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A SHUFFLE THAT MIXES SETS OF ANY FIXED SIZE MUCH FASTER

THAN IT MIXES THE WHOLE DECK

Robin Pemantle 1

ABSTRACT:

Consider an n by n array of cards shuffled in the following manner. An element x of the array is

chosen uniformly at random; Then with probability 1/2 the rectangle of cards above and to the left of

x is rotated 180 degrees, and with probability 1/2 the rectangle of cards below and to the right of x

is rotated 180 degrees. It is shown by an eigenvalue method that the time required to approach the

uniform distribution is between n2/2 and cn2 lnn for some constant c. On the other hand, for any k it

is shown that the time needed to uniformly distribute a set of cards of size k is at most c(k)n, where

c(k) is a constant times k3 ln(k)2. This is established via coupling; no attempt is made to get a good

constant.
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1 Introduction

Consider n2 playing cards, numbered 1, . . . , n2, in an n × n array; the set of positions in this array is

denoted by

[n× n] = {(i, j) : 1 ≤ i, j ≤ n},

with (1, 1) in the upper-left corner. For 1 ≤ i, j ≤ n, let πij be the permutation that sends the card in

the (r, s) position to the (i+1− r, j+1−s) position if r ≤ i and s ≤ j, and does not change the position

of the card otherwise. In other words the rectangle of size i× j in the upper-left corner gets rotated by

180◦ and the remaining cards are unmoved. (The (1, 1) position is in the upper left, following matrix

rather than Cartesian notation.) Let π′
ij denote the shuffle that does the same for the lower right corner,

so that the card in the (r, s) position is moved to position (n+ i− r, n+ j − s) if r ≥ i and s ≥ j and is

otherwise unmoved. Questions about how rapidly this type of permutation mixes an array were inspired

by a Macintosh screensaver.

Suppose first that the cards are shuffled by waiting a mean one exponential amount of time, then

picking i and j uniformly at random and performing the shuffle πij . (Setting the problem in continuous

time avoids the later use of more complicated versions of theorems in [1] and [2] that take parity into

account.) After time t, the resulting distribution St
0 on permutations of the n2 positions is given by

St
0 = exp(t(S0 − 1))

def
=

∑

e−t t
k

k!
S(k)
0

where S(k)
0 is the k-fold convolution of the measure S0 = n−2

∑n
i,j=1 δπij

. Here and throughout, random

walks on the space of card configurations are identified with random walks on the symmetric group; in

particular, when discussing two coupled shuffles, it will be convenient to be able to refer to the positions

σ(x) and τ(x) of the same card x in two arrays starting from two arbitrary configurations, one permuted

by σ and the other by τ .

The card in the (n, n) position is unlikely to move before time cn2, which gives an easy lower bound

on the time needed to randomize the layout. More precisely, if A is the set of permutations fixing (n, n),

then St
0(A) ≥ e−t/n2

since e−t/n2

is the probability that the card in position (n, n) is never moved at

all. Thus

|St
0 − U | ≥ e−t/n2 − 1

n2
,

where U is the uniform measure and | · | is the total variation distance. When t << n2, therefore, the

total variation distance is near one and the deck is not well shuffled. The same lower bound may be
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obtained by counting: the total number of permutations of n2 cards is

n2! = exp((2 + o(1))n2 logn),

whereas the set Ak of permutations reachable in k shuffles is at most n2k. Thus, letting k = ⌊(1 + ǫ)t⌋,

|St
0 − U | ≥ |St

0(Ak)− U(Ak)|

= 1 + o(1)− exp[2 logn(k − (1 + o(1))n2)],

which is near 1 when t << n2. It will be seen (Theorem 2 below) that the time to randomization is at

most a constant times n2 ln(n).

The shuffle becomes more interesting if permutations π′
ij are also allowed. If each πij and π′

ij occurs

at rate 1/(2n2), the distribution resulting at time t will be

St def
= exp(t(S − 1))

def
=

∑

e−t t
k

k!
S(k)

where S gives probability 1/(2n2) to each πij and to each π′
ij . (The dependence of S and S0 on n is

suppressed in the notation.) Now the cards that take the longest to move are in positions (1, n) and

(n, 1) and these will each be moved by time cn with probability 1 − e−c/2. Thus the first argument

above shows only that the deck is not at all shuffled by time t << n. The counting argument from

before does better: setting k = ⌊(1 + ǫ)t⌋ shows that |St − U | ≈ 1 when t << n2. On the other hand,

it will be shown that the positions of any set of cards of any fixed size, k, will be jointly randomized

by time cn as n → ∞. (By altering the shuffle again so that it may choose rectangles in the lower left

and upper right corners as well, this time can be reduced to a constant when k = 1, but not for k ≥ 2,

since a pair of neighboring cards will always be stuck together for expected time cn.) This is the only

shuffle I know of with the property that the time to randomization differs from the time to randomize

subsets of any fixed size by factors greater than poly-log (n). In fact, k may be allowed to increase

with n, in such a way that the time to randomize any k cards is still much less than the time to total

randomization. To quantify this, say that an event A is measurable with respect to cards x1, . . . , xk if

A is a set of permutations of the form {π : (π(x1), . . . , π(xk)) ∈ B} for some cards x1, . . . , xk, where B

is a subset of k-tuples of distinct positions in the array [n× n]. Define the k-set distance to uniformity

of a distribution R, denoted ||R − U ||k, to be supA R(A) − U(A) as A ranges over events measurable

with respect to the positions of some set of k cards; setting k = n recovers the total variation distance.

Theorem 1 There exists a constant c such that for any n and any k with 1 < k < n, ||St−U ||k < 1/2j

whenever t > ck3(ln(k))2nj.
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Theorem 2 For any ǫ > 0, limn |St − U | = 1 when t = (1 − ǫ)n2/2. On the other hand there is a

constant c for which |St − U | < 1/2j whenever t > cjn2 ln(n). The same is true with S replaced by S0.

The author wishes to thank Martin Hildebrand for helpful comments toward the revised draft of this

manuscript. The proofs of both theorems are based on techniques developed by Diaconis and others [1, 2].

In particular, the second part of Theorem 2 uses eigenvalue machinery (the first part is just a counting

argument) and the proof of Theorem 1 is a coupling argument. No new theory is developed in this paper,

rather it is hoped that the example is interesting.

2 Proof of Theorem 1

Theorem1 is proved via a series of lemmas that establish it for small values of k. Do not count on an

unsubscripted c to denote the same quantity from line to line.

Lemma 3 There exists a constant c such that for any n, ||St−U ||1 < 1/2j whenever t > cjn. The author

wishes to thank Martin Hildebrand for helpful comments toward the revised draft of this manuscript.

Lemma 4 There exists a constant c such that for any n, ||St − U ||2 < 1/2j whenever t > cjn.

Lemma 5 There exists a constant c such that for any n, ||St − U ||3 < 1/2j whenever t > cjn.

To get from each lemma to the next, and thence to the theorem, the following type of coupling

argument is used. For each finite set of cards (x1, . . . , xk), a Markov chain {(σt, τt) : t ≥ 0} is defined

on pairs of permutations of n2 cards. It is a coupling of two copies of the shuffle S in the sense that

the marginal on either coordinate is Markov with transitions from σ to σπij or σπ′
ij at rates 1/(2n2)

each, and that from some point onward σ(xi) will equal τ(xi) for all i. (At this time the coupling is

said to have succeeded, the initial configurations of cards having been any two arbitrary configurations.)

Furthermore, there are constants c′, δ > 0 independent of the cards x1, . . . , xk such that for any pair

(σ0, τ0), the probability that the coupling will succeed by time c′n is at least δ. Repeating this coupling

j⌈log(1/2)/ log(1 − δ)⌉ times and letting c = c′⌈log(1/2)/ log(1 − δ)⌉ gives a coupling for which the

probability that σt(xi) = τt(xi) for all t ≥ cjn and 1 ≤ i ≤ k is at least 1 − 1/2j. Since x1, . . . , xk were
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arbitrary as were the two initial configurations, this implies the desired conclusion. It remains to exhibit

the couplings, which will be done in the notation of this paragraph and without any thrift in choices of

constants. To avoid drowning in a mire of greatest-integer brackets, ignore them, i.e., assume without

loss of generality that n is divisible by all of the integer constants that arise in the proofs. Also, names

such as A and B will be assigned anew for each lemma.

Proof of Lemma 3: For each starting position (i, j) ∈ [n × n], consider the set of possible positions to

which a card in that position may jump under a single permutation, πrs or π′
rs. This is just the set

{(a, b) : (n+1−a− i)(n+1−b− j) ≥ 0}; pictorially, rotate by 180◦ to get the point (n+1− i, n+1− j),

then divide the array into (unequal) quadrants meeting there and the possible jump set will consist of

the upper-left and lower-right quadrants; the jump set is the shaded region in figure 1. Let A ⊆ [n× n]

be the region i, j ≤ n/3 and let B be the region i, j ≥ 2n/3; see figure 2. Observe that for any card

x1, in any position (i, j), the rate at which x1 jumps into the region A ∪ B is at least 1/(3n). Indeed,

the area of intersection of A ∪B with the shaded region in figure 1 is minimized when (i, j) = (1, n) or

(i, j) = (n, 1). It is therefore possible to construct a coupling where at rate 1/3n, independent of the

past, both coordinates, σ and τ , simultaneously jump to permutations for which the card x1 is in A∪B.

Call the first time this happens T . From the pictorial description of the jump set, it follows that any

two positions in A ∪B have at least n2/3 positions in common to which both may jump (n2/9 suffices

for our argument and is more immediate).

To finish the argument, let C denote the set of positions reachable in a single jump from both σT (x1)

and τT (x1). Then the probability that the process {σt(x1) : T < t ≤ T +1} contains precisely one jump

and that σT+1(x1) ∈ C is at least |C|/2n2 times the probability of exactly one jump, and therefore at

least (1/6)e−1. The same is true for the process {τT (x1) : T < t ≤ T + 1}. Thus the laws of σT+1(x1)

and τT+1(x1) both dominate a measure uniform on C with total mass e−1/6, and the coup[ling may be

extended to time T + 1 in such a way that the P(σT+1(x1) = τT+1(x1)) ≥ e−1/6. The coupling then

succeeds in time 3n + 1 with probability at least P(T ≤ 3n)e−1/6 ≥ e−1(1 − e−1)/6 which proves the

lemma. ✷

Proof of Lemma 4: A useful observation is that if cards x1 and x2 are both some minimal distance d

from any edge of the array, and some permutation πij is applied which moves x1 but not x2, then further

application of any πkl with n− d/2 ≤ k, l ≤ n − d/4 sends both cards to positions at least d/4 distant

from any edge of the array. Some notation for distance from the set of positions distant from any edge
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will also be useful. Let Aj ⊆ [n× n] be the set of positions

{(i, k) : n

5 · 2j ≤ i, k ≤ n− n

5 · 2j }.

Let B ⊂ [n× n]2 denote the set

{((i1, j1), (i2, j2)) ∈ (A4)
2 : max(|i1 − i2|, |j1 − j2|) ≥ n/40 ;

of pairs of positions in A4 separated by at least n/40 in at least one coordinate. Define B0 to be the set

of pairs of positions, one of which is in A2 and the other of which has both coordinates less than n/40.

Let C ⊂ [n× n]2 be the set

{((i1, j1), (i2, j2)) ⊂ (A6)
2 : min(|i1 − i2|, |j1 − j2|) ≥ n/160}.

Finally, let D be the set of pairs of coordinates {((i1, j1), (i2, j2)) : i1, j1 < n/3, i2, j2 > 2n/3}.

Pick any distinct cards x1 and x2, and suppose the positions, (i1, j1) and (i2, j2) of both cards are

in A2. Either i1 6= i2 or j1 6= j2; assume without loss of generality that i1 6= i2, since the argument is

symmetric in i and j; furthermore, assume without loss of generality that i1 < i2, since the argument

is symmetric in the two copies of the shuffle. If we choose j so that j1 ≤ j ≤ j1 + n/20, then the

permutation πi1j moves x1 to a position (1, b) with b ≤ n/40 and does not move x2. The positions of the

cards now differ by at least n/40 in the second coordinate. Since any permutation πkl with k, l > 39n/40

will move both cards, it will also preserve their separation; applying the observation at the beginning

of this proof (with d = n/20) shows that there are at least n2/6400 permutations πij whose further

application will result in the cards x1 and x2 having a pair of positions in B. It has thus been shown

that

Whenever x1, x2 ∈ A2, the rate of jumping to a pair of positions in B0 is at least 1/(160n);

when the pair of positions is in B0 then the rate of jumping to a pair in B is at least 1/12800.

Similar reasoning shows that whenever the pair of positions of x1 and x2 is in B, the probability that

the pair of positions will be in C two jumps later is at least a constant, c: there are at least n2/25600

permutations πab moving one card into the the region

{(r, s) : 1 ≤ r, s ≤ n/160}

while keeping the other card fixed; these also separate the cards by at least n/80 in both coordinates;

from here, any πrs with 319n/320 ≥ r, s ≥ 159n/160 will land the pair of positions of x1 and x2 in C.
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A final observation along these lines is that whenever the pair of positions of x1 and x2 is in C, the

probability of finding the pair in D three jumps later is at least another constant. The three moves

which may be necessary are: if x2 is above and to the left of x1, then apply any πij with i, j ≥ 159n/160

(otherwise, skip this step); now if (i1, ji) is the new position of x1, then i1, j1 ≤ 319n/360 and any πkl

with (i1, j1) ≤ (k, l) ≤ (i1, j1)+(n/320, n/320) will move x1 into the upper-left corner without disturbing

x2; the separation between the cards is still at least n/320 in at least one coordinate, and the coordinates

(i2, j2) of the second card are at least n/320, so there are at least n2/102400 π′
kl moves that will get x2

into the lower-right corner without disturbing x1.

A useful and self-evident principle when coupling two identical copies of a countable recurrent Markov

chain is that if the rate to jump from each state in the set Θ into the set Ξ is at least δ, then a coupling

{Xt, Yt} and a time T exist such that XT−, YT− ∈ Θ, XT , YT ∈ Ξ, and such that the Lebesgue measure

of {t < T : Xt, Yt ∈ Θ} has exponential distribution with mean 1/δ. [One way to establish this is to

define two independent copies {X ′
t, Y

′
t }, altered in any way that reduces the jump rate into Ξ by δ at

each state in Θ, to let Z be an independent poisson process of rate δ, to let T be the first time t at

which Zt− 6= Zt while Xt, Yt ∈ Θ, and to let Xt = X ′
t and Yt = Y ′

t for t′ < t, while XT and YT jump

into Ξ with whatever distribution was subtracted before, and then the two evolve independently.]

Thus the lower bound on the rate of jumping from a pair in A2 to the set B0 gives rise via this

principle to a coupling {σt, τt} and a time T at which σ and τ simultaneously jump into B0. Use this

coupling just up to the time T , and then for T < t < T + 6, let σ and τ evolve independently. Now

essentially copy the argument at the end of the proof of Lemma 3. The probability of precisely 6 jumps

occurring in σt in the interval (T, T + 6] is e−666/6! > 1/7; conditional on this, the probability that the

pair of positions of x1 an x2 under σT+6 is in D is at least the product of the three constants above (one

constant to get to B in one jump, one to get to C in two more jumps and one to get to D three jumps

after that). Since τt behaves identically, the probability of the event G is at least a constant, where G

is the event that the pairs of positions of x1 and x2 under both σT+6 and τT+6 are in D.

Finally, observe that conditional on G, σ and τ may be coupled by time T + 8 with probability

bounded away from zero: let σ and τ both jump exactly twice, using some πi1,j1 and πi2,j2 (as in the

proof of the preceding lemma) to send x1 to the same position in [n/6× n/6] and using some π′
i1,j1

and

π′
i2,j2 to send x2 to the same position in the lower-right square of this size. All that remains is to bound

the stopping time, T .
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By the previous lemma there is a k such that t > kn implies ||St − U ||1 < .01. This implies that for

t > kn and any card x, P(St(x) ∈ A2) ≥ U(A2) − .01 = .8. Thus the two independent copies of the

Markov chain {σ′
t} and {τ ′t} used to construct the coupling must satisfy

P(σ′
t(x1), σ

′
t(x2), τ

′
t(x1), τ

′
t(x2) ∈ A2) ≥ 1− 4(1− .8) = .2

for any t > kn. In particular this implies that if M ⊆ [kn, 2kn] is the set of times t for which the

positions of σ′
t(x1), σ

′
t(x2), τ

′
t(x1) and τ ′t(x2) are all in A, then

.2kn ≤ Eλ(M) ≤ .1kn+ nP(λ(M) > .1kn),

where λ is Lebesgue measure, and solving this gives P(λ > .1kn) ≥ .1. The coupling is constructed so

that

P(T < 2kn |λ(M)) ≥ 1− exp(−λ(M)/160n).

Thus P(T < 2kn) ≥ (.1)(1− exp(−k/1600)).

This, together with the success of the coupling by time T + 8 with constant probability, proves that

the coupling succeeds by time 2kn+8 with some constant probability, which suffices to prove the lemma,

since the coupling may be restarted at times that are multiplies of 2kn+ 8 until is succeeds. ✷

Proof of Lemma 5: This proof uses similar moves to the last proof, so only the new part will be described.

Let x1, x2 and x3 be any three cards. By the previous lemma, choose a k for which ||St − U ||2 ≤ 1/4

when t ≥ kn. Construct the coupling by first letting σ and τ evolve independently for time kn. Let

(a1j , a
2
j) denote the position of σt(xj) and (b1j , b

2
j) denote the position of τt(xj); for convenience, define

a10 = b10 = a20 = b20 = 1 and a14 = b14 = a14 = b24 = n. Let

Mt = min{|aki − akj |, |bki − bkj |, |aki − bkj |, : k = 1, 2; i 6= j; 0 ≤ i, j ≤ 4}.

Thus under both σ and τ , all cards x1, x2 and x3 are separated in each coordinate by Mt from each

other and from the boundary of the array, and for i 6= j, σt(xi) and τt(xj) are separated as well.

Under the product uniform distribution, (U × U), observe

(U × U)(Mt ≤ n/240) ≤ .3;

this is because the event {Mt ≤ n/240} is the union of 36 events of probability at most 1/120: 12 events

that some coordinate of some card under one of σt or τt is within n/240 of 0 or n, 12 events that some

coordinate of σt(xi) is too close to the same coordinate of τt(xj), 6 events that some σt(xi) and σt(xj)
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are within n/240 in some coordinate, and 6 events that some τt(xi) and τt(xj) are within n/240 in some

coordinate.

Therefore P(Mkn ≤ n/240) ≤ 3/4, by choice of k, since Mkn is an event depending only on the

positions of two cards. Conditional on Mkn > n/240, σkn+5 and τkn+5 may be coupled so that the

positions of all three cards x1, x2 and x3 are the same under σ and τ with probability bounded away

from zero. The five moves that may be necessary are: (1) couple σ(x1) and τ(x1) by moving them both

to the upper left n/720×n/720 square; (2) move this coupled card into the bottom right n/1440×n/1440

square by time kn+2; (3) couple σ(x2) and τ(x2) in an even smaller upper-left region; (4) move x2 to the

region in the lower-right (but not all the way in the corner) defined by {(i, j) : n/360 < i, j < n/720};
note that this does not disturb x1; (5) couple x3. ✷

Proof of Theorem 1 from Lemma 5: The method used to prove Lemma 5 may be generalized to any k

but the coupling time is then exponential in k. To get a power law in k, it is necessary to construct a

less wasteful coupling. When k ≥ √
n, k3n > n2 lnn, and Theorem 1 is subsumed in Theorem 2. So no

generality is lost in assuming that k <
√
n. Fix any k cards, x1, . . . , xk. A sequence of stopping times

will be defined at which the probabilities of certain “good” events occurring in the near future is large.

The stopping times are called {T (u, v) : 1 ≤ u ≤ k, 1 ≤ v ≤ l(u)} and {Tj : 0 ≤ j ≤ k} and when j ≥ 1,

they satisfy

Tj−1 < T (j, 1) < T (j, 1) + 1 ≤ T (j, 2) < · · · ≤ T (j, l(j)) < T (j, l(j)) + 1 = Tj.

Informally, at each T (u, v), either something good happens one time unit later, in which case Tu =

T (u, v) + 1 and l(u) = v, or else we wait for the next auspicious time, T (u, v + 1).

Describing the behavior of the coupling between times T (u, v) and T (u, v)+ 1 takes a little notation,

but at all other times the construction is simple. Let (σt, τt) evolve independently until time T0. For

t ∈ [Tj , T (j + 1, 1)] and for t ∈ [T (u, v) + 1, T (u, v + 1)], v < l(u), let σ and τ evolve in parallel, so that

σ jumps to σπ if and only if τ jumps to τπ. No technical problems arise in switching between these

behaviors as long as the T (u, v) are honest stopping times and the event {l(u) = v} is in the σ-field of

events up to time T (u, v) + 1.

To handle the remaining times, define W (t) to be the set {s ≤ k : σt(xs) = τt(xs)}. Informally, this

is the set of cards whose positions are the same under σ and τ at time t. Since the coupling depends on

knowing something about the configurations at times T (u, v), we begin by defining those. First, define

T0 = inf{t ≥ 0 : σt(xs) 6= τt(xs′) for all s, s
′ ≤ k}.

8



Clearly this is a stopping time, and W (T0) = ∅. It will be verified inductively that

W (s) ⊆ W (t) for T0 ≤ s ≤ t, |W (Tj)| = j, and |W (T (u, v))| = u− 1. (1)

It will also be verified that σt(xs) 6= τt(xs′) for all t ≥ T0 and s 6= s′. Since σ and τ move in parallel

except on t ∈ [T (u, v), T (u, v)+1] and since these two statements are true at time T0, we need only verify

that they remain true over the time intervals [T (u, v), T (u, v) + 1]. For any u ≤ k and 1 < v ≤ l(u),

define

T (u, v) = inf{t ≥ T (u, v − 1) + 1 :
∃s = s(u, v) /∈ W (Tu−1)s.t.σt(xs), τt(xs) ∈ [1, n

3
√
k
]× [1, n

3
√
k
]

and σt(xs′), τt(xs′ ) /∈ [1, n

2
√
k
]× [1, n

2
√
k
] for s′ 6= s}.

Define T (u, 1) identically, but with Tu−1 in place of T (u, v − 1) + 1. Informally, T (u, v) is the first time

after T (u, v − 1) + 1 (or Tu−1 if v = 1) that some card xs′ not yet in W is sent to a square region in

the the top-left corner by both σ and τ , while all other cards are sent to a region in the lower-right that

is the complement of a slightly larger square region. Clearly, these are stopping times and W cannot

change on [T (u, v − 1) + 1, T (u, v)] because σ and τ are evolving in parallel.

For each a, b ≤ n/(6
√
k), there are unique i(a, b), j(a, b) ≤ n/(2

√
k) for which πij [σT (u,v)(xs)] = (a, b),

while πij [σT (u,v)(xs′ )] = σT (u,v)(xs′) for s′ 6= s. The same is true with σT (u,v) replaced by τT (u,v); call

these i∗(a, b) and j∗(a, b). It is therefore possible to choose a pair (π, π∗) in such a way that each of π

and π∗ is uniform over {πxy : 1 ≤ x, y ≤ n}, that

P(π = πi(a,b),j(a,b), π∗ = πi∗(a,b),j∗(a,b)) ≥
1

36k
, (2)

and that with probability one, either π = π∗ or else

π = πxy, π
∗ = πx∗y∗ for some x, y, x∗, y∗ ≤ 1

2
√
k
. (3)

For a single shuffle, St, the probability of precisely one jump occurring in a unit of time and that jump

being a πij rather than a π′
ij is 1/(2e). By this observation and (2) and (3), we may construct the

coupling for t ∈ [T (u, v), T (u, v) + 1)] so that with probability 1 − 1/(2e) the two processes σ and τ

evolve in parallel, jumping either zero times, more than once, or jumping exactly once by some π′
ij , while

with probability 1/(2e) the two processes jump exactly once by some π and π∗ picked from the joint

distribution described above.

Define l(u) = v if this last possibility occurs (jumps of π and π∗) and if furthermore, π = πi(a,b),j(a,b)

and π∗ = πi∗(a,b),j∗(a,b) for some a, b ≤ n/(6
√
k). This is of course measurable with respect to events
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until time T (u, v)+1, and when it occurs, W (T (u, v)+1) = W (T (u, v))∪{xs}), with xs = xs(u,v) being

the witnessing card for the stopping time T (u, v). In this case, Tu is defined to equal T (u, v)+ 1 and the

inductive statement (1) is verified. On the other hand, if l(u) > v, then W (T (u, v) + 1) = W (T (u, v)),

since either the shuffles evolved in parallel or else (3) guarantees that no card xs′ other than xs was

moved by either shuffle. Thus again, (1) is verified. In either case (parallel shuffles or no card xs′ other

than xs moved by either shuffle), it is clear that the statement σt(xr) 6= τt(xr′) is preserved for all r 6= r′.

A consequence of (1) is that all k cards are coupled by time Tk. Thus to prove the theorem it suffices

to find a constant c for which

P[Tk > cnk3(ln(k))2] < 1/2. (4)

Let F(t) denote the σ-field of events up to time t. We begin by showing that ET0 < cn ln(k). Using

Lemma 3 for t = c0n ln(k), with c0 > 3c/ ln 2, gives

||Sr − U ||1 <
1

k3
.

Then for this t, P(σt(xs) = τt(xs′ )) ≤ 1/k3 + 1/n2 for each fixed s, s′ ≤ k and summing gives a

probability of at most 1/k+ k2/n2 that some σt(xs) = τt(xs′ ). Since 4 ≤ k <
√
n in any nontrivial case,

this probability is bounded above by 1/2. Repeating this argument at times that are multiples of t shows

T0 to be stochastically dominated by t times a geometric of mean two, proving that ET0 < cn ln(k) for

an appropriate c.

Next, we establish that

(i) E(T (u, v + 1)− (T (u, v) + 1) | F(T (u, v) + 1)) ≤ cnk2 ln(k)
k+1−u

(ii) E(T (u, 1)− Tu−1 | F(Tu−1)) ≤ cnk2 ln(k)
k+1−u

.

By Lemma 5, choose r = cn ln(k) so that ||Sr −U ||3 < 1/(400k5). Write B for the region [1, n/(3
√
k)]×

[1, n/(3
√
k)] and write C for the region [1, n/(2

√
k)] × [1, n/(2

√
k)]. Pick any s /∈ W (u) and let y =

σT (u,v)+1(xs) and z = τT (u,v)+1(xs). The set Q of permutations π for which π(y) ∈ B and π(z) ∈ B has

probability

U(Q) =
1

9k

(

1

9k
− 1

n2

)

≥ 1

100k2

under the uniform distribution. The permutations σT (u,v)+1+r(σ
−1
T (u,v)+1) and τT (u,v)+1+r(τ

−1
T (u,v)+1) are

equal and their conditional distribution given F(T (u, v) + 1) is the distribution of Sr. Since r is chosen

to make ||Sr − U ||2 ≤ ||Sr − U ||3 < 1/(400k5), it follows that

P(σT (u,v)+1+r(xs) ∈ B and τT (u,v)+1+r(xs) ∈ B | F(T (u, v) + 1)) ≥ 1

100k2
− 1

400k5
. (5)
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For w 6= y, z,

U{π : π(y) ∈ B, π(z) ∈ B and π(w) ∈ C} ≤ 1

324k2
.

Setting w = σT (u,v)+1(xs′ ) for some s′ 6= s and using ||Sr − U ||3 ≤ 1/(400k5) again yields

P(σT (u,v)+1+r(xs) ∈ B and τT (u,v)+1+r(xs) ∈ B and σT (u,v)+1+r(x
′
s) ∈ C | F(T (u, v) + 1)) (6)

≤ 1

324k3
+

1

400k5
.

If we instead let w = τT (u,v)+1(xs′), we see that the same is true with σT (u,v)+1+r(x
′
s) ∈ C replaced by

τT (u,v)+1+r(x
′
s) ∈ C. Let G(u, v, s) be the event that σT (u,v)+1+r(xs) ∈ B, that τT (u,v)+1+r(xs) ∈ B,

and that for all s′ 6= s, σT (u,v)+1+r(x
′
s), τT (u,v)+1+r(x

′
s) /∈ C. Then summing (6) over s′ 6= s, doubling,

and subtracting from (5), gives

P(G(u, v, s) | F(T (u, v) + 1)) ≥ 1

100k2
− 1

400k5
− 2k

(

1

324k3
+

1

400k5

)

≥ 1

400k2
,

since k ≥ 4. The events G(u, v, s) are disjoint as s varies. Recalling that T (u, v + 1) has been reached

when G(u, v, s) occurs for some s /∈ W (Tu−1) and summing over such s gives

P(T (u, v + 1) ≤ T (u, v) + 1 + r | F(T (u, v) + 1)) ≥ k + 1− u

400k2
.

Comparing to another geometric random variable, recalling the value of r and rolling all constants into

one gives

E(T (u, v + 1)− T (u, v)− 1 | F(T (u, v) + 1)) ≤ cn
k2 ln(k)

k + 1− u
.

This establishes (i) above, the argument for (ii) being identical.

By construction, P(Tu = T (u, v) + 1 | F(T (u, v))) ≥ 1
36k on the event l(u) ≥ v. This implies

El(u) ≤ 36k. Thus, setting T (u, 0) = Tu−1,

E(Tu − Tu−1) = E

l(u)
∑

v=1

(T (u, v)− T (u, v − 1))

= E

∞
∑

v=1

1l(u)≥v(T (u, v)− T (u, v − 1))

= E

[ ∞
∑

v=1

1l(u)≥vE(T (u, v)− T (u, v − 1)− 1 | F(T (u, v) + 1))

]

+El(u)
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≤ E

[ ∞
∑

v=1

1l(u)≥vcn
k2 ln(k)

k + 1− u

]

= El(u)cn
k2 ln(k)

k + 1− u
.

Summing over u gives E(Tk − T0) ≤ cnk3(ln(k))2, and using the earlier estimate on ET0 shows that

ETk ≤ cnk3(ln(k))2. Since Tk is positive, this implies (4), which proves Theorem 1. ✷

3 Proof of Theorem 2

The proof of the nontrivial part of Theorem 2, namely the upper bound, is gotten by analyzing the

eigenvalues of the random walk on Sn2 whose steps have distribution S. To abbreviate the terminology,

say the eigenvalues of a probability distribution P are the eigenvalues of its random walk, and if P is

uniform on some set A, call these also the eigenvalues of A.

The eigenvalue analysis is done in three steps. Define another shuffle R which chooses a three-cycle

uniformly from among all 2
(

n2

3

)

three-cycles at total rate one. (A three-cycle permutes three cards

cyclically and leaves the remaining n2 − 3 cards untouched.) The first step, Lemma 7 below, compares

the eigenvalues of S with the eigenvalues of R, This relies on a lemma from [2], Lemma 6 below, which

bounds the eigenvalues of one shuffle in terms of the eigenvalues of a second, more tractable, shuffle when

the permutations in the second shuffle are explicitly written as products of permutations in the first

shuffle. The second step is to compute the eigenvalues of R. This is done via the representation theory

of the symmetric group, and can be read off from known results in [3]. Finally, the information about

the eigenvalues of S is used to get an upper bound on the difference between St and U in total variation,

and hence on the time to randomization. This argument closely parallels the proof of Theorem 5 in [1,

ch. 3], which does an analogous computation but for transpositions instead of three-cycles.

Lemma 6 (Diaconis 1992) Let A1, A2 ⊆ Sn be sets of permutations that generate Sn and are sym-

metric, i.e. π ∈ Ai if and only if π−1 ∈ Ai. For each π ∈ A2, pick a way of writing π as a product of

elements of A1; let N(σ, π) denote the number of times σ appears in this product and let |π| denote the

number of factors in the product. This defines a constant

B =
|A1|
|A2|

max
σ∈A1

∑

π∈A2

|π|N(σ, π).
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Let Si be the uniform distribution on Ai. Choose any subspace V ⊆ CSn which is invariant for the right

regular representation of Sn and let λ1 ≥ λ2 ≥ · · · ≥ λk be the eigenvalues of S2 on the subspace V in

descending order, counted with proper multiplicity. Writing the eigenvalues of S1 on the subspace V as

λ′
1 ≥ λ′

2 ≥ · · · ≥ λ′
k, the relation

1− λi ≤ B(1 − λ′
i) (7)

holds for i = 1, . . . , k. ✷

Proof: Let E be the Dirichlet form for S2, namely the symmetric, positive definite form on CSn defined

by E(f, f) = < (I − S2)(f), f >, where S2(f)(z) = |A2|−1
∑

x∈A2
f(zx) and <,> is the usual inner

product. Let E ′ be the Dirichlet form for S1. Then Theorem 1 of [2] shows that

E ≤ BE ′.

Lemma 4 of [2] then implies (7) when V is all of CSn . If V is not the whole space, then observe that V

has an orthogonal complement V ⊥ which is also an invariant subspace. Thus the Dirichlet forms E and

E ′ decompose into the direct sums of forms on V and V ⊥. The relation E ≤ BE ′ must then hold on V ,

and the proof is again finished by Lemma 4 of [2]. ✷

Lemma 7 Let λ1 ≥ λ2 ≥ · · · ≥ λn!−2 be all the eigenvalues of the shuffle R except for the two eigenval-

ues of +1 which occur on the one-dimensional invariant subspaces V+ = {f : f(x) = f(y) for all x, y}
and V− = {f : f(x)sign(x) = f(y)sign(y) for all x, y}. Let λ′

1 ≥ λ′
2,≥ · · · ≥ λ′

n!−2 be the eigenvalues

of S0 on the space V⊥ = {f :
∑

f(x) =
∑

f(x)sign(x) = 0} which is the orthogonal complement of

(V+ ⊕ V−). There is a constant c such that for all i ≤ n!− 2,

(1− λi) ≤ c(1− λ′
i).

The same holds when S0 is replaced by S.

Proof: We first handle the case of S0. To apply Lemma 6, let A1 be all the πij and let A2 be all the

three-cycles. Picking ways to write elements of A2 as products of elements of A1 requires several steps.

Let A3 ⊆ A2 be the three-cycles that permute three array elements (ir, jr) : r = 1, 2, 3 for which the

coordinates ir are distinct from each other and the coordinates jr are distinct from each other. For

n ≥ i, j ≥ 3, let Xij and Yij be the following product of elements of A1 (commas are introduced for

clarity and the notation for products is left-to-right, so that πσ means first do π then σ):

Xij
def
= πi,jπi−1,jπi−2,jπi−1,j

Yij
def
= Xi,jXi,j−1Xi,j−2Xi,j−1.
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For n ≥ i ≥ 3 > j, let Xij be defined as above and let Yij = Xij . For n ≥ j ≥ 3 > i, let Xij = πij and

let Yij = Xi,jXi,j−1Xi,j−2Xi,j−1 as before. Finally, if 3 ≥ i, j, let Xij = Yij = πij .

Claim: Yij is the permutation that transposes the i, j-element of the array with the top element T ,

and in addition, if i, j ≥ 2, transposes the i, 1-element with the 1, j-element. The proof of this is omitted,

being a case by case verification; the figure illustrates the case i = j = 5.

X55 :

11 12 13 14 15

21 22 23 24 25

31 32 33 34 35

41 42 43 44 45

51 52 53 54 55

−→(π55)

55 54 53 52 51

45 44 43 42 41

35 34 33 32 31

25 24 23 22 21

15 14 13 12 11

−→(π45)

21 22 23 24 25

31 32 33 34 35

41 42 43 44 45

51 52 53 54 55

15 14 13 12 11

−→(π35)

45 44 43 42 41

35 34 33 32 31

25 24 23 22 21

51 52 53 54 55

15 14 13 12 11

−→(π45)

55 54 53 52 51

21 22 23 24 25

31 32 33 34 35

41 42 43 44 45

15 14 13 12 11

Y55 :

11 12 13 14 15

21 22 23 24 25

31 32 33 34 35

41 42 43 44 45

51 52 53 54 55

−→(X55)

55 54 53 52 51

21 22 23 24 25

31 32 33 34 35

41 42 43 44 45

15 14 13 12 11

−→(X54)

12 13 14 15 51

21 22 23 24 25

31 32 33 34 35

41 42 43 44 45

51 53 54 55 11

−→(X53)

54 53 52 15 51

21 22 23 24 25

31 32 33 34 35

41 42 43 44 45

14 13 12 55 11

−→(X54)

55 12 13 14 51

21 22 23 24 25

31 32 33 34 35

41 42 43 44 45

15 52 53 54 11

Next, for pairs (i1, j1), (i2, j2) both unequal to T and satisfying i1 6= i2 and j1 6= j2, let

Zi1,j1,i2,j2 = Yii,j1Yi2,j2Yi1,j1Yi2,j2 .
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It is easy to see that Zi1,j1,i2,j2 is the three-cycle permuting T , the i2, j2-element and the i1, j1-element.

Finally, for i1, j1, i2, j2, i3, j3 with none of the ir’s equal to another, none of the jr’s equal to another

and no pair (ir, jr) equal to (1, 1), let

Wi1,j1,i2,j2,i3,j3 = Zi1,j1,i2,j2Zi2,j2,i3,j3 .

Then Wi1,j1,i2,j2,i3,j3 cyclically permutes the i3, j3-element, the i2, j2-element and the i1, j1-element. If

π ∈ A3 is a three-cycle that permutes three array elements (i3, j3), (i2, j2) and (i1, j1) with ir, jr ≥ 2,

pick the decomposition of π into elements of A1 according to the construction of Wi1,j1,i2,j2,i3,j3 ; if one

of the pairs (ir, jr) is equal to (1, 1), then use the appropriate Z instead of W . In the obvious notation,

|π| = |Zi1,j1,i2,j2 | + |Zi2,j2,i3,j3 | ≤ 128. Furthermore, for any σ = πij ∈ A1, the number of π ∈ A3

for which N(σ, π) > 0 is at most 27n4, since one of the pairs (ir, jr) must satisfy i ≤ ir ≤ i + 2 and

j ≤ jr ≤ j + 2. Thus
∑

π∈A3

N(σ, π) ≤ 32 · 27n4

for any σ ∈ A1.

For π ∈ A2 \ A3, decompose it into a product of elements of A1 as follows. If π permutes the ir, jr-

elements for r = 1, 2, 3, choose (u1, v1) and (u2, v2) from among the set {(x, y) : ∃r with |x−ir|+|y−jr| ≤
6} in such a way that each us is distinct from each ir, each vs is distinct from each jr, and u1 6= u2 and

v1 6= v2. Writing a, b, c, d, e for (i1, j1), (i2, j2), (i3, j3), (u1, v1), and (u2, v2) respectively, decompose π as

π = WadeWbdeWcdeWadeWbde.

It is easy to check that this does indeed give π and that for π ∈ A2 \ A3, the decomposition satisfies

|π| ≤ 640. Furthermore, the number of π ∈ A2 \A3 for which N(πij , π) > 0 is bounded by the number

of ways of choosing three array elements in such a way that some two are in the same row or column

and one is within a distance 6 of (i, j) in the taxicab metric. This is at most cn4 for some constant c.

Applying Lemma 6 with n > 10 now gives 1− λi ≤ B(1 − λ′
i) where

B =
|A1|
|A2|

max
σ∈A1

∑

π∈A2

|π|N(σ, π)

≤ n2

2
(

n2

3

)



max
σ∈A1

∑

π∈A3

|π|N(σ, π) + max
σ∈A1

∑

π∈A2\A3

|π|N(σ, π)





≤ 3.1n−4(128 · (128 · 27n4) + 640 · (640cn4))

15



which is bounded by some constant, proving the lemma for S0. For S, use the same decompositions,

losing a factor of two in |A1|/|A2|. ✷

It has been shown that the eigenvalues of S are bounded in terms of the eigenvalues of R; the

computation of these latter uses a combinatorial formula from [3]. Let ρ be any irreducible matrix

representation of Sn. Since the measure R is uniform on conjugacy classes, the matrix R(ρ)
def
= ER(ρ)

will be a constant multiple of the identity, the constant being χρ(τ)/d(ρ), where χρ is the character of the

representation ρ and τ is any element of the conjugacy class, in other words, any three-cycle. This gives

d(ρ) eigenvalues equal to χρ(τ)/d(ρ) in the irreducible representation ρ, and since this representation

appears with multiplicity d(ρ), the shuffle R will have this eigenvalue with multiplicity d(ρ)2. Ingram’s

formula for the characters of the irreducible representations of Sn evaluated at a three-cycle yields the

following upper bounds:

Lemma 8 Let ρ be the irreducible representation of Sn corresponding to the partition t = (t1 ≥ t2 ≥ · · ·)
of n. Then the character of ρ evaluated at a three-cycle is given by

r(ρ)
def
= χρ(τ)/d(ρ) =

3
∑

i,j(i− j)2

n(n− 1)(n− 2)
− 3

2(n− 2)
, (8)

where the sum is over all (i, j) such that ti ≥ j, or in other words over all squares of the Young tableau

for the partition t. It follows from this that

r(ρ) ≤ 1− 3(t1 − 1)(n− t1)

(n− 1)(n− 2)
when t1 ≥ n/2

and

r(ρ) ≤ max{t1 − 1, t′1 − 1}/(n− 2) when t1, t
′
1 ≤ n/2,

where t′1 = max{i : ti > 0} is the first element of the partition dual to t.

Proof: The formula (8) is taken directly from [3, (5.2)], where the term a(a + 1)(2a+ 1) is replaced by

6
∑a

i=1 i
2 and the typographical error (a misplaced parenthesis) is corrected. For fixed t1 ≥ n/2, the

sum is maximized by letting t2 = · · · = tn+1−t1 = 1 and ti = 0 for i > n + 1 − t1. For the trivial

representation, t = n, 0, 0, . . . and r = 1. Comparing (8) for the trivial representation and a nontrivial

representation ρ gives

1− r(ρ) ≥ 3

n(n− 1)(n− 2)

[

n−t1
∑

k=1

((t1 − 1 + k)2 − k2)

]
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=
3

n(n− 1)(n− 2)

[

n−t1
∑

k=1

(t1 − 1)2 + 2k(t1 − 1)

]

=
3

n(n− 1)(n− 2)

[

(n− t1)(t1 − 1)2 − (n− t1)(n− t1 + 1)(t1 − 1)
]

=
3

(n− 1)(n− 2)
[(n− t1)(t1 − 1)] .

On the other hand, when t1, t
′
1 ≤ n/2, then let t0 = max{t1, t′1}. Ignore the subtracted term in (8) to

get

r(ρ) <
3
∑

i,j(i− j)2

n(n− 1)(n− 2)
.

Partition the n pairs (i, j) according to the value of i and observe that for any i, the average of the

summands with that particular value of i is

t−1
i

ti
∑

j=1

(j − i)2 ≤ t−1
0

t0
∑

j=1

(j − 1)2

= (t0 − 1)(2t0 − 1)/6.

This is then an upper bound for the average of all the summands; the sum is precisely n times the

average, yielding

r(ρ) <
(t0 − 1)(2t0 − 1)

2(n− 1)(n− 2)
≤ t0 − 1

2(n− 2)
.

✷

The bound (9) below on the time to randomization for the shuffle S in terms of its eigenvalues is

based on the Upper Bound Lemma (3b.1) from [1]; the evaluation of (9) is based on the analogous

computation for random transpositions on pages 41 - 42 of [1]. Accordingly, some details are omitted

here.

Proof of Theorem 2: Let the eigenvalues of R and S be denoted respectively by λi and λ′
i, listed in

the following order: λ1 = λ′
1 = 1 are the eigenvalues on V+; λ2, λ

′
2 are the eigenvalues on V−, with

λ2 = 1 > λ′
2; λ3 ≥ · · · ≥ λn! and λ′

3 ≥ · · · ≥ λ′
n! are the eigenvalues on V⊥. Using the constant c from

Lemma 7 and Lemma 3B.1 of [1] gives

4|Sct − U |2 ≤ n!
∑

|Sct(π)− U(π)|2
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=
∑

i≥2

e−2ct(1−λ′

i)

≤ e−2ct(1−λ′

2
) +

∑

i≥3

e−2t(1−λi)

= e−2ct(1−λ′

2
) +

∑

ρ

∗
d(ρ)2 exp[−2t(1− r(ρ))], (9)

where
∑∗

denotes a sum is over representations ρ other than the trivial representation and the alternating

representation.

We now bound (9) using Lemma 8. First dispose of the e−2ct(1−λ′

2
) term. Since the alternating

character is
∑

sign(σ)S(σ) and the sign of πij is negative when (among other cases) i is odd and j ≡ 2

mod 4, the alternating character is at most 3/4, and

e−2ct(1−λ′

2
) ≤ e−ct/2.

For the remaining sum, observe that if ρ and ρ′ correspond to dual partitions t, t′ then d(ρ) = d(ρ′)

and r(ρ) = r(ρ′). Since the trivial and alternating partitions are dual, this gives

∑

ρ

∗
d(ρ)2 exp[−2t(1− r(ρ))] ≤ 2

∑

ρ

∗∗
d(ρ)2 exp[−2t(1− r(ρ))]

where
∑∗∗

is over nontrivial partitions with t1 ≥ t′1. Note that for t ≥ n/2,

1− 3(t− 1)(n− t)

n(n− 1)
= 1− 3(t− 1)

n− 2

(

1− t− 1

n− 1

)

≤ 1− 3

2
(1− t− 1

n− 1
)

≤ t− 1

n− 2

and thus for any α ∈ (0, 1/2), the above expression involving
∑∗∗

is at most

2
∗∗
∑

ρ:t1≥(1−α)n

d(ρ)2 exp[−2t
3(t1 − 1)(n− t1)

(n− 1)(n− 2)
] + 2

∑

ρ:t1<(1−α)n

d(ρ)2 exp[−2t
t1 − 1

n− 2
].

Diaconis now shows [1, proof of Theorem 5, page 42] that α ∈ (0, 1/4) may be chosen so that when

t > (1/2)n ln(n)+kn, both sums together are less than ae−2k for some universal constant a. This shows

that |Sct − U | goes to zero when t = (.5 + ǫ)n ln(n), proving Theorem 2. ✷
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