ Fd be a sequence of d ≥ 1 simple finite
graphs with p = v(F ), ℓ ∈ Mp, with k = |ℓ|. Assume Condition (38) holds. Let g ∈ C2([0, 1]d).

Then, we have that limn→∞ ΛF,ℓ
n (g)−√

n (Un(g) − E[Un(g)]) = 0 in L1(P).
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Proof. Recall (55). We write:

(60) ΛF,ℓ
n (g) −√

n (Un(g)− E[Un(g)]) = R1(n) +R2(n) +R3(n)

with

R1(n) =

√
n

|Sn,k|
∑

α∈Sn,k

Ŷ αH1(α),

R2(n) =

√
n

|Sn,k|
∑

α∈Sn,k

(

Ŷ α − t̂Xα

)

H2(α),

R3(n) =

√
n

|Sn,p|
∑

β∈Sn,p

〈Y β − Zβ, ∇g(t̃Xβℓ
)〉

=

√
n

|Sn,k|
∑

α∈Sn,k

Ŷ α 〈t̃inj(F ℓ, Gα
n),∇g(t̃Xβℓ

)〉 −
√
n

|Sn,p|
∑

β∈Sn,p

t̂Xβℓ
〈Z̃(Xβ),∇g(t̃Xβℓ

)〉,

(where we used (54) and (56) for the last equality) and

H1(α) = g
(

t̃inj(F
ℓ, Gα

n)
)

− g
(

t̃Xα

)

− 〈t̃inj(F ℓ, Gα
n)− t̃Xα , ∇g

(

t̃Xα

)

〉,
H2(α) = g

(

t̃Xα

)

− g(0) − 〈t̃Xα ,∇g
(

t̃Xα

)

〉.

According to Lemma 4.1, we get that limn→∞R3(n) = 0 in L2(P). According to Lemma
4.2, and since |H2(α)| ≤ 2 ‖g‖∞+ ‖∇g‖∞, we get that limn→∞R2(n) = 0 in L2(P). Since

g ∈ C2([0, 1]d), by Taylor-Lagrange inequality, we have that for all x, y ∈ R,

|g(x) − g(y)− 〈x− y,∇g(x)〉| ≤ 1

2
‖∇2g‖∞ |x− y|2.

This gives |H1(α)| ≤ 1
2 ‖∇2g‖∞ |t̃inj(F ℓ, Gα

n)− t̃Xα |2. According to Lemma 4.3, we get that

limn→∞R1(n) = 0 in L1(P). This ends the proof. �

We give a central limit theorem for the U-statistic Un defined in (57).

Lemma 6.2. Under the same hypothesis as in Lemma 6.1, we have the following convergence
in distribution:

√
n
(

Un(g) − ΓF,ℓ(g)
)

(d)−−−→
n→∞

N
(

0, σF,ℓ(g)2
)

,

with σF,ℓ(g)2 = Var(U) and, U being a uniform random variable on [0, 1]:

U =

k
∑

i=1

∫

[0,1]k
t̂Ri(x,U)(F

ℓ,W )
(

g
(

t̃Ri(x,U)(F
ℓ,W )

)

− g(0)
)

dx

+
∑

q∈[p]\ℓ

∫

[0,1]k
〈∇g

(

t̃x(F
ℓ,W )

)

, txU (F
ℓq,W )〉 dx.

Proof. The random variable Un(g) is a U-statistic with bounded kernel. Since E[Un(g)] =
ΓF,ℓ(g), we deduce from standard results on U-statistics, see [16], that

√
n
(

Un(g) − ΓF,ℓ(g)
)

converges in distribution towards a centered Gaussian random variable with variance Var(U ′)
and U ′ =

∑p
q=1 E [Φ2(τ1q(X))|X1], and Φ2 given by (58). We first compute E [Φ2(τ1q(X))|X1]

for q ∈ [p]. We distinguish according to q 6∈ ℓ and q ∈ ℓ.



ASYMPTOTICS FOR RANDOM GRAPHS 25

The case q 6∈ {ℓ1, . . . , ℓk}. Noticing that τ1q(X)ℓ does not depend on X1, we deduce that:

E [Φ2(τ1q(X))|X1] = E
[

t̂τ1q(X)ℓ g
(

t̃τ1q(X)ℓ

)

+
(

1− t̂τ1q(X)ℓ

)

g(0)|X1

]

+ E

[

t̂τ1q(X)ℓ 〈∇g
(

t̃τ1q(X)ℓ

)

, Z̃(τ1q(X)[p])− t̃τ1q(X)ℓ〉|X1

]

= C +

∫

[0,1]k
t̂x〈∇g

(

t̃x
)

, t̃xX1(F
ℓq,W )〉 dx

= C +

∫

[0,1]k
〈∇g

(

t̃x
)

, txX1(F
ℓq,W )〉 dx,

where C is a constant not depending on X1 (which therefore will disappear when computing
the variance of U ′).

The case q ∈ {ℓ1, . . . , ℓk}. Let q = ℓi for some i ∈ [k]. Since E

[

Z̃(τ1q(X)[p])| τ1q(X)ℓ

]

=

t̃τ1q(X)ℓ , we deduce that:

E [Φ2(τ1q(X))|X1] = E
[

t̂τ1q(X)ℓ g
(

t̃τ1q(X)ℓ

)

+
(

1− t̂τ1q(X)ℓ

)

g(0)|X1

]

= g(0) +

∫

[0,1]k
t̂Ri(x,X1)

(

g
(

t̃Ri(x,X1)

)

− g(0)
)

dx.

Thus, we obtain that U ′ = U + C ′ for some constant C ′ and:

U =

k
∑

i=1

∫

[0,1]k
t̂Ri(x,X1)

(

g
(

t̃Ri(x,X1)

)

− g(0)
)

dx+
∑

q 6∈ℓ

∫

[0,1]k
〈∇g

(

t̃x
)

, txX1(F
ℓq,W )〉 dx.

This gives the result. �

The proof of Theorem 3.5 is then a direct consequence of Lemmas 6.1 and 6.2 and (59).

7. Asymptotics for the empirical degrees cumulative distribution function

Let W be a graphon on [0, 1] and n ∈ N
∗. Recall the definition of the normalized degree

function D of the graphon W given in (33), D(x) =
∫

[0,1]W (x, y)dy = tx(K
•
2 ,W ). From Sec-

tion 2.4, recall Gn = Gn(W ) is the associated W -random graphs with n vertices constructed
from W and the sequence X = (Xi : i ∈ N

∗) of independent uniform random variables on
[0, 1]. Recall the (normalized) degree sequence of a graph defined in (23), and set

D
(n)
i = Di(Gn) = tinj(K

•
2 , G

i
n)

the normalized degree of the vertex i ∈ [n] in Gn. By construction of Gn, we get that

conditionally on Xi , (n − 1)D
(n)
i is for n ≥ i a binomial random variable with parameters

(n − 1,D(Xi)). We define the empirical cumulative distribution function Πn = (Πn(y) : y ∈
[0, 1]) of the degrees of the graph Gn by, for y ∈ [0, 1]:

(61) Πn(y) =
1

n

n
∑

i=1

1{
D

(n)
i ≤D(y)

}.

Remark 7.1. If we take g = 1[0,D(y)] with y ∈ [0, 1] and F = K2 in (3) and using the expression

of ΓF,ℓ given in Remark 3.2, (ii), we have that Πn(y) = ΓK2,•
n (g) and ΓK2,•(g) = y. If D is

increasing, then ΓK2,•, which is the distribution of D(U), with U uniform on [0, 1], has no
atoms and Theorem 3.3 implies that a.s. limn→∞Πn(y) = y for all y ∈ [0, 1]. Using Dini’s
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theorem, we get that if D is increasing on [0, 1], then the function Πn converges almost surely
towards Id, the identity map on [0, 1], with respect to the uniform norm.

To get the corresponding fluctuations, we shall consider the following conditions:

(62) W ∈ C3([0, 1]2), D′ > 0, W ≤ 1− ε0 and D ≥ ε0 for some ε0 ∈ (0, 1/2) .

If (62) holds, then we have D ∈ C1([0, 1]) and D([0, 1]) ⊂ [ε0, 1− ε0]. Notice that even if (62)
holds, the set {W = 0} might have positive Lebesgue measure; but the regularity conditions
on W rules out bipartite graphons (but not tripartite graphons).

Theorem 7.2. Assume that W satisfies condition (62). Then we have the following conver-
gence of finite-dimensional distributions:

(√
n (Πn(y)− y) : y ∈ (0, 1)

) (fdd)−−−−−→
n→+∞

χ,

where χ = (χy : y ∈ (0, 1)) is a centered Gaussian process defined, for all y ∈ (0, 1) by:

(63) χy =

∫ 1

0
(ρ(y, u) − ρ̄(y))dBu,

with B = (Bu, u ≥ 0) a standard Brownian motion, and (ρ(y, u) : u ∈ [0, 1]) and ρ̄(y) defined
for y ∈ (0, 1) by:

ρ(y, u) = 1[0,y](u)−
W (y, u)

D′(y)
and ρ̄(y) =

∫ 1

0
ρ(y, u)du.

Remark 7.3. The covariance kernel of the Gaussian process χ can also be written as Σ =
Σ1 +Σ2 +Σ3, where for y, z ∈ (0, 1):

Σ1(y, z) = y ∧ z − yz,(64)

Σ2(y, z) =
1

D′(y)D′(z)

(∫ 1

0
W (y, x)W (z, x)dx −D(y)D(z)

)

,(65)

Σ3(y, z) =
1

D′(y)

(

D(y)z −
∫ z

0
W (y, x)dx

)

+
1

D′(z)

(

D(z)y −
∫ y

0
W (z, x)dx

)

.(66)

Thus, for y ∈ (0, 1) the variance of χ(y) is:

Σ(y, y) = y(1− y) +
1

D′(y)2

(
∫ 1

0
W (y, x)2dx−D(y)2

)

+
2

D′(y)

(

D(y)y −
∫ y

0
W (y, x)dx

)

.

Remark 7.4. We conjecture that the convergence of Theorem 7.2 holds for the process in the
Skorokhod space. However, the techniques used to prove this theorem are not strong enough
to get such result.

8. Preliminary results for the empirical cdf of the degrees

8.1. Estimates for the first moment of the empirical cdf. Recall X = (Xn : n ∈ N
∗) is

a sequence of independent random variables uniformly distributed on [0, 1] used to construct
the sequence of W -random graphs (Gn : n ∈ N

∗). Recall Πn(y) is given in (61).
For all y ∈ (0, 1), we set cn(y) = E [Πn+1(y)] that is

(67) cn(y) = P

(

D
(n+1)
1 ≤ D(y)

)

,

where D
(n+1)
1 is a binomial random variable with parameter (n,D(X1)). We set:

(68) σ2
(x) = x(1− x) for x ∈ [0, 1],
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and with ⌈x⌉ the unique integer such that ⌈x⌉ − 1 < x ≤ ⌈x⌉,

(69) S(x) = ⌈x⌉ − x− 1

2
for x ∈ R.

The next proposition gives precise asymptotics of cn.

Proposition 8.1. Assume that W satisfies condition (62). For all y ∈ (0, 1), there exists a
constant C > 0 such that for all n ∈ N

∗, we have with d = D(y),

n (cn(y)− y) = −D′′(y)
D′(y)3

σ2
(d)

2
+

1

D′(y)

(

1− 2d

2
+ S(nd)

)

+R8.1
n ,

with
∣

∣

∣
R8.1

n

∣

∣

∣
≤ C n− 1

4 .

In particular, because |S(x)| ≤ 1
2 , for all x ∈ R, we have that for all y ∈ (0, 1):

(70) cn(y)− y = O
(

n−1
)

.

Proof. Let y ∈ (0, 1). Recall the definition of H in (94). We have:

cn(y)− y =

∫ 1

0

(

Hn,d,0(D(x)) − 1{x≤y}
)

dx.

By Proposition 10.7 applied with G(x) = 1 and δ = 0, we obtain that:

n

∫ 1

0

(

Hn,d,0 (D(x))− 1{x≤y}
)

dx = −D′′(y)
D′(y)3

σ2
(d)

2
+

1

D′(y)

(

1− 2d

2
+ S(nd)

)

+R8.1
n ,

with R8.1
n = R10.7

n (1) and
∣

∣

∣
R8.1

n

∣

∣

∣
≤ Cn− 1

4 . �

For y ∈ (0, 1) and u ∈ [0, 1], we set, with d = D(y),

(71) Hn(y, u) = n

(

E

[

1{
D

(n+1)
1 ≤d

}

∣

∣

∣

∣

X2 = u

]

− cn(y)

)

and

(72) H⋆
n(y, u) = E

[

1{
D

(n+1)
1 ≤d

}

∣

∣

∣

∣

X1 = u

]

− cn(y).

Proposition 8.2. Assume that W satisfies condition (62). For all y ∈ (0, 1), there exists a
positive constant C such that for all n ≥ 2 and u ∈ [0, 1], we have with d = D(y):

Hn(y, u) =
1

D′(y)
(d−W (y, u)) +R8.2

n (u),

with

(73)
∣

∣

∣
R8.2

n (u)
∣

∣

∣
≤ C n− 1

4 .

For all y ∈ (0, 1) and u ∈ [0, 1] such that u 6= y, we have

(74) |H⋆
n(y, u)| ≤ 1 for all n ≥ 2, and lim

n→∞
H⋆

n(y, u) = 1{u≤y} − y.
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Proof. In what follows, C denotes a positive constant which depends on ε0, W and y ∈ (0, 1),
and it may vary from line to line. Recall that X[2] = (X1,X2). We define the function ϕn by:

(75) ϕn(x, u) = P

(

D
(n+1)
1 ≤ d

∣

∣X[2] = (x, u)
)

− 1{x≤y} for x, u ∈ [0, 1].

Then we have for u ∈ [0, 1]:

(76) Hn(y, u) = nE [ϕn(X1, u)] − n(cn(y)− y).

Conditionally on {X[2] = (x, u)}, D(n+1)
1 is distributed as Y12 + B̃(n), where Y12 and B̃ are

independent, Y12 is Bernoulli W (x, u) and B̃ is binomial with parameter (n−1,D(x)). Thus,
we have:

ϕn(x, u) = P

(

Y12 + B̃ ≤ nd
)

− 1{x≤y}

= W (x, u)
[

P

(

B̃ ≤ nd− 1
)

− 1{x≤y}
]

+ (1−W (x, u))
[

P

(

B̃ ≤ nd
)

− 1{x≤y}
]

= W (x, u)
[

Hn−1,d,d−1(D(x)) − 1{x≤y}
]

+ (1−W (x, u))
[

Hn−1,d,d(D(x))− 1{x≤y}
]

.(77)

Let W1(x, u) denote ∂W (x, u)/∂x. We apply Proposition 10.7 with G(x) = W (x, u), δ = d−1
and n replaced by n− 1 to get that:

(78) (n− 1)E
[

W (X1, u)
[

Hn−1,d,d−1(D(X1))− 1{X1≤y}
]]

=
σ2
(d)

2D′(y)2

[

W1(y, u)−
W (y, u)D′′(y)

D′(y)

]

+
W (y, u)

D′(y)

(

−1

2
+ S(nd− 1)

)

+R10.7
n−1 (W (., u)),

and with G(x) = 1−W (x, u), δ = d and n replaced by n− 1, to get that:

(79) (n− 1)E
[

(1−W (X1, u))
[

Hn−1,d,d(D(X1))− 1{X1≤y}
]]

=
σ2
(d)

2D′(y)2

[

−W1(y, u)−
(1−W (y, u))D′′(y)

D′(y)

]

+
1−W (y, u)

D′(y)

(

1

2
+ S(nd)

)

+R10.7
n−1 (1−W (., u)).

By equations (77), (78) and (79) and since S(nd− 1) = S(nd), we get that:

(n− 1)E [ϕn(X1, u)] = −
σ2
(d)

2

D′′(y)
D′(y)3

+
1

D′(y)

(

1

2
−W (y, u) + S(nd)

)

+R(1)
n (u),

where R
(1)
n (u) = R10.7

n−1 (W (., u)) +R10.7
n−1 (1−W (., u)). Because W satifies condition (62), we

deduce from (122) that
∣

∣

∣R
(1)
n (u)

∣

∣

∣ ≤ Cn−1/4 for some finite constant C which does not depend

on n and u ∈ [0, 1]. Using Proposition 8.1, we get that

(80) (n− 1)E [ϕn(X1, u)] − (n− 1)(cn(y)− y) =
d−W (y, u)

D′(y)
+R(2)

n (u),

where R
(2)
n (u) = R

(1)
n (u) + R8.1

n + (cn(y) − y) and
∣

∣

∣
R

(2)
n (u)

∣

∣

∣
≤ Cn−1/4 because of (70). By

equations (76) and (80), we deduce that:

Hn(y, u) =
n

n− 1

d−W (y, u)

D′(y)
+

n

n− 1
R(2)

n (u) =
d−W (y, u)

D′(y)
+R8.2

n (u),
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with
∣

∣

∣
R8.2

n (y, u)
∣

∣

∣
≤ Cn− 1

4 . This gives (73).

For the second assertion (74), we notice that

H⋆
n(y, u) = Hn,d,0(D(u))− cn(y),

with Hn,d,0(D(u)) ∈ [0, 1] and cn(y) ∈ [0, 1]. By the strong law of large numbers, we have for
u 6= y:

lim
n→∞

Hn,d,0(D(u)) = 1{u≤y}.

Using (70), we get the expected result. �

8.2. Estimates for the second moment of the empirical cdf. For y = (y1, y2) ∈ [0, 1]2,
let M(y) be the covariance matrix of a couple (Y1, Y2) of Bernoulli random variables such
that P(Yi = 1) = D(yi) for i ∈ {1, 2} and P(Y1 = Y2 = 1) =

∫

[0,1]W (y1, z)W (y2, z) dz.

Let K be the set of all convex sets in R
2. For K ∈ K, we define its sum with a vector x in

R
2 as

K + x = {k + x : k ∈ K}
and its product with a real matrix M of size 2× 2 as

MK = {Mk : k ∈ K}.
Recall that for x ∈ R

2, |x| is the Euclidian norm of x in R
2. Recall X[2] = (X1,X2). We

define D̂(n+1) = (D̂
(n+1)
1 , D̂

(n+1)
2 ), where for i ∈ {1, 2}, D̂(n+1)

i is the number of edges from

the vertex i to the vertices {k, 3 ≤ k ≤ n+1} of Gn+1; it is equal to nD
(n+1)
i if the edge {1, 2}

does not belong to Gn+1 and to nD
(n+1)
i − 1 otherwise. The proof of the next proposition is

postponed to section 11.

Proposition 8.3. Assume that W satisfies condition (62). There exists a finite constant C0

such that for all x = (x1, x2) ∈ [0, 1]2 with x1 6= x2, we get for all n ≥ 2:

sup
K∈K

∣

∣

∣

∣

∣

P

(

D̂n+1 ∈ K|X[2] = x
)

− P

(

Z ∈ M(x)−
1
2√

n− 1
(K − µ(x))

)∣

∣

∣

∣

∣

≤ C0√
n
,

where µ(x) = (n− 1)(D(x1),D(x2)) and Z is a standard 2-dimensional Gaussian vector.

For y1, y2 ∈ (0, 1), with d1 = D(y1) and d2 = D(y2), we set with δ ∈ R and x = (x1, x2) ∈
[0, 1]2 such that x1 6= x2:

Ψn,δ (x) = E





∏

i∈{1,2}

(

1{D̂(n+1)
i ≤ndi+δ} − 1{Xi≤yi}

) ∣

∣

∣X[2] = x



 .

Recall Σ2 defined in (65) and that X[2] = (X1,X2).

Lemma 8.4. Assume that W satisfies condition (62). For all y = (y1, y2) ∈ (0, 1)2, δ ∈
[−1, 0] and G ∈ C1([0, 1]2), we have:

lim
n→∞

nE
[

G
(

X[2]

)

Ψn,δ

(

X[2]

)]

= G(y)Σ2(y).

Proof. Let A = 4
√

log(n − 1). For n ≥ 2 and δ ∈ [−1, 0], we set:

Ψ
(1)
n,δ(x) = Ψn,δ(x)

2
∏

i=1

1{√n−1|D(xi)−di|≤A} and Ψ
(2)
n,δ(x) = Ψn,δ(x)−Ψ

(1)
n,δ(x).
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Then we have

(81) E
[

G
(

X[2]

)

Ψn,δ

(

X[2]

)]

=
∑

i∈{1,2}
E

[

G
(

X[2]

)

Ψ
(i)
n,δ

(

X[2]

)

]

.

Study of E

[

G
(

X[2]

)

Ψ
(2)
n,δ

(

X[2]

)

]

. Recall that for i ∈ {1, 2}, conditionally on Xi = xi,

D̂
(n+1)
i is distributed as a Bernoulli random variable with parameter (n−1, di). We get that:

∣

∣

∣Ψ
(2)
n,δ(x)

∣

∣

∣ ≤ 2
∑

i∈{1,2}
E

[∣

∣

∣1{D̂(n+1)
i ≤ndi+δ} − 1{Xi≤yi}

∣

∣

∣1{√n−1 |D(xi)−di|≥A}

∣

∣

∣X[2] = x
]

= 2
∑

i∈{1,2}

∣

∣Hn−1,di,δ+di(xi)− 1{xi≤yi}
∣

∣ 1{
√
n−1 |D(xi)−di|≥A}.

By Lemma 10.6 (with n replaced by n− 1), we deduce that:

(82) lim
n→∞

nE
[

G
(

X[2]

)

Ψ
(2)
n,δ

(

X[2]

)

]

= 0.

Study of E

[

G
(

X[2]

)

Ψ
(1)
n,δ

(

X[2]

)

]

. This part is more delicate. For z = (z1, z2) ∈ [0, 1]2, set

H(z) = G(z)
D′(z1)D′(z2)

and tn(z) = (tn(z1), tn(z2)):

tn(zi) = D−1

(

di +
zi√
n− 1

)

for i ∈ {1, 2}.

Using the change of variable zi =
√
n− 1(D(xi)− di) for i ∈ {1, 2} with x = (x1, x2), we get:

(n − 1)E
[

G
(

X[2]

)

Ψ
(1)
n,δ

(

X[2]

)

]

= (n− 1)

∫

[0,1]2
G(x)Ψn,δ(x)

∏

i∈{1,2}
1{

√
n−1|D(xi)−di|≤A}dx

=

∫

[−A,A]2
H (tn(z))Ψn,δ (tn(z)) dz.(83)

Notice that:

Ψn,δ (tn(z)) = E





∏

i∈{1,2}

(

1{D̂(n+1)
i ≤ndi+δ} − 1{zi≤0}

) ∣

∣

∣X[2] = tn(z)



 .

Set δ̃ = (δ, δ) and D̂(n+1) = (D̂
(n+1)
1 , D̂

(n+1)
2 ). We define the sets for z and D̂(n+1):

I(1) = [0, A]2 and C̃(1)
n = δ̃ + n (−∞, d1]× (−∞, d2],

I(2) = [0, A] × [−A, 0) and C̃(2)
n = δ̃ + n (−∞, d1]× (d2,+∞),

I(3) = [−A, 0) × [0, A] and C̃(3)
n = δ̃ + n (d1,+∞)× (−∞, d2],

I(4) = [−A, 0)2 and C̃(4)
n = δ̃ + n (d1,+∞)× (d2,+∞).

For 1 ≤ i ≤ 4, we set:

Q(i)
n (z) = P

(

D̂(n+1) ∈ C̃(i)
n

∣

∣X[2] = tn(z)
)

and ∆(i)
n =

∫

I(i)
H (tn(z))Q

(i)
n (z) dz.

By construction, we have:

(84) (n− 1)E
[

G
(

X[2]

)

Ψ
(1)
n,δ

(

X[2]

)

]

=
4
∑

i=1

∆(i)
n .
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We now study ∆
(1)
n . By Proposition 8.3, we get that

∆(1)
n =

∫

[0,A]2
H (tn(z)) P

(

Z ∈ M (tn(z))
−1/2

√
n− 1

(

C̃(1)
n − µ(tn(z))

)

)

dz+R(1)
n

where µ(x) = (n−1)(D(x1),D(x2)) and |R(1)
n | ≤ ‖H ‖∞ 8C0

√

log(n)/n so that limn→∞R
(1)
n =

0. Set d̃ = (d1, d2). Since tn(z)) converges towards y, we get:

lim
n→∞

H(tn(z)) = H(y) and lim
n→∞

M (tn(z)) = M(y)

and, with J(z) = (−∞,−z1]× (−∞,−z2],

(85)
1√
n− 1

(

C̃(1)
n − µ(tn(z))

)

= (n − 1)−1/2(δ̃ + d̃) + J(z).

Since limn→∞M (tn(z)) = M(y) and M(y) is positive definite, we deduce that dx-a.e.:

lim
n→∞

1M(tn(z))−1/2
√
n−1

(

C̃
(1)
n −µ(tn(z))

)(x) = 1M(y)−1/2J(z)(x)

and thus (by dominated convergence):

lim
n→∞

P

(

Z ∈ M (tn(z))
−1/2

√
n− 1

(

C̃(1)
n − µ(tn(z))

)

)

= P

(

M(y)1/2Z ∈ J(z)
)

.

For z ∈ [2,+∞)2 and n ≥ 2, we have:
{

Z ∈ M (tn(z))
−1/2

√
n− 1

(

C̃(1)
n − µ(tn(z))

)

}

⊂
{

2M (tn(z))
1/2 Z ∈ J(z)

}

⊂
{

23/2|Z| ≥ |z|
}

,

where we used (85) and that for all i ∈ {1, 2}, |(n−1)−1/2(δ+di)| ≤ zi/2 for the first inclusion

and for the second that |Mx| ≤
√
2 ‖M ‖∞ |x|, ‖M1/2 ‖∞ ≤

√
2 ‖M ‖1/2∞ and ‖M (x)‖∞ ≤

1/2 for all x ∈ [0, 1]2 so that |M (tn(z))
1/2 Z| ≤

√
2 |Z|. Since

∫

R
P(23/2|Z| ≥ |z|) dz is finite

and H is bounded, we deduce from dominated convergence that:

lim
n→∞

∫

[0,A]2
H (tn(z)) P

(

Z ∈ M (tn(z))
−1/2

√
n− 1

(

C̃(1)
n − µ(tn(z))

)

)

dz

= H(y)

∫

[0,+∞)2
P

(

M(y)1/2Z ∈ J(z)
)

dz.

Recall x+ = max(0, x) and x− = max(0,−x) denote the positive and negative part of x ∈ R.

With Z̃ = M(y)1/2Z = (Z̃1, Z̃2), we get:
∫

[0,+∞)2
P

(

M(y)1/2Z ∈ J(z)
)

dz = E

[

Z̃−
1 Z̃−

2

]

and thus

lim
n→∞

∆(1)
n = H(y)E

[

Z̃−
1 Z̃−

2

]

.
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Similarly, we obtain:

lim
n→∞

∆(2)
n = −H(y)E

[

Z̃−
1 Z̃

+
2

]

lim
n→∞

∆(3)
n = −H(y)E

[

Z̃+
1 Z̃

−
2

]

lim
n→∞

∆(4)
n = H(y)E

[

Z̃+
1 Z̃+

2

]

.

Using the definition of Σ2(y) and M(y), notice that D′(y1)D′(y2)Σ2(y) is the covariance of

Z̃1 and Z̃2. Thus, we obtain:

(86) lim
n→∞

4
∑

i=1

∆(i)
n = H(y)E

[(

Z̃+
1 − Z̃−

1

)(

Z̃+
2 − Z̃−

2

)]

= H(y)E
[

Z̃1Z̃2

]

= G(y)Σ2(y).

Conclusion. Use (81), (82), (84) and (86) to get the result. �

The next proposition, main result of this section, is a consequence of Lemma 8.4.

Proposition 8.5. Assume that W satisfies condition (62). For all y1, y2 ∈ (0, 1), we have
with d1 = D(y1) and d2 = D(y2):

lim
n→∞

nE

[(

1{
D

(n+1)
1 ≤d1

} − 1{X1≤y1}

)(

1{
D

(n+1)
2 ≤d2

} − 1{X2≤y2}

)]

= Σ2(y1, y2).

Proof. Using the comment before Proposition 8.3, we get:

E

[

∏

i∈{1,2}

(

1{D(n+1)
i ≤di

− 1{Xi≤yi}
)

]

= E
[

W (X[2])Ψn,−1(X[2])
]

+ E
[

(1−W (X[2]))Ψn,0(X[2])
]

.

We apply Lemma 8.4 twice with G = W and G = 1−W to get the result. �

9. Proof of Theorem 7.2

Recall the definitions of Πn+1 and cn(y) given in (61) and (67). We define the normalized

and centered random process Π̂n+1 = (Π̂n+1(y) : y ∈ (0, 1)) by:

(87) Π̂n+1(y) =
√
n+ 1 [Πn+1(y)− cn(y)] .

Let Un+1 = (Un+1(y) : y ∈ (0, 1)) be the Hàjek projection of Π̂n+1:

(88) Un+1(y) =
n+1
∑

i=1

E

[

Π̂n+1(y)
∣

∣

∣
Xi

]

.

Recall Σ defined in Remark 7.3.

Lemma 9.1. For all y, z ∈ (0, 1), we have:

lim
n→∞

E [Un+1(y)Un+1(z)] = Σ(y, z).

Proof. Recall (71) and (72). With d = D(y), we notice that for y ∈ (0, 1):

P

(

D
(n+1)
i ≤ d

∣

∣

∣Xj

)

− cn(y) =

{

1
nHn(y,Xj) if i 6= j,

H⋆
n(y,Xj) if i = j.
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We have:

Un+1(y) = (n+ 1)−
1
2

n+1
∑

i=1

n+1
∑

j=1

[

P

(

D
(n+1)
i ≤ d

∣

∣

∣Xj

)

− cn(y)
]

= (n+ 1)−
1
2

n+1
∑

j=1

[H⋆
n(y,Xj) +Hn(y,Xj)] .(89)

Let y, z ∈ (0, 1). Since Hn and H⋆
n are centered and (Xi : i ∈ N

∗) are independent, using
(89), we obtain that:

E [Un+1(y)Un+1(z)] = E [H⋆
n(y,X1)H

⋆
n(z,X1)] + E [Hn(y,X1)Hn(z,X1)]

+ E [H⋆
n(y,X1)Hn(z,X1)] + E [H⋆

n(z,X1)Hn(y,X1)] .

Recall Σ = Σ1 +Σ2 +Σ3 defined in Remark 7.3.

Study of E [H⋆
n(y,X1)H

⋆
n(z,X1)]. By Proposition 8.2, see (74), and by dominated conver-

gence, we get that:

(90) lim
n→∞

E [H⋆
n(y,X1)H

⋆
n(z,X1)] = E

[(

1{X1≤y} − y
) (

1{X2≤z} − z
)]

= Σ1(y, z).

Study of E [Hn(y,X1)Hn(z,X1)]. By Proposition 8.2, we have:

E [Hn(y,X1)Hn(z,X1)]

= E

[(

D(y)−W (y,X1)

D′(y)
+R8.2

n (y,X1)

)(

D(z)−W (z,X1)

D′(z)
+R8.2

n (z,X1)

)]

=
1

D′(y)
1

D′(z)
E [(D(y)−W (y,X1))(D(z) −W (z,X1))] +R(1)

n

= Σ2(y1, y2) +R(1)
n

where, because of (73),
∣

∣

∣R
(1)
n

∣

∣

∣ ≤ Cn− 1
4 for some finite constant C. We obtain that

(91) lim
n→∞

E [Hn(y,X1)Hn(z,X1)] = Σ2(y, z).

Study of E [H⋆
n(y,X1)Hn(z,X1)] + E [H⋆

n(z,X1)Hn(y,X1)]. By Proposition 8.2, we have
that:

E [H⋆
n(y,X1)Hn(z,X1)] = E

[

H⋆
n(y,X1)

1

D′(z)
(D(z)−W (z,X1)) +H⋆

n(y,X1)R
8.2
n (z,X1)

]

.

Thanks to (73) and (74), we have |H⋆
n(y,X1)| ≤ 1 and E

[∣

∣

∣
R8.2

n (z,X1)
∣

∣

∣

]

= O
(

n−1/4
)

. We

deduce from Proposition 8.2 and dominated convergence, that:

lim
n→∞

E [H⋆
n(y,X1)Hn(z,X1)] = E

[

(

1{X1≤y} − y
) 1

D′(z)
(D(z)−W (z,X1))

]

=
1

D′(z)

(

yD(z)−
∫ y

0
W (z, x)dx

)

.

By symmetry, we finally obtain that

(92) lim
n→∞

E [H⋆
n(y,X1)Hn(z,X1)] + E [H⋆

n(z,X1)Hn(y,X1)] = Σ3(y, z).
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Conclusion. Combining (90), (91) and (92), we get that

lim
n→∞

E [Un+1(y)Un+1(z)] = Σ(y, z).

�

Lemma 9.2. We have the following convergence of finite-dimensional distributions:

(Un+1(y) : y ∈ (0, 1))
(fdd)−−−−−→

n→+∞
χ,

where χ = (χ(y) : y ∈ (0, 1)) is a centered Gaussian process with covariance function Σ given
in Remark 7.3.

Proof. Let k ∈ N
∗ and (y1, . . . , yk) ∈ (0, 1)k . We define the random vector U

(k)
n+1 = (Un+1(yi) :

i ∈ [k]). For all y ∈ (0, 1) and j ∈ [n+ 1], we set gn(y,Xj) = [H⋆
n(y,Xj) +Hn(y,Xj)]. Using

(89), we have:

U
(k)
n+1 = (n+ 1)−

1
2

n+1
∑

j=1

Z
(n+1)
j ,

where Z
(n+1)
j = (gn(yi,Xj) : i ∈ [k]). Notice (Z

(n+1)
j : j ∈ [n + 1]) is a sequence of inde-

pendent, uniformly bounded (see Proposition 8.2) and identically distributed random vectors

with mean zero and common positive-definite covariance matrix Vn+1 = Cov
(

Z
(n+1)
1

)

. Ac-

cording to Lemma 9.1, we have that limn→∞ Vn+1 = Σ(k), with Σ(k) = (Σ(yi, yj) : i, j ∈ [k]).

The multidimensional Lindeberg-Feller condition is trivially satisfied as (Z
(n+1)
j : j ∈ [n+1])

are bounded (uniformly in n) with the same distribution. We deduce from the multidimen-
sional central limit theorem for triangular arrays of random variables, see [3] Corollary 18.2,

that (U
(k)
n+1 : n ≥ 0) converges in distribution towards the Gaussian random vector with

distribution N (0,Σ(k)). This gives the result. �

Recall Π̂n(y) defined in (87). In view of Lemma 9.2 and since cn(y) = y+O(1/n), in order
to prove Theorem 7.2, it is enough to prove that for all y ∈ (0, 1):

(93) Π̂n+1(y)− Un+1(y)
L2

−−−−−→
n→+∞

0.

Because Π̂n+1 and Un+1 are centered, we deduce from (88) that:

E

[

(

Π̂n+1(y)− Un+1(y)
)2
]

= E

[

Π̂n+1(y)
2
]

− E
[

Un+1(y)
2
]

.

By Lemma 9.1, we have E
[

Un+1(y)
2
]

−→
n→∞

Σ(y, y). So we deduce that the proof of Theorem

7.2 is a complete as soon as the next lemma is proved.

Lemma 9.3. For all y ∈ (0, 1), we have

lim
n→∞

E

[

Π̂n+1(y)
2
]

= Σ(y, y).
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Proof. Let y ∈ (0, 1) and d = D(y). We have

E

[

Π̂n+1(y)
2
]

=
1

n+ 1

n+1
∑

i,j=1

E

[(

1{
D

(n+1)
i ≤d

} − cn(y)

)(

1{
D

(n+1)
j ≤d

} − cn(y)

)]

= E

[

1{
D

(n+1)
1 ≤d

}

]

− cn(y)
2 + n

{

E

[

1{
D

(n+1)
1 ≤d

}1{
D

(n+1)
2 ≤d

}

]

− cn(y)
2

}

= cn(y)− (n+ 1)cn(y)
2 + nE

[

1{
D

(n+1)
1 ≤d

}1{
D

(n+1)
2 ≤d

}

]

.

So we get that

E

[

Π̂n+1(y)
2
]

= B(1)
n +B(2)

n +B(3)
n +B(4)

n ,

where

B(1)
n = cn(y)− cn(y)

2,

B(2)
n = −n(cn(y)− y)2,

B(3)
n = nE

[(

1{
D

(n+1)
1 ≤d

} − 1{X1≤y}

)(

1{
D

(n+1)
2 ≤d

} − 1{X2≤y}

)]

,

B(4)
n = 2nE

[

1{X1≤y}

(

1{
D

(n+1)
2 ≤d

} − cn(y)

)]

.

By Equation (70), we get limn→∞B
(1)
n = Σ1(y, y) and limn→∞B

(2)
n = 0. By Proposition

8.5, we get limn→∞B
(3)
n = Σ2(y, y). Using (71), we get B

(4)
n = 2E

[

1{X1≤y}Hn(y,X1)
]

. By
Proposition 8.2 and dominated convergence, we get that:

E
[

1{X1≤y}Hn(y,X1)
]

= E

[

1{X1≤y}

(

1

D′(y)
(D(y)−W (y,X1)) +R8.2

n (y,X1)

)]

−−−→
n→∞

1

D′(y)

(

yD(y)−
∫ y

0
W (y, x)dx

)

.

This gives limn→∞B
(4)
n = Σ3(y, y). Then, we get that limn→∞ E

[

Π̂n+1(y)
2
]

= Σ(y, y). �
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|A| cardinal of set A
[n] = {1, . . . , n}
|β| length of [n]-word β

Mn set of [n]-words with all characters dis-
tinct

Sn,p = {β ∈ Mn : |β| = p}
|Sn,p| = Ap

n = n!/(n− p)!

βℓ = βℓ1 . . . βℓk for ℓ ∈ Sp,k and β ∈ Sn,p

Sℓ,α
n,k = {β ∈ Sn,k : βℓ = α} for α ∈ Sn,k

|Sℓ,α
n,k| = Ap−k

n−k = (n− k)!/(n − p)!

F set of simple finite graphs

F a simple finite graph (and a finite se-
quence of simple graphs in Sections 3 to 6
satisfying condition (38))

E(F ) set of edges of F

V (F ) set of vertices of F

v(F ) = |V (F )| number of vertices of F

Gn = Gn(W ) W-random graph with n
vertices associated to the sequence X =
(Xk, k ∈ N

∗) of i.i.d. uniform random vari-
ables on [0, 1]

t(F,G) density of hom. from F to G

tinj(F,G) density of injective hom.

tind(F,G) density of embeddings

Y β(F,G) =
∏

{i,j}∈E(F ) 1{{βi,βj}∈E(G)}

tinj(F,G) = |Sn,p|−1 ∑

β∈Sn,p
Y β(F,G)

ℓ ∈ Mp and α ∈ Sp,k with k = |ℓ|

tinj(F
ℓ, Gα) density of injective hom. such

that the labelled vertices ℓ of F , with
V (F ) = [p], are sent on the labelled ver-
tices α of G, with V (G) = [n]

F [ℓ] sub-graph of the labeled vertices ℓ of F

Y β(F ℓ, Gα) = Y β(F,G) for β ∈ Sℓ,α
n,p

Ŷ α(F ℓ, Gα) =
∏

{i,j}∈E(F [ℓ]) 1{{αi,αj}∈E(G)}

Y β(F ℓ, Gα) = Ŷ α(F ℓ, Gα) Ỹ β(F ℓ, Gα) i.e.:

Y β = Ŷ α Ỹ β

t̃inj(F
ℓ, Gα) = |Sℓ,α

n,p|
−1∑

β∈Sℓ,α
n,p

Ỹ β

tinj(F
ℓ, Gα) = Ŷ α t̃inj(F

ℓ, Gα)

t(F,W ) hom. densities for graphon W

tind(F,W ) density of embeddings

Xα = (Xα1 , . . . ,Xαk
) and simil. for Xβ

Zβ = Z(Xβ) = E[Y β(F ℓ, Gα
n)|X]

Z̃β = E[Ỹ β(F ℓ, Gα
n)|X]

tx = tx(F
ℓ,W ) = E[Zβ|Xα = x] and

tx = E[tinj(F
ℓ, Gα

n)|Xα = x]

t̃x = t̃x(F
ℓ,W ) = E[Z̃β|Xα = x] and

t̃x = E[t̃inj(F
ℓ, Gα

n)|Xα = x]

t̂x = t̂x(F
ℓ,W ) = E[Ŷ α(F ℓ, Gα

n)|Xα = x]

tx = t̂x t̃x for x ∈ [0, 1]k

t(F ℓ,W ) =
∫

[0,1]k tx dx = E[tinj(F,Gn)]

t̂(F ℓ,W ) =
∫

[0,1]k t̂x dx = E[tinj(F
[ℓ], Gn)]

and t̂(F ℓ,W ) = t(F [ℓ],W )

ΓF,ℓ
n random probability measure:

ΓF,ℓ
n (g) = |Sn,k|−1

∑

α∈Sn,k

g
(

tinj(F
ℓ, Gα

n)
)

ΓF,ℓ(dx) = E

[

ΓF,ℓ
n (dx)

]

σF,ℓ(g)2 asymptotic variance of

√
n
(

ΓF,ℓ
n (g) − ΓF,ℓ(g)

)

nD
(n)
i degree of i in Gn

Πn empirical CDF of the degrees of Gn
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D(x) =
∫

[0,1]W (x, y)dy degree funct. of W

Hn,d,δ(p) = P(X ≤ nd+ δ) for X ∼ B(n, p)
σ2
(x) = x(1− x)

S(x) = ⌈x⌉ − x− 1
2

Φ the CDF of N (0, 1)

ϕ probability distribution density of N (01)

d = D(y)

cn(y) = P(D
(n+1)
1 ≤ d)

H⋆
n(y, u) = P(D

(n+1)
1 ≤ d |X1 = u)− cn(y)

Hn(y,u)
n = P(D

(n+1)
1 ≤ d |X2 = u)− cn(y)

✂ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10. Appendix A: Preliminary results for the CDF of binomial distributions

In this section, we study uniform asymptotics for the CDF of binomial distributions. Let
n ∈ N

∗, d ∈ [0, 1], δ ∈ R and p ∈ (0, 1). We consider the CDF:

(94) Hn,d,δ(p) = P (X ≤ nd+ δ) ,

where X a binomial random variable with paramaters (n, p). We denote by Φ the cumulative
distribution function of the standard Gaussian distribution and by ϕ the probability distribu-
tion density of the standard Gaussian distribution. We recall (68) and (69): σ2

(x) = x(1− x)

for x ∈ [0, 1], and S(x) = ⌈x⌉ − x− 1
2 for x ∈ R.

We recall a result from [24], see also [32], Chapter VII: for all x ∈ R, for all p ∈ (0, 1) and
n ∈ N

∗ such that nσ2
(p) ≥ 25, we have:

(95) P
(

X ≤ np+
√
nσ(p)x

)

= Φ(x)+
1√
n
Q(p, x)+

1√
nσ(p)

S(np+x
√
nσ(p))ϕ(x)+Un(p, x),

where

Q(p, x) =
2p− 1

6σ(p)
ϕ′′(x) =

2p− 1

6σ(p)
(x2 − 1)ϕ(x),

and

(96) |Un(p, x)| ≤
0.2 + 0.3 |2p− 1|

nσ2
(p)

+ exp

(

−3
√
nσ(p)

2

)

.

We use this result to give an approximation of Hn,d,δ

(

d+ s√
n

)

.

Proposition 10.1. Let ε0 ∈ (0, 12) and K0 = [ε0, 1 − ε0]. Let α > 0. There exists a positive

constant C such that for all n ≥ 2, s ∈ [−α
√

log(n), α
√

log(n)], δ ∈ [−1, 1] and d ∈ K0 such
that d+ s√

n
∈ K0, we have:

Hn,d,δ

(

d+
s√
n

)

= Φ(ys) +
1√
n

ϕ(ys)

σ(d)
π(s, n, d, δ) +R10.1(s, n, d, δ),

where

(97) ys =
−s

σ(d)
and π(s, n, d, δ) =

1− 2d

6
(1 + 2y2s) + S(nd+ δ) + δ
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and
∣

∣

∣R10.1(s, n, d, δ)
∣

∣

∣ ≤ C
log(n)2

n
·

Proof. In what follows, C denotes a positive constant which depends on ε0 (but not on n ≥ 2,

s ∈ [−α
√

log(n), α
√

log(n)], δ ∈ [−1, 1] and d ∈ K0 such that d+ s√
n
∈ K0) and which may

change from lines to lines. We will also use, without recalling it, that σ(.) is uniformly bounded
away from 0 on K0.

For all θ ∈ (0, 1] such that d+ sθ ∈ (0, 1), we set

(98) xs(θ) =
−s+ δθ

σ(d+sθ)
·

Let p = d + s√
n
and X be a binomial random variable with parameters (n, p). Because

nd+ δ = np+
√
nσ(p) xs

(

1√
n

)

, we can write

(99) Hn,d,δ

(

d+
s√
n

)

= P

(

X ≤ np+
√
nσ(p) xs

(

1√
n

))

.

Recall S is defined in (69). Using (95), we get that:

(100) Hn,d,δ

(

d+
s√
n

)

= Φ

(

xs

(

1√
n

))

+
1√
n
Q

(1)
d,δ

(

s,
1√
n

)

+
1√
n

Q
(2)
d,δ

(

s,
1√
n

)

+ Un

(

d+
s√
n
, xs

(

1√
n

))

where for θ ∈ (0, 1] such that d+ sθ ∈ (0, 1),

Q
(1)
d,δ(s, θ) =

2(d+ sθ)− 1

6σ(d+sθ)

(

xs(θ)
2 − 1

)

ϕ(xs(θ)),

Q
(2)
d,δ(s, θ) =

1

σ(d+sθ)
S
(

dθ−2 + δ
)

ϕ(xs(θ)).

Study of the first term of the right hand side of (100). Let θ ∈ (0, 1/
√
2], and

notice that | log(θ)| ≥ log(
√
2) > 0. Recall the definition of xs(θ) given by (98). By simple

computations, we get that for all 0 < θ ≤ 1/
√
2, |s| ≤ α

√

2| log(θ)|, |δ| ≤ 1, and d ∈ K0 such
that d+ sθ ∈ K0,

(101) |xs(θ)| ≤ C | log(θ)| 12 , |x′s(θ)| ≤ C | log(θ)| and |x′′s(θ)| ≤ C | log(θ)| 32 .
We define the function Ψs(θ) = Φ(xs(θ)). Applying Taylor-Lagrange inequality for Ψ at
θ = 0, we have:

Ψs(θ) = Ψs(0) + θΨ′
s(0) +R(1)

s (θ),

where R
(1)
s (θ) =

∫ θ
0 Ψ′′

s(t)(θ − t)dt. Recall the definition of ys = xs(0) given in (97). Elemen-
tary calculus give:

Φ (xs(θ)) = Φ(xs(0)) + θ x′s(0)ϕ(xs(0)) +R(1)
s (θ)

= Φ (ys) + θ

[

(1− 2d)

2σ(d)
y2s +

δ

σ(d)

]

ϕ (ys) +R(1)
s (θ),(102)
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where R
(1)
s (θ) =

∫ θ
0

(

x′′s(t) − x′s(t)
2xs(t)

)

ϕ(xs(t)) (θ − t) dt. Using (101) and that tϕ(t) is

bounded, we have:
∣

∣

∣R(1)
s (θ)

∣

∣

∣ ≤ Cθ2(| log(θ)| 32 + | log(θ)|2) ≤ Cθ2| log(θ)|2.

Study of the second term of the right hand side of (100). We have Q
(1)
d,δ(s, θ) =

Gs(θ)H(xs(θ)) where

Gs(θ) =
2(d+ sθ)− 1

6σ(d+sθ)
and H(x) =

(

x2 − 1
)

ϕ(x).

For the first term, we have

Gs(θ) = Gs(0) +R(2)
s (θ) =

2d− 1

6σ(d)
+R(2)

s (θ),

where R
(2)
s (θ) =

∫ θ
0 G′

s(t)dt. We compute that:

G′
s(t) = s

[

1

3σ(d+st)
+

[2(d + st)− 1]2

12σ3
(d+st)

]

.

We obtain that
∣

∣

∣
R

(2)
s (θ)

∣

∣

∣
≤ Cθ|s| ≤ Cθ| log(θ)| 12 . For the second term, we have

H(xs(θ)) = H(xs(0)) +R(3)
s (θ) =

(

y2s − 1
)

ϕ (ys) +R(3)
s (θ),

where R
(3)
s (θ) =

∫ θ
0 x′s(t)H

′(xs(t))dt =
∫ θ
0 x′s(t)

[

−xs(t)
3 + 3xs(t)

]

ϕ(xs(t))dt. Using (101)

and that (|t|3+ t)ϕ(t) is bounded, we get that
∣

∣

∣
R

(3)
s (θ)

∣

∣

∣
≤ Cθ| log(θ)|. Finally, we obtain that

(103) Q
(1)
d,δ(s, θ) =

2d− 1

6σ(d)

(

y2s − 1
)

ϕ (ys) +R(4)
s (θ)

with
∣

∣

∣
R

(4)
s (θ)

∣

∣

∣
≤ Cθ| log(θ)|.

Study of the last term of the right hand side of (100). We have

Q
(2)
d,δ(s, θ) = Fs(θ)S

(

d

θ2
+ δ

)

ϕ(xs(θ)) with Fs(θ) =
1

σ(d+sθ)
·

For the first term of the right hand side, we have

Fs(θ) = Fs(0) +R(5)
s (θ) =

1

σ(d)
+R(5)

s (θ),

where R
(5)
s (θ) =

∫ θ
0 F ′

s(t)dt =
∫ θ
0

s(2(d+st)−1)
2σ3

(d+st)

dt. We get that
∣

∣

∣
R

(5)
s (θ)

∣

∣

∣
≤ Cθ|s| ≤ Cθ| log(θ)| 12 .

For the last term of the right hand side, we have:

ϕ(xs(θ)) = ϕ(xs(0)) +R(6)
s (θ) = ϕ (ys) +R(6)

s (θ),

where R
(6)
s (θ) =

∫ θ
0 x′s(t)ϕ

′(xs(t))dt = −
∫ θ
0 xs(t)x

′
s(t)ϕ(xs(t))dt. So, using (101) and that

tϕ(t) is bounded, we get that
∣

∣

∣
R

(6)
s (θ)

∣

∣

∣
≤ Cθ| log(θ)|. Finally, we obtain that

(104) Q
(2)
d,δ(s, θ) =

1

σ(d)
S

(

d

θ2
+ δ

)

ϕ (ys) +R(7)
s (θ),
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where
∣

∣

∣
R

(7)
s (θ)

∣

∣

∣
≤ Cθ |log(θ)|, since S is bounded.

Conclusion. We deduce from (102), (103) and (104) that

Φ (xs(θ)) + θ Q
(1)
d,δ(s, θ) + θ Q

(2)
d,δ(s, θ) = Φ(ys) + θ

ϕ(ys)

σ(d)
π

(

s,
1

θ2
, d, δ

)

+R(8)
s (θ),

where
∣

∣

∣
R

(8)
s (θ)

∣

∣

∣
≤ Cθ2| log(θ)|2. We get the result by taking θ = 1/

√
n and using (100) and

the obvious bound on Un given by (96) so that |Un| ≤ C/n. �

We state a Lemma which will be useful for the proof of Corollary 10.3.

Lemma 10.2. Let y ∈ [0, 1] and α > 0. For all n ≥ 2, we have with d = D(y), A = α
√

log(n)
and ys = −s/σ(d),

Φ

(

− A

σ(d)

)

≤ 1

αn2α2 ,

∫ +∞

A
sΦ (ys) ds ≤

1

αn2α2 and

∫ +∞

A
s2ϕ(ys)ds ≤ 1

αnα2 ·

Proof. For all t ≥ 0, we have

(105) Φ(−t) =

∫ +∞

t
s
ϕ(s)

s
ds ≤ 1

t

∫ +∞

t
sϕ(s)ds =

1

t
ϕ(t).

Because σ(d) ≤ 1/2, we get with t = A
σ(d)

the following rough upper bound:

(106) Φ

(

− A

σ(d)

)

≤
σ(d)

A
ϕ

(

A

σ(d)

)

≤ 1

αn2α2 ·

Using again (105) and (106), we get, for the second inequality that:

∫ +∞

A
sΦ (ys) ds ≤ σ(d)

∫ +∞

A
ϕ(−ys)ds = σ2

(d)Φ

(

− A

σ(d)

)

≤ 1

αn2α2 ·

For the last inequality, we have:

∫ +∞

A
s2ϕ(ys)ds =

2σ2
(d)√
2π

∫ +∞

A

s2

2σ2
(d)

e
− s2

2σ2
(d) ds ≤

4σ2
(d)√
2π

∫ +∞

A
e
− s2

4σ2
(d) ds

= 4
√
2σ3

(d)Φ

(

− A√
2σ(d)

)

≤ 1

αnα2 ·

where we used xe−x ≤ 2e−
x
2 for the first inequality and an inequality similar to (106) with

σ(d) replaced by
√
2σ(d) for the last one. �

For f ∈ C2([0, 1]), we set ‖f‖3,∞ = ‖f‖∞ + ‖f ′‖∞ + ‖f ′′‖∞.

Lemma 10.3. Assume that W satisfies condition (62). Let y ∈ (0, 1) and α ≥ 1. There
exists a positive constant C such that for all H ∈ C2([0, 1]), δ ∈ [−1, 1] and n ≥ 2 such that



42 JEAN-FRANÇOIS DELMAS, JEAN-STÉPHANE DHERSIN, AND MARION SCIAUVEAU

[

d± A√
n

]

⊂ D
(

(0, 1)
)

, with d = D(y) and A = α
√

log(n), we have:

√
n

∫ A

−A
H

(

D−1

(

d+
s√
n

))(

Hn,d,δ

(

d+
s√
n

)

− 1{s≤0}

)

ds

=
H ′(y)
D′(y)

σ2
(d)

2
+H(y)

(

1− 2d

2
+ δ + S(nd+ δ)

)

+R10.3
n (H),

where

(107)
∣

∣

∣R10.3
n (H)

∣

∣

∣ ≤ C ‖H‖3,∞ n−1/2 log(n)3.

Because of the assumption
[

d± A√
n

]

⊂ D
(

(0, 1)
)

, we need to rule out the cases y ∈ {0, 1},
so that Lemma 10.3 holds only for y ∈ (0, 1).

Proof. In what follows, C denotes a positive constant which depends on ε0 and W (but in

particular not on n ≥ 2, s ∈ [−α
√

log(n), α
√

log(n)], δ ∈ [−1, 1] and d ∈ K0 such that
d+ s√

n
∈ K0) and which may change from lines to lines.

Let θ ∈ (0, 1/
√
2] (we shall take θ = 1/

√
n later on) and assume that |s| ≤ α

√

2| log(θ)| and
d+ sθ ∈ K0. We set Ψ(θ) = H

(

D−1(d+ sθ)
)

. Notice that Ψ′(θ) = s
D′◦D−1(d+sθ)

H ′(D−1(d+

sθ)). By Taylor-Lagrange equality we have:

(108) Ψ(θ) = Ψ(0) + θΨ′(0) +R(1)
s (θ) = H(y) + θ

s

D′(y)
H ′(y) +R(1)

s (θ)

where R
(1)
s (θ) =

∫ θ
0 Ψ′′(t)(θ − t)dt. We have

Ψ′′(θ) = s2
[

H ′′(D−1(d+ sθ))

(D′ ◦D−1(d+ sθ))2
− H ′(D−1(d+ sθ))(D′′ ◦D−1(d+ sθ))

(D′ ◦D−1(d+ sθ))3

]

.

Thus, we get that
∣

∣

∣
R

(1)
s (θ)

∣

∣

∣
≤ C (‖H ′‖∞ + ‖H ′′‖∞) s2θ2 ≤ C ‖H‖3,∞ θ2| log(θ)|. Choosing

θ = 1/
√
n, we deduce from (108) that:

(109) H

(

D−1

(

d+
s√
n

))

= H(y) +
1√
n

s

D′(y)
H ′(y) +R(1)

s

(

1√
n

)

,

where
∣

∣

∣R
(1)
s (1/

√
n)
∣

∣

∣ ≤ C ‖H‖3,∞ log(n)/n. Recall the definition of ys and π(s, n, d, δ) given

by (97). By Proposition 10.1 and equation (109), we get that:

(110)
√
nH

(

D−1

(

d+
s√
n

))(

Hn,d,δ

(

d+
s√
n

)

− 1{s≤0}

)

=
√
n

(

H(y) +
1√
n

s

D′(y)
H ′(y)

) (

(

Φ(ys)− 1{s≤0}
)

+
1√
n

ϕ(ys)

σ(d)
π(s, n, d, δ)

)

+R(0)
n (s)

=
√
nH(y)∆(1)(s) +

H ′(y)
D′(y)

∆(2)(s) +
H(y)

σ(d)
∆(3)(s) +R(0)

n (s) + R̂(0)
n (s),

where

∆(1)(s) =
(

Φ(ys)− 1{s≤0}
)

, ∆(2)(s) = s
(

Φ(ys)− 1{s≤0}
)

, ∆(3)(s) = ϕ(ys)π(s, n, d, δ),
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∣

∣

∣
R(0)

n (s)
∣

∣

∣
≤ √

n‖H‖∞|R10.1(s, n, d, δ)| +√
n|R(1)

s

(

1/
√
n
)

|+√
n|R10.1(s, n, d, δ)R(1)

s

(

1/
√
n
)

|

≤ C ‖H‖3,∞
log(n)2√

n

(111)

and

(112)
∣

∣

∣R̂(0)
n (s)

∣

∣

∣ =

∣

∣

∣

∣

1√
n

H ′(y)
σ(d)D′(y)

sϕ(ys)π(s, n, d, δ)

∣

∣

∣

∣

≤ C ‖H‖3,∞
√

log(n)√
n

·

Study of
∫ A
−A∆(1)(s)ds. Since ∆(1) is an odd integrable functions on R

∗, we get that:

(113)

∫ A

−A
∆(1)(s)ds = 0.

Study of
∫ A
−A∆(2)(s)ds. Because ∆(2) is integrable and

∫

R
∆(2)(s)ds = σ2

(d)/2, we get that

(114)

∫ A

−A
∆(2)(s) ds =

σ2
(d)

2
+R(2)

n , with R(2)
n = −2

∫ +∞

A
sΦ(ys)ds·

Using Lemma 10.2, we get that

(115) |R(2)
n | ≤ C n−2α2

.

Study of
∫ A
−A∆(3)(s)ds. We have, using (97), that:

∆(3)(s) = ϕ(ys)

(

1− 2d

6
(1 + 2y2s) + δ + S(nd+ δ)

)

.

By elementary calculus, we have that:

∫

R

ϕ(ys)ds =

∫

R

y2sϕ(ys)ds = σ(d).

We get that:

(116)

∫ A

−A
∆(3)(s)ds = σ(d)

[

1− 2d

2
+ δ + S (nd+ δ)

]

+R(3)
n ,

where

(117) R(3)
n = −2σ(d)

(

1− 2d

6
+ δ + S(nd+ δ)

)

Φ

(

− A

σ(d)

)

− 2
1− 2d

3

∫ +∞

A
y2sϕ(ys)ds.

Using Lemma 10.2 and since |2d− 1| ≤ 1, |δ| ≤ 1 and S is bounded by 1, we have that:

(118) |R(3)
n | ≤ Cn−α2

.
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Conclusion. Using (110), (113), (114), (116), we deduce that

√
n

∫ A

−A
H

(

D−1

(

d+
s√
n

))(

Hn,d,δ

(

d+
s√
n

)

− 1{s≤0}

)

ds

=
H ′(y)
D′(y)

σ2
(d)

2
+H(y)

[

1− 2d

2
+ δ + S (nd+ δ)

]

+R10.3
n (H),

where R10.3
n (H) =

∫ A
−A(R

(0)
n (s) + R̂

(0)
n (s)) ds + (H ′(y)/D′(y))R(2)

n + (H(y)/σ(d))R
(3)
n . Using

the upper bounds (111) and (112) (to be integrated over [−A,A]), (115) and (118) with

α ≥ 1, we get that |R10.3
n (H)| ≤ C ‖H‖3,∞ log(n)3/

√
n. �

We give a direct application of the previous lemma.

Lemma 10.4. Assume that W satisfies condition (62). Let y ∈ (0, 1) and α ≥ 1. There
exists a positive constant C such that for all G ∈ C2([0, 1]), δ ∈ [−1, 1], n ≥ 2 such that
[

d± A√
n

]

⊂ D((0, 1)), with d = D(y) and A = α
√

log(n), we have:

n

∫ 1

0
G(x)

(

Hn,d,δ (D(x))− 1{x≤y}
)

1{√n|D(x)−d|≤A}dx

=
G′(y)D′(y)−G(y)D′′(y)

D′(y)3
σ2
(d)

2
+

G(y)

D′(y)

[

1− 2d

2
+ δ + S(nd+ δ)

]

+R10.4
n (G),

where
∣

∣

∣R10.4
n (G)

∣

∣

∣ ≤ C ‖G‖3,∞ n−1/2 log(n)3.

Proof. Let G be a function in C2([0, 1]). Define the function H on [0, 1] by H(z) = G(z)
D′(z) for

all z ∈ [0, 1]. Use the change of variables s =
√
n (D(x)− d) to get that:

∫ 1

0
G(x)

(

Hn,d,δ(D(x))− 1{x≤y}
)

1{√n|D(x)−d|≤A}dx

=
1√
n

∫ A

−A
H

(

D−1

(

d+
s√
n

))(

Hn,d,δ

(

d+
s√
n

)

− 1{s≤0}

)

ds.

By Lemma 10.3, we obtain that:

n

∫ 1

0
G(x)

(

Hn,d,δ (D(x))− 1{x≤y}
)

1{√n|D(x)−d|≤A}dx

=
H ′(y)
D′(y)

σ2
(d)

2
+H(y)

[

1− 2d

2
+ δ + S(nd+ δ)

]

+R10.3
n (H)

=
G′(y)D′(y)−G(y)D′′(y)

D′(y)3
σ2
(d)

2
+

G(y)

D′(y)

[

1− 2d

2
+ δ + S(nd+ δ)

]

+R10.3
n (G/D′).

Set R10.4
n (G) = R10.3

n (G/D′) and use (107) to conclude. �

Lemma 10.5. Let y ∈ (0, 1) and α > 0. For all u ∈ (0, 1), δ ∈ [−1, 1] and n ∈ N
∗ such that√

n|u− d| ≥ A with d = D(y) and A = α
√

log(n), we have
∣

∣Hn,d,δ(u)− 1{u≤d}
∣

∣ ≤ n−α+2.
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Proof. Let X be a binomial random variable with parameters (n, u). Assume first that
u ≥ d+ A√

n
. Let λ ≥ 0. Using Chernov inequality, we get:

(119) Hn,d,δ(u)− 1{u≤d} = P (X ≤ nd+ δ) ≤ eλ(nd+δ)
E

[

e−λX
]

= exp [λ(nd+ δ) + nΨ(λ)] ,

with Ψ(λ) = log(1 + u(e−λ − 1)). By Taylor-Lagrange equality, we have

(120) Ψ(λ) = Ψ(0) + λΨ′(0) +R(λ) = 0− uλ+R(λ),

where R(λ) =
∫ λ
0 (λ− t)Ψ′′(t)dt. Because Ψ′′(t) ≥ 0 and Ψ′′(t) = (1−u)ue−λ

(1+u(e−λ−1))
2 ≤ 1

4 (applying

the following inequality xy
(x+y)2

≤ 1
4 with x = 1−u and y = ue−λ), we get that |R(λ)| ≤ λ2

8 ≤

λ2. Finally, applying (120) with λ =

√

log(n)
n , we get that

(121) nΨ(λ) = −u
√

n log(n) +R(2)(n),

with |R(2)(n)| ≤ log(n). Using (119) and (121), we get that

Hn,d,δ(u)− 1{u≤d} ≤ exp

[
√

log(n)

n
(nd+ δ)− u

√

n log(n) +R(2)(n)

]

= exp
[

√

n log(n)(d− u) +R(3)(n)
]

,

where |R(3)(n)| ≤ 2 log(n), since |δ| ≤ 1. Because d− u ≤ −A√
n
with A = α

√

log(n), we have

that

Hn,d,δ(u)− 1{u≤d} ≤ e−α log(n)+R(3)(n) ≤ e(−α+2) log(n) = n−α+2.

In the case where u ≤ d− A√
n
, we have that

0 ≥ Hn,d,δ(u)− 1{u≤d} = P (X ≤ nd+ δ)− 1

≥ −P (X ≥ nd+ δ)

= −P (n−X ≤ n(1− d)− δ) .

Since n−X is a binomial random variable with parameters (n, 1−u), using similar argument
as in the first part of the proof (with u and X replaced by 1−u and n−X), we get that, for
u ≤ d− A√

n
:

Hn,d,δ(u)− 1{u≤d} ≥ −n−α+2.

We deduce that
∣

∣Hn,d,δ(u)− 1{u≤d}
∣

∣ ≤ n−α+2. �

The following lemma is a direct application of Lemma 10.5 with u = D(x).

Lemma 10.6. Assume that W satisfies condition (62). Let y ∈ (0, 1) and α ≥ 1. For all

G ∈ B([0, 1]), δ ∈ [−1, 1] and n ∈ N
∗, we have with d = D(y) and A = α

√

log(n):

n

∫ 1

0
G(x)

∣

∣Hn,d,δ (D(x))− 1{x≤y}
∣

∣ 1{√n|D(x)−d|≥A}dx = R10.6
n (G),

where
∣

∣

∣
R10.6

n (G)
∣

∣

∣
≤ ‖G‖∞ n−α+3.

Combining Lemma 10.4 with Lemma 10.6 for α = 3, we deduce the following proposition.
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Proposition 10.7. Assume that W satisfies condition (62). Let y ∈ (0, 1). There exists
a positive constant C such that for all G ∈ C2([0, 1]), δ ∈ [−1, 1] and n ∈ N

∗ such that
[

d± A√
n

]

⊂ D((0, 1)), with d = D(y) and A = 4
√

log(n), we have:

n

∫ 1

0
G(x)

(

Hn,d,δ (D(x))− 1{x≤y}
)

dx

=
G′(y)D′(y)−G(y)D′′(y)

D′(y)3
σ2
(d)

2
+

G(y)

D′(y)

[

1− 2d

2
+ δ + S(nd+ δ)

]

+R10.7
n (G),

with

(122)
∣

∣

∣R10.7
n (G)

∣

∣

∣ ≤ C ‖G‖3,∞ n− 1
4 .

11. Appendix B: Proof of Proposition 8.3

We first state a preliminary lemma in Section 11.1 and then provide the proof of Proposition
8.3 in Section 11.2.

11.1. A preliminary result. For y = (y1, y2) ∈ [0, 1]2, let M(y) be the covariance matrix
of a couple (Y1, Y2) of Bernoulli random variables such that P(Yi = 1) = D(yi) for i ∈ {1, 2}
and P(Y1 = Y2 = 1) =

∫

[0,1]W (y1, z)W (y2, z) dz.

Lemma 11.1. Assume that W satisfies condition (62). There exists ε′ > 0 such that for all
y ∈ [0, 1]2, we have det(M(y)) > ε′.

Proof. Let M2 be the set of matrices of size 2 × 2, and ‖·‖∞ be the norm on M2 defined in
(127). We consider the closed set on M2:

F = F+

⋃

F− where F± =

{

r(I2 ±
(

0 1
1 0

)

); r ∈ [0, 1/4]

}

where I2 ∈ M2 is the identity matrix. Notice F is the set of all covariance matrices of couples
of Bernoulli random variables having determinant equal to 0. Since the determinant is a
continuous real-valued function on M2, to prove Lemma 11.1, it is enough to prove that for
all y = (y, y′) ∈ [0, 1]2 and all M0 ∈ F :

(123) ‖M(y) −M0 ‖∞ ≥ ε2/4.

We set p = D(y), p′ = D(y′) and α =
∫

[0,1]W (y, z)W (y′, z) dz so that:

M(y) =

(

p(1− p) α− pp′

α− pp′ p′(1− p′)

)

.

And the elements M0 ∈ F are of the form, with r ∈ [0, 1/4]:

M0 =

(

r ±r
±r r

)

.

The proof of (123) is divided in three cases. Recall thatW satisfies condition (62). Without
loss of generality, we can assume that p ≤ p′ and thus:

(124) ε ≤ p ≤ p′ ≤ 1− ε.



ASYMPTOTICS FOR RANDOM GRAPHS 47

Since (1−W (y, z))(1−W (y′, z)) is non negative, by integrating with respect to z over [0, 1],
we get that α ≥ p + p′ − 1. Using that W ≤ 1 − ε, we deduce, denoting by x+ = max(x, 0)
the positive par of x ∈ R, that:

(125) (p + p′ − 1)+ ≤ α ≤ (1− ε)p.

The case M0 ∈ F+. Recall that p ≤ p′. If |r − p(1 − p)| ≥ ε2/4, then, by considering the
first term on the diagonal, we have ‖M(y)−M0 ‖∞ ≥ ε2/4.

If |r − p(1− p)| ≤ ε2/4, then, by considering the term out the diagonal, we have:

‖M(y) −M0 ‖∞ ≥ |α− pp′ − r|.
For δ′ = r − p(1− p) ∈ [−ε2/4, ε2/4], we get, using that α ≤ (1− ε)p and p ≤ p′:

α− pp′ − r ≤ (1− ε)p − p2 − p(1− p)− δ′

≤ −ε2 + ε2/4 = −3ε2/4.

We deduce that (123) holds if M0 ∈ F+.

The case |1− p− p′| > ε/2 and M0 ∈ F−. If |r− p(1− p)| ≥ ε2/4, then, by considering the
first term on the diagonal, we have ‖M(y)−M0 ‖∞ ≥ ε2/4.

If |r − p(1− p)| ≤ ε2/4, then, by considering the term out the diagonal, we have:

‖M(y) −M0 ‖∞ ≥ |α− pp′ + r|.
Assume first that 1− p− p′ > ε/2. For δ′ = r− p(1− p) ∈ [−ε2/4, ε2/4], we get, using α ≥ 0,
that:

α− pp′ + r ≥ p(1− p− p′) + δ′

≥ ε2/2− ε2/4 = ε2/4.

Assume then that 1− p− p′ < −ε/2. For δ′ = r− p(1− p) ∈ [−ε2/4, ε2/4], we get, using the
lower bound α ≥ p+ p′ − 1 from (125), that:

α− pp′ + r ≥ (1− p)(p+ p′ − 1) + δ′

≥ ε2/2− ε2/4 = ε2/4.

We get ‖M(y)−M0 ‖∞ ≥ ε2/4.
We deduce that (123) holds if |1− p− p′| > ε/2 and M0 ∈ F−.

The case |1− p− p′| ≤ ε/2 and M0 ∈ F−. Applying Lemma 11.2 below, with f = W (y, ·),
g = W (y′, ·) and δ = 1− p− p′, we get that:

(126) α ≥ (1− ε)(ε − δ).

If |r − p(1 − p)| ≥ ε2/4, then, by considering the first term on the diagonal, we have
‖M(y) −M0 ‖∞ ≥ ε2/4.

If |r − p(1− p)| ≤ ε2/4, then, by considering the term out the diagonal, we have:

‖M(y) −M0 ‖∞ ≥ |α− pp′ + r|.
For δ′ = r − p(1− p) ∈ [−ε2/4, ε2/4], using (126), we get that:

α− pp′ + r = α− p(1− p− δ) + p(1− p) + δ′

≥ (1− ε)ε− δ(1 − ε− p) + δ′

≥ (1− ε)ε− (1− 2ε)ε/2 − ε2/4 ≥ ε2/4.

We deduce that (123) holds if |1− p− p′| ≤ ε/2 and M0 ∈ F−.
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Conclusion. Since (123) holds when M0 ∈ F+, when M0 ∈ F− and either |1− p− p′| > ε/2
or |1− p− p′| ≤ ε/2, we deduce that (123) holds under the condition of Lemma 11.1. �

Lemma 11.2. Let ε ∈ (0, 1/2), δ ∈ [−ε/2, ε/2], f, g ∈ B([0, 1]) such that 0 ≤ f, g ≤ 1 − ε
and

∫

[0,1](f + g) = 1 − δ. Then we have
∫

[0,1] fg ≥ (1 − ε)(ε − δ), and this lower bound is

sharp.

Proof. Set f1 = min(f, g) and g1 = max(f, g) so that 0 ≤ f1 ≤ g1 ≤ 1−ε and
∫

[0,1](f1+g1) =

1 − δ and
∫

[0,1] f1 g1 =
∫

[0,1] fg. Set h = min(f1, (1 − ε − g1)) as well as f2 = f1 − h and

g2 = g1 + h so that 0 ≤ f2 ≤ g2 ≤ 1− ε,
∫

[0,1](f2 + g2) = 1− δ and

∫

[0,1]
f2 g2 =

∫

[0,1]
(f1−h) (g1+h) =

∫

[0,1]
f1 g1−

∫

[0,1]
(h(g1−f1)+h2) ≤

∫

[0,1]
f1 g1 =

∫

[0,1]
fg.

Since by construction either f2(x) = 0 or g2(x) = 1− ε, we deduce that:

∫

[0,1]
fg ≥

∫

[0,1]
f2 g2 ≥ (1− ε)

∫

[0,1]
f2 = (1− ε)

(

1− δ −
∫

[0,1]
g2

)

≥ (1− ε)(ε− δ).

To see this lower bound is sharp, consider g = 1− ε and f = ε− δ. �

11.2. Proof of Proposition 8.3. We set:

Ẑn = (n− 1)−1/2M(x)−1/2(D̂(n+1) − µ(x)),

which is, conditionally on {X[2] = x}, distributed as the normalized and centered sum of n−1
independent random variables distributed as Y = (Y1, Y2), with Y1 and Y2 Bernoulli random
variables such that E[Y ] = µ(x)/(n − 1) and Cov(Y, Y ) = M(x).

Using Theorem 3.5 from [9] or Theorem 1.1 from [2], we get that:

sup
K∈K

∣

∣

∣P

(

Ẑn ∈ K
∣

∣X[2] = x
)

− P (Z ∈ K)
∣

∣

∣ ≤ 115
√
2 γ,

where

γ = (n− 1)E

[

∣

∣

∣
(n− 1)−1/2M(x)−1/2(Y − E[Y ])

∣

∣

∣

3
]

.

Let ‖·‖∞ denote the matrix norm on the set M2 of real matrices of dimension 2× 2 induced
by the maximum vector norm on R

2, which is the maximum absolute line sum:

(127) ‖M ‖∞ = max
1≤i≤2

2
∑

j=1

|M(i, j)|, for all M ∈ M2.

Recall that ‖·‖∞ is an induced norm (that is ‖AB ‖∞ ≤ ‖A‖∞ ‖B ‖∞). For M ∈ M2 and

x ∈ R
2, we have |Mx| ≤

√
2 ‖M ‖∞ |x|. If M ∈ M2 is symmetric positive definite (which is

only used for the second inequality and the equality), we get:

(128) ‖M ‖1/2∞ ≤ ‖M1/2 ‖∞ ≤
√
2 ‖M ‖1/2∞ and ‖M−1 ‖∞ =

‖M ‖∞
|det(M)| ·

We deduce that if M ∈ M2 is symmetric positive definite, then

‖M−1/2 ‖∞ ≤
√
2|det(M)|−1/2 ‖M ‖1/2∞ .
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We obtain that for n ≥ 2:

γ ≤ 23(n− 1)−1/2 ‖M(x)‖3/2∞ det(M(x))−3/2
E

[

|Y − E[Y ]|3
]

≤ 25/2n−1/2 det(M(x))−3/2
E
[

|Y1 − E[Y1]|3 + |Y2 − E[Y2]|3
]

≤ 23/2n−1/2 det(M(x))−3/2,

where we used that ‖M(x)‖∞ ≤ 1/2 for the second inequality and the convex inequality
(x + y)p ≤ 2p−1(xp + yp) for the third and that |Yi − E[Yi]| ≤ 1 so that E[|Yi − E[Yi]|3] ≤
Var(Yi) ≤ 1/4. We deduce from Lemma 11.1, there exists C0 > 0 such that for all x =
(x1, x2) ∈ [0, 1]2 with x1 6= x2 and all n ≥ 2:

sup
K∈K

∣

∣

∣P

(

Ẑn ∈ K
∣

∣X[2] = x
)

− P (Z ∈ K)
∣

∣

∣ ≤ C0 n
−1/2.

To conclude, replace the convex set K in this formula by the convex set M(x)−
1
2√

n−1
(K − µ(x)).
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