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PERMUTATIONS AVOIDING A PATTERN OF LENGTH

THREE UNDER MALLOWS DISTRIBUTIONS

ROSS G. PINSKY

Dedicated to the memory of Dima Ioffe (1963-2020)

Abstract. We consider permutations avoiding a pattern of length three

under the family of Mallows distributions. In particular, for any pat-

tern τ ∈ S3 \ {321}, we obtain rather precise results on the asymptotic

probability as n → ∞ that a permutation σ ∈ Sn under the Mallows

distribution with parameter q ∈ (0, 1) avoids the pattern. By a duality

between the parameters q and 1
q
, we also obtain rather precise results

on the above probability for q > 1 and any pattern τ ∈ S3 \ {123}.

1. Introduction and Statement of Results

We recall the definition of pattern avoidance for permutations. Let Sn

denote the set of permutations of [n] := {1, · · · , n}. For σ ∈ Sn, we write

σ = σ1σ2 · · · σn, where σ(i) = σi. If τ ∈ Sm, where 2 ≤ m ≤ n, then we

say that σ contains τ as a pattern if there exists a subsequence 1 ≤ i1 <

i2 < · · · < im ≤ n such that for all 1 ≤ j, k ≤ m, the inequality σij < σik

holds if and only if the inequality τj < τk holds. If σ does not contain τ ,

then we say that σ avoids τ . Thus, for example, if τ = 123 ∈ S3, then

σ = 53412 ∈ S5 avoids τ but σ = 51324 ∈ S5 does not avoid τ ; indeed the

pattern τ appears twice: σ2σ3σ5 = 134 and σ2σ4σ5 = 124. Denote by Sn(τ)

the set of permutations in Sn that avoid τ . At a couple of points in this

paper it will be useful to have the extended definition Sn(τ) = Sn, if τ ∈ Sm

with m > n.
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It is well-known that |Sn(τ)| = Cn, for all six permutations τ ∈ S3, where

Cn =
(2nn )
n+1 is the nth Catalan number [2]. Consequently, under the uniformly

random probability measure Pn on Sn, one has

(1.1) Pn(Sn(τ)) ∼
(4e)n√
2πnn+2

, for all τ ∈ S3.

More generally, the celebrated Stanley-Wilf conjecture, now proven [5],

states that for any τ ∈ Sm, m ≥ 2, there exists a constant C = C(τ) such

that Cn constitutes an upper bound on the growth rate of |Sn(τ)| as n → ∞.

Consequently, for any τ ∈ Sm, m ≥ 2, there exists a constant C1 = C1(τ)

such that Pn(Sn(τ)) ≤ (C1
n
)n.

In this paper, we investigate the probability of avoiding a pattern of length

three under the family of Mallows distributions. For each q > 0, the Mallows

distribution with parameter q is the probability measure P
q
n on Sn defined

by

(1.2) P q
n(σ) =

qinv(σ)

Zn(q)
,

where inv(σ) is the number of inversions in σ, and Zn(q) is the normalization

constant [8, Corollary 1.3.13], given by

(1.3) Zn(q) =

n
∏

k=1

1− qk

1− q
.

Thus, for q ∈ (0, 1), the distribution favors permutations with few inversions,

while for q > 1, the distribution favors permutations with many inversions.

Recall that the reverse of a permutation σ = σ1 · · · σn is the permutation

σrev := σn · · · σ1. The Mallows distributions satisfy the following duality

between q > 1 and q < 1:

P q
n(σ) = P

1
q
n (σrev), for q > 0, σ ∈ Sn and n = 1, 2, · · · .

Consequently, it suffices to restrict our study to q ∈ (0, 1), which we do from

here on. For the above results and more on the Mallows distribution, see for

example, [7], [4] [1]. We are unaware of other papers treating the probability
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of avoiding a pattern of length three under the Mallows distributions. How-

ever, the paper [3] treats the probability of avoiding a consecutive pattern

under the Mallows distribution.

For several of the proofs in this paper, we will use the following so-called

online construction of a random permutation in Sn distributed according

to the Mallows distribution with parameter q. By “online” we mean that

the random permutation is constructed in n steps, with one number being

added to the permutation at each step. Let {Xj}nj=1 be independent random

variables withXj distributed as a geometric random variable with parameter

1− q and truncated at j − 1; that is,

(1.4) P (Xj = m) =
(1− q)qm

1− qj
, m = 0, · · · , j − 1.

Consider a horizontal line on which to place the numbers in [n]. We begin

by placing down the number 1. Then inductively, if we have already placed

down the numbers 1, 2, · · · , j − 1, the number j gets placed down in the

position for which there are Xj numbers to its right. Thus, for example, for

n = 4, if X2 = 1, X3 = 2 and X4 = 0, then we obtain the permutation 3214.

To see that this construction does indeed induce the Mallows distribution

with parameter q, note that the number of inversions in the constructed

permutation σ is
∑n

j=2Xj , and thus using (1.4), P (Xj = xj, j = 2, · · · , n) =
1

Zn(q)
q
∑n

j=2 xj = qinv(σ)

Zn(q)
.

We obtain rather precise results for every pattern except 321. The pattern

321 seems to require different techniques and is currently being studied by

a post-doctoral student of mine [6]. (By duality, for q > 1, we obtain rather

precise results for every pattern except 123.) We begin with a very rough

result to set the stage. From the online construction and (1.4), it follows

that

(1.5) P q
n(σ = id) = P (Xj = 0, j = 1, · · · , n) = (1− q)n

∏n
j=1(1− qj)

,
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where id denotes the identity permutation. Since the identity permutation

avoids all patterns of length three except for the pattern 123, the above

calculation yields the following result.

Proposition 1. For q ∈ (0, 1),

(1.6) P q
n(Sn(τ)) > (1− q)n, for all τ ∈ S3 \ {123} and all n ≥ 3.

On the other hand, we will prove the following result regarding the pattern

123.

Theorem 1. For q ∈ (0, 1),

(1.7) lim
n→∞

(

P q
n(Sn(123))

)
1
n2 = q

1
4 .

Proposition 1 and Theorem 1 along with (1.1) show that under the Mal-

lows distribution with q ∈ (0, 1), τ -avoiding permutations, for τ ∈ S3\{123},
are overwhelming more likely than under the uniform distribution, whereas

123-avoiding permutations are overwhelmingly less likely than under the

uniform distribution.

Since the permutation 123 has no inversions, the permutations 132 and

213 have one inversion, the permutations 312 and 231 have two inversions,

and the permutation 321 has three inversions, it is rather natural to sus-

pect that P
q
n(Sn(123)) < P

q
n(Sn(132)) = P

q
n(Sn(213)) < P

q
n(Sn(312)) =

P
q
n(Sn(231)) < P

q
n(Sn(321)), for all n ≥ 3. We will prove these relations

with regard to four of the six patterns.

Proposition 2. Let q ∈ (0, 1). Then

(1.8)

P q
n(Sn(312)) = P q

n(Sn(231)) > P q
n(Sn(213)) = P q

n(Sn(132)), for all n ≥ 3.

Remark. If σ is distributed as P
q
n , then σ−1 is also distributed as P

q
n ;

indeed this follows from the definition of P q
n and the fact that the number

of inversions in any permutation is equal to the number of inversions in its

inverse. Thus, since 312 and 231 are inverses of each other, this gives the

first equality in (1.8).
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Proposition 2 actually follows as a corollary of Proposition 4 below. Its

proof will be given after the statement of that proposition.

We have the following proposition.

Proposition 3. Let q ∈ (0, 1). Then

(1.9) lim
n→∞

(

P q
n(Sn(τ))

)
1
n exists for all τ ∈ S3.

Remark. For τ = 123, we already know from Theorem 1 that the limit in

(1.9) exists and equals 0. From Proposition 1, it follows that the limit in

(1.9) is positive for τ ∈ S3 \ {123}.

Proof. For σ ∈ Sn1+n2 , I1 = [n1] and I2 = [n1 + n2] \ [n1], let σIi , i = 1, 2,

denote the permutation in Sni
obtained by the induced relative ordering of

σ restricted to the domain Ii. (Thus, if σ = 32451, n1 = 2 and n2 = 3, then

σI1 = 21 and σI2 = 231.) It is known [1, Lemma 2.5 and Corollary 2.7] that

if σ is distributed as P q
n1+n2

, then σIi is distributed as P q
ni , and σI1 and σI2

are independent. From this we conclude that

P
q
n1+n2

(Sn1+n2(τ)) ≤ P q
n1
(Sn1(τ))P

q
n2
(Sn2(τ)), for any τ ∈ S3.

Thus, {ρn}∞n=1 is a sub-additive sequence, where ρn = log P q
n(Sn(τ)). By

the well-known result on sub-additive sequences, limn→∞
ρn
n

exists, and con-

sequently, so does limn→∞
(

P
q
n(Sn(τ))

)
1
n . �

From Propositions 1 and 3, it follows that limn→∞
(

P
q
n(Sn(τ))

)
1
n ≥ 1− q,

for all τ ∈ S3 \ {123}. In fact, there is equality for two choices of τ . We will

prove the following theorem.

Theorem 2.

lim
n→∞

(

P q
n(Sn(132))

)
1
n = lim

n→∞

(

P q
n(Sn(213))

)
1
n = 1− q.

The next proposition concerns P q
n(Sn(312)) and P

q
n(Sn(213)), or equiva-

lently by Proposition 2, P q
n(Sn(231)) and P

q
n(Sn(132)). Define

(1.10) wn = wn(q) =
n
∏

l=1

(1− ql), n = 0, 1, · · · ,

where we use the convention w0 = 1.
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Proposition 4. Let q ∈ (0, 1).

i. Define dn = dn(q) = P
q
n(Sn(312)) or dn = dn(q) = P

q
n(Sn(231)). Then

(1.11) dn = (1− q)

n
∑

k=1

qk−1 wk−1wn−k

wn
dk−1dn−k, n = 1, 2, · · · .

ii. Define dn = dn(q) = P
q
n(Sn(213)) or dn = dn(q) = P

q
n(Sn(132)). Then

(1.12) dn = (1− q)
n
∑

k=1

q(n−k+1)(k−1) wk−1wn−k

wn
dk−1dn−k, n = 1, 2, · · · .

Proposition 2 is a direct corollary of Proposition 4.

Proof of Proposition 2. The proposition follows immediately by induction

from (1.11) and (1.12) along with the fact that P
q
n(Sn(τ)) = 1 for n = 1, 2

and all τ ∈ S3. �

We can use (1.11) to study limn→∞
(

P
q
n(Sn(312))

)
1
n (or equivalently,

limn→∞
(

P
q
n(Sn(231))

)
1
n ). Let

(1.13) γn = γn(q) = wn(q)P
q
n(Sn(312)),

and define the generating function

Gq(t) =

∞
∑

n=0

γn(q)t
n.

Let r(q) denote the radius of convergence of Gq. We note that r(q) ∈ [1,∞).

Indeed, since the coefficients of the power series are bounded, we have r(q) ≥
1, and by Proposition 1 and the fact that limn→∞wn(q) > 0, we have r(q) <

∞. Since limn→∞wn(q) > 0, it follows that lim supn→∞
(

P
q
n(Sn(312))

)
1
n =

1
r(q) , and thus, in light of Proposition 3, that

(1.14)

lim
n→∞

(

P q
n(Sn(312))

)
1
n =

1

r(q)
,where r(q) is the radius of convergence of Gq.

Proposition 5. The generating function Gq satisfies the functional equation

(1.15) Gq(t) =
1

1− (1− q)tGq(qt)
, 0 ≤ t < r(q).

Furthermore,

(1.16) lim
t→r(q)

Gq(t) = ∞.
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Remark. Note, for example, that the Catalan sequence has generating func-

tion 1−
√
1−4t
2t with radius of convergence 1

4 , however as t approaches 1
4 , the

generating function remains bounded.

Using Proposition 5, we can prove the following result.

Theorem 3. Let

F (x) =











1
1−x

, x ∈ [0, 1);

∞, x ∈ R− [0, 1)
.

i. If for some c ∈ (0, 1], one has

(1.17) F
(

cF
(

cq · · ·F
(

cqN−1(1 + cqN )
)

· · ·
)

= ∞, for some N ∈ N,

then

(1.18) lim
n→∞

(

P q
n(Sn(312))

)
1
n = lim

n→∞

(

P q
n(Sn(231))

)
1
n >

1− q

c
.

ii. If for some c ∈ (0, 1), one has

(1.19) F
(

cF
(

cq · · ·F
(

cqN−1F
(

c
qN

1− q

)

· · · ) < ∞, for some N ∈ N,

then

(1.20) lim
n→∞

(

P q
n(Sn(312))

)
1
n = lim

n→∞

(

P q
n(Sn(231))

)
1
n <

1− q

c
.

In fact, if for some fixed N , (1.19) holds with c replaced by b, with b < c

arbitrarily close to c, then (1.20) continues to hold with c.

Remark. We have restricted c to (0, 1] in part (i) because we already know

from Proposition 1 that the left hand side of (1.18) is greater or equal to 1−q.

Similarly, we have restricted c to (0, 1) in part (ii) because by Proposition 1

and (1.20) those are the only possible values of c for which the result could

apply.

The larger one chooses N in (1.17) and (1.19), the better an estimate

one obtains. This works nicely for fixed values of q, as we demonstrate in

the table below. However, if we are interested in bounds given as explicit

functions of q, then we are limited in our choices of N . In (1.17), if we choose

N = 2, we will get a quadratic inequality for c. Alternatively, since F is
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increasing on [0, 1), the condition F
(

cF
(

cq · · · cqN−2F
(

cqN−1
)

· · ·
)

= ∞
also implies (1.18). Using this condition, we can choose N = 4 and obtain a

quadratic inequality for c. This latter case turns out to give a larger lower

bound. In (1.19), we obtain a quadratic inequality for c if we choose N = 3.

However, as the proof of Theorem 3 shows, the term cqN

1−q
is obtained by

making an approximation, and this approximation is only a good one when

cqN

1−q
is small. Because of this, it turns out that the upper bound using N = 3

is only reasonably accurate for q ≤ .6. Here is our result.

Theorem 4. Let q ∈ (0, 1). Then

(1.21)

LB(q) :=
2q2(1− q)(1− q3)

1− q4 −
√

(1− q4)2 − 4q2(1− q)(1− q3)
< lim

n→∞

(

P q
n(Sn(τ))

)
1
n <

2q2(q2 + 1)(1 − q)

1−
√

1− 4(1− q)q2(q2 + 1)
:= UB(q), for τ = 312 and τ = 231.

Remark 1. The upper and lower bound functions, UB(q) and LB(q), vir-

tually coincide for q ∈ (0, .4] and differ by less than .01 for q ∈ (0, .5]. The

upper and lower bound functions, UB(q) and LB(q), as well as the true value

of limn→∞
(

P
q
n(Sn(312))

)
1
n (with error no more than ±.01) are plotted in

Figure 1. See also the table below. (We note that the “true” values in

the table have been obtained by choosing sufficiently large N in (1.17) and

(1.19) and using MATLAB.)

q .1 .2 .3 .4 .5 .6 .7 .8 .9

UB(q) .991 .966 .926 .872 .806 .733 .677 .700 .825

LB(q) .991 .966 .926 .871 .801 .712 .599 .452 .259

true value (±.01) .716 .605 .461 .275

Remark 2. The upper bound approaches 1 instead of 0 when q → 1. Hugo

Panzo has shown me the following argument to get the following rough upper



PERMUTATIONS AVOIDING A PATTERN UNDER MALLOWS DISTRIBUTIONS 9

Figure 1. Upper bound, lower bound and true value with

error ±.01 for limn→∞(P q
n(Sn(312))

1
n as a function of q

bound (meaningful only for q > 3
4) that converges to 0 as q → 1:

(1.22) lim
n→∞

(

P q
n(Sn(τ))

)
1
n ≤ 4(1 − q), for τ = 312 and τ = 231.

This is derived as follows. We have

P q
n(Sn(312)) =

1

Zn(q)

∑

σ∈Sn(312)

qinv(σ) =
1

Zn(q)

∞
∑

k=0

an,kq
k,

where an,k = |{σ ∈ Sn(312) : inv(σ) = k}| is the number of permutations in

Sn(312) that have k inversions. Since |Sn(312)| = Cn, we can rewrite this

as

P q
n(Sn(312)) =

Cn

Zn(q)

∞
∑

k=0

an,k

Cn
qk =

Cn

Zn(q)
EqAn ,

where An is a random variable distributed as the number of inversions oc-

curring in a permutation chosen uniformly at random from Sn(231). Now

(1.22) follows from this along with the fact that limn→∞C
1
n
n = 4 and

limn→∞Zn(q)
1
n = (1− q)−1.

The rest of the paper is organized as follows. Each of the succeeding

sections is devoted to the proof of one result. The results are proved in
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the following order: Proposition 4, Proposition 5, Theorem 3, Theorem 4,

Theorem 1, Theorem 2.

2. Proof of Proposition 4

Proof of part (i). Let dn = P
q
n(Sn(312)). If σ ∈ Sn(312) and σk = 1, then

necessarily {σ1, · · · , σk−1} = [k]\{1} (and then of course also {σk+1, · · · , σn} =

[n] \ [k]). Let Ak ⊂ Sn be the event that σk = 1 and {σ1, · · · , σk−1} =

[k] \ {1}. From the online construction,

P q
n(Ak) = P (Xj ≥ 1, for j ∈ [k]− {1};Xk+l ≤ l − 1, for l ∈ [n− k]).

Using the fact that

P (Xj ≥ 1) =
q(1− qj−1)

1− qj
, P (Xk+l ≤ l − 1) =

1− ql

1− qk+l
,

we obtain

P q
n(Ak) = qk−1 1− q

1− qk

n−k
∏

l=1

1− ql

1− qk+l
= (1− q)qk−1wk−1wn−k

wn
,

where wk is as in (1.10). Also from the online construction, it follows that

P q
n(Sn(312)|Ak) = dk−1dn−k.

Thus,

dn =

n
∑

k=1

P q
n(Sn(312)|Ak)P

q
n(Ak) = (1− q)

n
∑

k=1

qk−1wk−1wn−k

wn
dk−1dn−k,

which is (1.11). We leave it to the reader to check that the same formula

holds when one works with 231-avoiding permutations.

Proof of part (ii). Let dn = P
q
n(Sn(213)). If σ ∈ Sn(213) and σk = 1, then

necessarily {σ1, · · · , σk−1} = {n − k + 2, · · · , n} (and then of course also

{σk+1, · · · , σn} = {2, · · · , n−k+1}). Let Bk ⊂ Sn be the event that σk = 1

and {σ1, · · · , σk−1} = {n− k + 2, · · · , n}. From the online construction,

P q
n(Bk) = P (Xj ≤ j−2, for j ∈ [n−k+1]\{1};Xl ≥ n−k+1, for l ∈ [n]\[n−k+1]).
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Using the fact that

P (Xj ≤ j − 2) =
1− qj−1

1− qj
; P (Xl ≥ n− k + 1) =

qn−k+1 − ql

1− ql
,

we obtain

P q
n(Bk) =

1− q

1− qn−k+1
q(n−k+1)(k−1)

n
∏

l=n−k+2

1− ql−n+k−1

1− ql
.

Also from the online construction, it follows that

P q
n(Sn(213)|Bk) = dk−1dn−k.

Continuing as in the proof of part (i), we obtain (1.12). We leave it to

the reader to check that the same formula holds when one works with 132-

avoiding permutations. �

3. Proof of Proposition 5

Using (1.11) and recalling the definition of γn in (1.13), we have

(3.1) γn = (1− q)
n
∑

k=1

qk−1γk−1γn−k.

Let an = an(q) = qnγn, and define

Aq(t) =

∞
∑

n=0

an(q)t
n+1.

Using (3.1), we have

(3.2)

Gq(t)Aq(t) =

∞
∑

n=1

n
∑

k=1

ak−1γn−kt
n =

∞
∑

n=1

n
∑

k=1

qk−1γk−1γn−kt
n =

1

1− q

∞
∑

n=1

γnt
n =

1

1− q
(Gq(t)− 1).

Since Aq(t) = tGq(qt), we conclude from (3.2) that

(3.3) Gq(t) =
1

1− (1− q)tGq(qt)
.
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We now prove that limt→r(q)Gq(t) = ∞. Assume to the contrary. Since

Gq is increasing, limt→r(q)Gq(t) exists and from (3.3), (1−q)r(q)Gq(qr(q)) <

1. Consequently, for δ > 0 sufficiently small, the function

Hq(z) =











Gq(z), |z| < r(q)− δ;

1
1−(1−q)zGq(qz)

, r(q)− 2δ < |z| < r(q) + 2δ,

extends analytically the analytic function Gq(z) in |z| < r(q) to the disk

|z| < r(q) + 2δ. Consequently, the radius of convergence of Gq(z) must be

at least r(q) + 2δ, which is a contradiction. �

4. Proof of Theorem 3

Recall the definition of F in the statement of the theorem, and note from

(1.15) that (1 − q)tGq(qt) < 1 if and only if t ∈ [0, r(q)). Then (1.15) can

be written as Gq(t) = F
(

(1− q)tGq(qt)
)

, for t ∈ [0, r(q)). In light of (1.16),

if we define Gq(t) = ∞, for t ≥ r(q), then it follows that

(4.1) Gq(t) = F
(

(1− q)tGq(qt)
)

, for all t ≥ 0.

Iterating (4.1), we conclude that for any N ∈ N,

(4.2)

F
(

(1−q)tF
(

q(1−q)t · · ·F
(

qN−1(1−q)tGq(q
N t)

)

· · ·
)

< ∞, if and only if t ∈ [0, r(q)).

Now Gq(0) = 1, G′
q(0) = γ1 = 1 − q and Gq is strictly convex, since

it is represented as a power series with positive coefficients. Therefore,

Gq(q
N t) > 1 + (1 − q)qN t, for t ∈ (0, r(q)). Thus, since F is increasing on

[0, 1) and is equal to ∞ elsewhere, it follows from (4.2) that if

F
(

(1− q)tF
(

q(1− q)t · · ·F
(

qN−1(1− q)t(1 + (1− q)qN t)
)

· · ·
)

= ∞,

then r(q) < t. The strict inequality r(q) < t follows from the strict inequality

Gq(q
N t) > 1+(1− q)qN t. Substituting c = (1− q)t above, and using (1.14),

we conclude that if (1.17) holds, then (1.18) holds, proving part (i).

We now prove part (ii). Since γ0 = 1 and γn < 1, for all n ≥ 1, we have

Gq(t) <
1

1−t
= F (t), for t ∈ (0, 1). Thus, since F is increasing on [0, 1) and
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is equal to ∞ elsewhere, it follows from (4.2) that

(4.3)

if F
(

(1−q)tF
(

q(1−q)t · · ·F
(

qN−1(1−q)tF
(

qN t)
)

· · ·
)

< ∞, then r(q) > t.

Substituting c = (1− q)t above, and using (1.14), we conclude that if (1.19)

holds, then (1.20) holds.

The final statement in part (ii) follows from comparing (4.2) and (4.3) and

noting the strict inequality Gq(q
N t) < F (qN t), for t > 0. Indeed, fix a value

of c ∈ (0, 1). If for some fixed value of N , (4.3) holds for all b := (1−q)t < c,

then by the strict inequality Gq(q
N t) < F (qN t), for t ∈ (0, 1), it follows that

the left hand side of (4.2) is finite with (1 − q)t = c, and consequently by

(4.2) and (1.14), we obtain (1.20). �

5. Proof of Theorem 4

We begin with the lower bound. As noted in the paragraph preceding

Theorem 4, part (i) of Theorem 3 continues to hold with the condition

(1.17) replaced by the condition F (cF (cq · · · cqN−2F (cqN−1) · · · ) = ∞. We

use this condition with N = 4.

Consider the requirement F
(

cF
(

cqF
(

cq2F
(

cq3
))))

= ∞, where we con-

sider c ∈ (0, 1). In order for this to occur, one needs cF
(

cqF
(

cq2F
(

cq3
)))

≥
1. Since F (1 − c) = 1

c
, in order for the above inequality to occur, one

needs cqF
(

cq2F
(

cq3
))

≥ 1 − c. Since the range of F is [1,∞), this second

inequality holds automatically if 1−c
cq

≤ 1, or equivalently, if

(5.1) c ≥ 1

1 + q
.

Otherwise, since F (1 − cq
1−c

) = 1−c
cq

, in order for the second inequality to

occur, one needs cq2F
(

cq3
)

≥ 1− cq
1−c

= 1−c−cq
1−c

. This third inequality holds

automatically if 1−c−cq
(1−c)cq2

≤ 1, or equivalently, if

(5.2) c ≥ 1 + q + q2 −
√

(1 + q + q2)2 − 4q2

2q2
.

(We don’t need to place an upper bound on c because we are restricting from

the start to c ∈ (0, 1), and one can see that the inequality 1−c−cq
(1−c)cq2

≤ 1 holds



14 ROSS G. PINSKY

for c = 1−.) Otherwise, since F (1−c−cq−cq2+c2q2

1−c−cq
) = 1−c−cq

(1−c)cq2 , in order for the

third inequality to hold, one needs cq3 ≥ 1−c−cq−cq2+c2q2

1−c−cq
, or equivalently,

(5.3) (q2 + q3 + q4)c2 − (1 + q + q2 + q3)c+ 1 ≤ 0.

This gives

(5.4) c ≥ (1− q4)−
√

(1− q4)2 − 4q2(1− q)(1− q3)

2q2(1− q3)
.

(As before, we don’t need to place an upper bound on c because we are

restricting to c ∈ (0, 1), and one can see that (5.3) holds for c = 1.)

We conclude that (1.18) holds for c satisfying any one of (5.1)-(5.4). It

turns out that the right hand side of (5.4) yields the smallest value for c, so

we choose c to be equal to the right hand side of (5.4). After doing a little

algebra, one finds that 1−q
c

is given by the left hand side of (1.21).

We now turn to the upper bound. We consider (1.19) with N = 3; that

is, we consider the inequality F
(

cF
(

cqF
(

cq2F
(

c q3

1−q

))))

< ∞, where we con-

sider c ∈ (0, 1). In order for this to occur, one needs cF
(

cqF
(

cq2F
(

c q3

1−q

)))

<

1. Since F (1−c) = 1
c
, in order for this second inequality to occur, one needs

cqF
(

cq2F
(

c q3

1−q

))

< 1 − c. If 1−c
cq

≤ 1, or equivalently, if (5.1) occurs, then

this second inequality cannot occur. Otherwise, since F (1 − cq
1−c

) = 1−c
cq

, in

order for this second inequality to occur, one needs cq2F
(

c q3

1−q

)

< 1− cq
1−c

=

1−c−cq
1−c

. If 1−c−cq
(1−c)cq2

≤ 1, or equivalently, if (5.2) occurs, then this third in-

equality cannot occur. Otherwise, since F (1−c−cq−cq2+c2q2

1−c−cq
) = 1−c−cq

(1−c)cq2
, in

order for this third inequality to hold, one needs cq3

1−q
< 1−c−cq−cq2+c2q2

1−c−cq
, or

equivalently,

(5.5) (q2 + q4)c2 − c+ 1− q > 0.

Thus, we need

(5.6) c <
1−

√

1− 4q2(1− q)(1 + q2)

2q2(1 + q2)
.

(We don’t need to place a lower bound because we can see that (5.5) holds

for c = 0.)
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We conclude that (1.19) holds if c is smaller than each of the three right

hand sides, (5.1), (5.2) and (5.6). One can show that the right hand side of

(5.6) is the smallest of the three. Thus, we choose c to be equal to the right

hand side of (5.6). Thus, 1−q
c

is given by the right hand side of (1.21). �

6. Proof of Theorem 1

Recall that {Xj}∞j=1 are independent and distributed as in (1.4). We will

show that for any {ij}mj=1 satisfying i1 < · · · < im,

(6.1)

(

m
∏

j=1

(1−qj)
) q

1
2
(m−1)m

Zm(q)
≤ P (Xi1 < Xi2 < · · · < Xim) ≤

1
∏m

j=1(1− qj)

q
1
2
(m−1)m

Zm(q)
,

where Zm(q) is as in (1.3). Using this, we now prove the theorem. Let

An = {j ∈ [n]} : Xj = j−1} and Bn = {j ∈ [n] : Xj 6= j−1}. It is not hard
to see that in the online construction, in order to obtain a 123-avoiding

permutation it is necessary and sufficient that Xi1 < Xi2 < · · · < Xim ,

where m = |Bn|, Bn = {il}ml=1 and i1 < · · · < im. Using this with (6.1), and

defining Z0(q) = 1, we have

(6.2)

P q
n(Sn(123)) ≥

n
∑

k=1

P (|An| = k)

∏n−k
j=1 (1− qj)

Zn−k(q)
q

1
2
(n−k−1)(n−k) ≥

P (|An| ≥ m)

∏n−m
j=1 (1− qj)

Zn−m(q)
q

1
2
(n−m−1)(n−m), for any m ∈ [n],

and

(6.3)

P q
n(Sn(123)) ≤

n
∑

k=1

P (|An| = k)
1

∏n−k
j=1 (1− qj)

1

Zn−k(q)
q

1
2
(n−k−1)(n−k) ≤

n
∑

k=1

P (|An| ≥ k)
1

∏n−k
j=1 (1− qj)

1

Zn−k(q)
q

1
2
(n−k−1)(n−k).

Now

P (|An| ≥ m) ≥ P (Xj = j − 1 : j = 1, · · · ,m) =
q

1
2
(m−1)m

Zm(q)
.
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Thus, from (6.2) we obtain

(6.4)

P q
n(Sn(123)) ≥

∏n−m
j=1 (1− qj)

Zn−m(q)Zm(q)
q

1
2

(

(m−1)m+(n−m−1)(n−m)
)

, for any m ∈ [n].

Choosing m = ⌊n2 ⌋ in (6.4), we conclude that

(6.5) lim inf
n→∞

(

P q
n(Sn(123))

)
1
n2 ≥ q

1
4 .

Also, for some c = c(q) > 0,

P (|An| ≥ k) ≤
∑

1≤i1<···<ik≤n

P (Xij = ij − 1; j = 1, · · · , k) =

∑

1≤i1<···<ik≤n

(1− q)k
∏k

j=1(1− qij )
q
∑k

j=1(ij−1) ≤
(

n

k

)

(1− q)k
∏∞

l=1(1− ql)
q

1
2
(k−1)k ≤

c2n q
1
2
(k−1)k.

Thus, from (6.3), we have for some c1 = c1(q) > 0,

(6.6) P q
n(Sn(123)) ≤ c12

n
n
∑

k=1

q
1
2

(

(k−1)k+(n−k−1)(n−k)
)

≤ c1n2
nq

n2

4
+O(n).

From (6.6), we conclude that

(6.7) lim sup
n→∞

(

P q
n(Sn(123))

)
1
n2 ≤ q

1
4 .

Now (1.7) follows from (6.7) and (6.5).

It remains to prove (6.1). We begin with the lower bound. We have

(6.8)
(

m
∏

j=1

(1− qij)
)

P (Xi1 < Xi2 < · · · < Xim) =

i1−1
∑

k1=0

· · ·
im−1−1
∑

km−1=km−2+1

im−1
∑

km=km−1+1

(1− q)qk1 · · · (1− q)qkm−1(1− q)qkm =

i1−1
∑

k1=0

· · ·
im−1−1
∑

km−1=km−2+1

(1− q)qk1 · · · (1− q)qkm−1
(

qkm−1+1 − qim
)

≥

q(1− q)

i1−1
∑

k1=0

· · ·
im−1−1
∑

km−1=km−2+1

(1− q)qk1 · · · (1− q)qkm−2(1− q)q2km−1 ,
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where the inequality follows by writing

qkm−1+1 − qim = q
(

qkm−1 − qim−1
)

≥ q(1− q)qkm−1 .

Continuing with the summation on the right hand side of (6.8), we have

(6.9)
i1−1
∑

k1=0

· · ·
im−1−1
∑

km−1=km−2+1

(1− q)qk1 · · · (1− q)qkm−2(1− q)q2km−1 =

1− q

1− q2

i1−1
∑

k1=0

· · ·
im−2−1
∑

km−2=km−3+1

(1− q)qk1 · · · (1− q)qkm−2
(

q2km−2+2 − q2im−1
)

≥

(1− q)q2
i1−1
∑

k1=0

· · ·
im−2−1
∑

km−2=km−3+1

(1− q)qk1 · · · (1− q)qkm−3(1− q)q3km−2 ,

where the inequality follows by writing

q2km−2+2 − q2im−1 = q2(q2km−2 − q2im−1−2) ≥ q2(1− q2)q2km−2 .

From (6.8) and (6.9) we have

(

m
∏

j=1

(1− qij)
)

P (Xi1 < Xi2 < · · · < Xim) ≥

(1− q)2q1+2
i1−1
∑

k1=0

· · ·
im−2−1
∑

km−2=km−3+1

(1− q)qk1 · · · (1− q)qkm−3(1− q)q3km−2 .

Continuing in the same vein as the above two steps for a total of m−1 steps,

we obtain,

(6.10)

(

m
∏

j=1

(1− qij)
)

P (Xi1 < Xi2 < · · · < Xim) ≥

(1− q)m−1q1+2+···(m−1)
i1−1
∑

k1=0

(1− q)qmk1 =

(1− q)m−1q
1
2
(m−1)m(1− q)

1− qmi1

1− qm
≥ (1− q)mq

1
2
(m−1)m.

From (6.10) and (1.3), we have

P (Xi1 < Xi2 < · · · < Xim) ≥
∏m

j=1(1− qj)
∏m

j=1(1− qij )

q
1
2
(m−1)m

Zm(q)
,
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and the right hand side above is greater than the left hand side of (6.1).

We now turn to the upper bound in (6.1). We have

(6.11)
(

m
∏

j=1

(1− qij)
)

P (Xi1 < Xi2 < · · · < Xim) =

i1−1
∑

k1=0

· · ·
im−1−1
∑

km−1=km−2+1

im−1
∑

km=km−1+1

(1− q)qk1 · · · (1− q)qkm−1(1− q)qkm =

i1−1
∑

k1=0

· · ·
im−1−1
∑

km−1=km−2+1

(1− q)qk1 · · · (1− q)qkm−1
(

qkm−1+1 − qim
)

≤

q ×
i1−1
∑

k1=0

· · ·
im−1−1
∑

km−1=km−2+1

(1− q)qk1 · · · (1− q)qkm−2(1− q)q2km−1 =

q
1− q

1− q2

i1−1
∑

k1=0

· · ·
im−2−1
∑

km−2=km−3+1

(1− q)qk1 · · · (1− q)qkm−2
(

q2km−2+2 − q2im−1
)

≤

q
1− q

1− q2
q2

i1−1
∑

k1=0

· · ·
im−2−1
∑

km−2=km−3+1

(1− q)qk1 · · · (1− q)qkm−3(1− q)q3km−2 .

Continuing in the same vein as the above two steps in (6.11) for a total of

m− 1 steps, we obtain

(6.12)

(

m
∏

j=1

(1− qij)
)

P (Xi1 < Xi2 < · · · < Xim) ≤

q
1− q

1− q2
q2

1− q

1− q3
q3 · · · 1− q

1− qm−1
qm−1

i1−1
∑

k1=0

(1− q)qmk1 ≤

q
1
2
(m−1)m (1− q)m

∏m
j=1(1− qj)

=
q

1
2
(m−1)m

Zm(q)
,

from which the upper bound in (6.1) follows.

�

7. Proof of Theorem 2

By Proposition 2, it suffices to consider Sn(213). We use the online con-

struction of a permutation σ, distributed as P
q
n , using {Xj}nj=1, which are

independent and distributed as in (1.4).
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Fix α ∈ (12 , 1). Let Bn,α =
{

Xj ≥ ⌊nα⌋, for all j ∈ {n−⌊nα⌋+1, · · · , n}
}

.

Note that if Bn,α does not occur, then necessarily there exists some j ∈ {n−
⌊nα⌋+1, · · · , n} for which |{i ∈ {1, · · · , n−⌊nα⌋} : σ−1

i < σ−1
j }| ≥ n−⌊2nα⌋.

That is, there exists such a j with the property that its position in the

permutation σ is to the right of at least n−⌊2nα⌋ numbers from among the

numbers {1, · · · , n− ⌊nα⌋}. In such case, let

{i1, · · · , im} = {i ∈ {1, · · · , n− ⌊nα⌋} : σ−1
i < σ−1

j },

where n − ⌊2nα⌋ ≤ m ≤ n − ⌊nα⌋ and 1 ≤ i1 < · · · < im ≤ n − ⌊nα⌋. Let

σ′ ∈ Sn−⌊nα⌋ be the permutation obtained by stopping the construction of σ

after the first n−⌊nα⌋ steps. Under the above scenario, the first m numbers

in σ′ are {i1, · · · , im}. Furthermore, in order for σ to belong to Sn(213), it

is necessary that the numbers {i1, · · · , im} appear in increasing order in σ′;

that is, σ′
1 = i1, · · · , σ′

m = im.

The distribution of σ′ is the Mallows distribution P
q
n−⌊nα⌋. From (1.2), it

follows readily that the probability

P
q
n−⌊nα⌋(σ

′
1 = i1, · · · , σ′

m = im),

as a function of {i1, · · · , im}, where 1 ≤ i1 < · · · < im ≤ n − ⌊nα⌋, is

maximized when {i1, · · · , im} = {1, 2, · · · ,m}. We have

(7.1)

P
q

n−⌊nα⌋(σ
′
1 = 1, · · · , σ′

m = m) = P (X1 = · · · = Xm = 0) =

(1− q)m
∏m

j=1(1− qj)
≤ C1(1− q)m,

for some constant C1 independent of n and α.

From the previous two paragraphs, we deduce that

(7.2)
P q
n(Sn(213)) = P q

n(Bn,α ∩ Sn(213)) + P q
n(B

c
n,ǫ ∩ Sn(213)) ≤

P q
n(Bn,α) + P q

n(Sn(213)|Bc
n,ǫ) ≤ P q

n(Bn,α) + C1(1− q)n−⌊2nα⌋.

From (1.4),

(7.3)

P q
n(Bn,α) =

n
∏

j=n−⌊nα⌋+1

q⌊n
α⌋ − qj

1− qj
≤ 1

∏∞
j=1(1− qj)

n
∏

j=n−⌊nα⌋+1

q⌊n
α⌋ ≤ C2q

(⌊nα⌋)2 ,
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for some constant C2 independent of n and α. From (7.2) and (7.3), we

obtain the upper bound lim supn→∞
(

P
q
n(Sn(213))

)
1
n ≤ (1 − q), while the

lower bound lim infn→∞
(

P
q
n(Sn(213))

)
1
n ≥ (1− q) follows from (1.6). �
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