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The size-Ramsey number of short subdivisions
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Abstract

The r-size-Ramsey number R̂r(H) of a graph H is the smallest number of edges a

graph G can have such that for every edge-coloring of G with r colors there exists a

monochromatic copy of H in G. For a graph H, we denote by Hq the graph obtained

from H by subdividing its edges with q−1 vertices each. In a recent paper of Ko-

hayakawa, Retter and Rödl, it is shown that for all constant integers q, r ≥ 2 and every

graph H on n vertices and of bounded maximum degree, the r-size-Ramsey number of

Hq is at most (log n)20(q−1)n1+1/q, for n large enough. We improve upon this result

using a significantly shorter argument by showing that R̂r(H
q) ≤ O(n1+1/q) for any

such graph H.

Keywords: Ramsey theory, random graphs, subdivisions

1 Introduction

Given a graph H and an integer r ≥ 2, how few vertices can a graph G have, so that however

we color its edges with r colors, we can find a monochromatic copy of H in G? The answer

to this question (which is indeed a finite number), is denoted by Rr(H) and is called the

r-Ramsey number of H . It is named after Frank P. Ramsey who was the first to study this

question in his seminal paper [23]. Following the given definition, we say that a graph G

is r-Ramsey for a graph H and write G −→ (H)r, if for any r-edge-coloring of G there is a

monochromatic copy of H in G. Therefore we can write

Rr(H) = min {|V (G)| : G −→ (H)r} .

Note that if the minimum on the RHS is attained for a graph G, then it is also attained by a

complete graph with |V (G)| vertices. Can we find a graph which can have more vertices, but

has fewer edges and is still r-Ramsey for H? How many edges suffice to construct a graph

which is r-Ramsey for H? The answer to the latter question is called the r-size-Ramsey

number and is denoted by R̂r(H):

R̂r(H) = min {|E(G)| : G −→ (H)r} .
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This notion was introduced in 1978 by Erdős, Faudree, Rousseau and Schelp [12] and since

then it has been the subject of extensive research.

Similar notions for measuring minimality of the host graph which is r-Ramsey for H have

also been studied. Some of them are Folkman numbers, chromatic-Ramsey numbers, degree-

Ramsey numbers and so on. We refer the reader to a survey by Conlon, Fox and Sudakov

[6] for a recent thorough treatment of the topic. In this paper we will be concerned with

r-size-Ramsey numbers.

Beck [2] showed that paths have linear 2-size-Ramsey number, or more precisely, he showed

that for any sufficiently large n we have R̂2(Pn) ≤ 900n. His arguments can be easily extended

to show that, more generally, it holds that R̂r(Pn) = Or(n) for any fixed r ≥ 2. He also asked

if R̂2(H) grows linearly (in the number of vertices) for graphs with bounded maximum degree.

This was proven to be true (for any constant number of colors) for trees by Friedman and

Pippenger [13] and for cycles by Haxell, Kohayakawa and Łuczak [16]. In general, Beck’s

conjecture is not true, as Rödl and Szemerédi [24] showed that there exists a constant c > 0

such that for every sufficiently large n there exists a graph H with n vertices and maximum

degree 3 for which R̂2(H) ≥ n logc n.

When it comes to more precise bounds, depending on the number of colors, Dudek and Pralat

[10] showed that R̂r(Pn) ≥ Ω(r2)n, and this is almost optimal as Krivelevich [20] showed that

R̂r(Pn) ≤ O(r2 log r)n. In subsequent papers [1, 11] their bounds are improved by constant

factors. Moreover, when r = 2, the bounds were gradually improved in a series of papers,

see [1, 2, 4, 10] for lower bounds, and [2, 3, 9, 10, 21] for upper bounds. The current best

bounds are (3.75 − o(1))n ≤ R̂2(Pn) ≤ 74n. For results on size-Ramsey numbers of powers

of paths, see [5, 15], and for graphs with bounded treewidth, see the recent paper [18]. For

results concerning general trees, see the paper by Dellamonica [7].

The mentioned result for cycles by Haxell, Kohayakawa and Łuczak uses the regularity lemma

and makes no attempt to optimize the constant. Their result was improved by Javadi,

Khoeini, Omidi and Pokrovskiy [17] by using different arguments. In particular, they prove

that R̂2(Cn) ≤ 843× 106n, for n large enough.

1.1 Size-Ramsey numbers of subdivisions of graphs

At the moment, a satisfactory result about size-Ramsey numbers of general bounded degree

graphs seems out of reach. A natural step in this direction is understanding subdivisions of

bounded degree graphs. For a graph H , let Hq be the graph obtained from H by subdividing

each of its edges with q − 1 vertices (instead of each edge, we have a path of length q). Pak

[22] conjectured that for a given graph H with n vertices and constant maximum degree, and

for q = Ω(log n), the 2-size-Ramsey number of Hq is linear in |V (Hq)|. By using random

walks on expanders, he was able to show this up to a polylogarithmic factor. In the special

case where H is fixed and q = q(n) grows with n, the conjecture was resolved by Donadelli,

Haxell and Kohayakawa [8].

On the other hand, complementing the work of Pak, size-Ramsey numbers of short subdivi-

sions of bounded degree graphs were studied in a recent paper by Kohayakawa, Retter and

Rödl [19]. They showed that if q and r are constant, then R̂r(H
q) ≤ (logn)20(q−1)n1+1/q

for large enough n. In fact, they prove a universality result, which is usually much harder

than finding one fixed monochromatic copy in the graph we color. To state it, they use the
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following definition:

Definition. (Universal size-Ramsey number). For positive integers D, q, r, n, let the univer-

sal size-Ramsey number USR(D, q, r, n) be the smallest number of edges a graph G can have

such that

G −→ (Hq)r for all graphs H on n vertices and ∆(H) ≤ D.

Kohayakawa, Retter and Rödl show that USR(D, q, r, n) ≤ (logn)20(q−1)n1+1/q, for large

enough n. They also obtain a lower bound:

n1+1/q−2/(Dq)+o(1) ≤ USR(D, q, 1, n) ≤ USR(D, q, r, n).

which shows that their result is almost tight. They conjecture that the power of the logarithm

in the upper bound can be substantially reduced, so that it does not depend on q, or even

that it can be entirely removed.

In this paper we remove the polylogarithmic factor from their upper bound on the universal

size-Ramsey number, thus also improving their bound on the size-Ramsey number of short

subdivisions. We do so by using a significantly shorter argument. Our claim follows directly

from the next theorem which we prove in the third section, after giving some preliminary

results in Section 2. For proving upper bounds on size-Ramsey numbers very often random

graphs play an important role; we show that random graphs with appropriate parameters

are r-Ramsey for Hq.

Theorem 1.1. Let D, q, r ≥ 2 be positive integers. There exist positive constants c, µ0 such

that whp for p = cn−1+1/q the random graph G ∼ G(n, p) is r-Ramsey for Hq, for every graph

H with µ0n vertices and maximum degree D.

Remark. A simple first moment argument shows that this result is almost optimal in terms

of p, as for p ≪ n−1+1/q−2/(Dq) and for a D-regular graph H on µ0n vertices, G ∼ G(n, p)

does not contain Hq whp. Indeed, the expected number of labeled copies of such a graph Hq

is less than nn0pe0 , where n0 =
µ0nD

2
(q − 1) + µ0n and e0 =

µ0nD
2

q are the number of vertices

and edges of Hq (respectively). When p is small as mentioned, the expectation tends to zero,

hence by Markov’s inequality there is no copy of Hq in G(n, p) whp. In other words, there is

a small gap in terms of p between containing a single fixed copy of a graph from our class,

and being r-Ramsey for all graphs in the class.

Since G ∼ G(n, p) has at most 2
(
n
2

)
p edges whp, for p as specified in Theorem 1.1, we obtain

the following result:

Corollary 1.2. For all D, q, r, n and every graph H on n vertices and with ∆(H) < D, it

holds:

R̂r(H
q) ≤ USR(D, q, r, n) ≤ cn1+1/q

for a constant c = c(D, q, r).

Notation. Let G = (V,E) be a graph and V1, V2 ⊆ V and E1 ⊂ E. We denote by G[V1] the

subgraph of G induced by V1, by G[E1] the graph (V,E1), and by NV2(V1) the set of vertices in

V2 which are adjacent to at least one vertex in V1. We also use the notation NG(V1) := NV (V1)

(we omit G in the subscript when it is unambiguous) and NV2(v) := NV2({v}) for v ∈ V .

We denote by G(n, p) the binomial random graph, i.e. the probability space of graphs on n
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vertices where each pair of vertices forms an edge independently with probability p. We say

that G(n, p) satisfies a property with high probability (whp) if a graph sampled from G(n, p)

satisfies this property with probability tending to 1 as n tends to infinity. We use standard

Landau notations O(·), o(·), ω(·),Ω(·). With log n we denote the natural logarithm of n. We

omit floors and ceils whenever they are not essential. For integers m,n we write n ≫ m when

we want to say that n is large enough in comparison with m, but the exact dependency is

not essential.

2 Preliminaries

Our proof will depend on finding many random-like bipartite graphs in a monochromatic

subgraph of the graph we color. We describe what it means to be random-like in the following

two lemmas, through the notion of regularity.

Definition. Given a graph G and disjoint subsets U,W ⊂ V (G), we say that the pair (U,W )

is (G, ε, p)-regular for some ε, p ∈ (0, 1) if

∣
∣
∣
eG(U,W )

|U ||W |
−

eG(U
′,W ′)

|U ′||W ′|

∣
∣
∣ < εp

for every U ′ ⊂ U of size |U ′| ≥ ε|U |, and W ′ ⊂ W of size |W ′| ≥ ε|W |. If G = (U ∪W,E) is

bipartite and (U,W ) is (G, ε, p)-regular, then we say that G is an (ε, p)-regular pair.

Definition. Given a bipartite graph (U ∪W,E) we say that U and W form an (ε, p)-lower-

regular pair if
e(U ′,W ′)

|U ′||W ′|
≥ (1− ε)p

for every U ′ ⊂ U of size |U ′| ≥ ε|U | and every W ′ ⊂ W of size |W ′| ≥ ε|W |.

Note that if (U,W ) is (G, ε, p)-regular and e(U,W ) = |U ||W |p then U and W also form an

(ε, p)-lower-regular pair in G.

Now we state a standard result which tells us that whp for all colorings of a random graph

there exists a nicely structured monochromatic subgraph.

Proposition 2.1. Let h > 0. For any ε > 0 and integers r,K ≥ 1, there exist 0 < µ =

µ(r,K, ε), c′ = c′(r,K) < 1/2 such that if p ≥ n−1+h then G = G(n, p) whp has the following

property.

Let E(G) = E1 ∪ . . . ∪ Er be an r-edge-coloring of G. Then, for some i ∈ {1, . . . , r}, there

exists a subgraph G′ ⊆ G[Ei] and disjoint subsets V1, . . . , VK ⊆ V (G′) such that the following

holds:

• |Vi| = µn for each i ∈ [K],

• (Vi, Vj) forms an (G′, ε, p′)-regular pair for every distinct i, j ∈ [K], where p′ = c′p,

• eG′(Vi, Vj) = (µn)2p′ for every i, j ∈ [k], and

• |N(v) ∩ Vi| ≤
5
4
µnp′ for every v ∈

⋃

j∈[K] Vj and i ∈ [K].
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The proof of the above proposition relies on a standard argument invoking a sparse version of

Szemeredi’s Regularity lemma, finding the wanted monochromatic configuration by applying

Turan’s theorem and Ramsey’s theorem, and then "cleaning up" the graph to satisfy all of

the given conditions. See, for example, [16].

The following definition and the lemma which builds on it can be found in [14].

Definition 2.2. Let Pℓ(n,m, ε) be the set of all graphs consisting of pairwise disjoint sets

of vertices V1, ..., Vℓ of size n such that for i ∈ [ℓ], the sets Vi, Vi+1 form an (ε,m/n2)-lower-

regular graph with m edges1. We call elements in Pℓ(n,m, ε) chains. Let 0 < ν < 1. We say

that a set Q ⊂ V1 is (1 − ν)-spanning in the chain if all but at most νn vertices in V1 can

be reached by paths of length ℓ which start in Q and then go through V2, V3, . . . , Vℓ in this

order. Another way to write this is:

|NV1(NVℓ
(NVℓ−1

(...NV2(Q)))| > (1− ν)n.

We call a chain in Pℓ(n,m, ε) expanding with respect to δ, γ, ν, C if it contains a set X ⊂ V1

of size at most δn so that for all t ≥ Cnℓ+1/mℓ at most γt
(
n
t

)
sets of size t in V1 −X are not

(1− ν)-spanning.

Remark 2.3. If a chain in Pℓ(n,m, ε) is expanding with respect to δ, γ, ν, C and it holds

that Cnℓ+1/mℓ < 1, then at most (δ + γ)n singletons in V1 are not (1− ν)-spanning.

Lemma 2.4. (Lemma 5.9 in [14]) Let ℓ > 2 be an integer, and let 0 < β, δ, γ, ν < 1/3.

Then there exist an ε1 = ε1(ℓ, β, δ, γ, ν) > 0 and a constant C = C(ℓ, ν) such that for all

0 < ε ≤ ε1, the number of graphs in Pℓ(n,m, ε) that are expanding with respect to δ, γ, ν and

C is at least

(1− βm)

(
n2

m

)ℓ

for all m ≥ 8n logn.

A simple consequence of the previous result is that typically all chains in a random graph

with appropriate parameters are expanding.

Corollary 2.5. Let ℓ ≥ 2 be an integer, and let c′ > 0 and 0 < δ, γ, ν, µ < 1/3. Then there

exist an ε0 = ε0(ℓ, δ, γ, ν, c
′) > 0 and a constant C = C(ℓ, ν) such that for any 0 < ε < ε0

the following holds whp. Any chain in Pℓ(µn,m, ε) which is a subgraph of G(n, p) for p =

ω(logn/n) and m ≥ (µn)2c′p is expanding with respect to δ, γ, ν, C.

Proof. Let ε0 = ε1(ℓ, β, δ, γ, ν) and C = C(ℓ, ν) be given by Lemma 2.4 for the given pa-

rameters with the same name and β = β(ℓ, c′) chosen small enough - we will see later how

small.

For a fixed m larger than m0 := (µn)2c′p, we now bound the probability that a fixed ℓ-tuple

(V1, V2, ..., Vℓ) of sets of size µn in G(n, p) induces a graph containing a chain from Pℓ(µn,m, ε)

which is not (1− ν)-expanding. For this we use a union bound over all such non-expanding

chains. An upper bound for the number of non-expanding chains is given by Lemma 2.4, so

we have that the probability in question is bounded by

βm

(
(µn)2

m

)ℓ

pmℓ < βm
(e(µn)2

m

)mℓ

pmℓ ≤ βm
( e(µn)2

(µn)2c′p

)mℓ

pmℓ ≤
( e

c′

)mℓ

βm.

1With the convention that Vℓ+1 = V1.
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Now we easily bound the probability that there is a non-expanding chain for some m ≥ m0

and induced by any ℓ-tuple ζ = (V1, V2, ..., Vℓ):

∑

m

∑

ζ

( e

c′

)mℓ

βm ≤
∑

m

ℓn
(( e

c′

)ℓ

β
)m

≤ n2ℓn
(( e

c′

)ℓ

β
)m0

which tends to 0 when β is chosen small enough, as m0 is super-linear in n, while e, c′ and ℓ

are constants.

The following lemma follows easily from Chernoff’s inequality.

Lemma 2.6. Let 0 < α < 1 and G ∼ G(n, p) with p = cn−1+1/q for constants c, q ≥ 1. Then

whp for every set S such that |S| ≤ αn, there are at most O(n1−1/q) vertices in V (G) with

more than 4αnp neighbors in S.

Proof. Fix S,R ⊆ V (G) of sizes |S| = αn and |R| = Cn1−1/q, for a constant C > 2/α. The

expected number of edges with one vertex in R and the other in S is at least |R||S|p/2 and at

most |R||S|p. If R is such that all of its vertices have at least 4αnp neighbors in S then there

are at least 4αnp|R|
2

= 2|R||S|p edges with one vertex in R and one in S, where we divide by 2

because of possible double counting when a part of R is in S. Therefore, the probability that

a fixed set R is as described, i.e. that e(R, S) is at least two times larger than its expectation,

is by Chernoff’s inequality at most e−|S||R|p/6 = e−αcCn ≤ e−2n. Summing over all sets S and

R we get that the probability of an unwanted event is bounded by 2n2ne−2n, which tends to

0, so we are done.

3 The Proof

Before we prove our main result, which is Theorem 1.1, we will give some useful definitions and

lemmas which should make the proof of the main result quite straightforward. The ultimate

goal is to prove that G(n, p) is whp r-Ramsey for Hq, for suitably chosen parameters.

Definition 3.1. Given a graph G and disjoint subsets A,B ⊂ V (G), we say that a vertex

v ∈ A is (A,B, q, ν)-expanding, for some q ∈ N and ν > 0, if for at least (1 − ν)|A| vertices

w ∈ A there exists a v−w path in G of length q and with all q− 1 internal vertices being in

B.

Definition 3.2. Let G be a graph and A ∪ B be a partition of its vertex set. We say that

the pair (A,B) is (q, ν, n, c)-good in G if:

(1) |A| = n.

(2) All vertices in A are (A,B, q, ν)-expanding in G.

(3) ∆(G) < 2np for p = cn−1+1/q.

(4) For every B′ ⊂ A ∪ B of size |B′| < n
cq+2 there are at most n1−1/(2q)

q
vertices v ∈ A ∪ B

with

|NB′(v)| ≥
2np

cq+3/2
.
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Definition 3.3. Let G be a graph and let v ∈ V (G). We define the kth neighborhood of v in

G as

Nk
G(v) = NG(NG(. . . (NG

︸ ︷︷ ︸

k times

(v)) . . .)),

i.e. the set of vertices reachable from v by walks of length exactly k. We omit G in the

subscript whenever it is unambiguous.

The next lemma tells us that in a good pair (A,B) there are not many vertices in A for which

there exists a k ≤ q − 1 such that their kth neighborhood has large intersection with a fixed

small set in B.

Lemma 3.4. Let (A,B) be a (q, ν, n, c)-good pair in G where n ≫ c ≫ q. For every B′ ⊂ B

of size |B′| < n
cq+2 there are at most n1−1/(2q) bad vertices v ∈ A, i.e. vertices with the following

property:

|Nk
G(v) ∩B′| ≥

(np)k

cq+1

for some 1 ≤ k ≤ q − 1.

Proof. Let B′ ⊂ B be of size |B′| < n
cq+2 . Define X1 to be the set of all vertices in A ∪ B

which have more than 2np
cq+3/2 neighbors in B′. Now define Xk+1 to be the set of vertices in

A ∪ B with more than 2np
cq+3/2 neighbors in Xk, for all k ∈ [q − 2].

It will be enough to prove that each set Xk is small and that all vertices in A \Xk have less

than (np)k

cq+1 vertices from their kth neighborhood in B′, so the set of bad vertices will be a

subset of X1 ∪ . . . ∪Xq−1. Fix k ∈ [q − 1].

Claim 1. |Xk| <
n1−1/(2q)

q
.

Note that condition (4) of Definition 3.2 implies that |X1| <
n1−1/(2q)

q
. Similarly, using induc-

tion, |Xi| <
n1−1/(2q)

q
for all i ∈ [k].

Claim 2. For all vertices v ∈ A \Xk it holds that |Nk(v) ∩B′| < (np)k

cq+1 .

Let v ∈ A \Xk. Since v 6∈ Xk, it has at most 2np
cq+3/2 neighbors in Xk−1. Therefore, by using

paths which have their second vertex in Xk−1, v can reach at most 2np
cq+3/2 · (2np)

k−1 vertices

in B′ in exactly k steps, as by definition of a good pair ∆(G) < 2np. All other neighbors

of v are not in Xk−1, so this means that all of them have at most 2np
cq+3/2 neighbors in Xk−2.

Therefore, there are at most

2np ·
2np

cq+3/2
· (2np)k−2

other vertices passing through Xk−2 in the third step and then finishing in B′ after k steps.

We continue in this fashion and we get the following upper bound on the number of vertices

in B′ in the kth neighborhood of v:

k∑

i=1

(2np)i−1 ·
2np

cq+3/2
· (2np)k−i =

k∑

i=1

(2np)k

cq+3/2
<

(np)k

cq+1

for c chosen large enough in the beginning.

To complete the proof notice that all vertices v ∈ A \ (X1 ∪ . . . ∪Xq−1) have the property

|Nk(v) ∩ B′| <
(np)k

cq+1

7



for all k ∈ [q − 1] due to Claim 2, and by Claim 1 that |X1 ∪ . . . ∪Xq−1| ≤ n1−1/(2q), so we

are done, as all the bad vertices live in the small set X1 ∪ . . . ∪Xq−1.

The following lemma shows that if a pair (A,B) is good then after deleting a certain relatively

small number of vertices in B, most of the vertices in A are still expanding for suitably chosen

parameters.

Lemma 3.5. For every integer q and positive ν > 0 and for n ≫ c ≫ q, 1/ν, the following

holds. Let G be a graph and A,B ⊂ V (G) be such that (A,B) is (q, ν, n, c)-good in G. Then

all but at most n1−1/(2q) vertices in A are (A,B − B′, q, 2ν)-expanding, for every B′ ⊂ B of

size |B′| < n
cq+2 .

Proof. Let B′ ⊆ B be of size |B′| < n
cq+2 . Let X ⊂ A be the set of bad vertices described in

Lemma 3.4 for the set B′, so that |X| ≤ n1−1/(2q). We prove that all vertices in A − X are

(A,B −B′, q, 2ν)-expanding.

Let v ∈ A − X. Thanks to condition (3) from Definition 3.2 we have that ∆(G) < 2np,

and from Lemma 3.4 we know that there are at most (np)k

cq+1 vertices in Nk
G(v) ∩ B′ for each

k ∈ [q− 1]. Using these two facts we obtain an upper bound for the number of vertices in A

reachable from v by paths of length q which contain vertices in B′:

q−1
∑

k=1

(np)k

cq+1
(2np)q−k ≤ (q − 1)

(2np)q

cq+1
=

2q(q − 1)

c
n

where the kth term in the sum is an upper bound on the number of vertices in A which can

be reached from v by paths whose kth vertex is in B′. If we choose c so that 2q(q− 1)/c < ν,

we are done as now at most ν|A| new vertices in A start being unreachable by removing B′,

i.e. v is (A,B − B′, q, ν + ν)-expanding.

We finish our preparation for the proof of the main theorem by showing that an appropriate

combination of good pairs contains the subdivisions of bounded degree graphs of linear size.

Lemma 3.6. For every two integers q,D and integers n ≫ c ≫ q,D the following holds. Let

G be a graph and A,B1, ..., BD ⊂ V (G) be disjoint subsets such that for each i ∈ [D] we have

that (A,Bi) is (q, 1/4D, n, c)-good in G[A∪Bi]. Then G contains a copy of the q-subdivision

Hq of any graph H with at most n/cq+4 vertices and ∆(H) ≤ D.

Proof. Let n ≫ c be large enough integers which we get from Lemma 3.5 for ν := 1/4D. We

will embed Hq into G by embedding the vertices of H one by one into A, and connecting them

to all previously embedded neighbors from H by paths of length q whose internal vertices

go through different Bi. Lemma 3.5 will tell us that the small number of vertices in each

Bi which are used during this embedding process will not be able to prevent us from finding

new paths for the new vertices that we embed. We construct an embedding ϕ : Hq →֒ G as

follows. For each x ∈ V (Hq) we denote by x̄ the image of x, i.e. x̄ = ϕ(x).

1) Let S := ∅ be the set of occupied vertices in A and St := ∅ the set of occupied vertices

in Bt for each t ∈ [D]. Set Y := ∅ to be the set of vertices from V (H) which are

already embedded.
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• Repeat Steps 2, 3 and 4 until Y = V (H):

2) Take any v ∈ V (H)− Y . If v does not have any already embedded neighbors, then let

v̄ be an arbitrary vertex in A− S. Set Y := Y ∪ {v}, S := S ∪ {v̄}.

3) Else (if v has at least one already embedded neighbor), let Nv be the set of those

neighbors, i.e. vertices adjacent to v in H which are in Y . Assign a distinct integer

t(w) ≤ D to each vertex w ∈ Nv. Find a vertex a ∈ A− S such that for every w ∈ Nv

there is a path P = Pt(w) with the following properties2:

– P is of length q; it starts at w̄ and ends in a, while all its internal vertices in Bt(w).

– None of the vertices of P is occupied, i.e. St(w) ∩ V (P ) = ∅.

Now set

v̄ := a, Y := Y ∪ {v}, S := S ∪ {a}, St(w) := St(w) ∪ V (Pt(w))− {a, w̄},

for each w ∈ Nv.

4) If there exists a vertex v ∈ Y such that v̄ is not (A,Bi − Si, q, 2ν)-expanding for some

i ∈ [D], then do Y := Y − {v} for every such vertex, i.e. we discard it from the set

of already embedded vertices. Notice that we do not delete v̄ from S, meaning that

this vertex in G is now marked as useless and cannot be used for still non-embedded

vertices. The same holds for all the vertices which were lying on paths starting at v̄, as

they also stay occupied.

In order to complete the proof we need to prove that it is always possible to carry out step

3 of the algorithm, and that the algorithm terminates at some point.

For the former task, note that when we enter the repeat loop, the images of all vertices in Y

are (A,Bi − Si, q, 2ν)-expanding for every i ∈ [D], thanks to step 4 of the algorithm. This

means that at most 2ν|A| = |A|
2D

vertices in A are not reachable by paths starting at w̄ with all

internal vertices in Bt(w) − St(w), for each already embedded neighbor w ∈ Nv. Furthermore,

as we will prove in the next paragraph, we enter the repeat loop at most |A|/cq+3 times,

so the number of occupied vertices in A is also at most |A|/cq+3. Recalling that |Nv| ≤ D,

we conclude that there are at most D · |A|
2D

+ |A|
cq+3 < |A| occupied or non-reachable vertices,

hence there is a non-occupied vertex a ∈ A connected by paths (as described in step 3) going

through Bt(w) − St(w) to each w̄.

To prove that the algorithm terminates, we will show that we are done after entering the

repeat loop at most n/cq+3 times. For the sake of contradiction, assume that after n/cq+3

steps, there are still vertices in V (H) which are not embedded, i.e. |Y | < |V (H)| ≤ n/cq+4.

Since S increases by 1 each time we enter the repeat loop, the number of vertices which are

discarded in step 4 is at least |S| − |Y | > n/cq+3 − n/cq+4 > Dn1−1/(2q) for n chosen large

enough in the beginning. Note that vertices are discarded if they are not (A,Bi − Si, q, 2ν)-

expanding and furthermore, that they continue to be non-expanding as the size of Si is non-

decreasing. But by Lemma 3.5, the number of vertices in A which are not (A,Bi −Si, q, 2ν)-

expanding is at most n1−1/(2q) for every i because |Si| ≤ q|S| < qn
cq+3 < n

cq+2 , so there are at

most Dn1−1/(2q) vertices in A which could have been discarded, a contradiction.
2Later we show that this is possible.
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3.1 Proof of Theorem 1.1

Now we put everything together to prove our main result. Thanks to Lemma 3.6 it will be

enough to show the existence of a structure described in the lemma, with the appropriate

parameters. For the existence we will use Proposition 2.1 and Corollary 2.5.

Theorem 1.1. Let D, q, r ≥ 2 be positive integers. There exist positive constants c, µ0 such

that whp for p = cn−1+1/q the random graph G ∼ G(n, p) is r-Ramsey for Hq, for every graph

H with µ0n vertices and maximum degree D.

Proof. In order to use Proposition 2.1, we first fix the relevant parameters: h = 1/q, K :=

(q − 1)D + 1. Now we specify ε. Note that c′ = c′(r,K) in Proposition 2.1 is already

determined, so we can choose ε so that 0 < ε < ε0(q, δ, γ, ν, c
′) given by Corollary 2.5 where

δ = γ = ν = 1/8D. Let also C = C(q, ν) from Corollary 2.5. Finally, let p = cn−1+1/q, where

c is a large enough constant.

Take any r-coloring of G. We want to prove that there is a color class which contains a copy

of Hq. Thanks to Proposition 2.1 we whp get K = (q − 1)D + 1 sets

{V1} ∪
{

V t
k | k ∈ {2, ..., q}, t ∈ [D]

}

such that for each fixed t ∈ [D] the sets {V1} ∪
{

V t
k | k ∈ {2, ..., q}

}

form a chain in

Pq(µn, (µn)
2p′, ε) of the same color for parameters as specified in the proposition. Notice that

the proposition tells us that each pair of sets among these K sets satisfies some properties,

but we only use the edges of the pairs which make this star-like configuration, like in Figure

1. This gives us D chains which all share the first set of vertices V1.

Furthermore, by making use of Corollary 2.5 we get that each of these chains is also expanding

with respect to δ, γ, ν, C. Notice that the size of the sets in the chain is µn and the number of

edges between each pair is (µn)2p′, which implies that all but at most (δ + γ)|V1| singletons

in V1 are (1− ν)-spanning if c is chosen large enough. Indeed, this is true by Remark 2.3 and

the fact that:

C
(µn)q+1

((µn)2p′)q
= C

(µn)q+1

(c′cµ2n1+1/q)q
=

C

c′cµq−1
< 1

V1

V 1
2

V 1
3V
1
3

V 1
4

V 2
2 V 2

3V
2
3 V 2

4

V 3
2

V 3
3V
3
3

V 3
4

V 4
2

V 4
3V
4
3

V 4
4

V 5
2V 5

3V
5
3V 5

4

V 6
2

V 6
3V
6
3

V 6
4

t = 1

t = 2

t = 3t = 4

t = 5

t = 6

Figure 1: The monochromatic configuration from Proposition 2.1 for q = 4, D = 6
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where the last inequality is true as c can be chosen large enough in the beginning since C, c′

and µ depend only on D, q, r. Note that here it was crucial that we chose p = Ω(n−1+1/q).

Now let Bt =
⋃q

k=2 V
t
k for t ∈ [D]. We will show the existence a large set A ⊂ V1 such

that for all t ∈ [D], every a ∈ A is (A,Bt, q, ν)-expanding. First note that if for a fixed t a

singleton {v} is (1− ν)-spanning in the chain induced by {V1}∪
{

V t
k | k ∈ {2, ..., q}

}

, then v

is (V1, Bt, q, ν)-expanding by definition. Therefore, at most (γ + δ)|V1| vertices in V1 are not

(V1, Bt, q, ν)-expanding for each fixed t. By removing these vertices (for each t) from V1 we

get a set A ⊂ V1 of vertices which are all (V1, Bt, q, ν)-expanding.

Since A is of size at least |V1|(1−D(γ+ δ)) = |V1|(1− 1/4) > |V1|/2, we also know that each

vertex in A is (A,Bt, q, 2ν)-expanding, for all t ∈ [D]. This is because for each v ∈ A the

proportion of non-reachable vertices (bounded by ν) can increase only by a factor of 2 when

we delete at most half of the vertices from V1.

We want to prove that in the monochromatic graph we found it holds that (A,Bt) is

(q, 1/4D, |A|, c)-good, for each t ∈ [D].

Then we will be done by Lemma 3.6 and by setting µ0 =
µ

2cq+4 . From the previous discussion

we can infer that the second property in Definition 3.2 is satisfied for each pair (A,Bt). The

third one follows from the properties of the monochromatic configuration given by Proposition

2.1:

|NA∪Bt(v)| ≤
5

2
µnp′ < 5|A|p′ = 5|A|c′cn−1+1/q

= 5|A|c′c(µn)−1+1/q · µ1−1/q < 2|A|c|A|−1+1/q

where for the second inequality we use µn = |V1| < 2|A| and for the last c′ < 1/2, µ ≤ 1/3

and |A| ≤ µn. The fourth condition is also satisfied, as it is a consequence of Lemma 2.6

with α = µ
2cq+3/2 , for c large enough. This completes the proof.
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