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Abstract

In this paper we consider the existence of Hamilton cycles in the random graph
G = Gδ≥3

n,m. This a random graph chosen uniformly from Gδ≥3
n,m , the set of graphs with

vertex set [n], m edges and minimum degree at least 3. Our ultimate goal is to prove
that if m = cn and c > 3/2 is constant then G is Hamiltonian w.h.p. In an earlier
paper [4], the second author showed that c ≥ 10 is sufficient for this and in this paper
we reduce the lower bound to c > 2.662.... This new lower bound is the same lower
bound found in Frieze and Pittel [6] for the expansion of so-called Posá sets.

1 Introduction

In this paper we consider the existence of Hamilton cycles in the random graph G = Gδ≥3
n,m.

This a random graph chosen uniformly from Gδ≥3
n,m , the set of graphs with vertex set [n], m

edges and minimum degree at least 3. If c = 3/2 then Gδ≥3
n,m is precisely the random 3-regular

graph which is proven, via the small cycle conditioning method, to be Hamiltonian [11].
However as Gδ≥3

n,3/2n 6⊂ Gδ≥3
n,cn for every c > 0 we cannot directly infer Hamiltonicity for larger

values of c. In addition, due to the increase in the variance of the degree sequence, the
method itself cannot be transfered directly. Our ultimate goal is to prove that if m = cn
and c > 3/2 is constant then G is Hamiltonian w.h.p. In an earlier paper [4], the second
author showed that c ≥ 10 is sufficient for this and in this paper we reduce the lower bound
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to c > 2.662.... This new lower bound is the same lower bound found in Frieze and Pittel
[6] for expansion of so-called Posá sets i.e. sets of endpoints that may be formed via the
application of Pósa rotations, Pósa [10]. In summary we prove,

Theorem 1.1. W.h.p. Gδ≥3
n,m is Hamiltonian for m = cn, c > 2.662....

One of the motivations for studying this problem arises from the fact that the 3-core of the
random graph Gn,m is distributed precisely as Gδ≥3

ν,µ , where ν, µ are the (random) number
of vertices and edges in the 3-core and w.h.p. ν is known to be linear in n. In particular,
it is plausible that the first non-empty 3-core in the random graph process is Hamiltonian
w.h.p. To prove this to be true, we would need to reduce the lower bound on c to the edges
to vertices ratio of the corresponding 3-core which is known to be w.h.p. about 1.8 [7]. In
addition, we note that Krivelevich, Lubetzky and Sudakov [8] showed that w.h.p. the first
non-empty k-core, k ≥ 15, is Hamiltonian.

2 Proof of Theorem 1.1

2.1 The game plan

The key to the proof Theorem 1.1 is the following lemma:

Lemma 2.1. Let V = [n] and G = (V,E) where E = E1∪E2 and E2 = {e1, ..., ea} ⊂
(

V
2

)

\E1.
Let G1 = (V,E1) and let P be a set of vertex disjoint paths in G1 that covers V . Suppose
that for some 0 < β < 1,

P1 |P| ≤ min
{

|E2|

n2−2β log2 n
, nβ

4 logn

}

.

P2 Given e1, e2, . . . , ei−1, the edge ei is chosen uniformly from
(

V
2

)

\
(

E1 ∪ {e1, . . . , ei−1}
)

.

P3 X ⊆ V , |X| ≤ nβ implies that either e(X ∪N(X)) ≤ |X ∪N(X)| or |N(X)| ≥ 2|X|.
(Here N(X) = {y ∈ V \X : ∃x ∈ X such that {x, y} ∈ E1}. In addition e(X ∪N(X))
denotes the number of edges spanned by X ∪N(X).)

Then G is Hamiltonian with probability 1− o(n−3).

Proof. Let P = {P1, P2, . . . , Pℓ} be a minimum cardinality set of vertex disjoint paths in
G1 that covers V (and satisfies P1). Let the endpoints of Pi be v(i,1) and v(i,2) for i ∈ [ℓ].
Because P is of minimum cardinality we have that

{

v(i,2)v(i+1,1)

}

/∈ E1 for i ∈ [ℓ] (here we
identify v(ℓ+1,1) with v(1,1)). In addition, H0 = v(1,1), P1, v(1,2)v(2,1), P2, v(2,2)v(3,1)P3, . . . , v(ℓ,1)Pℓ

v(ℓ,2)v(1,1), v(1,1) is a Hamilton cycle in the graph Γ0 = (V,E1 ∪R) where R = {
{

v(i,2)v(i+1,1)

}

: i ∈ [ℓ]}.
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Starting with H0, we find a Hamilton cycle in G by removing the edges of R from our cycle.
We do this with at most ℓ rounds of an extension-rotation procedure. Fix i ≥ 0 and suppose
then that after i rounds, we have a Hamilton cycle Hi in the graph Γi = (V,E1 ∪ Ri ∪ Fi)
where Ri ⊆ R and |Ri| ≤ ℓ− i. Here Fi = {e1, e2, . . . , eb} are the edges of E2 that have been
revealed so far. We explain revealed momentarily.

We start round i+ 1 by deleting an edge e from Ri to create a Hamilton path Q1. We then
use Pósa rotations to try to find a Hamilton cycle in Γi−e. Given a path P = (x1, x2, . . . , xs)
and an edge {xs, xj} where 1 < j < s− 1, the path (x1, . . . , xj , xs, xs−1, . . . , xj+1) is said to
be obtained from P by a rotation with x1 as the fixed end vertex. The edge {xs, xj} will be
called the rotating edge.

First consider all Hamilton paths obtainable from Q1 by a sequence of rotations with x1

fixed. In these rotations, we are only allowed to use edges from E(Γi)\{e} as rotating edges.
Next let END(Q1, x1) denote the set of end vertices of these paths, other than x1. If there
exists y ∈ END(Q1, x1) such that {x1, y} ∈ E(Γi) \ {e} then this round is complete. We
have a Hamilton cycle containing one less member of R. Thus we can define Ri+1 = Ri \ {e}
and Fi+1 = Fi.

In the event there is no such y, we proceed as follows: Let END(Q1, x1) = {z1, z2, . . . , zq} and
let Qj, j = 2, . . . , q denote a path from x1 to zj found by rotations. Then, for 1 ≤ j ≤ q, we
let END(Qj , zj) denote the set of end vertices of paths obtainable from Qj by a sequence of
rotations with zj fixed. If for some j we find y ∈ END(Qj , zj) such that {zj , y} ∈ E(Γi)\{e}
then, as before, this round is complete. We have a Hamilton cycle containing one less member
of R. We can then define Ri+1 = Ri \ {e} and Fi+1 = Fi.

Failing this, we start revealing the edges of eb+1, eb+2, ..., ea, in this order, to search for an
edge of the form {zj , yj} where yj ∈ END(Qj , zj). If ec is the first such edge, b ≤ c ≤ a, then
we let Ri+1 = Ri \{e}, Fi+1 = Fi∪{eb+1, eb+2, . . . , ec}, Γi+1 = (V,E1∪Ri+1∪Fi+1) and Hi+1

be a Hamilton cycle in Γi+1. Pósa’s lemma states that |N(END(Qj , zj))| < 2|END(Qj , zj)|
(see Corollary 6.7 of [5]) and Lemma 2.1 of [6] that e

(

N(END(Qj , zj)) ∪ END(Qj , zj)
)

>
|N(END(Qj , zj)) ∪ END(Qj , zj)|. Thus, P3 implies that |END(Qj, zj)| > nβ for all 1 ≤
j ≤ q and similarly that q > nβ.

For 1 ≤ l ≤ a = |E2| let Yl be the indicator for the event that either el is not revealed (in
any round) in the above procedure or when it is revealed a new Hamilton cycle is identified.
From P2, we have,

Pr(Yj = 1) ≥
(

nβ−2j
2

)

(

n
2

) ≥ n2β−2

5
,

for j ≤ nβ/4.

In the event that G is not Hamiltonian all the edges in E2 are revealed and for less than |P|
of them a new Hamilton cycle is identified. Indeed, if we assume otherwise then Γ|P| ⊆ Γ is
Hamiltonian. Hence, Z ≤ |P|. But Yl, 1 ≤ l ≤ a dominates a Bernoulli(n2β−2/5) random
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variable. This domination holds regardless of Y1, Y2, . . . , Yl−1. Hence, from P1, we have

Pr(G is not Hamiltonian ) ≤ Pr(Binomial(n2−2β |P| log2 n, n2β−2/5) ≤ |P|) = o(n−3).

2.2 Choice of E2

Let
s = n1/2 log−2 n

and let

Ω =

{

(H, Y ) : H ∈ Gδ≥3
n,cn−s, Y ⊆

(

[n]

2

)

, |Y | = s and E(H) ∩ Y = ∅
}

where Gδ≥3
n,m =

{

Gδ≥3
n,m

}

.

We consider two ways of randomly choosing an element of Ω.

(a) First choose G uniformly from Gδ≥3
n,cn and then choose an s-set X uniformly from E(G) \

E3(G), where E3(G) is the set of edges of G that are incident with a vertex of degree 3.
This produces a pair (G−X,X). We let Pra denote the induced probability measure
on Ω.

(b) ChooseH uniformly from Gδ≥3
n,cn−s and then choose an s-set Y uniformly from

(

[n]
2

)

\E(H).
This produces a pair (H, Y ). We let Prb denote the induced probability measure on Ω.

The following lemma implies that as far as properties that happen whp in G, we can use
Method (b), just as well as Method (a) to generate our pair (H, Y ). For a proof see Lemma
10.1 of [4].

Lemma 2.2. There exists Ω1 ⊆ Ω such that

(i) Pra(Ω1) = 1− o(1).

(ii) ω = (H, Y ) ∈ Ω1 implies that Pra(ω) = (1 + o(1))Prb(ω).

It follows that we can take E2 as the set Y in the lemma and then we have |E2| = n0.5−o(1)

and this covers P2 of Lemma 2.1.
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2.3 P3 of Lemma 2.1

The main result of [6], (see Theorem 1.1 of that paper), is that if m = cn and c > 2.6616 . . .
then w.h.p. if e(S ∪N(S)) > |S ∪N(S)| then |S| + |N(S)| ≥ n1−o(1). So, we see that we
can take β = 0.99 in Lemma 2.1. This covers P3.

In [6] it is also shown that if G has minimum degree 3, P is a path of G and x an endpoint
of P then the set S = END(P, x), defined in the proof of Lemma 2.1, satisfies the relation
e(S ∪N(S)) > |S ∪N(S)|.

P1 of Lemma 2.1 will follow from the analysis of 2greedy in Section 5.

3 Random Sequence Model

We must now take some time to explain the model we use for Gδ≥3
n,m. We use a variation

on the pseudo-graph model of Bollobás and Frieze [2] and Chvátal [3]. Given a sequence
x = (x1, x2, . . . , x2M) ∈ [N ]2M of 2M integers between 1 and N we can define a (multi)-graph
G

x
= G

x
(N,M) with vertex set [N ] and edge set {(x2i−1, x2i) : 1 ≤ i ≤ M}. The degree

d
x
(v) of v ∈ [N ] is given by

d
x
(v) = | {j ∈ [2M ] : xj = v} |.

If x is chosen randomly from [N ]2M then G
x
is close in distribution to GN,M . Indeed,

conditional on being simple, G
x
is distributed as GN,M . To see this, note that if G

x
is simple

then it has vertex set [N ] and M edges. Also, there are M !2M distinct equally likely values
of x which yield the same graph.

We will use the above variation on the pseudo-graph model to analyze 2greedy, an algo-
rithm that finds 2-matchings, applied to Gδ≥3

n,m. A 2-matching is a set of edges such that every
vertex is incident to at most 2 edges in it. 2greedy is described in Section 4. As 2greedy
progresses vertices become matched (incident with edges selected for the 2-matching), edges
are deleted and vertices of small degree are identified. As such we will need to impose ad-
ditional constrains on the vertex degrees and our situation becomes more complicated. At
any step of the algorithm we keep track of 3 sets J3, J2 and J0 that partition the current
vertex set, say [N ]. (A vertex that becomes incident with 2 edges of the 2-matching is not
included in the current vertex set.) J3 is a set of vertices of degree at least 3 and it consists
of vertices that have not been matched yet. J2 is a set of vertices of degree at least 2 and it
consists of vertices that are incident to exactly 1 edge in the current 2-matching. Finally J0

consists of the remaining vertices and whose sum of degrees will be proven to be D = o(N).

So we let

[N ]2MJ2,J3;D = {x ∈ [N ]2M : d
x
(j) ≥ i for j ∈ Ji, i = 2, 3 and

∑

j∈J0

d
x
(j) = D}.
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Let G = G(N,M, J2, J3;D) be the multi-graph G
x
for x chosen uniformly from [N ]2MJ2,J3;D.

What we need now is a procedure that generates G
x
conditioned on G

x
being simple or

equivalently a way to access the degree sequence of elements in [N ]2MJ2,J3;D. Such a procedure
is given in [4] and it is justified by Lemmas 3.1, 3.2 and 3.3 that follow. In Lemma 3.1
it is proven that the degree sequence of [N ]2MJ2,J3;D (restricted to the sets J2, J3) has the
same distribution as the joint distribution of P1,P2, ...,P|J2|+|J3| where (i)for i ∈ Jℓ, Pi is a
Poisson(λ) random variable condition on being at least ℓ for some carefully chosen value

of λ and (ii)
∑|J2|+|J3|

i=1 Pi = 2M −D. In Lemma 3.2 it is shown that the marginal of d
x
(j)

and joint of (d
x
(j1), dx(j2)) distributions are close to the marginal of Pi and joint of (Pi,Pj)

distributions respectively. This fact is used in Lemma 3.3 where we establish concentration
of the number of vertices of degree k in Jℓ, ℓ = 2, 3. For the proofs of Lemmas 3.1, 3.2 and
3.3 see [4].

Let

fk(λ) = eλ −
k−1
∑

i=0

λi

i!

for k ≥ 0.

Lemma 3.1. Let x be chosen randomly from [N ]2MJ2,J3;D. For i = 2, 3 let Zj (j ∈ [Ji]) be
independent copies of a truncated Poisson random variable Pi, where

Pr(Pi = t) =
λt

t!fi(λ)
, t = i, i+ 1, . . . .

Here λ satisfies
3
∑

i=2

λfi−1(λ)

fi(λ)
|Ji| = 2M −D. (1)

For j ∈ J0, Zj = dj is a constant and
∑

j∈J0
dj = D. Then {d

x
(j)}j∈[N ] is distributed as

{Zj}j∈[N ] conditional on Z =
∑

j∈[n]Zj = 2M .

To use Lemma 3.1 for the approximation of vertex degrees distributions we need to have
sharp estimates of the probability that Z is close to its mean 2M . In particular we need
sharp estimates of Pr(Z = 2M) and Pr(Z − Z1 = 2M − k), for k = o(N). These estimates
are possible precisely because E(Z) = 2M . Using the special properties of Z, a standard
argument in an appendix of [4] shows that where Nℓ = |Jℓ| and N∗ = N2 + N3 and the
variances are

σ2
ℓ =

fℓ(λ)(λ
2fℓ−2(λ) + λfℓ−1(λ))− λ2fℓ−1(λ)

2

fℓ(λ)2
and σ2 =

1

N∗

3
∑

ℓ=2

Nℓσ
2
ℓ , (2)

that if N∗σ2 → ∞ and k = O(
√
N∗σ) then

Pr (Z = 2M − k) =
1

σ
√
2πN∗

(

1 +O

(

k2 + 1

N∗σ2

))

. (3)
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Given (3) and
σ2
ℓ = O(λ), ℓ = 2, 3,

we obtain

Lemma 3.2. Let x be chosen randomly from [N ]2MJ2,J3;D.

(a) Assume that logN∗ = O((N∗λ)1/2). For every j ∈ Jℓ and ℓ ≤ k ≤ logN∗,

Pr(d
x
(j) = k) =

λk

k!fℓ(λ)

(

1 +O

(

k2 + 1

N∗λ

))

. (4)

Furthermore, for all ℓ1, ℓ2 ∈ {2, 3} and j1 ∈ Jℓ1 , j2 ∈ Jℓ2, j1 6= j2, and ℓi ≤ ki ≤ logN∗,

Pr(d
x
(j1) = k1, dx(j2) = k2) =

λk1

k1!fℓ1(λ)

λk2

k2!fℓ2(λ)

(

1 +O

(

log2N∗

N∗λ

))

. (5)

(b)

d
x
(j) ≤ logN

(log logN)1/2
qs1 (6)

for all j ∈ J2 ∪ J3.

Let νℓ
x
(s) denote the number of vertices in Jℓ, ℓ = 2, 3 of degree s in G

x
. Equation (3) and

a standard tail estimate for the binomial distribution shows the following:

Lemma 3.3. Suppose that logN∗ = O((N∗λ)1/2) and Nℓ → ∞ with N . Let x be chosen
randomly from [N ]2MJ2,J3;D. Then qs,

D(x) =

{

∣

∣

∣

∣

νℓ
x
(j)− Nℓλ

j

j!f(λ)

∣

∣

∣

∣

≤
(

1 +

(

Nℓλ
j

j!f(λ)

)1/2
)

log2N, k ≤ j ≤ logN

}

. (7)

✷

We can now show G
x
, x ∈ [n]2m∅,[n];0 is a good model for Gδ≥3

n,m. For this we only need to show
now that

Pr(G
x
is simple) = Ω(1). (8)

For this we can use a result of McKay [9]. If we fix the degree sequence of x then x itself is just
a random permutation of the multi-graph in which each j ∈ [n] appears d

x
(j) times. This

in fact is another way of looking at the configuration model of Bollobás [1]. The reference
[9] shows that the probability G

x
is simple is asymptotically equal to e−(1+o(1))ρ(ρ+1) where

1An event E = E(N∗) occurs quite surely (qs, in short) if Pr(E) = 1−O(N−a) for any constant a > 0

7



ρ = m2/m and m2 =
∑

j∈[n] dx(j)(dx(j) − 1). One consequence of the exponential tails in

Lemma 3.3 is that m2 = O(m). This implies that ρ = O(1) and hence that (8) holds. We
can thus use the Random Sequence Model to prove the occurrence of high probability events
in Gδ≥3

n,m.

All that is left now is to show that we can find a covering collection of paths that satisfy P1
e.g. |P| ≤ n0.48 will suffice. For this we need to analyse algorithm 2greedy of [4], which is
described in Section 4.

4 Greedy Algorithm

We now describe the algorithm 2greedy of [4]. Our algorithm will be applied to the random
graph G = Gδ≥3

n,m and analyzed in the context of G
x
, with N = n initially. As the algorithm

progresses, it makes changes to G and we let Γ denote the current state of G. The algorithm
grows a 2-matching M and for v ∈ [n] we let b(v) be the number of edges in M that are
incident to v. We let

• µ be the number of edges in Γ,

• V0,j = {v ∈ [n] : dΓ(v) = 0, b(v) = j}, j = 0, 1,

• Yk = {v ∈ [n] : dΓ(v) = k and b(v) = 0}, k = 1, 2,

• Z1 = {v ∈ [n] : dΓ(v) = 1 and b(v) = 1},

• Y = {v ∈ [n] : dΓ(v) ≥ 3 and b(v) = 0}, This is J3 of Section 3.

• Z = {v ∈ [n] : dΓ(v) ≥ 2 and b(v) = 1}, This is J2 of Section 3.

• M is the set of edges in the current 2-matching.

Algorithm

Step 1 Z1 ∪ Y1 ∪ Y2 6= ∅
Choose a random vertex v from Z1 ∪ Y1 ∪ Y2. Let w be a random neighbor of v. (We
allow the case v = w as we are analyzing the algorithm within the context of G

x
. This

case is of course unnecessary when the input is simple i.e. for Gδ≥k
n,m). Add (v, w) to M

and delete it from Γ. Update b(v) = b(v) + 1, b(w) = b(w) + 1. Delete all vertices in
V (Γ) satisfying b(u) ≥ 2 and the edges incident to them. Delete any isolated vertices.

Step 2: Y1 ∪ Y2 ∪ Z1 = ∅
Choose a random vertex v from Z ∪ Y . Let w be a random neighbor of v. Add (v, w)
to M and delete it to from Γ. Update b(v) = b(v) + 1, b(w) = b(w) + 1. Delete all
vertices in V (Γ) satisfying b(u) ≥ 2 and the edges incident to them. Delete any isolated
vertices.

8



The algorithm ends when there are at most n2/5 vertices left in Γ. The output of 2greedy
is set of edges in M .

5 Analysis of 2greedy

We will use the following additional notation to that given in Section 4:

• mi: number of edges at time i.

• Zj, j ≥ 2 and Yj, j ≥ 3 resp. are the subsets of Z and Y respectively constisting of
vertices of degree j.

• yi = |Y |, zi = |Z| at time i.

• ζi = |Y1|+ 2|Y2|+ |Z1|.

•
p2,i =

2|Z2|
2mi

and p3,i =
3|Y3|
2mi

.

Let ǫ = 10−5. We also define the stopping time

τ := min{i : mi ≤ n0.4+2ε}.

We will show that w.h.p.

for i < τ we have ζi < n0.4+ε = o(mi). (9)

Every component in M defines a path and the union of the vertices of these paths is V .
The number κ of components of the 2-matching M output by 2greedy can be bounded as
follows. κ can be bounded by the number κ1 of vertices of degree one or zero in M plus κ2,
the number of cycles. For every vertex v ∈ V that contributes to κ1 there exists a step i such
that either (i) v ∈ Z1 ∪ Y1 ∪ Y2 and at step i a neighbor of v is matched and then removed
from Γ or (ii) v /∈ Z1 ∪ Y1 ∪ Y2, 2 neighbors of v are matched and then removed from Γ and
as a result at least d(v)− 2 edges incident to v are removed. If the above occurs then we say
that step i witnesses an increase of κ1.

For the number of cycles spanned by M , observe that at step i, κ2 can increase by one only
if we add an edge {u, v} to M where u is connected to v by a path in M . If the above occurs
then we say that step i witnesses an increase of κ2.

Since w.h.p the maximum degree of G0, and hence of Γ, is log n we have that step i witnesses
an increase of κ1+κ2 of magnitude at most 2 logn with probability at most (2 logn)ζi/2mi+
O(1/mi). If κ1 + κ2 reaches n0.4+2ε before time τ then, there are at least ε2n0.4+2ε/2 logn
steps with mi ∈ [n0.4+2ε+(r−1)ǫ2 , n0.4+2ε+rǫ2] for some integer 1 ≤ r ≤ 1/ε2 that witness an

9



increase of κ1 + κ2. The probability that this occurs for a fixed r, while ζi ≤ n0.4+ε, is
bounded by

(

n0.4+2ε+rε2

ε2n0.4+2ε

2 logn

)(

2n0.4+ε log n

n0.4+2ε+(r−1)ε2

)
ε2n0.4+2ε

2 log n

≤
(

en0.4+2ε+rε2

ε2n0.4+2ε

2 logn

· 2n0.4+ε log n

n0.4+2ε+(r−1)ε2

)
ε2n0.4+2ε

2 log n

≤ n−5.

Hence w.h.p. if ζi ≤ n0.4+ε for i < τ then the total increase in κ1 +κ2 in the first τ − 1 steps
is bounded by n0.4+2ε. Once mi ≤ n0.4+2ε, at most n0.4+2ε more components can be created,
yielding in total at most 2n0.4+2ε components.

For i < τ , we define the events

Ai =
{

(zj + yj)λj ≥ log3 n for j ≤ i
}

and Bi =
{

(λi ≥ m−0.2
i ) ∨ (yi ≥ m0.8

i )
}

.

For i < τ , we also define the following random variables:

Xi = (ζi+1 − ζi)I(Ai,Bi, 0 < ζi < n0.4+ε).

Yi = (ζi+1 − ζ)I(Ai,¬Bi, 0 < ζi < n0.4+ε).

X ′
i = (ζi+1 − ζ)I(¬Ai,Bi, 0 < ζi < n0.4+ε).

Y ′
i = (ζi+1 − ζ)I(¬Ai,¬Bi, 0 < ζi < n0.4+ε).

For 0 < i < τ we have that w.h.p.

min{ζi, n0.4+ε} ≤ M +

i−1
∑

j=0

(Xi + Yi +X ′
i + Y ′

i ) (10)

where M = log2 n is such that the following holds: w.h.p. for every i ≥ 0 with ζi = 0 we
have that ζi+1 ≤ M . Our bound for M is justified by the fact that the maximum degree in
G is o(logn) w.h.p.

We use the inequality i < τ , hence mi ≥ n0.4+2ε, to impose that if ζi ≤ n0.4+ε then almost
all of the vertices belong to Y ∪ Z. We will see from the analysis below that w.h.p.

mi ≥ n0.4+2ε implies ζi ≤ n0.4+ε. (11)

Equation (80) of [4] states that if Hi denotes the history of the process up to the end of
iteration i, assuming the event Ai occurs, then

ζi > 0 implies E(ζi+1 − ζi | Hi) ≤ −Ω(min {1, λi}2) +O

(

log2mi

λimi

)

. (12)

In the following cases we will assume that i < τ and ζi > 0. The case ζi = 0 is handled by
M of (10).

Case 1: Ai ∧ Bi

Case 1a
If λi ≥ m−0.2

i we have from (12) that

E(Xi|Hi) ≤ −cλ2
i ≤ −cn−0.4

10



for some constant c > 0.

Case 1b:
Assume now that λi ≤ m−0.2

i . In this case since Ai occurs we have that for i ≥ 2, |Zi| is
approximately equal to the sum of |Zi| independent random variables that follow Poisson(λi)
conditioned on having value at least 2. More precisely, it follows from Lemma 3.3 of [4] that
as long as Ai holds, we have

|Z3|
|Z2|

=
λi

3

(

1 +O(m
1/2
i λi log

2mi)
)

,

|Z4|
|Z2|

=
λ2
i

12

(

1 +O(m
1/2
i λi log

2mi)
)

,

∑

i≥5

|Zi| ≤ |Z2|λ3
i .

(13)

Similarly

|Y4|
|Y3|

=
λi

4

(

1 +O(m
1/2
i λi log

2 mi)
)

,

|Y5|
|Y3|

=
λ2
i

20

(

1 +O(m
1/2
i λi log

2mi)
)

,

∑

i≥6

|Yi| ≤ |Y3|λ3
i .

(14)

Recall that if ζi > 0 then the algorithm will choose a vertex v ∈ Z1 ∪ Y1 ∪ Y2 and it will
match it to some vertex w. Thus initially ζi will decrease by 1.

For w ∈ Z let d(w, Y3) and d(w,Z2) be the number of neighbors of w in Y3 and Z2\{v}. Also
let f(w) be the number of vertices that are connected to w by multiple edges. We consider
the following cases:

Case a: w ∈ Y2 ∪ Y1 ∪ Z1 then ζi+1 − ζi = −2.
Case b: w ∈ Y then ζi+1 − ζi = −1.
Case c: w ∈ Z2 and d(w,Z2) = 1 then ζi+1 − ζi = 0.
Case d: w ∈ Z2 and d(w, Y3) = 1 then ζi+1 − ζi = 1.
Case e: w ∈ Z2 and d(w,Z2) + d(w, Y3) = 0 then ζi+1 − ζi = −1.
Case f: w ∈ Z \ Z2 then ζi+1 − ζi ≤ −1 + d(w,Z2) + 2d(w, Y3) +O(f(w)).

Differentiating cases c,d,e,f will be helpful later when we bound
∑

i≥0 Yi.

11



Summarizing we have,

ζi+1 − ζi



















































= −2, Case a: probability (ζi/2mi)(1 +O(m−1
i )).

= −1, Case b: probability p3,i(1 +O(m−1
i )).

= 0, Case c: probability p22,i(1 +O(m−1
i )).

= +1 Case d: probability p2,ip3,i(1 +O(m−1
i ).

= −1 Case e: probability p2,i(1− p2,i − p3,i)(1 +O(m−1
i )).

≤ −1 + d(w,Z2)

+2d(w, Y3) +O(f(w)) Case f:

(15)
The net contribution of Cases c,d,e to E(Xi|Hi) is

− p2,i + p2,i(p2,i + 2p3,i) = −Pr(w ∈ Z2) + p2,i(p2,i + 2p3,i). (16)

Similarly, the contribution of Case f to E(Xi|Hi) is at most

E
[

− 1 + (d(w)− 1)(d(w,Z2) + 2d(w, Y3)) +O(f(w)))I(w ∈ Z \ Z2)|Hi

]

= −Pr(w ∈ Z \ Z2) +

(

(3− 1)
3|Z3|
2mi

+ (4− 1)
4|Z4|
2mi

)

(p2,i + 2p3,i)

+O

(

λi log
2mi

m
1/2
i

+ λ3
i

)

= −Pr(w ∈ Z \ Z2) + p2,i

(

λi +
λ2
i

2

)

(p2,i + 2p3,i) +O

(

λi log
2mi

m
1/2
i

+ λ3
i

)

. (17)

The -1 in the d(w)−1 expression accounts for the edge {v, w}. Then the next term accounts
for the other d(w)−1 neighbors of w and the possibility that they belong to either Z2 or Y3.
To go from the second to the third line we used (13).

Finally observe that (13), (14) imply that

1 =
2|Z2|+ 3|Z3|+ 4|Z4|

2mi
+

3|Y3|+ 4|Y4|+ 5|Y5|
2mi

+
ζi
2mi

+O

(

λi log
2mi

m
1/2
i

+ λ3
i

)

= p2,i

(

1 +
λi

2
+

λ2
i

6

)

+ p3,i

(

1 +
λi

3
+

λ2
i

12

)

+
ζi
2mi

+O

(

λi log
2mi

m
1/2
i

+ λ3
i

)

. (18)

Therefore,

E(Xi|Hi) ≤
(

− 2ζi
2mi

−Pr(w ∈ Y ) + [−Pr(w ∈ Z2) + p2,i(p2,i + 2p3,i)]

)(

1 +O

(

1

mi

))

+

(

−Pr(w ∈ Z \ Z2) + p2,i

(

λi +
λ2
i

2

)

(p2,i + 2p3,i)

)

+O

(

λi log
2mi

m
1/2
i

+ λ3
i

)

= −1− ζi
2mi

+ p2,i

(

1 + λi +
λ2
i

2

)

(p2,i + 2p3,i)+

12



O

(

λi log
2mi

m
1/2
i

+ λ3
i

)

. Note that Ai implies that
1

mi
≪ λi log

2mi

m
1/2
i

.

Now use (18) to replace -1 by the squared expression to obtain

≤ −
[

p2,i

(

1 +
λi

2
+

λ2
i

6

)

+ p3,i

(

1 +
λi

3
+

λ2
i

12

)

+
ζi
2mi

]2

+ p2,i

(

1 + λi +
λ2
i

2

)

(p2,i + 2p3,i)−
ζi
2mi

+O

(

λi log
2mi

m
1/2
i

+ λ3
i

)

= −λ2
i p

2
2,i

12
+ 2p2,ip3,i

(

λi

6
+

λ2
i

12

)

− p23,i

(

1 +
2λi

3
+

5λ2
i

18

)

− ζi
2mi

+ O

(

λi log
2mi

m
1/2
i

+ λ3
i

)

= −
(

λip2,i
4

− p3,i

(

2

3
+

λi

3

))2

− λ2
i p

2
2,i

48
− p23,i

(

5

9
+

2λi

9
+

λ2
i

6

)

− 3ζi
2mi

+ O

(

λi log
2mi

m
1/2
i

+ λ3
i

)

≤ −
λ2
i p

2
2,i

48
−

5p23,i
9

− ζi
2mi

+O

(

λi log
2mi

m
1/2
i

+ λ3
i

)

. (19)

In Case 1b we have that the events Ai ∧ Bi and λi ≤ m−0.2
i occur. In addition i < τ , hence

mi ≥ n0.4+2ε occur. Ai ∧ Bi and λi ≤ m−0.2
i imply that yi ≥ m0.8

i and so p3,i + p2,i = Ω(1)
and p3,i ≥ m−0.2

i . Therefore

E(Xi|Hi) ≤ −c′m−0.4
i ≤ −cn−0.4.

Thus if Case 1 occurs we have by the Azuma inequality that

∑

ℓ≥0

Pr

( j
∑

i=0

Xi ≥ n0.4+ε/2

)

≤ m0 max
0≤j≤m0

exp

{

− (n0.4+ε/2 + cjn−0.4)2

j log2 n

}

+ n−6 = o(1).

The n−6 term accounts for the probability that the degree of G exceeds log n. The maximum
degree bounds |ζi+1 − ζi|.

Case 2: Ai ∧ ¬Bi

To bound
∑j

i≥0 Yi, let Ri be the indicator of the event that {ζi ≤ n0.4+ε} plus one of the
cases (a),(b),(d),(e) and(f) from (15) occurs. Then, just as in Case 1, since the contribution
of Case c to E(Xi|Hi) is 0 and Yi = 0 if ζi ≥ n0.4+ε, we have that

E(YiRi|Hi) ≤ −λ2
i p

2
2,i

48
− 5p23,i

9
− ζi

2mi

+O

(

λi log
2mi

m
1/2
i

+ λ3
i

)

≤ −λ2
i p

2
2,i

48
+O

(

λi log
2mi

m
1/2
i

+ λ3
i

)

13



≤ O(m−1
i log4mi). (20)

For the last inequality we used that in the event Ai ∧ ¬Bi (13), (14) and (18) imply that
p2,i = 1− o(1). In addition

Pr(Ri = 1) ≤ Pr(Case(a)) +Pr(Case(b)) +Pr(Case(d)) +Pr(Case(e)) +Pr(Case(f))

= O

(

ζi
2mi

+ p3,i + p2,ip3,i + p2,i(1− p3,i − p2,i) + λi

)

= O

(

ζi
2mi

+ p3,i + λi

)

.

(21)

where we have used 1− p3,i − p2,i = O(λi).

In the event ¬Bi we have that λi ≤ m−0.2 and yi ≤ m0.8
i and hence p3,i ≤ m−0.2

i . Hence, if
ζi ≤ n0.4+ε then Pr(Ri = 1) ≤ m−0.2

i . Thus,

m0
∑

j=0

Pr

(

j
∑

i=0

Ri > n0.8+ε/3

)

≤
m0
∑

j=0

Pr

(

j
∑

i=0

RiI(mi > n0.8) > n0.8+ε/3 − n0.8

)

≤ m0 exp

{

−
(n0.8+ε/3 − n0.8 −∑m0

mi=n0.8 m
−0.2
i )2

2m0

}

= o(1).

To obtain the exponential bound, we let Zj =
∑j

i=0RiI(mi > n0.8). We have
EZj ≤

∑m0

mi=n0.8 m
−0.2
i = O(n0.8) and then we can use the Chernoff bounds, since our bounds

for Ri = 1 hold given the history of the process so far.

It follows that,

m0
∑

j=0

Pr

( j
∑

i=0

Yi ≥ n0.4+ε/2

)

=

m0
∑

j=0

Pr

( j
∑

i=0

YiRi ≥ n0.4+ε/2

)

≤
m0
∑

j=0

Pr(

j
∑

i=0

Ri > n0.8+ε/3) +

m0
∑

j=0

Pr

( j
∑

i=0

YiRi ≥ n0.4+ε/2|
j
∑

i=0

Ri ≤ n0.8+ε/3

)

≤ o(1) +m0 max
j≤n0.8+ε/3

exp

{

−
(

n0.4+ε/2 −∑m0

mi=0m
−1
i log3mi

)2

j log2 n

}

≤ o(1) +m0 max
j≤n0.8+ε/3

exp

{

−
(

n0.4+ε/2 − no(1)
)2

j log2 n

}

= o(1). (22)

To obtain the third line we use the fact that w.h.p. |Yi| ≤ log n, which follows from a high
probability bound of o(log n) on the maximum degree of G.

Cases 3 & 4: ¬Ai

Let T1 = max {i < τ : Ai occurs}. At time T1 we have (zT1
+ yT1

)λT1
≥ mT1

log3 n and
hence the estimates (13), (14) hold. Thereafter |zT1+1 − zT1

|, |yT1+1 − yT1
|, |mT1+1 −mT1

| =
O(∆(GT1−1)). The maximum degree of ∆(GT1

) is bounded w.h.p. by logn. At time T1 + 1

14



we have (zT1+1 + yT1+1)λT1+1 < mT1+1 log
3 n hence λT1

≤ 2 log3 n
mT1

and so subsequently for

i ≥ T1 we have
|Y4|, |Z3| = O(log3 n) and Yj = Zj−1 = ∅ for j ≥ 5. (23)

Case 3: ¬Ai ∧ Bi

Given the above we replace (18) by

1 = p2,i + p3,i +
ζi
2mi

+O

(

log3 n

mi

)

. (24)

Following this we replace (19) by

E(X ′
i | H) ≤ −

5p23,i
9

+O

(

log3 n

mi

)

. (25)

In the events ¬Ai ∧ Bi, yi ≥ m0.8
i and so p3,i ≥ m−0.2

i . Therefore

E(X ′
i|Hi) ≤ −c′m−0.4

i ≤ −cn−0.4.

Thus if Case 3 occurs we have by the Azuma inequality that

∑

ℓ≥0

Pr

( j
∑

i=0

X ′
i ≥ n0.4+ε/2

)

≤ m0 max
0≤j≤m0

exp

{

− (n0.4+ε/2 + cjn−0.4)2

j log2 n

}

+ n−6 = o(1).

The n−6 term accounts for the probability that the degree of G exceeds log n. The maximum
degree bounds |ζi+1 − ζi|.

Case 4: ¬Ai ∧ ¬Bi

As in Case 2 we have
E(Y ′

iRi|Hi) ≤ O(m−1
i log4 n)

where Ri is defined exactly as in Case 3. Hence, just as in (22) we get

m0
∑

j=0

Pr

( j
∑

i=0

Y ′
i ≥ n0.4+ε/2

)

= o(1).

The above analysis and equation (10) shows that w.h.p.

min{ζi, n0.4+ε} ≤ log2 n+ 4n0.4+ε/2 < n0.4+0.9ε.

Hence w.h.p. there does not exist i < τ such that ζi > n0.4+ε. And this therefore completes
the proof that w.h.p. for i < τ we have ζi ≤ n0.4+ε, verifying (9).

6 Conclusion

We have made significant progress in determining the number of random edges needed for
Hamiltonicity when we condition on minimum degree at least three. Further progress will
lie on improving the bound on the number of edges needed to apply Pósa’s theorem that is
given in [6]. This may not be so easy, as explained in Remark 4.1 of [6].
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