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How many random edges make a dense hypergraph non-2-colorable?

Benny Sudakov ∗ Jan Vondrák †

Abstract

We study a model of random uniform hypergraphs, where a random instance is obtained by

adding random edges to a large hypergraph of a given density. The research on this model for

graphs has been started by Bohman et al. in [7], and continued in [8] and [16]. Here we obtain

a tight bound on the number of random edges required to ensure non-2-colorability. We prove

that for any k-uniform hypergraph with Ω(nk−ǫ) edges, adding ω(nkǫ/2) random edges makes the

hypergraph almost surely non-2-colorable. This is essentially tight, since there is a 2-colorable

hypergraph with Ω(nk−ǫ) edges which almost surely remains 2-colorable even after adding o(nkǫ/2)

random edges.

1 Introduction

Research on random graphs and hypergraphs has a long history with thousands of papers and

two monographs by Bollobás [9] and by Janson et al. [15] devoted to the subject and its diverse

applications. In the classical Erdős-Rényi model [14], a random graph is generated by starting from

an empty graph and then adding certain number of random edges. More recently, Bohman, Frieze

and Martin [7] considered a generalized model where one starts with a fixed graph G = (V,E) and

then inserts a collection R of additional random edges. We denote the resulting random graph by

G+R. The initial graph G can be regarded as given by an adversary, while the random perturbation

R represents noise or uncertainty, independent of the initial choice. This scenario is analogous to the

smoothed analysis of algorithms proposed by Spielman and Teng [19], where an algorithm is assumed

to run on the worst-case input, modified by a small random perturbation.

Usually, one investigates monotone properties of random graphs or hypergraphs; i.e., properties

which cannot be destroyed by adding more edges, like the property of containing a certain fixed

subgraph. Given a monotone property A of graphs on n vertices, we can ask what are the parameters

for which a random graph has property A almost surely, i.e. with probability tending to 1 as the

number of vertices n tends to infinity. In our setting, we start with a fixed hypergraph H and inquire

how many random edges R we have to add so that H+R has property A almost surely. This question

is too general to get concrete and meaningful results, valid for all hypergraphs H. Therefore, rather

than considering a completely arbitrary H, we start with a hypergraph from a certain natural class.
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One such class of graphs was considered in [7], where the authors analyze the question of how many

random edges need to be added to a graph G of minimal degree at least dn, 0 < d < 1, so that the

resulting graph G + R is almost surely Hamiltonian. Further properties of random graphs in this

model are explored in [8].

In [16], Krivelevich et al. considered a slightly more general setting, in which one performs a small

random perturbation of a graph G with at least dn2 edges. Observe that since G has at least dn2

edges, removing a small set of random edges would leave the total number of edges in G essentially

unchanged. Therefore one only has to focus on the case of adding random edges. In [16], the authors

obtained tight results for the appearance of a fixed subgraph and for certain Ramsey properties in

this model. In the same paper, they also considered random formulas obtained by adding random

k-clauses (disjunctions of k literals) to a fixed k-SAT formula. Krivelevich et al. proved that for

any formula with at least nk−ǫ k-clauses, adding ω(nkǫ) random clauses of size k makes the formula

almost surely unsatisfiable. This is tight, since there is a k-SAT formula with nk−ǫ clauses which

almost surely remains satisfiable after adding o(nkǫ) random clauses. A related question, which was

raised in [16], is to find a threshold for non-2-colorability of a random hypergraph obtained by adding

random edges to a large hypergraph of a given density.

For an integer k ≥ 2, a k-uniform hypergraph is an ordered pair H = (V,E), where V is a finite

non-empty set, called set of vertices and E is a family of distinct k-subsets of V , called the edges of

H. A 2-coloring of a hypergraph H is a partition of its vertex set V into two color classes so that

no edge in E is monochromatic. A hypergraph which admits a 2-coloring is called 2-colorable.

2-colorability is one of the fundamental properties of hypergraphs, which was first introduced

and studied by Bernstein [6] in 1908 for infinite hypergraphs. 2-colorability in the finite setting,

also known as “Property B” (a term coined by Erdős in reference to Bernstein), has been studied

extensively in the last forty years (see, e.g., [10, 11, 13, 5, 18]). While 2-colorability of graphs is

well understood being equivalent to non-existence of odd cycles, for k-uniform hypergraphs with

k ≥ 3 it is already NP -complete to decide whether a 2-coloring exists [17]. Consequently, there is

no efficient characterization of 2-colorable hypergraphs. The problem of 2-colorability of random

k-uniform hypergraphs for k ≥ 3 was first studied by Alon and Spencer [4]. They proved that such

hypergraphs with m = (c2k/k2)n edges are almost surely 2-colorable. This bound was improved

later by Achlioptas et al. [1]. Recently, the threshold for 2-colorability has been determined very

precisely. In [2] it was proved that the number of edges for which a random k-uniform hypergraph

becomes almost surely non-2-colorable is (2k−1 ln 2 −O(1))n.

Interestingly, the threshold for non-2-colorability is roughly one half of the threshold for k-SAT.

It has been shown in [3] that a formula with m random k-clauses becomes almost surely unsatisfiable

for m = (2k ln 2 − O(k))n. The two problems seem to be intimately related and it is natural to ask

what is their relationship in the case of a random perturbation of a fixed instance. Recall that from

[16] we know that for any k-SAT formula with nk−ǫ clauses, adding ω(nkǫ) random clauses makes

it almost surely unsatisfiable. In fact, the same proof yields that for any k-uniform hypergraph H

with nk−ǫ edges, adding ω(nkǫ) random edges destroys 2-colorability almost surely. Nonetheless, it
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turns out that this is not the right answer. It is enough to use substantially fewer random edges to

destroy 2-colorability: roughly a square root of the number of random clauses necessary to destroy

satisfiability. The following is our main result.

Theorem 1.1 Let k, ℓ ≥ 2, ǫ ≥ 0 be fixed and let H be a 2-colorable k-uniform hypergraph with

Ω(nk−ǫ) edges. Then the hypergraph H ′ obtained by adding to H a collection R of ω
(

nℓǫ/2
)

random

ℓ-tuples is almost surely non-2-colorable.

Observe that for ǫ ≥ 2/ℓ, the result is easy. Regardless of the hypergraph H, it is well known

that a collection of ω(n) random ℓ-tuples on n vertices is almost surely non-2-colorable. So we will

be only interested in the case when ǫ < 2/ℓ. For such ǫ we obtain the following result, which shows

that the assertion of Theorem 1.1 is essentially best possible.

Theorem 1.2 For fixed k, ℓ ≥ 2 and 0 ≤ ǫ < 2/ℓ, there exists a 2-colorable k-uniform hypergraph

H with Ω(nk−ǫ) edges such that its union with a collection R of o
(

nℓǫ/2
)

random ℓ-tuples is almost

surely 2-colorable.

The rest of this paper is organized as follows. In the next section we present an example of the

hypergraph which shows that our main result is essentially best possible. In Section 3 we discuss

some natural difficulties in proving Theorem 1.1 and describe how to deal with them in the case of

bipartite graphs. This result also serves as a basis for induction which we use in Section 4 to prove

the general case of 2-colorable k-uniform hypergraphs.

Remark 1.3 We have two alternative ways of adding random edges. Either we can sample a random

ℓ-tuple |R| times, each time uniformly and independently from the set of all
(n
ℓ

)

ℓ-tuples. Or we can

pick each ℓ-tuple randomly and independently with probability p = |R|/
(

n
ℓ

)

. Since 2-colorability is a

monotone property, it follows, as in Bollobás [9], Theorem 2.2 and a similar remark in [16], that if

the resulting hypergraph is almost surely non-2-colorable (2-colorable) in one model then this is true

in the other model as well. This observation can sometimes simplify our calculations.

Notation. Let H = (V,E) be a k-uniform hypergraph. In the following, we use the notions of

degree and neighborhood, generalizing their usual meaning in graph theory. For a vertex v ∈ V , we

define its degree d(v) to be the number of edges of H that contain v. More generally, for a subset of

vertices A ⊂ V, |A| < k, we define its degree d(A) = |{e ∈ E : A ⊂ e}|. For a (k− 1)-tuple of vertices

A, we define its neighborhood as N(A) = {w ∈ V \ A : A ∪ {w} ∈ E}. Also, for a (k − 2)-tuple of

vertices A, we define its link as Γ(A) = {{u, v} ∈ V \A : A ∪ {u, v} ∈ E}.

Throughout the paper we will systematically omit floor and ceiling signs for the sake of clarity

of presentation. Also, we use the notations an = Θ(bn), an = O(bn) or an = Ω(bn) for an, bn > 0

and n → ∞ if there are absolute constants C1 and C2 such that C1 bn < an < C2 bn, an < C2bn or

an > C1bn respectively. The notation an = o(bn) means that an/bn → 0 as n → ∞, and an = ω(bn)

means an/bn → ∞. The parameters k, ℓ, ǫ are considered constant.
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2 The lower bound

The following example proves Theorem 1.2 and shows that our main result is essentially best possible.

Construction. Partition the set of vertices [n] into three disjoint subsets X,Y,Z where |X| =

|Y | = n1−ǫ/2. Let H be a k-uniform hypergraph whose edge set consists of all k-tuples which have

exactly one vertex in X, one vertex in Y and k− 2 vertices in Z. By definition the number of edges

in H is Θ(nk−ǫ).

|X| = n1−ǫ/2 |Y | = n1−ǫ/2

|Z| = n − 2n1−ǫ/2

Figure 1: Construction of the hypergraph H.

Claim. Color all the vertices in X by color 1 and vertices in Y by color 2. Note that no matter

how we assign colors to the remaining vertices, this gives a proper 2-coloring of H. Let R be a set

of o
(

nℓǫ/2
)

random ℓ-tuples. Then almost surely we can 2-color Z so that none of the ℓ-tuples in R

is monochromatic, i.e., there exists a proper 2-coloring of H + R.

To prove this claim we transform R into another random instance R′ that contains only single

vertices with a fixed prescribed color and edges of size two which must not be monochromatic.

Following Remark 1.3 we can assume that R was obtained by choosing every ℓ-tuple in [n] randomly

and independently with probability p = o
(

nℓǫ/2−ℓ
)

. First note that almost surely there is no ℓ-tuple

in R whose vertices are all in X or in Y . Indeed, since |X| = |Y | = n1−ǫ/2, the probability that there

is such an ℓ-tuple is at most 2
(n1−ǫ/2

ℓ

)

p = o(1). Also, every ℓ-tuple in R which has vertices in both

X and Y is already 2-colored so we discard it.

For every v ∈ Z we add it to R′ with prescribed color 1 if there is a subset A of Y of size ℓ − 1

such that A ∪ {v} ∈ R. Since ǫ < 2/ℓ ≤ 1, the probability of this event is

p1 =

(

|Y |

ℓ− 1

)

p =

(

n1−ǫ/2

ℓ− 1

)

p ≤ n(ℓ−1)(1−ǫ/2) p = o
(

n−1+ǫ/2
)

= o
(

n−1/2
)

.
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Similarly, if there is a subset B of X of size ℓ− 1 such that B ∪ {v} ∈ R then we add v to R′ with

prescribed color 2. The probability p2 of this event is also o
(

n−1/2
)

.

Fix an ordering v1 < v2 < . . . of all vertices in Z. For every pair of vertices u,w ∈ Z we add an

edge {u,w} to R′ if there is an ℓ-tuple L ∈ R such that the two smallest vertices in L∩Z are u and

w. Since the number of such possible ℓ-tuples is at most
(

n
ℓ−2

)

, and ǫ < 2/ℓ, the probability of this

event is

p3 ≤

(

n

ℓ− 2

)

p = O
(

nℓ−2p
)

= o
(

nℓǫ/2−2
)

= o
(

n−1
)

.

Also note that by definition all the above events are independent since they depend on disjoint sets

of ℓ-tuples. By our construction, any 2-coloring of Z in which singletons in R′ get prescribed colors

and no 2-edge is monochromatic gives a proper 2-coloring of R. Therefore, to complete the proof of

Theorem 1.2, it is enough to prove the following simple statement.

Lemma 2.1 Let R′ be a random instance which is obtained as follows. For i = 1, 2 we choose every

vertex in [n] with probability pi = o
(

n−1/2
)

(independently for i = 1, 2) and prescribe to it color i.

In addition we choose every pair of vertices to be an edge in R′ with probability p3 = o(n−1). Then

almost surely there exists a 2-coloring of [n] in which all singletons in R′ get prescribed colors and

no edge is monochromatic.

Proof. Let G be the graph formed by edges from R′. The probability that there is a vertex with

conflicting prescribed colors is np1p2 = o(1). The probability that G contains a cycle is at most
∑n

s=3 n
sps3 = O(n3p33) = o(1). Finally the probability that there exists a path between two vertices

with any prescribed color is also bounded by

n
∑

s=1

(

n

2

)

(p1 + p2)
2ns−1ps3 = o

(

n(p1 + p2)
2
)

= o(1).

Therefore almost surely no vertex gets prescribed conflicting colors, every connected component

of G is a tree and contains at most one vertex with prescribed color. This immediately implies the

assertion of the lemma, since every tree can be 2-colored, starting from the vertex with prescribed

color (if any). ✷

3 Bipartite graphs

Now let’s turn to Theorem 1.1. First, consider the case of k = ℓ = 2. Here, we claim that for any

bipartite graph G with Ω
(

n2−ǫ
)

edges, adding ω(nǫ) random edges makes the graph almost surely

non-bipartite. This will follow quite easily, since it turns out that almost surely we will insert an

edge inside one part of a bipartite connected component of G, creating an odd cycle (see the proof

of Proposition 3.1).

However, with the more general hypergraph case in mind, we are also interested in a scenario

where random ℓ-tuples are added to a bipartite graph, and ℓ > 2. Then we ask what is the probability

that the resulting hypergraph is 2-colorable (i.e., no 2-edge and no ℓ-edge should be monochromatic).

We prove the following special case of Theorem 1.1.
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Proposition 3.1 Let ℓ ≥ 2, 0 ≤ ǫ < 2/ℓ and let G be a bipartite graph with Ω
(

n2−ǫ
)

edges. Then

the hypergraph H obtained by adding to G a collection R of ω
(

nℓǫ/2
)

random ℓ-tuples is almost surely

non-2-colorable.

A1 A2 Ai

B1 B2 Bi

Figure 2: Components of the bipartite graph G.

Proof. Consider the connected components of G which are bipartite graphs on disjoint vertex sets

(A1, B1), (A2, B2), . . . (see Figure 2). Denote ai = |Ai|, bi = |Bi| and assume ai ≥ bi. The number of

edges in each component is at most aibi. Since the total number of edges is at least cn2−ǫ for some

constant c > 0, we have
∑

a2i ≥
∑

aibi ≥ cn2−ǫ.

Observe that for ℓ = 2, the number of pairs of vertices inside the sets {Ai} is
∑
(ai
2

)

≥ 1
2(cn2−ǫ−n) ≥

c′n2−ǫ, so a random edge lands inside one of these sets with probability at least c′n−ǫ. Conse-

quently, the probability that none of the ω(nǫ) random edges ends up inside some Ai is at most

(1 − c′n−ǫ)ω(n
ǫ) = o(1). Thus almost surely, G + R contains an odd cycle.

On the other hand, in the general case we are adding ω
(

nℓǫ/2
)

random ℓ-tuples, which might never

end up inside any vertex set Ai. The probability of hitting a specific Ai is
(ai
ℓ

)

/
(n
ℓ

)

= O
(

aℓi/n
ℓ
)

.

For example, if G has nǫ components with ai = bi = n1−ǫ, then this probability is at most

O
(
∑

aℓi/n
ℓ
)

= O
(

n−(ℓ−1)ǫ
)

. Hence we need ω
(

n(ℓ−1)ǫ
)

random ℓ-tuples to hit almost surely some

Ai. This suggests a difficulty with the attempt to place a random ℓ-tuple in a set which is forced

to be monochromatic by the original graph. We have to allow ourselves more freedom and consider

sets which are monochromatic only under certain colorings.

More specifically, each of the sets Ai, Bi must be monochromatic under any coloring, and at least

half of them must share the same color. We do not know a priori which sets will share the same

color, yet we can estimate the probability that any of these configurations allows a feasible coloring

together with the random ℓ-tuples. First, it is convenient to assume that the sets have roughly equal

size, in which case we have the following claim.

Lemma 3.2 Suppose we have t disjoint subsets A1, . . . , At of [n] of size Θ(n1−α). Let α ≥ ǫ/2,

t = Ω
(

n
ℓ

ℓ−1
(α−ǫ/2)) and let R be a collection of ω

(

nℓǫ/2
)

random ℓ-tuples on [n]. Then the probability

that R can be 2-colored in such a way that each Ai is monochromatic is at most e−ω(t).
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Proof. Consider the 2t possible colorings in which all Ai are monochromatic. For each such coloring

there is a set of indices I, |I| ≥ t/2 such that the sets Ai, i ∈ I share the same color. Since Ai are

disjoint we have | ∪i∈I Ai| ≥ c1tn
1−α for some c1 > 0. The probability that one random ℓ-tuple falls

inside this set is at least
(c1tn1−α

ℓ

)

/
(n
ℓ

)

≥ c2(tn−α)ℓ for some c2 > 0. Since tℓ−1 = Ω
(

nℓ(α−ǫ/2)
)

, it

implies that

Pr
[

∪i∈IAi contains no ℓ-tuple from R
]

≤
(

1 − (c2tn
−α)ℓ

)ω(nℓǫ/2)
≤ e−ω(tℓn−ℓ(α−ǫ/2)) = e−ω(t).

Therefore, by the union bound over all choices of I, we get

Pr
[

∃ I such that ∪i∈IAi contains no ℓ-tuple from R
]

≤ 2te−ω(t) = e−ω(t).

In particular, almost surely there is no 2-coloring of R in which all Ai are monochromatic. ✷

Now we can finish the proof of Proposition 3.1 for ℓ ≥ 3. Partition the components of G according

to their size and let Gs contain all the components with |Ai| ∈ [2s−1, 2s). If there is any Ai of size

at least n1−ǫ/2, we are done immediately because one of the ω
(

nℓǫ/2
)

random ℓ-tuples a.s. ends up

in Ai and this destroys the 2-colorability. So we can assume that s ≤ ⌊(1 − ǫ/2) log2 n⌋. Recall that

ℓ ≥ 3 and consider the following sum

⌊(1−ǫ/2) log2 n⌋
∑

s=1

2
ℓ−2
ℓ−1

sn
ℓ

ℓ−1
(1−ǫ/2) ≤

n
ℓ−2
ℓ−1

(1−ǫ/2)

1 − 2−
ℓ−2
ℓ−1

· n
ℓ

ℓ−1
(1−ǫ/2) ≤ 4n2−ǫ.

Since G has at least cn2−ǫ edges, there is a subgraph Gs containing at least c
42

ℓ−2
ℓ−1

sn
ℓ

ℓ−1
(1−ǫ/2)

edges. As each component of Gs has at most 22s edges, the number of components of Gs is

t = Ω
(

2−
ℓ

ℓ−1
sn

ℓ
ℓ−1

(1−ǫ/2)). We set 2s = n1−α, α ≥ ǫ/2 which means that t = Ω
(

n
ℓ

ℓ−1
(α−ǫ/2)).

To summarize, we have t disjoint sets Ai of size Θ(n1−α), each of which must be monochromatic

under any feasible coloring. Thus we can apply Lemma 3.2 to conclude that for H = G+ R, almost

surely there is no feasible 2-coloring. ✷

4 General hypergraphs

In this section we deal with the general case of a 2-colorable k-uniform hypergraph H, to which we

add a collection of random ℓ-tuples R. Our goal is to prove Theorem 1.1 which asserts that if H has

Ω
(

nk−ǫ
)

edges then adding to it ω
(

nℓǫ/2
)

random ℓ-tuples makes it almost surely non-2-colorable.

The proof will proceed by induction on k. The base case when k = 2 follows from Proposition 3.1,

so we can assume that k > 2 and that the result holds for k − 1.

We start with a series of lemmas which allow us to make simplifying assumptions. Depending on

the hypergraph H, we either reduce the problem to the (k − 1)-uniform case or prove directly that

H + R is not 2-colorable.

Since we have ω
(

nℓǫ/2
)

random ℓ-tuples available, we can divide them into a constant number of

batches, where each batch still has ω
(

nℓǫ/2
)

ℓ-tuples. We will use a separate batch for each step of

the induction. We write R = R1 ∪R2 ∪ . . . ∪Rk where |Ri| = ω
(

nℓǫ/2
)

for each i.
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Lemma 4.1 Let Hk be a k-uniform hypergraph on n vertices with c1n
k−ǫ edges. Consider all (k−1)-

tuples A ⊂ V (Hk) with degree greater than n1−ǫ/2. If there are at least c1
4 n

k−1−ǫ such (k − 1)-tuples

in Hk then Hk + R is almost surely non-2-colorable.

Proof. For each (k − 1)-tuple A of degree > n1−ǫ/2, the neighborhood N(A) contains Ω
(

nℓ−ℓǫ/2
)

distinct ℓ-tuples. Therefore a random ℓ-tuple lands inside N(A) with probability Ω
(

n−ℓǫ/2
)

. Conse-

quently, the probability that none of ω
(

nℓǫ/2
)

random ℓ-tuples from Rk ends up inside N(A) is at

most
(

1 − Ω(n−ℓǫ/2)
)ω(nℓǫ/2)

= o(1). If we have t ≥ c1
4 n

k−1−ǫ such (k − 1)-tuples, then the expected

number of them, whose neighborhood does not contain any ℓ-tuple in Rk, is o(t). Therefore, by

Markov’s inequality, we get almost surely at least t
2 ≥ c1

8 n
k−1−ǫ (k−1)-tuples with an ℓ-edge in their

neighborhood. Denote by Hk−1 the (k − 1)-uniform hypergraph formed by these (k − 1)-tuples.

By induction, we know that Hk−1+R1+. . .+Rk−1 is almost surely non-2-colorable. Therefore for

every 2-coloring respecting R1∪. . .∪Rk−1, there is a monochromatic (k−1)-tuple A in Hk−1. Without

loss of generality assume that all vertices in A are colored by 1. By definition, the neighborhood

N(A) contains an ℓ-edge L ∈ Rk. Either L is monochromatic, or one of its vertices x is colored by

1 as well. But then A ∪ {x} is a monochromatic edge of Hk. This implies that there is no feasible

2-coloring for Hk + R1 + . . . + Rk. ✷

Thus we only need to treat the case where there are at most c1
4 n

k−1−ǫ (k− 1)-tuples with degree

greater than n1−ǫ/2, therefore at most c1
4 n

k−ǫ edges through such (k − 1)-tuples. We will get rid of

these high degrees by removing a constant fraction of edges and making all degrees of (k− 1)-tuples

at most n1−ǫ/2. This would also imply a bound of n2−ǫ/2 on the degrees of (k − 2)-tuples, etc.

However, in the following we show that for (k − 2)-tuples we can assume an even stronger bound.

More specifically, we prove that if we have many edges through (k − 2)-tuples of degrees n2−δ with

δ ≤ ℓ
2(ℓ−1)ǫ, then we can proceed by induction. For this purpose, we first show the following.

Lemma 4.2 Let ℓ ≥ 2 and let G be a graph on n vertices with n2−δ edges. Then G contains 1
2n

1−δ

disjoint subsets of vertices F1, F2, . . . such that the vertices in each Fj have disjoint neighborhoods of

sizes d1, d2, . . ., satisfying di ≥
1
2n

1−δ and

∑

dℓi ≥
nℓ−(ℓ−1)δ

2ℓ
.

Proof. We iterate the following construction for j = 1, 2, . . . , 12n
1−δ.

• Take the vertex v1 of maximum degree d1 and remove all the edges incident to its neighbors.

Note that by maximality of d1, at most d21 edges are removed.

• In step i, take the vertex vi of maximum degree di in the remaining graph and remove the

edges incident to its neighbors (again, at most d2i edges). Repeat these steps, as long as
∑

d2i <
1
4n

2−δ.

• When the procedure terminates, define Fj = {v1, v2, . . .}. Then return to the original graph,

but remove the vertices in Fj and all their edges permanently.

8



v1 v2 v3 v4 v5

d1 d2 d3 d4
d5

Figure 3: Construction of Fj = {v1, v2, . . .}. The neighborhood of vi is incident with at most d2i
edges.

By construction, the neighborhoods of the vertices in every Fj are disjoint and hence with each Fj ,

we remove
∑

di ≤ n edges from the graph. The sets Fj are also disjoint (although the neighborhoods

of vertices from different Fj ’s are not necessarily disjoint). Since we constructed 1
2n

1−δ sets Fj , there

are at least n2−δ − 1
2n

1−δ · n = 1
2n

2−δ edges available at the beginning of every construction.

Inside the construction of Fj , we repeat as long as
∑

d2i < 1
4n

2−δ and therefore we remove at

most 1
4n

2−δ edges from the graph we started with. Hence, at every step the remaining graph still

has at least 1
4n

2−δ edges and so its maximum degree is at least 1
2n

1−δ. When we terminate we have
∑

d2i ≥
1
4n

2−δ. This, together with the fact that di ≥
1
2n

1−δ, implies that for every Fj we have

∑

dℓi ≥

(

1

2
n1−δ

)ℓ−2
∑

d2i ≥
nℓ−(ℓ−1)δ

2ℓ
. ✷

Lemma 4.3 Let Hk be a k-uniform hypergraph on n vertices with c1n
k−ǫ edges. Consider (k − 2)-

tuples of degree n2−δ where δ ≤ ℓ
2(ℓ−1)ǫ. If there are at least c1

4 n
k−ǫ edges through such (k− 2)-tuples

then Hk + R is almost surely non-2-colorable.

Proof. Consider a (k − 2)-tuple A of degree n2−δ. The link of A in Hk is a graph Γ(A) with n2−δ

edges. By Lemma 4.2, we find 1
2n

1−δ subsets Fj such that vertices in Fj have disjoint neighborhoods

in Γ(A) with sizes satisfying
∑

dℓi ≥ 2−ℓnℓ−(ℓ−1)δ. We repeat this construction for each (k− 2)-tuple

of degree n2−δ with δ ≤ ℓ
2(ℓ−1) ǫ. For each of them, we construct 1

2n
1−δ sets as above. Assuming that

the total number of edges through such (k − 2)-tuples is at least c1
4 n

k−ǫ, we get c1
8 n

k−1−ǫ sets Fj in

total.

Now fix a set Fj . Call it good if after adding random ℓ-tuples from Rk there is at least one vertex

in Fj whose neighborhood in Γ(A) contains a random ℓ-tuple. If this is not the case, call it bad.

We estimate the probability that Fj is bad. By Lemma 4.2, the total number of ℓ-tuples in the

neighborhoods of vertices in Fj is

∑

(

di
ℓ

)

= Ω

(

∑ dℓi
ℓ!

)

= Ω

(

nℓ−(ℓ−1)δ

2ℓℓ!

)

= Ω
(

nℓ−ℓǫ/2
)

.

Thus the probability that a random ℓ-tuple falls inside some neighborhood of Fj is
∑
(di
ℓ

)

/
(n
ℓ

)

=

Ω
(

n−ℓǫ/2
)

. After adding the entire batch of random ℓ-tuples Rk,

Pr
[

Fj is bad
]

=
(

1 − Ω
(

n−ℓǫ/2
)

)−ω(nℓǫ/2)
= o(1).
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Consequently, the expected fraction of bad Fj ’s is o(1). By Markov’s inequality, this fraction is

almost surely at most one half, which means that at least c1
16n

k−1−ǫ sets Fj have a vertex v ∈ Fj

whose neighborhood contains some ℓ-tuple from Rk. For each such Fj , we have a set A of size k − 2

which together with v forms a (k − 1)-tuple whose neighborhood in Hk contains an ℓ-tuple from

Rk. We could get the same (k − 1)-tuple in k − 1 different ways, but in any case we have at least
c1
16kn

k−1−ǫ such (k − 1)-tuples which form an edge set of a (k − 1)-uniform hypergraph Hk−1.

By the induction hypothesis, Hk−1 +R1 + . . .+Rk−1 is almost surely non-2-colorable. Therefore,

for any 2-coloring which respects the ℓ-edges from R1 + . . . +Rk−1, there must be a monochromatic

(k− 1)-edge B in Hk−1. However, since there is an ℓ-edge from Rk in the neighborhood of B, one of

its vertices should have the same color as B. This would form a monochromatic edge in Hk so there

is no feasible 2-coloring for Hk + R1 + . . . + Rk. ✷

Thus we can also assume that at most c1
4 n

k−ǫ edges go through (k−2)-tuples of degree n2−δ, δ ≤
ℓ

2(ℓ−1)ǫ. Before the last part of the proof, we make further restrictions on the degree bounds and

structure of our hypergraph, by finding a subhypergraph Hα described in the following lemma.

Lemma 4.4 Let Hk = (V,E) be a k-uniform hypergraph with c1n
k−ǫ edges, such that at most c1

4 n
k−ǫ

edges go through (k−1)-tuples of degree ≥ n1−ǫ/2 and at most c1
4 n

k−ǫ edges go through (k−2)-tuples

of degree n2−δ, δ ≤ ℓ
2(ℓ−1)ǫ. Then for some constant α ≥ ǫ/2, Hk contains a subhypergraph Hα with

the following properties

1. Hα is k-partite, i.e. V can be partitioned into V1 ∪ V2 ∪ . . . ∪ Vk so that every edge of Hα

intersects each Vi in one vertex.

2. Every vertex has degree at most n
k−1− ℓ

2(ℓ−1)
ǫ
.

3. The degree of every (k−1)-tuple in V1×V2× . . .×Vk−1 is either 0 or between n1−α and 2n1−α.

4. The number of edges in Hα is at least

c5

(

nk−ǫ− ǫ−α
ℓ−1 + nk−ǫ− ℓ−2

ℓ−1
(α−ǫ/2)

)

,

for some constant c5 = c5(k, ℓ, c1).

Proof. First, remove all edges through (k− 1)-tuples of degree ≥ n1−ǫ/2 and through (k− 2)-tuples

of degree n2−δ, δ ≤ ℓ
2(ℓ−1)ǫ. We get a hypergraph H ′ such that the degrees of all (k − 1)-tuples are

at most n1−ǫ/2, the degrees of all (k − 2)-tuples are at most n
2− ℓ

2(ℓ−1)
ǫ
, and the number of edges

is at least c2n
k−ǫ edges, c2 = c1/2. Consequently, the degree of every vertex in H ′ is at most

nk−3 · n
2− ℓ

2(ℓ−1)
ǫ

= n
k−1− ℓ

2(ℓ−1)
ǫ
.

Next, we use a well known fact, proved by Erdős and Kleitman [12] that every k-uniform hy-

pergraph H ′ with c2n
k−ǫ edges contains a k-partite subhypergraph with at least c3n

k−ǫ edges where

c3 = k!
kk
c2. This can be achieved for example by taking a random partition of the vertex set into k

parts and computing the expected number of edges which intersect all of them. Let (V1, V2, . . . , Vk)

10



be a partition, so that at least c3n
k−ǫ edges of H ′ have one vertex in every Vi. Discard all other

edges and denote this k-partite hypergraph by H ′′.

Consider all (k− 1)-tuples in V1 ×V2× . . .×Vk−1 whose degree in H ′′ is less than c3
2 n

1−ǫ. Delete

all their edges, which is at most
( n
k−1

)

c3
2 n

1−ǫ ≤ c3
2 n

k−ǫ edges in total. We still have at least c4n
k−ǫ

edges, where c4 = c3/2. Now the degree of every (k − 1)-tuple in V1 × V2 × . . . × Vk−1 is either 0 or

between c4n
1−ǫ and n1−ǫ/2. Finally, we are going to find a subhypergraph in which all the non-zero

degrees of (k − 1)-tuples are Θ(n1−α) and the number of edges is at least

c5

(

nk−ǫ− ǫ−α
ℓ−1 + nk−ǫ− ℓ−2

ℓ−1
(α−ǫ/2)

)

.

The existence of such a subhypergraph can be proved by an elementary counting argument. Let

n1−α = 2i and partition V1 × V2 × . . . × Vk−1 into groups of (k − 1)-tuples with degrees in intervals

[2i, 2i+1), where i ranging between i1 = log2(c4n
1−ǫ) and i2 = log2(n

1−ǫ/2). Consider the following

two expressions:
i2
∑

i=i1

2−i/(ℓ−1) ≤
(c4n

1−ǫ)−
1

ℓ−1

1 − 2−
1

ℓ−1

≤ 2(ℓ− 1)c−1
4 n− 1−ǫ

ℓ−1

and
i2
∑

i=i1

2
ℓ−2
ℓ−1

i ≤
n

ℓ−2
ℓ−1

(1−ǫ/2)

1 − 2−
ℓ−2
ℓ−1

≤ 4n
ℓ−2
ℓ−1

(1−ǫ/2).

Normalizing by the right-hand side and taking the average, we get

i2
∑

i=i1

(

2−
i

ℓ−1

4(ℓ− 1)c−1
4 n− 1−ǫ

ℓ−1

+
2

ℓ−2
ℓ−1

i

8n
ℓ−2
ℓ−1

(1−ǫ/2)

)

≤ 1

By the pigeonhole principle, there is an i such that the fraction of edges through (k− 1)-tuples with

degree between 2i = n1−α and 2i+1 = 2n1−α is at least

2−
i

ℓ−1

4(ℓ− 1)c−1
4 n− 1−ǫ

ℓ−1

+
2

ℓ−2
ℓ−1

i

8n
ℓ−2
ℓ−1

(1−ǫ/2)
=

c4
4(ℓ− 1)

n− ǫ−α
ℓ−1 +

1

8
n− ℓ−2

ℓ−1
(α−ǫ/2)

so the lemma holds with c5 = c4 · min
{

c4
4(ℓ−1) ,

1
8

}

. ✷

Note that in this lemma, we lose more than a constant fraction of the edges. However, from

now on, we do not use induction anymore and will prove directly that Hα + R is almost surely

non-2-colorable. We will proceed in t = c5ℓ
−kn

ℓ
ℓ−1

(α−ǫ/2) stages. For each stage, we allocate a

certain number of random ℓ-tuples. Namely, we set again R = R1 ∪ R2 ∪ . . . ∪ Rk, |Ri| = ω
(

nℓǫ/2
)

.

Furthermore, we divide each Rj for j ≤ k − 1 into t parts R1,j, . . . , Rt,j so that

|Ri,j | = ω

(

nℓǫ/2

t

)

= ω
(

nℓǫ/2− ℓ
ℓ−1

(α−ǫ/2)
)

.

The random set Ri,j will be used for the j-th “level” of the i-th stage. The following lemma describes

one stage of the construction. Finally, Rk will be used in the last step of the proof.
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Lemma 4.5 Let Hα be a k-uniform k-partite hypergraph where the degree of every (k − 1)-tuple in

V1 × V2 × . . .× Vk−1 is either zero or is in the interval [n1−α, 2n1−α], and the number of edges in Hα

is at least

c5n
k−ǫ− ℓ−2

ℓ−1
(α−ǫ/2).

Then almost surely, there exists a family of q = ℓk−2 sets S1, . . . , Sq, n
1−α ≤ Si ≤ 2n1−α, such that

for every feasible 2-coloring of Hα + Ri,1 + . . . + Ri,k−1 at least one Si is monochromatic.

Proof. We are going to construct an ℓ-ary tree T of depth k−1. We denote vertices on the j-th level

by va1a2...aj−1 where ai ∈ {1, 2, . . . , ℓ}. T is rooted at a vertex in V1 and the j-th level is contained

in Vj. We construct T in such a way that the vertices along every path which starts at the root and

has length k− 1 form a (k− 1)-tuple with degree Θ(n1−α) in Hα. The neighborhoods of all branches

of length k−1 will be our sets Si (not necessarily disjoint). In addition, the set of ℓ children of every

node on each level j ≤ k−2, like {va1a2...aj−11, va1a2...aj−12, . . . , va1a2...aj−1ℓ}, will form an edge of Ri,j.

V1 V2 V4

S1

S9

S2

V3

R1 ,i

R2 ,i

S3

Figure 4: Construction of the tree T , for k = 4 and ℓ = 3. Branches of the tree form active

(k − 1)-tuples, with neighborhoods Si. Each set of children on level j + 1 forms an edge of Ri,j.

Assuming the existence of such a tree, consider any 2-coloring of Hα + Ri,1 + . . . + Ri,k−1. Since

the children of each vertex on level j < k − 1 form an ℓ-edge in Ri,j, every vertex has children of

both colors. In particular, there is always one child with the same color as its parent. Therefore,

starting from the root, we can always find a monochromatic branch A of length k − 1. Since all the

extensions of this branch to edges of Hα must be 2-colored, all the vertices in Si = N(A) must have

the same color.

We grow the tree level by level, maintaining the property that all branches have sufficiently many

extensions to edges of Hα. More precisely, we call an r-tuple in V1 × . . . × Vr active if its degree is

at least

∆r =
c5
2r

nk−r−ǫ− ℓ−2
ℓ−1

(α−ǫ/2).
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Claim. Every active r-tuple A, r ≤ k − 2, can be extended to at least

dr =
∆r

4nk−r−1−α
=

c5
2r+2

n1−ǫ/2+ 1
ℓ−1

(α−ǫ/2)

active (r + 1)-tuples A ∪ {x}, x ∈ Vr+1.

Proof. Suppose that fewer than dr extensions of A are active. Since the degrees of (k− 1)-tuples

are at most 2n1−α, we get that any (r + 1)-tuple has degree at most 2nk−r−1−α. Therefore the

number of edges through all active extensions of A is smaller than dr · 2nk−r−1−α = 1
2∆r. We also

have inactive extensions of A which have degrees less than ∆r+1. The total number of edges through

these extensions of A is smaller than n∆r+1 = 1
2∆r. But the total number of edges through A is at

least ∆r. This contradiction proves the claim. ✷

We start our construction from an active vertex v ∈ V1. Since Hα has at least n∆1 edges, such

a vertex must exist. By our claim, v can be extended to at least d1 active pairs {v, x}, x ∈ W2 ⊂

V2. Consider this set of d1 vertices W2. The probability that a random ℓ-tuple falls inside W2 is
(d1
ℓ

)

/
(n
ℓ

)

= Ω(n−ℓǫ/2+ ℓ
ℓ−1

(α−ǫ/2)). Now we use ω(nℓǫ/2− ℓ
ℓ−1

(α−ǫ/2)) random ℓ-tuples from Ri,1 that we

allocated for the first level of this construction. This means that almost surely, we get an ℓ-edge

{v1, . . . , vℓ} ∈ Ri,1 such that {v, vi} is an active pair for each i = 1, 2, . . . , ℓ.

We continue growing the tree, using the random ℓ-tuples of Ri,j on level j. Since we have ensured

that each path from the root to the level j from an active j-tuple, it has at least dj extensions to

an active (j + 1)-tuple. Again, the probability that a random ℓ-tuple hits the extension vertices

Wj+1 ⊂ Vj+1 for a given path is
(dj
ℓ

)

/
(n
ℓ

)

= Ω
(

n−ℓǫ/2+ ℓ
ℓ−1

(α−ǫ/2)). Almost surely, one of the ℓ-tuples

in Ri,j will hit these extension vertices and we can extend this path to ℓ children on level j + 1. The

number of paths from the root to level j is bounded by ℓj−1 which is a constant, so in fact we will

almost surely succeed to build the entire level.

In this way, we a.s. build the tree all the way to level k − 1. Every path from the root to one

of the leaves forms an active (k − 1)-tuple and has degree ∈ [n1−α, 2n1−α]. Define S1, S2, . . . , Sq to

be the neighborhoods of all these q = ℓk−2 paths. By construction, for any feasible 2-coloring of

Hα + Ri,1 + . . . + Ri,k−1, one of these paths is monochromatic which implies that the corresponding

set Si is monochromatic as well. ✷

Lemma 4.6 Let Hα be a k-uniform k-partite hypergraph where the degree of every vertex is at most

n
k−1− ℓ

2(ℓ−1)
ǫ
, the degree of every (k−1)-tuple in V1×V2× . . .×Vk−1 is either zero or is in the interval

[n1−α, 2n1−α], and the number of edges in Hα is at least

c5n
k−ǫ− ǫ−α

ℓ−1 + c5n
k−ǫ− ℓ−2

ℓ−1
(α−ǫ/2).

Then almost surely, Hα + R is not 2-colorable.

Proof. We apply Lemma 4.5 repeatedly in t = c5ℓ
−kn

ℓ
ℓ−1

(α−ǫ/2) stages. In each stage i, we almost

surely obtain q = ℓk−2 sets Si,1, . . . , Si,q, n
1−α ≤ |Si,j| ≤ 2n1−α such that for any 2-coloring of the

hypergraph Hα +
∑

Ri,j, one of these sets must be monochromatic. If this happens, we call such

a stage “successful”. After each successful stage, we remove all edges of Hα incident with any of
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the sets Si,1, . . . , Si,q. Since degrees are bounded by n
k−1− ℓ

2(ℓ−1)
ǫ

and we repeat t = c5ℓ
−kn

ℓ
ℓ−1

(α−ǫ/2)

times, the total number of edges we remove is at most

t
∑

i=1

q
∑

j=1

|Si,j |n
k−1− ℓ

2(ℓ−1)
ǫ
≤ tq · 2n1−α · n

k−1− ℓ
2(ℓ−1)

ǫ
= 2c5ℓ

−2nk−ǫ− ǫ−α
ℓ−1 ≤ c5n

k−ǫ− ǫ−α
ℓ−1 .

In particular, before every stage we still have at least c5n
k−ǫ− ℓ−2

ℓ−1
(α−ǫ/2) edges available, so we can

use Lemma 4.5. Since the expected number of stages that are not successful is o(t), by Markov’s

inequality, we almost surely get at least t/2 successful stages. Eventually, we obtain sets Si,j for

1 ≤ i ≤ t/2 and 1 ≤ j ≤ q such that

• For i1 6= i2 and any j1, j2, Si1,j1 ∩ Si2,j2 = ∅.

• For any 2-coloring of Hα +
∑

Ri,j and any i, there is ji such that Si,ji is monochromatic.

Finally, we add once again a collection Rk of ω(nℓǫ/2) random ℓ-tuples. We do not know a

priori which selection of sets Si,j will be monochromatic but there is only exponential number of

choices qt/2 = eO(t). For any specific choice of sets to be monochromatic, Lemma 3.2 says that the

probability that after adding ω(nℓǫ/2) random ℓ-tuples, there is a feasible 2-coloring keeping these sets

monochromatic, is e−ω(t). By the union bound, the probability that there exist a proper 2-coloring

of Hα +
∑

Ri,j + Rk is at most qt/2e−ω(t) = o(1). This completes the proof of this lemma together

with the proof of Theorem 1.1. ✷
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