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TOPOLOGICAL EMBEDDINGS INTO RANDOM 2-COMPLEXES

MICHAEL FARBER AND TAHL NOWIK

Abstract. We consider 2-dimensional random simplicial complexes Y in the multi-parameter

model. We establish the multi-parameter threshold for the property that every 2-dimensional

simplicial complex S admits a topological embedding into Y asymptotically almost surely. Namely,

if in the procedure of the multi-parameter model, each i-dimensional simplex is taken independently

with probability pi = pi(n), from a set of n vertices, then the threshold is p0p
3
1p

2
2 = 1

n
. This

threshold happens to coincide with the previously established thresholds for uniform hyperbolicity

and triviality of the fundamental group.

Our claim in one direction is in fact slightly stronger, namely, we show that if p0p
3
1p

2
2 is suffi-

ciently larger than 1
n
then every S has a fixed subdivision S′ which admits a simplicial embedding

into Y asymptotically almost surely. The main geometric result we prove to this end is that given

ǫ > 0, there is a subdivision S′ of S such that every subcomplex T ⊆ S′ has f0(T )
f1(T ) > 1

3 − ǫ and

f0(T )
f2(T ) >

1
2 − ǫ, where fi(T ) denotes the number of simplices in T of dimension i.

In the other direction we show that if p0p
3
1p

2
2 is sufficiently smaller than 1

n
, then asymptotically

almost surely, the torus does not admit a topological embedding into Y . Here we use a result of

Z. Gao which bounds the number of different triangulations of a surface.

1. Introduction

The theory of random graphs is widely used for modeling large systems in various scientific

applications. It has been recently realized that the higher dimensional generalization, namely,

large random simplicial complexes, offers even greater opportunities for mathematical modeling

as it allows taking into account multiple interactions and not only pairwise relationships. The

interest in large complexes is manifested by studying the asymptotic behavior of the random

complexes, as the number of vertices grows.

The first model of random simplicial complexes was studied by Linial and Meshulam [LM] and

Meshulam and Wallach [MW]. This model for simplicial complexes of dimension r assumes that

for a given vertex set, all simplices of dimension less than r are present, and the top dimensional
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simplices are added independently with a given probability p. For the study of asymptotic prop-

erties, the probability p is assumed to depend on the number n of vertices. Many authors have

contributed to the development of the Linial-Meshulam model by computing thresholds for vari-

ous topological properties such as vanishing of the Betti numbers, simple connectivity, asphericity,

and cohomological dimension of the fundamental group.

In [CF1]–[CF3] Costa and Farber developed a more general model of random r-dimensional

simplicial complexes. In this model a random simplicial complex depends on a string of probability

parameters (p0, p1, . . . , pr), one for each dimension. In this multi-parameter setting, the thresholds

for topological properties are not numbers depending on n, but rather boundaries of domains

depending on n. In [CF1]–[CF3] domains corresponding to different asymptotic properties of the

fundamental group are described. Another major result of [CF1]–[CF3] is the notion of a critical

dimension which fully portrays the properties of the Betti numbers in the multi-parameter model.

The Linial-Meshulam model can be considered as a special case of the multi-parameter model by

taking p0 = p1 = · · · = pr−1 = 1.

In [FMN], the authors studied an even more general model of random simplicial complexes,

which is of two types, the lower and upper models, as described in Section 2. The lower and upper

models are Spanier-Whitehead dual to each other, and the multi-parameter model mentioned

above is a special case of the lower model. The notion of critical dimension for the upper model

is also developed in [FMN].

In the present work we consider random 2-dimensional simplicial complexes Y in the multi-

parameter lower model. We find the threshold for the following property: Every 2-dimensional

simplicial complex S asymptotically almost surely admits a topological embedding into Y . We prove

that the threshold for this property is p0p
3
1p

2
2 = 1

n
, that is, if p0p

3
1p

2
2 is sufficiently larger than 1

n
,

namely, if there is an ǫ > 0 such that np0p
3+ǫ
1 p2+ǫ

2 → ∞, then this property holds, whereas if

p0p
3
1p

2
2 is sufficiently smaller than 1

n
, namely, if np0p

3
1p

2
2 → 0, then the property does not hold.

The first half of this theorem generalizes a result of [CCFK] regarding the Linial-Meshulam

model, where it is proved for p2 ≥ n− 1
2
+ǫ. This was strengthened by Gundert and Wagner in

[GW], showing it for p2 ≥ cn− 1
2 . Versions of this result for higher dimensional complexes are also

developed in [GW]. We also mention that our above threshold also happens to be the threshold

for both uniform hyperbolicity and triviality of the fundamental group, as shown in [CF2].
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2. Background

In this section we describe our model for random 2-dimensional simplicial complexes. Let ∆2
n

denote the full 2-dimensional simplicial complex with vertex set [n] = {1, . . . , n}, i.e. ∆2
n includes

all subsets of [n] of size 1,2,3. They are regarded as simplices of dimension 0,1,2, respectively.

A probability triple p is a triple of sequences (p0(n), p1(n), p2(n)) with 0 ≤ pi(n) ≤ 1. We will

however always suppress the argument n from the expression pi(n) and simply write pi. A given

argument n will always be implied by the context. A natural example for a probability triple is

obtained as follows. Given a fixed α = (α0, α1, α2) with αi ≥ 0, let pα be the probability triple

given by pα = (n−α0 , n−α1 , n−α2).

We use a probability triple p to define a sequence (Ωn,Pp) of probability spaces, where Ωn is

the set of all simplicial subcomplexes of ∆2
n, and the probability measure Pp on Ωn is defined as

follows. As an intermediate step we randomly select a subset X ⊆ ∆2
n which is not necessarily

a simplicial complex. Each i-dimensional simplex σ ∈ ∆2
n is included in X independently with

probability pi, i.e. the probability for obtaining X is
∏

σ∈X pdim σ

∏

σ 6∈X qdimσ, where qi = 1 − pi.

Now, the simplicial complex produced by this random process is the maximal simplicial complex

Y contained in X . It is shown in [CF1] and [FMN] that the probability for obtaining any given

simplicial complex Y ⊆ ∆2
n by this random process is

Pp(Y ) =
∏

σ∈Y
pdimσ

∏

σ∈E(Y )

qdim σ

where E(Y ) = {σ ∈ ∆2
n : σ 6∈ Y but ∂σ ⊆ Y }. Indeed, Y is the maximal simplicial complex

contained in X iff every σ ∈ Y is in X and every σ ∈ E(Y ) is not in X . To see this, note that

if σ ∈ E(Y ), then Y ∪ {σ} is also a simplicial complex. Also note that if σ 6∈ Y , then a minimal

τ ⊆ σ such that τ 6∈ Y , is in E(Y ), (including when τ is a vertex). When we write Y ∈ (Ωn,Pp)

we will mean that Y is randomly drawn from Ωn using the probability measure Pp.

In [FMN] this model is termed the lower model for random simplicial complexes, in contrast

to the upper model, which looks at the minimal simplicial complex containing X . The setting in

[FMN] is more general, as the dimension of the simplices σ is not restricted and each simplex σ is

assigned its own probability pσ.

For a 2-complex S let fi(S), i = 0, 1, 2, denote the number of simplices in S of dimension i

(for us simplicial complexes are finite by definition). In this work we will apply Theorem 1(B) of
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[CF2] which states the following. If p satisfies that for every subcomplex T of S

lim
n→∞

nf0(T )p
f0(T )
0 p

f1(T )
1 p

f2(T )
2 = ∞,

then S is simplicially emebeddable into Y ∈ (Ωn,Pp) a.a.s. (asymptotically almost surely, i.e. with

probability converging to 1 as n → ∞). In [CF2] the corresponding claim for complexes of general

dimension r is proved.

3. Statement of result

In this work we look at random 2-complexes Y ∈ (Ωn,Pp) for a given probability triple p =

(p0, p1, p2), and ask whether every 2-complex S is a.a.s. topologically embeddable into Y . We show

that probability triples for which p0p
3
1p

2
2 = 1

n
are the threshold for this property. That is, triples

p for which p0p
3
1p

2
2 is sufficiently larger than 1

n
have the property that every 2-complex S is a.a.s.

topologically embeddable into Y ∈ (Ωn,Pp), and triples p for which p0p
3
1p

2
2 is sufficiently smaller

than 1
n
do not have this property. The precise statement of this claim appears in Theorem 3.1

below. It follows that for probability triples of the form pα the plane α0 + 3α1 + 2α2 = 1 is the

threshold for this property. This is stated in Corollary 3.2.

Theorem 3.1. Let p = (p0, p1, p2) be a probability triple.

(1) If

lim
n→∞

np0p
3+ǫ
1 p2+ǫ

2 = ∞

for some fixed ǫ > 0, then every 2-dimensional simplicial complex S has a simplicial

subdivision S ′ which is a.a.s. simplicially embeddable into Y ∈ (Ωn,Pp). In particular, S

is a.a.s. toplogically embeddable into Y ∈ (Ωn,Pp).

(2) If

lim
n→∞

np0p
3
1p

2
2 = 0

then the torus is a.a.s. not topologically embeddable into Y ∈ (Ωn,Pp).

Corollary 3.2. Let α = (α0, α1, α2) with αi ≥ 0 and let pα = (n−α0 , n−α1 , n−α2).

(1) If α0 + 3α1 + 2α2 < 1 then every 2-dimensional simplicial complex S has a simplicial

subdivision S ′ which is a.a.s. simplicially embeddable into Y ∈ (Ωn,Ppα). In particular, S

is a.a.s. toplogically embeddable into Y ∈ (Ωn,Ppα).

(2) If α0+3α1+2α2 > 1 then the torus is a.a.s. not topologically embeddable into Y ∈ (Ωn,Ppα).
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=

Figure 1. ∆ −→ two depictions of s1∆ −→ s2∆ −→ s3∆

The main effort of this work is the proof of Proposition 3.3 below, for which we use a particular

subdivision scheme for 2-complexes which is suitable for our purposes. The first subdivision is

barycentric, but all subsequent subdivisions divide each triangle into four triangles as shown in

Figure 1. Geometrically, we view the kth subdivision sk∆ of a 2-simplex ∆ as a regular hexagon

divided into 6 · 4k−1 equilateral triangles.

For a 2-complex S let fi(S), i = 0, 1, 2, denote the number of simplices in S of dimension i, and

define µi(S) =
f0(S)
fi(S)

, i = 1, 2, whenever fi(S) 6= 0.

Proposition 3.3. Let S be a 2-complex, and let ǫ > 0. Then for sufficiently large k, every

subcomplex T of skS has

(1) µ1(T ) >
1
3
− ǫ.

(2) µ2(T ) >
1
2
− ǫ.

The proofs of parts (1) and (2) of Proposition 3.3 appear in Sections 6 and 5 respectively. Once

Proposition 3.3 is established, the proof of Theorem 3.1(1) is immediate. Indeed, by Proposition

3.3, given ǫ > 0 there exists a subdivision S ′ of S such that every subcomplex T of S ′ satisfies

µ1(T ) >
1

3+ǫ
and µ2(T ) >

1
2+ǫ

. For every subcomplex T of S ′ we have

nf0(T )p
f0(T )
0 p

f1(T )
1 p

f2(T )
2 =

(

np0p
1

µ1(T )

1 p
1

µ2(T )

2

)f0(T )

≥

(

np0p
3+ǫ
1 p2+ǫ

2

)f0(T )

−→
n→∞

∞.

By Theorem 1(B) of [CF2] stated in the previous section, S ′ is a.a.s. simplically embeddable into

Y ∈ (Ω,Pp), completing the proof of Theorem 3.1(1). The proof of Theorem 3.1(2) appears in

Section 7. Corollary 3.2 easily follows from Theorem 3.1.

4. Domains in the open 2-simplex

In this section we focus our attention on one 2-simplex ∆ of the original complex S. We will

be interested in open planar surfaces of the form ∆ − (∂∆ ∪ T ) where T is a pure subcomplex
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of sk∆. By a pure subcomplex we mean a subcomplex which is the union of simplices of sk∆ of

fixed dimension (either 1 or 2).

Definition 4.1. Given a simplicial complex S and a subcomplex T of S, the open complex defined

by S − T is the collection W of all open simplices in S − T . The underlying space of W , i.e. the

union of open simplices in W , will be denoted |W |.

Definition 4.2. Let ∆ be a fixed 2-simplex.

(1) We denote by Vk the open complex defined by sk∆−∂(sk∆), where ∂(sk∆) is the subcom-

plex of sk∆ which is the topological boundary of ∆. So, |Vk| is the interior of ∆, i.e. an

open disc. The open simplices of dimensions 0,1,2 in Vk will be called vertices, edges and

triangles, respectively.

(2) Given a collection L = {E1, . . . , Em} of closed simplices in sk∆ of fixed dimension, we

denote by UL the open complex defined by

s
k∆−

(

∂(sk∆) ∪
⋃

Ei∈L
Ei

)

.

An open complex of the form UL will be called a domain in Vk. The fixed dimension of the

simplices in L will be called the “type” of UL. Note that Vk itself is a domain with L = ∅.

(3) For a domain U = UL we define fi(U) to be the number of open simplices of dimension i

in U , i = 0, 1, 2, and define µi(U) = f0(U)
fi(U)

, i = 1, 2, whenever fi(U) 6= 0.

Lemma 4.3. Let U = UL be a domain in Vk, then µ1(U) < 1
3
and µ2(U) < 1

2
whenever they are

defined.

Proof. If there are no vertices in U then µ1(U) = µ2(U) = 0 and we are done. Otherwise, let v

be a vertex in U . Since U is open, all 6 edges surrounding v must be in U . On the other hand,

given an edge e in U , at most 2 vertices in U lie at its endpoints. This gives µ1(U) ≤ 1
3
, and to

show strict inequality we must show that if µ1(U) is defined, i.e. if there are edges in U , then at

least one of them does not have both endpoints in U . Indeed, starting with an edge e in U , follow

a path of edges in Vk to ∂Vk. Since U is open, this path must include an edge with the desired

property.

Similarly, if v is a vertex in U then since U is open, all 6 triangles surrounding v are in U . On

the other hand at most 3 vertices in U lie on the boundary of a given triangle in U , and triangles

adjacent to the boundary of U have strictly less than 3 such vertices. This gives µ2(U) < 1
2
. �
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Regarding Vk itself we note the following.

Proposition 4.4. limk→∞ µ1(Vk) =
1
3

and limk→∞ µ2(Vk) =
1
2
.

Proof. We claim that for k ≥ 1, f0(Vk) = 3 · 4k−1 − 3 · 2k−1 + 1, f1(Vk) = 9 · 4k−1 − 3 · 2k−1

and f2(Vk) = 6 · 4k−1, from which the statement follows. This is verified by induction noting

that f0(V1) = 1, f1(V1) = 6, f2(V1) = 6, and for k ≥ 1, f0(Vk+1) = f0(Vk) + f1(Vk), f1(Vk+1) =

2f1(Vk) + 3f2(Vk) and f2(Vk+1) = 4f2(Vk). �

An open hexagon in Vk is a domain in Vk which is convex and has six sides, which are necessarily

parallel to the six sides of Vk. Two examples appear in Figure 4. We denote the boundary of an

open hexagon U by ∂U , though strictly speaking it is the boundary of the corresponding closed

hexagon.

Lemma 4.5. For U an open hexagon in Vk, let fi = fi(U) and b = the number of edges in ∂U ,

then f0 =
f2−b+2

2
and f1 =

3f2−b

2
.

Proof. Every triangle in U is surrounded by three edges. In this way each edge in U is counted

twice, and each edge in ∂U is counted once, so 3f2 = 2f1 + b. Also, since the boundary of the

closed hexagon contributes 0 to its Euler characteristic, we have f0 − f1 + f2 = 1. Our claim

follows by combining these two equalities. �

For a domain U in Vk, a “shifted image” of U in Vk is a domain in Vk obtained from U by a

(perhaps trivial) translation. A “side” of an open hexagon U in Vk is one of the six sides of ∂U .

Lemma 4.6. Let U be an open hexagon in Vk with U 6= Vk. Then there is a shifted image of U

in Vk whose longest side is not included in ∂Vk.

Proof. If I is one of the six sides of U , then we define its length ℓ(I) to be the number of edges in

I. Let I be the longest side of U , let t = ℓ(I), and let s denote the side length of Vk. If t ≥ s+ 1

we are done since I cannot be included in ∂Vk. If t ≤ s−1 then U is included in a regular hexagon

of side s − 1 and so the claim is again clear. So assume t = s. It cannot be that all sides of U

are of length s since then U = Vk. So the sides of U may be consecutively labeled I1, . . . , I6 so

that ℓ(I1) = s, ℓ(I2) ≤ s − 1, and ℓ(I3) ≤ s. If I1 is not included in ∂Vk we are done, so assume

I1 is a side of Vk. Now let U ′ be the hexagon with corresponding sides J1, . . . , J6 with J1 = I1

so ℓ(J1) = s, and having ℓ(J2) = s − 1 and ℓ(J3) = ℓ(J4) = s, as seen in Figure 2. It is easy to
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I1 = J1

J2

J3

J4

Figure 2. The hexagon U ′ with ℓ(J2) = s− 1 and ℓ(J1) = ℓ(J3) = ℓ(J4) = s.

see that necessarily U ⊆ U ′ and so U may be shifted by one to the right, pulling I1 away from

∂Vk. �

We conclude this section with the following trivial lemma that we will use repeatedly throughout

this work. It will be used e.g. when say we have disjoint A,B with µi(A) > c and µi(B) > c to

deduce µi(A∪B) > c. Another instance where it will be used is when say f0 = x, fi = y, and we

are interested to know whether µi increases if we replace x, y by x± a, y ± b.

Lemma 4.7.

(1) Let x, a ≥ 0, y, b > 0. Then x+a
y+b

= tx
y
+ (1 − t)a

b
with 0 < t < 1. That is, either

x
y
= a

b
= x+a

y+b
, or x+a

y+b
is strictly between x

y
and a

b
. In particular if a

b
> x

y
then x+a

y+b
> x

y
.

(2) Let x ≥ a ≥ 0, y > b > 0. Then x
y
= tx−a

y−b
+ (1 − t)a

b
with 0 < t < 1. That is, either

x
y
= a

b
= x−a

y−b
, or x

y
is strictly between x−a

y−b
and a

b
. In particular if a

b
< x

y
then x−a

y−b
> x

y
.

Proof. For (1) take t = y

y+b
. For (2) take t = y−b

y
. �

5. Counting triangles

In this section we prove Proposition 3.3(2), where the main technical effort is the following.

Proposition 5.1. For sufficiently large k, every nonempty type-2 domain U = UL in Vk with

U 6= Vk has µ2(U) < µ2(Vk).
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x
x
x

o
x

o

o
x
o

o
x

x

x
x
o

x
x

x

Figure 3. Cyclically ordered 6-tuples of o’s and x’s for type-2 domain.

Proof. Throughout this proof, a type-2 domain will simply be called a domain. We establish our

claim by showing that for every domain U 6= Vk there is another domain U ′ with µ2(U
′) > µ2(U).

If µ2(U) = 0 then simply take U ′ = Vk, so we assume µ2(U) > 0, i.e. f0(U) > 0, which implies

f2(U) ≥ 6.

To each vertex v of Vk we assign a cyclically ordered 6-tuple of symbols x and o describing the

six triangles surrounding v, where an x denotes a 2-simplex in L and an o denotes a 2-simplex

which is not in L, and so its interior (and perhaps more of it) is included in U . To each vertex of

∂Vk we also attach such a 6-tuple. It will include x’s and o’s defined as before, and then completed

with a sequence of x’s to reach a total of six symbols. One may think of these additional “virtual”

x’s as corresponding to triangles outside Vk in a tiling of a neighborhood of Vk in the plane. See

Figure 3, where the triangles in U are depicted in gray color.

If for some vertex v of Vk the corresponding 6-tuple includes one or two x’s then we may remove

the corresponding 2-simplices from L. This adds one or two triangles to U , and at least one vertex,

namely v itself. So if a is the number of additional vertices and b is the number of additional

triangles then a
b
≥ 1

2
. From Lemmas 4.3 and 4.7(1) it then follows that µ2 strictly increases. So

we may assume that every 6-tuple includes either 0 or at least 3 x’s. This is also true for the

vertices of ∂Vk since each such vertex has 3 or 4 virtual x’s, as seen in Figure 3.

If for some vertex v of Vk or ∂Vk the corresponding 6-tuple includes a fragment of the form xox

then we may add the middle 2-simplex to L, changing the given fragment to xxx. This removes

one triangle from U , and leaves the number of vertices unchanged, and so it strictly increases µ2.

We thus need to establish our claim when all 6-tuples have 0 or at least 3 x’s, and a fragment of

the form xox does not appear. It follows that all 6-tuples that include both x’s and o’s are either

ooxxxx or oooxxx. That is, all boundary angles of the connected components of U are either 120◦
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Figure 4. Adding a row of triangles along the longest side of an open hexagon.

or 180◦. It follows that each connected component of U is an open hexagon. Indeed, note that a

connected component of U cannot have more than one boundary component, since then it would

have an interior boundary component, along which there would be angles greater than 180◦. By

Lemma 4.7(1) it is enough to prove our claim for each such hexagon separately, and so we assume

U is a single hexagon.

Let I be the longest side of U , having length t. By Lemma 4.6 we may shift U in Vk so that I is

not included in the boundary of Vk. We may now look at a larger hexagon U ′ in Vk obtained from

U by adding a full row of triangles along I as in Figure 4. This process adds t − 1 vertices and

2t− 1 triangles, as seen in Figure 4 where t = 4. By Lemma 4.5 we have µ2(U) = f2−b+2
2f2

where b

is the number of edges in ∂U . We would like to use Lemma 4.7(1) to show that µ2(U
′) > µ2(U),

so we would like to have t−1
2t−1

> f2−b+2
2f2

, i.e. f2 < (b− 2)(2t− 1).

We show that this indeed holds if b ≥ 12. Since I is the longest side, we have t ≥ b
6
and so it is

enough to show that f2 < (b−2)( b
3
−1) = 1

3
(b2−5b+6). If we think of our triangles as equilateral

triangles in the plane with sides of length 1, then the area A of U is
√
3
4
f2, the length of ∂U is b, and

our required inequality may be rephrased as A < 1
4
√
3
(b2−5b+6). By the isoperimetric inequality

in the plane we know A ≤ b2

4π
and so it is enough to have b2

4π
< 1

4
√
3
(b2− 5b), i.e.

√
3

π
< 1− 5

b
, which

holds for b ≥ 12.

Finally, there are only finitely many possible hexagons with b ≤ 11, and so by Lemmas 4.3 and

4.4, for sufficiently large k we have µ2(Vk) > µ2(U) for every hexagon U with b ≤ 11, and so for

such k our statement is established. �

We may now proceed to prove Proposition 3.3(2), namely, that given ǫ > 0, then for sufficiently

large k, every subcomplex T of skS has µ2(T ) >
1
2
−ǫ. (Recall that T is a subcomplex in the usual

sense, i.e. closed in S.) We first note that it is enough to prove the claim for pure 2-dimensional
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subcomplexes since given any subcomplex T we may replace it by the subcomplex which is the

union of its (closed) 2-simplices. This does not change f2(T ) and may only reduce f0(T ) and

so µ2(T ) may only be reduced. Now, given ǫ > 0, by Proposition 4.4 we have µ2(Vk) > 1
2
− ǫ

for sufficiently large k, and we show that every pure 2-dimensional subcomplex T of skS satisfies

µ2(T ) >
1
2
− ǫ. For a fixed 2-simplex ∆ of S we look at the corresponding Vk. If T ∩ Vk 6= ∅ we

claim that µ2(T ∩ Vk) >
1
2
− ǫ (where µ2(T ∩ Vk) is defined, as usual, by counting open simplices).

Indeed this holds if T ∩ Vk = Vk. Otherwise look at U = Vk − (T ∩ Vk), which is a nonempty

type-2 domain in Vk. By Proposition 5.1 we have µ2(U) < µ2(Vk), and so by Lemma 4.7(2) we

have µ2(T ∩ Vk) = µ2(Vk − U) > µ2(Vk) > 1
2
− ǫ. If we look at the union of T ∩ Vk over all

2-simplices of S then by Lemma 4.7(1) we still have µ2 >
1
2
− ǫ. All that is missing from the full

subcomplex T is T ∩ skS1, where S1 is the 1-skeleton of S. But T ∩ skS1 may only contribute

additional vertices, and no additional 2-simplices, so µ2 may only increase, and so we finally get

µ2(T ) >
1
2
− ǫ, completing the proof of Proposition 3.3(2).

Discussion. At this point the reader may have noticed that all our computations up to and

including the proof of Proposition 5.1 dealt with domains. Only in the previous paragraph have

we finally returned to subcomplexes T of S, and domains made their appearance as the complement

of T ∩ Vk in Vk. The reason for concentrating all our attention on the complement of T ∩ Vk in

Vk, rather than on T itself, is the following.

Our aim was to show that µ2(T ) is sufficiently large. We have done this by separately considering

the intersection of T with each 2-simplex of S. If we had considered T∩∆ for the closed simplex ∆,

then the vertices in T ∩ skS1 would have been multiply counted since each 1-simplex of S may be

included in many 2-simplices of S. For this reason we were forced to consider T ∩ int∆ = T ∩ Vk.

This is a peculiar geometric object with only part of its boundary present. We were not able

however to ignore this partial boundary since without it we would be left with a domain in Vk,

for which we have seen above that in fact µ2 tends to be small. On the other hand, the fact that

the complement of T ∩ Vk in Vk is a domain, and thus has small µ2, was to our advantage since

we could use it, via Lemma 4.7(2), to deduce that T ∩ Vk itself has large µ2.

The same approach will be used in the next section, for proving Proposition 3.3(1).

6. Counting edges

In this section we prove Proposition 3.3(1). Again, the main technical effort is the following.
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Figure 5. Cyclically ordered 6-tuples of o’s and x’s for type-1 domain.

Proposition 6.1. For sufficiently large k, every type-1 domain U = UL in Vk with U 6= Vk has

µ1(U) < µ1(Vk), if µ1(U) is defined.

Proof. Throughout this proof, a type-1 domain will simply be called a domain. Again, we establish

our claim by showing that for every domain U 6= Vk there is another domain U ′ with µ1(U
′) >

µ1(U). If µ1(U) = 0 then simply take U ′ = Vk, so we assume µ1(U) > 0, i.e. f0(U) > 0, which

implies f1(U) ≥ 6. Note that since the simplices in L are of dimension 1, all triangles of Vk are in

U .

To each vertex v of Vk we assign a cyclically ordered 6-tuple of symbols x and o, this time

describing the six edges surrounding v, where an o denotes an edge of Vk that is in U , and an x

denotes an edge of Vk which is not in U . For each vertex of ∂Vk we also define such a 6-tuple, by

adding, as before, a sequence of “virtual” x’s, to reach a total of six symbols. See Figure 5, where

the edges of U are depicted in white color (i.e. they are missing). Since all triangles of Vk are in U ,

and they are also white, the regions appearing in Figure 5 are in fact the connected components

of U . Note that a 6-tuple corresponding to a vertex of ∂Vk includes at most 2 o’s, and so at least

4 x’s.

If for some edge e of U both endpoints of e are not in U (including the case of an endpoint in

∂Vk), then we can add e to L thus decreasing the number of edges in U and leaving the number

of vertices in U unchanged, and so strictly increasing µ1. So we may assume that for every edge e

of Vk, if both endpoints of e are not in U then e is not in U . If follows that for each triangle of Vk,

if two of its sides are not in U (including the case of a side contained in ∂Vk), then also its third

side is not in U . This implies that all boundary angles of a connected component of U which is

not a single triangle, are at least 120◦.
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If for some vertex v of Vk the corresponding 6-tuple includes 1, 2, or 3 x’s then we may remove

the corresponding 1-simplices from L. This adds 1, 2, or 3 edges to U , and at least one vertex,

namely v itself. So if a is the number of additional vertices and b is the number of additional

edges then a
b
≥ 1

3
. From Lemmas 4.3 and 4.7(1) it then follows that µ1 strictly increases. We may

thus assume that for each vertex of Vk the corresponding 6-tuple includes either 0 or at least 4

x’s. This is also true for the vertices of ∂Vk, since as we have noted above, each such vertex has

at least 4 x’s. It follows that all boundary angles of the connected components of U are at most

180◦.

We thus need to establish our claim when all boundary angles of the connected components of

U which are not single triangles, are either 120◦ or 180◦. It follows, as before, that each connected

component of U is either a single triangle or a hexagon. The single triangles have no vertices and

no edges and so they do not contribute to µ1(U). Thus by Lemma 4.7(1) it is enough to prove

our claim for each of the hexagons.

Look at one such hexagon, and denote it again by U . We construct a larger hexagon U ′ in

Vk, as in the proof of Proposition 5.1, by shifting U in Vk if needed, using Lemma 4.6, and then

adding a full row of triangles along the longest edge of U , whose length we denote t. This process

adds t − 1 vertices and 3t − 2 edges, as seen in Figure 4 where t = 4. By Lemma 4.5 we have

µ1 = f2−b+2
3f2−b

. To use Lemma 4.7(1) for showing that µ1(U
′) > µ1(U) we need t−1

3t−2
> f2−b+2

3f2−b
, i.e.

f2 < (b− 3)(2t− 1)+ 1. The argument proceeds from here as in the proof of Proposition 5.1, this

time leading to
√
3
π

< 1− 6
b
, which holds for b ≥ 14.

�

We proceed to prove Proposition 3.3(1), namely, that given ǫ > 0, then for sufficiently large

k, every subcomplex T of skS has µ1(T ) > 1
3
− ǫ. Since µ1 does not involve 2-simplices, we

may replace any T with its 1-skeleton, and so it is enough to prove our claim for 1-dimensional

subcomplexes, i.e. graphs. Furthermore, it is enough to prove the claim for pure 1-dimensional

subcomplexes, i.e. graphs with no isolated vertices, since given any graph T we may remove its

isolated vertices, which may only reduce µ1(T ). Now, given ǫ > 0, by Proposition 4.4 we have

µ1(Vk) >
1
3
− ǫ for sufficiently large k, and we show that every subgraph T of skS with no isolated

vertices satisfies µ1(T ) >
1
3
− ǫ. For fixed 2-simplex ∆ of S we look at the corresponding Vk. If

T ∩ Vk 6= ∅ we claim that µ1(T ∩ Vk) >
1
3
− ǫ. Indeed this holds if T ∩ Vk includes all edges of Vk,
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since then µ1(T ∩ Vk) = µ1(Vk). Otherwise look at U = Vk − (T ∩ Vk), which is a type-1 domain

in Vk that includes edges and so µ1(U) is defined. By Proposition 6.1 we have µ1(U) < µ1(Vk),

and so by Lemma 4.7(2) we have µ1(T ∩ Vk) = µ1(Vk − U) > µ1(Vk) >
1
3
− ǫ. If we look at the

union of T ∩ Vk over all 2-simplices of S then by Lemma 4.7(1) we still have µ1 >
1
3
− ǫ.

This completes the computation for the intersection of T with the interiors of the 2-simplices

of S, but we are still missing T ∩ skS1 in case it is nonempty, (recall S1 is the 1-skeleton of S).

We claim that for k ≥ 1, every subgraph of skS1 has µ1 >
1
2
> 1

3
− ǫ, which would complete our

proof using Lemma 4.7(1). Denoting the graph sk−1S1 by P , we have skS1 = s1P . Note that

for every edge e of s1P , one endpoint of e is an original vertex of P , and the other endpoint is a

vertex subdividing an edge of P , and so its degree in s1P is 2. Now let G ⊆ s1P be a subgraph,

and we may assume as before that G has no isolated vertices. Let v1, . . . , vm be those vertices of

G which are vertices of P , and let di > 0 be the degree of vi in G. Let Hi be vi together with its

di adjacent edges in G, and “half” of the vertex on the other side of each such edge. Then the Hi

are disjoint, and Hi includes 1 +
di
2
vertices and di edges, and so µ1(Hi) =

1+
di
2

di
> 1

2
. By Lemma

4.7(1) the combined contribution of all Hi produces µ1 > 1
2
. All that is now missing is perhaps

some number of half vertices, which may only increase µ1, so we finally get µ1(G) > 1
2
, completing

the proof of Proposition 3.3(1).

Now that both parts of Proposition 3.3 are proved, we have completed the proof of Theorem

3.1(1).

7. Topological non-embeddability

In this concluding section we prove Theorem 3.1(2) stating that for a probability triple p satis-

fying limn→∞ np0p
3
1p

2
2 = 0, the torus is a.a.s. not topologically embeddable into Y ∈ (Ωn,Pp). We

will need the following lemma.

Lemma 7.1. Let F be a closed surface and Y a 2-dimensional simplicial complex. If h : F → Y

is a topological embedding then h(F ) is a subcomplex of Y . It follows that there is a triangulation

S of F for which the embedding h is simplicial.

Proof. We first show that if V is the interior of a 2-simplex in Y , then either h(F ) ⊇ V or

h(F ) ∩ V = ∅. This we do by showing that h(F ) ∩ V is closed and open in V . Since h(F ) is

compact, it is closed in Y , and so h(F ) ∩ V is closed in V . On the other hand, since Y is a
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2-dimensional complex, V is open in Y and so h−1(V ) is open in F . By invariance of domain

(Corollary 19.9 in [B]), h|h−1(V ) : h
−1(V ) → V is an open mapping, and so its image, h(F )∩ V , is

open in V .

Now let G be the union of those 2-simplices in Y whose interiors are contained in h(F ). Then

G is a subcomplex of Y and we show h(F ) = G. Since h(F ) is closed in Y and is disjoint from

the interiors of all other 2-simplices of Y , we have G ⊆ h(F ) ⊆ G∪Y 1, where Y 1 is the 1-skeleton

of Y . Let U = F − h−1(G) then U is open in F and h(U) ⊆ Y 1. Since Y 1 may be embedded into

some surface as a subset with empty interior, by invariance of domain again we must have U = ∅

and so h(F ) = G. �

By Lemma 7.1, the torus is topologically embeddable into a given 2-dimensional simplicial

complex Y iff there exists a triangulation S of the torus that is simplicially embeddable into Y . If

S is a triangulation of the torus with fi simplices of dimension i, then there are n(n− 1) · · · (n−

f0 + 1) ≤ nf0 injections of its vertex set into [n]. Given such an injection, the probability that it

determines a simplicial embedding of S into Y ∈ (Ωn,Pp) is precisely p
f0
0 p

f1
1 p

f2
2 . It follows that the

probability that S is simplicially embeddable into Y is at most nf0p
f0
0 p

f1
1 p

f2
2 . Every triangulation

of the torus satisfies f0 − f1 + f2 = 0 and 3f2 = 2f1, from which it follows that f1 = 3f0 and

f2 = 2f0. Furthermore, it follows from [G] that there is a constant c such that the number of non-

equivalent triangulations of the torus with f0 vertices is bounded by cf0 . So, the probability that

there is a triangulation S of the torus with f0 vertices which is simplicially embeddable into Y is

at most
(

cnp0p
3
1p

2
2

)f0
= uf0

n where un = cnp0p
3
1p

2
2 −→ 0 by our assumption. Finally, summing over

all possible f0, the probability that there is some triangulation of the torus which is simplicially

embeddable into Y ∈ (Ωn,Pp) is bounded by

∞
∑

f0=1

uf0
n =

un

1− un

−→
n→∞

0.
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