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Abstract:  This paper presents a semi-supervised learning algorithm called Gaussian process expectation-maximization (GP-
EM), for classification of landcover based on hyperspectral data analysis. Model parameters for each land cover class are
first estimated by a supervised algorithm using Gaussian process regressions to find spatially adaptive parameters, and the
estimated parameters are then used to initialize a spatially adaptive mixture-of-Gaussians model. The mixture model is updated
by expectation-maximization iterations using the unlabeled data, and the spatially adaptive parameters for unlabeled instances
are obtained by Gaussian process regressions with soft assignments. Spatially and temporally distant hyperspectral images taken
from the Botswana area by the NASA EO-1 satellite are used for experiments. Detailed empirical evaluations show that the
proposed framework performs significantly better than all previously reported results by a wide variety of alternative approaches
and algorithms on the same datasets. © 2011 Wiley Periodicals, Inc. Statistical Analysis and Data Mining 4: 358-371, 2011
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1. INTRODUCTION

Remotely sensed images provide valuable information
for observing large geographical areas in a cost-effective
way. Hyperspectral imagery is one of the most useful
and most popular remote sensing techniques for land use
and land cover (LULC) classification [1]. Each pixel in a
hyperspectral image consists of hundreds of spectral bands,
and each land cover type is identified by its unique spectral
signature. For example, spectral responses of wetland
classes are different from the responses of upland classes,
and land covers with different vegetation also have spectral
signatures different from one another. This is because
similar land cover classes generally show similar spectral
signatures, and identifying one type from the other, e.g.
identifying different types of corn fields, becomes a more
challenging task since spectral signatures of a land cover
type often vary considerably over time and space. .

Conventional classification algorithms assume a spatially
invariant model that applies to the entire image. Though
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this assumption may hold for small spatial footprints, it
is generally not true for large geographical areas. This is
because the spectral signature of the same land cover can
substantially vary across space due to varying soil type,
terrain, and climatic conditions. Figure 1 shows how the
spectral signature of a single land cover class changes over
space. Figure 1(a) shows a part of a hyperspectral image
acquired by Hyperion over the Okavango Delta, Botswana
on May 31, 2001. This 30 m resolution data cover a spatial
extent of approximately 44 by 7.5 km?, and is used in
the experiments described later. Figure 1(b) shows three
different locations of water in different colors, and Fig. 1(c)
shows the average spectral response of each location plotted
with the same color, showing that the same land cover class
can show different spectral signatures over the space. In the
presence of such spatial variations, the performance of a
classifier that cannot spatially adapt is bound to degrade.
Another challenge in the application of hyperspectral data
analysis for landcover classification is the cost of collecting
ground truth. Class labels are particularly expensive to
obtain in remote areas, specially when there is a mix of
classes. The labeling task often requires human experts,
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costly surveys, and/or actual physical trip to the site [2],
and estimates of $50 per labeled pixel have been quoted
in the literature. Given that images can contain over a
million pixels, typically only a small fraction of the pixels
get labeled, and one is forced to train a model using
training data collected from certain geographic areas, and
generalize the model for classification of land covers at
other locations [3]. For example, Fig. 4 shows in color all
the pixels for the same image as in Fig. 1, for which labels
are available. Clearly, the black pixels, which represent
pixels without labels, dominate most of the image.

In spatial statistics, spatially varying quantities are
often modeled by a random process indexed by spatial
coordinates. Kriging is a technique that finds the optimal
linear predictor for spatial random processes [4]. It is
closely related to the Gaussian process model [5], which is
becoming very popular in the machine learning community.
In ref. [6], a supervised learning algorithm called Gaussian
process maximum likelihood (GP-ML) was developed for
the classification of hyperspectral data, where the spatial
variation of each spectral band is modeled by a Gaussian
random process indexed by spatial coordinates. In a typical
Gaussian process model, the predictive distribution of an
out-of-sample instance is affected more by nearby points
than by faraway points. Consequently, the uncertainty of
the predictive distribution increases as the distance from the
training instances increases. The Gaussian process model
is generally regarded as a good tool for interpolation, but
not for extrapolation. The GP-ML algorithm has the same
limitation, and good classification results are not guaranteed
when the algorithm is used to classify land cover classes
located far from the training data [7].

In this paper, we propose a spatially adaptive semi-
supervised learning algorithm for the classification of
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Averaged spectral responses of water class at different locations. [Color figure can be viewed in the online issue, which is available

hyperspectral data to overcome the problems of the GP-ML
framework, and name it the Gaussian process expectation-
maximization (GP-EM) algorithm. GP-EM is a semi-
supervised version of the GP-ML classification framework,
where the test data are modeled by a spatially adaptive
mixture-of-Gaussians model. GP-ML is used to find the
initial estimates of the mixture components, and the mixture
model is then updated by EM iterations with the unlabeled
test instances. By utilizing the test data in a transductive
setting for the Gaussian process regression, the proposed
framework suffers less from the extrapolation problem.

2. RELATED WORK

Hyperspectral image analysis for land cover and land
use classification has been widely studied in recent years
and a variety of classification algorithms have been pro-
posed [1,8]. Supervised learning algorithms for hyperspec-
tral data analysis could be categorized into discrimina-
tive and generative approaches. Discriminative algorithms
including support vector machines (SVMs) [9] and other
kernel-based methods [10] aim to find the best separation
between different classes, while generative methods such as
the maximum-likelihood (ML) classifier [7] aim to find the
best statistical representation of each land cover class. ML
algorithm is one of the most widely employed generative
approaches and it models class-conditional distributions of
hyperspectral data as multivariate Gaussians.

All aforementioned algorithms require a sufficient num-
ber of labeled examples to obtain a good classifier; how-
ever, acquiring ground reference data for a large number
of examples is an expensive and time-consuming task. In
land cover classification, applications based on remotely
sensed data, airborne or satellite images usually cover large
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geographical areas; determining the actual land cover type
is costly and involves much human effort. In contrast, unla-
beled samples are easier to obtain. Semi-supervised learning
refers to a variety of algorithms that exploit the unlabeled
data together with the labeled data [11]. Shahshahani and
Landgrebe studied utilizing unlabeled examples to over-
come the shortfalls of labeled examples for remote sensing
applications [12].

It is sometimes difficult to benefit from the unlabeled
data, however, especially when the characteristics of the
unlabeled data are substantially different from the labeled
data. In analysis of data over extended regions, the classifier
is often trained at one location and applied to other loca-
tions. As most semi-supervised algorithms assume that both
labeled and unlabeled data come from the same underlying
distribution, it is likely that the information extracted from
the unlabeled examples is biased by the model generated
from the labeled data. In such cases, one needs to trans-
form the information obtained from the labeled data to the
unlabeled data by transferring the pre-acquired knowledge
into the new domain. There have been several studies that
adapt for dynamically changing properties of hyperspec-
tral data. Chen et al. applied manifold techniques to ana-
lyze nonlinear variations of hyperspectral data [13,14]. Kim
et al extended this manifold-based approach with multires-
olutional analyses [15], and proposed a spatially adaptive
manifold learning algorithm for hyperspectral data analy-
sis in the absence of enough labeled examples [16]. Rajan
et al. [3] proposed a knowledge transfer framework for
classification of spatially and temporally separated hyper-
spectral data.

There have been a number of studies that utilize spa-
tial information for hyperspectral data analyses. A geo-
statistical analysis of hyperspectral data has been studied
by Griffith [17], but no classification method was pro-
vided. One way to incorporate spatial information into
a classifier is stacking feature vectors from neighboring
pixels [18]. A vector stacking approach for the classifi-
cation of hyperspectral data has been proposed by Chen
et al. [19], where features from the homogeneous neigh-
borhood is stacked using a max-cut algorithm. Another
way to incorporate spatial information is by using image
segmentation algorithms [20,21]. The results from these
approaches largely depend on the initial segmentation
results. Some algorithms exploit spatial distributions of land
cover classes directly. The simplest direct method is major-
ity filtering [22], where the classified map is smoothed
by two-dimensional low-pass filters. A popular method
that incorporates spatial dependencies into the probabilistic
model is the Markov random field model [23,24]. The clos-
est approach to this paper is by Goovaerts [25], where the
existence of each land cover class is modeled by indicator
kriging to be combined with the spectral classification
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results, but the spatial information was not used to model
variations of spectral features.

The proposed GP-EM framework utilizes a Gaussian ran-
dom process to model within-class variations of hyperspec-
tral data. The framework of using Gaussian processes to
model spatial variations of hyperspectral data was originally
proposed by Jun and Ghosh [6], where Gaussian process
regressions are exploited for spatially adaptive ML classifi-
cations. An active learning algorithm based on methods of
Jun and Ghosh [6] was presented by Jun and Vatsavai [26],
where it was shown that having better measures of uncer-
tainties by modeling spatial variations also helps making
better selections of samples to be queried. In our recent
work [27], the previously proposed GP-ML framework is
enhanced by decomposing the spectral features of a given
class as a sum of a constant (global) component and a spa-
tially varying component, which is the approach used in this
paper. A detailed description of the GP-ML model follows
in the background section.

GP-ML models the class-conditional probabilistic distri-
bution of each band as a Gaussian random process that is
indexed by spatial coordinates. This approach is related to a
geostatistical technique called kriging [4]. Kriging finds the
optimal linear predictor for geospatially varying quantities,
and the approach has been recently adopted by machine
learning researchers [5]. Recently, a technique called geo-
graphically weighted regression (GWR) [28] has been stud-
ied for regression problems where relationships between
independent and dependent variables vary over space. GWR
is different from kriging in a sense that its objective is
finding spatially varying regression coefficients, while in
kriging the objective is finding spatial variation of vari-
ables. GWR and kriging both can be used for similar tasks,
and a recent comparative study has shown that kriging is
more suitable for prediction of spatially varying quantities,
but a hybrid approach may be beneficial for description of
complex spatially varying relationships [29].

In the GP-EM algorithm, we use the mixture of Gaussian
processes model by Tresp [30] to calculate Gaussian
process regressions with softly assigned instances. We also
employ the best-bases feature extraction algorithm to reduce
the dimensionality of hyperspectral data [31].

3. BACKGROUND

3.1. Maximum Likelihood Classification

The ML classifier is a popular technique for classification
of hyperspectral data. Let y € {1, ..., c} be the class label
and x € R? is the spectral feature vector. The posterior
probability distribution follows the Bayes rule:

p(y =i|®)pKX|ly =1i,0)
Y POy =il®)pxly =i,06)

p(y =ilx,0) = (D
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where © is the set of model parameters. The class-
conditional distribution of hyperspectral data is typically
modeled by a multivariate Gaussian distribution:

pxly =1i,0)
1

= —¢
Qm)n2|x; |2

~ Mui, %)

— =) T2 x—py) )

O ={(p;, X)]i =1,...,c}, where u; and X; are the mean
vector and the covariance matrix of the ith class. The
ML classifier estimates these parameters by ML estimators
using training data with known class labels, and then
predicts class labels of test instances that have the maximum
posterior probabilities according to Egs. (1) and (2).

As mentioned earlier, spectral characteristics of hyper-
spectral data change over space due to various reasons.
A single land cover class often shows different spectral
responses at different locations. It is too simplistic, there-
fore, to assume nonvarying stationary probabilistic distri-
butions without adjustments for spatially varying spectral
signatures. With incorporation of the spatial coordinate s,
the posterior distribution in Eq. (1) becomes:

p(&y =ils,®)px|ly =1i,s, 0)

Yo pxly =1i,5,0)p(y =ils,0)
3)

p(y =ilx,s, ©) =

By employing a Gaussian process regression model, we
can write the class-conditional distribution in Eq. (2) using
spatially varying parameters:

p&xly =1i,s,0) ~ N(ni(s), X)) “)
The spectral covariance matrix X; is kept constant for
each class to avoid an explosion of parameters, that is, a
stationary covariance function is employed for the Gaussian
process model. The resulting GP-ML model provides a

framework to estimate the spatially varying u;(s) for ML
classifiers [6].

3.2. GP-ML Framework

The GP-ML algorithm models the mean of each spectral
band of a given class as an independent Gaussian random
process indexed by spatial coordinates. It is generally
not true that spectral features in hyperspectral data are
independent given the class, but we employed the naive
Bayes assumption to make the model computationally
tractable. In this paper, we use the GP-ML algorithm that
is slightly modified from ref. [6]. For simple notation,
let us focus on a single class and omit i for now. We
model x(s) € R as a random process indexed by a spatial

coordinate s € R? with a mean function u(s) and a spatial
covariance function k(sy, s3) according to the GP model.

For a given class, let X = {x;, X», ...X,} be the set of
n training instances of the class at corresponding locations
S = {s1, 82, ...s,}. First, we estimate the constant (global)
mean p,. and then subtract it from each instance to make
the data zero-mean:

. I
Xy = X; — Mg, where p,. = — Zxk.
n

For a given location s, we want to get a spatially adjusted
mean vector u(s) of the residue, so that the overall class
mean is the sum of the constant mean and the spatially
varying component, f.-+ p(s). Assuming a zero-mean
Gaussian process prior for each band, 1 ;(s), the predictive
mean of the jth band of u(s), is easily derived from the
conditional distribution of Gaussian random vectors:

-1 .
() = 03 K(s. ) [a]%j Kss + ofjl] . 6

%/ is a column vector with the collection of jth bands, and
the kth element of x/ is the jth band of . o? and o

are hyperparameters for signal and noise powers of the ]th
band. K(s, S) is a row vector such that the kth element in
the vector corresponds to spatial covariance between s and
sx. Similarly, Kgg is a spatial covariance matrix such that
(i, j)th element of Kgs corresponds to k(s;, s;). We use the

popular isometric squared exponential covariance function:

2
k(s1, s2) = exp <—7||SI2L22H ) ,

where L is the length parameter that is identical over all
classes and bands. L is selected by cross-validations, and
the signal power O']% and the noise power o are directly
measured from the training data. We use Eq. (5) to get the
spatially detrended training data X = x — u(s), and then X is
modeled by a stationary multivariate Gaussian distribution.
Rather than estimating parameters of high-dimensional
Gaussian distributions, we use Fisher’s multiclass linear
discriminant analysis (LDA) to reduce the dimensionality
of data, because it provides the optimal linear projection
for the separation of Gaussian distributed data [32].
Returning to the multiclass setup, assume that the
steps above are repeated for all classes to yield u;(s)’s
and estimated constant parameters (., X;)’s for all i =
1,...,c, where the superscript r denotes the reduced
dimensionality. Then the classification of an out-of-sample
test instance x* at location s* is performed by estimating
the mean of spatially varying component u;(s*) for each
class by Eq. (5). The spatially adaptive class-conditional
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distribution at location s* is modeled as:

pXly =i,8", ©) ~ N (X" uj(s") + p,, ). (6)

4. PROPOSED APPROACH
4.1. The GP-EM Framework

The ML classifier estimates parameters of class-condi-
tional Gaussian distributions using labeled training data,
and it assumes that the test data have the same class-
conditional distributions. This assumption generally does
not hold when we have test data from spatially distant
regions. When the discrepancy between the training and
the test data is small, a semi-supervised expectation-
maximization (EM) algorithm can be used to modify the
obtained distributions. In GP-EM, the unlabeled test data
are modeled by a spatially adaptive mixture-of-Gaussians
model, where it is assumed that each component represents
a single land cover class. Each component of the mixture
model is initially seeded by the parameters of the class-
conditional Gaussian distributions obtained by GP-ML, and
then only the test data are used in unsupervised fashion for
the following EM iterations.

A mixture-of-Gaussians model is defined as:

C
i=1

where «; is the mixing proportion associated with each
Gaussian component and ¢ is the number of components,
that is, the number of land cover classes. Instead of
assuming constant (global) parameters, we propose a
spatially adaptive mixture-of-Gaussians model:

ia,-(s) =1.
i=1

PxI©) = aiNu;, Tp),

i=1

Y @M (s), ),

i=1

p(xls, ®) =

We still assume that the spectral covariance X; is indepen-
dent of the spatial location s, but we model both the mixing
proportion «;(s) and the spectral mean u;(s) as spatially
varying parameters.

4.2. E-Step

Let z}, € [0, 1] be an indicator variable that represents
the proBability of the kth instance belonging to the
ith component. The superscript ¢ denotes the fth interation
of the EM process. The E-step updates zf, & as:

th',k p (Xk; lLf‘,k’ Ef)
> Z;,k p (Xk; ”';,k’ Ef)

o
ik =
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where p(xy; [Lﬁ’k, X8 ~ NM(xg; uﬁ’k, X!). Note that we use
R to denote i(sy), for simplicity and consistency with
other notations in the EM process. The difference from
conventional EM is that now [L;cy ; is not a constant across all
k’s, and can have different values for instances at different
locations.

4.3. M-Step

First we subtract the constant mean u{ from x as in GP-
ML. This mean is calculated based on soft assignments.
Thus

D k=13 ka

Zk 1sz

To perform a Gaussian process regression with soft
assignments, we employ the mixture of Gaussian processes
approach [30]. Let ;L'l.’ _ be a column vector with the

X =X, — pu{, where puf=

collection of the jth elements of ;L{ «» then its regressive
value with soft membership is calculated as:

ﬂ,-j = Uf Kss [Uf Kss + diag(o? /2 k)] X,

where diag(o? /zl ) 18 a n x n diagonal matrix that its kth
diagonal element is 0 / Z; - Small value of z! « means that
the probability of kth sample belonging to the ith class is
low, and it results in implying a high noise power to the kth
point, making the predicted value less affected by the kth
instance. If Zf’,k =1 for all k’s, then Eq. (7) becomes the
standard Gaussian process regression model. The M-step
for the mean parameter is:

p = g+ u

where the jth element of u; ; is the kth element of [Llj from
Eq. (7). There is an additional adjustment step in ref. [30] to
prevent domination of a Gaussian process component with
the largest length parameter, but we do not need such an
adjustment here because we assume length parameters are
the same across all components in our model. The M-step
for the spectral covariance parameter is straightforward:

T
n t s t+1 t+1
D=1 %k (Xk “Hik ) ( ~ Pk )
n 1 .
D et Zik

GP-EM also uses Fisher’s multiclass LDA for dimension-
ality reduction. The Fisher’s projection is re-calculated at
every M-step with soft assignments to find the optimal lin-
ear subspace with updated parameters.

+1
X =
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The M-step for the indicator variable is done by fitting a
separate Gaussian process for Zf’,k’ which is similar to the
indicator kriging approach [25]:

1+1 2 2 -7y 1 1
Zi’k = akaZ(Sk’ S) I:O-fZKZSS + O-EZI:I Zi,k — 5 —+ 5’

where k,(s;, sp) is a covariance function for the indicator
variable, as described in the following section. We subtract
% because z € [0,1], and add it back after the GP
regression. Hyperparameters U%Z and o, are measured from

the distribution of z; .

4.4. Covariance Function for the Indicator Variable

In Egs. (5) and (7), we used the squared exponential
covariance function to model spatial variation of the
spectral bands. The extreme smoothness of the squared
exponential covariance function might be suitable for
modeling of smoothly varying quantities such as spectral
signatures of hyperspectral data, but such smoothness
is not suitable for many other physical processes such
as geospatial existence of certain materials [33]. It is
commonly recommended to use covariance functions from
the Matérn class for such processes. We used the Matérn
covariance function with v = 3/2:

PRVEIL —52||> oxp (_ﬁnsl —s2||> '

L. L.

k. (s1,82) = (1

The length parameter L, is set to be in the same order of
magnitude as the spatial resolution of the image, since we
do not want to impose unnecessarily smooth filtering effects

GP regression with Matern covariance function
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to the classified results. The difference between the squared
exponential function and the Matérn function is illustrated
in Fig. 2 using the 9-class Botswana data. The blue lines
represent initial values of Z;,k fori =7 and r = 1, and the
green lines represent zfj{l after the M-step. Note that the
points are sorted according to the index k for illustration,
but they are from spatially disjoint two-dimensional chunks
as shown in Fig. 4; hence there are several discontinuities
in the plot. Figure 2(a) shows the result using the Matérn
covariance function, and Fig. 2(b) shows the result using
the squared exponential function. Both covariance functions
used the same length parameter. It is clear from the figure
that the squared exponential function is too smooth to model
abruptly changing quantities.

4.5. Fast Computation of GP

At each M-step of the GP-EM algorithm, we need to cal-
culate (d 4+ 1) Gaussian processes for d-dimensional data,
and this is more problematic than in the GP-ML case since
we use all unlabeled instances for every GP regression. In
the supervised learning case, we fit a separate GP for each
class using only samples from the class; and the number of
instances belonging to one class of the training data class
is usually much smaller than the number of all unlabeled
instances. The most time-consuming step of the GP-EM
algorithm is the inversion of the spatial covariance matrix

in Eq. (7): G.%Kss‘io‘?Kss + diag (02 /Zf,k)] ' When we
have n instances, Kgg is an n x n matrix, and inverting the
matrix requires O(n®) computations. By using an eigen-
decomposition of the covariance matrix, we can get the
result in O(n?) time instead of O(n?). Eigen-decomposition
of an n x n matrix also requires O(n?), but this can be done
only once at the beginning across all dimensions and EM

GP regression with SE covariance function

k
t
K
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k

Fig. 2 Effects of different covariance functions with the same length parameter. (a) Matérn, v = 3/2; (b) squared exponential. [Color
figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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iterations. Since Kgg is a positive semi-definite matrix, we
can diagonalize the matrix:

Ky =V AT' VT = Vdiagih ) VT,

where V is the matrix of eigenvectors and X; is the kth
eigenvalue of Kgs. The matrix computation in Eq. (7) is
hence simplified as:

. —1
O'%KSS [GJ%KSS + dlag(dg/zf,k)]
= 0}V diag()VPV (07diag(u) + diag(02/2f) 'V

o2
=V diag (2—%) VT,
Ofhe + 08/ g

It is important to note that the remaining matrix multipli-
cations should be calculated from right to left, because it
will always leave a column vector in the right end of the
equation and we do not need to multiply two n x n matri-
ces. This method has the time complexity of O(n?) instead
of O(n?) for the entire calculation once we have the eigen-
decomposition beforehand. Because Kgg is common across
all dimensions, we need only two eigen-decompositions for
the entire GP-EM iterations: Kgs and K_ss.

5. EXPERIMENTS
5.1. Dataset

The three Botswana hyperspectral images used in this
paper were obtained from the Okavango Delta by the NASA
EO-1 satellite with the Hyperion sensor on May 31, June
16, and July 02, 2001 [34,3]. June and July images were
taken over the same geographical area, while the area cov-
ered by the May image only partly overlaps with June and
July images as shown in Fig. 3. The acquired data originally
consisted of 242 bands, but only 145 bands are used after
removing noisy and water absorption bands. The images
used for experiments have 1476 x 256 pixels with 30 m
spatial resolution.

Images from May, June, and July are used for experi-
ments on temporally separate data, and the May image is
used to construct spatially separate data. Two different sets
of spatially disjoint data have been constructed from the
May data with differently labeled ground references. The
first dataset has nine land cover classes, and the second one
has 14 classes. Each dataset has spatially disjoint training
and test data, noted as Areas 1 and 2, respectively. The
14-class data have some similar land cover types labeled
as different classes; hence the classification task is more
challenging than the 9-class data. Figure 4 shows the May
Botswana image with class maps for training and test data

Statistical Analysis and Data Mining DOI:10.1002/sam
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Fig. 3 Images of the spatially and temporally separated
Botswana hyperspectral data. June and July images are taken over
the same region, but May image is taken from a slightly overlap-
ping region of the same area. (a) May 31, 2001; (b) June 16, 2001;
(c) July 02, 2001. [Color figure can be viewed in the online issue,
which is available at wileyonlinelibrary.com.]

for spatially disjoint 9-class and 14-class datasets. Differ-
ent land cover classes are shown in different colors in the
class map. The training and test data are used as provided
to compare the results to previously reported results on the
same data. Tables 1 and 2 show the list of classes with the
number of instances in each class. May Area 1 and Area
2 data are merged together to construct a single dataset for
temporal transfer experiments.

5.2. Experimental Setup

The proposed GP-EM algorithm was evaluated and
compared to a wide variety of existing approaches. We
also provide detailed comparisons with three methods:
conventional ML, EM, and the GP-ML algorithm, that are
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Fig. 4 Images of the spatially separate datasets generated from the May 31 image. (a) 9-class data with RGB image; (b) 14-class data.
[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Table 1. Class names and number of instances for Botswana
9-class data.

Table 2. Class names and number of instances for Botswana
14-class data.

May May May May

No. Class name Areal Area2 June July No. Class name Areal Area2
1 Water 158 139 361 572 1 Water 270 126
2 Primary floodplain 228 209 308 584 2 Hippo grass 101 162
3 Riparian 237 211 303 438 3 Floodplain grasses 1 251 158
4 Firescar 178 176 335 482 4 Floodplain grasses 2 215 165
5 Island interior 183 154 370 664 5 Reeds 269 168
6 Woodlands 199 158 324 636 6 Riparian 269 211
7 Savanna 162 168 342 710 7 Firescar 259 176
8 Short mopane 124 115 299 330 8 Island interior 203 154
9 Exposed soil 111 104 229 615 9 Acacia woodlands 314 151
10 Acacia shrublands 248 190

11 Acacia grasslands 305 358

. o 12 Short mopane 181 153
akin to GP-EM but have one or more component missing. 13 Mixed mopane 268 133
These ‘lesion studies’ help us understand the impact of 14 Exposed soils 95 89

the different parts of the GP-EM framework. The semi-
supervised learning was performed in a transductive manner
by using the test data as unlabeled data. The EM process
was initialized by learning a supervised classification model
using the training data, and then the unlabeled test data
are used for the following EM iterations for both EM
and GP-EM experiments. The EM classifier is initiated
with parameters estimated by the ML classifier. The GP-
EM classifier is initiated with parameters estimated by the
GP-ML classifier for spatial transfer experiments, and is
initiated with parameters estimated by the ML classifier for
temporal transfer experiments, as GP-ML cannot be directly
applied for temporally distant training and test data.

To find the best length parameters for GP-ML and GP-
EM classifiers, we divided the training data into two spa-
tially disjoint sets and performed two-fold spatial cross-
validation on them. The same L was used for both GP-ML
and GP-EM results. The length parameter for the indicator
variable, L., was also searched in the same manner, but
we observed that there was little change in performance
if this parameter was varied within one order of magni-
tude. We also used the best-bases dimensionality reduction
algorithm [31] to pre-process the data to save computational
time. The best-bases algorithm combines highly correlated
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neighboring bands; hence the dimensionality reduced fea-
tures are less correlated with each other, which makes the
naive Bayes assumption of GP-ML/EM more plausible. It
was also shown that ML and EM algorithms also bene-
fit from the best-bases algorithm [31]. For ML and EM
experiments, Fisher’s multiclass LDA was also used for
further dimensionality reduction in a pre-processing man-
ner. Twenty rounds of iterations are performed for both EM
and GP-EM algorithms.

To test statistical significance of the proposed algorithm,
randomly constructed experiments are conducted ten times
for each experimental condition, and each training data
is randomly subsampled at 75% with stratified sampling.
For example, average accuracies and standard deviations in
Table 3 are obtained by ten randomly selected training sets,
where each training set contains only 75% of Area 1 data.
Area 2 data are used as a whole for results presented in
Table 3. Temporal transfer experiments are conducted in a
same manner, where training data are randomly subsampled
at 75% sampling rate and test data are used as a whole.

5.3. Results on Spatially Disjoint Data

Table 3 shows the overall classification accuracies for
the spatially separated datasets. The GP-EM results show
an average of 97.86% accuracy for the 9-class data,
and an average of 96.14% for the 14-class data. The
proposed GP-EM algorithm shows significantly better
results than all other methods evaluated. In fact, this
result is better than any other results reported so far on
the same data as shown in Table 4: the multiresolution
manifold algorithm (MR-Manifold) [15], the knowledge
transfer framework with class hierarchies (KT-BHC) [3],
the nonlinear dimensionality reduction by Isomap with
support vector machine classifier (Iso-SVM) [14], the k-
nearest neighbor on the manifold approach (SKNN) [13],
and the hierarchical support vector machine algorithm

(BH-SVM) [35]. It is also noteworthy that comparable
results can be observed after acquiring substantial amount
of class labels from the unlabeled data by active learning
algorithms in ref. [36,37], but we do not use any labels
from the test data in this paper. Table 5 shows error rates
for individual classes. Even though GP-ML shows better
overall accuracies than ML, it is observable that GP-ML
performs poorly for some classes. This usually happens
when test data are located too far from training data; hence
the GP regression makes inaccurate predictions. The EM
algorithm effectively reduces error rates from the initial
ML results for almost all classes; however, it is also
noticeable that the EM results show similar distributions
with the ML results by making more errors for classes
that ML made more errors. On the contrary, the proposed
GP-EM algorithm effectively overcomes shortcomings of
the initial estimates provided by the GP-ML classifier.
Figure 5 shows how accuracies progressively get better for
two EM-based algorithms. As shown in the figure, GP-EM
has initial accuracies as GP-ML provides better starting
point than ML. GP-EM shows consistently lower error
rates than EM in the following iterations. Figure 6 shows
the negative log-likelihoods of the EM-based algorithms
(lower means higher likelihood values) and the proposed
GP-EM algorithm shows much lower log-likelihoods than
the baseline EM algorithm in all cases.

5.4. Result on Temporally Disjoint Data

Table 6 shows average classification accuracies for the
temporally separated training and test datasets, where May
to June means that May data are used as training data and
June data are used as test data. The GP-EM results are better
than ML and ML + EM results in all for configurations, and
these results are also better than best of previously reported
results, which were obtained using the knowledge transfer
framework [3]. The baseline ML classifier shows very poor

Table 3. Overall classification accuracies and standard deviations for spatially disjoint data. EM and GP-EM results are obtained after

20 iterations.

ML + EM GP-ML + GP-EM

ML GP-ML
9-class 86.32% (0.69%) 92.50% (0.73%)
14-class 73.83% (1.19%) 81.05% (1.30%)

90.76% (1.87%)
84.71% (3.16%)

97.86% (1.22%)
96.14% (0.59%)

Bold text is used to indicate the best overall results.

Table 4. Classification accuracies with the same spatially disjoint Botswana data from previous studies.

9-class results

14-class results

Iso-SVM MR-Manifold
[14] [15] SKNN [13] KT-BHC [3] BH-SVM [35]
Overall accuracy 80.7% 86.9% 87.5% 84.42% 72.1%
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Table 5. Accuracies per class for spatially separate data.

No. Class ML GP-ML ML + EM GP-ML + GP-EM
(a) 9 class
1 Water 99.93% (0.23%) 98.78% (0.35%) 100.00% (0.00%) 99.42% (0.74%)
2 Primary floodplain 81.20% (2.34%) 81.82% (2.54%) 82.20% (6.21%) 98.28% (3.93%)
3 Riparian 90.90% (1.85%) 99.72% (0.46%) 95.17% (3.29%) 99.76% (0.25%)
4 Firescar 92.73% (1.13%) 87.56% (3.54%) 95.97% (0.68%) 97.22% (0.18%)
5 Island Interior 89.29% (2.99%) 99.74% (0.45%) 98.05% (1.73%) 100.00% (0.00%)
6 Woodlands 72.91% (2.75%) 87.66% (2.35%) 69.49% (8.89%) 89.37% (11.39%)
7 Savanna 74.70% (2.74%) 94.05% (2.02%) 88.39% (4.64%) 99.82% (0.40%)
8 Short mopane 80.09% (5.99%) 86.87% (4.11%) 93.65% (1.48%) 96.70% (0.69%)
9 Exposed soil 100.00% (0.00%) 99.71% (0.46%) 100.00% (0.00%) 100.00% (0.00%)

(b) 14 class

1 Water 98.25% (0.82%) 96.83% (0.00%) 96.98% (1.75%) 96.90% (1.21%)
2 Hippo grass 51.42% (3.04%) 46.98% (4.51%) 83.02% (9.11%) 99.20% (0.42%)
3 Floodplain grass 1 73.73% (5.44%) 91.52% (2.72%) 96.39% (7.62%) 99.43% (0.20%)
4 Floodplain grass 2 82.73% (2.54%) 81.21% (3.22%) 97.88% (0.52%) 98.18% (0.64%)
5 Reeds 68.33% (4.91%) 78.93% (6.50%) 82.98% (9.51%) 91.73% (0.99%)
6 Riparian 70.09% (1.97%) 79.53% (1.74%) 73.93% (9.61%) 90.90% (2.73%)
7 Firescar 95.40% (0.87%) 93.07% (1.06%) 96.48% (0.24%) 97.73% (0.00%)
8 Island interior 98.25% (0.97%) 93.51% (2.41%) 100.00% (0.00%) 99.74% (0.55%)
9 Acacia woodlands 71.99% (5.80%) 82.85% (2.99%) 68.61% (11.76%) 99.21% (0.75%)
10 Acacia shrublands 89.05% (1.46%) 90.37% (1.65%) 89.89% (4.70%) 96.53% (1.89%)
11 Acacia grasslands 38.35% (4.50%) 60.75% (5.59%) 65.42% (20.62%) 93.02% (2.13%)
12 Short mopane 74.38% (2.57%) 76.14% (2.25%) 81.83% (0.80%) 94.18% (2.80%)
13 Mixed mopane 77.81% (1.68%) 93.13% (3.08%) 85.88% (9.15%) 96.57% (1.91%)
14 Exposed soils 99.89% (0.36%) 99.78% (0.71%) 100.00% (0.00%) 100.00% (0.00%)
9 class 14 class
@ sl T O o]
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Fig. 5 Overall accuracies of EM-based methods for spatially separated Botswana data. (a) 9 class; (b) 14 class. [Color figure can be
viewed in the online issue, which is available at wileyonlinelibrary.com.]

Table 6. Overall accuracies for temporally disjoint test data.

ML ML + EM ML + GP-EM
May to June 53.66% (2.20%) 80.93% (4.28%) 86.22% (3.61%)
May to July 44.24% (3.52%) 78.16 (4.75%) 86.84% (3.62%)

June to July
May + June to July

73.47% (1.57%)
81.42% (0.68%)

83.12 (1.71%)
86.80% (0.76%)

90.59% (1.29%)
92.93% (0.17%)

Bold text is used to indicate the best overall results.
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Fig. 6 Negative log-likelihood of EM-based methods for spatially separated Botswana data. (a) 9 class; (b) 14 class. [Color figure can
be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Table 7. Accuracies per class for temporally disjoint data.

No. Class ML ML + EM ML + GP-EM

(a) May to June

1 Water 84.29% (7.35%) 100.00% (0.00%) 100.00% (0.00%)
2 Primary floodplain 88.02% (4.09%) 97.34% (1.19%) 98.08% (0.52%)
3 Riparian 72.97% (8.23%) 98.18% (0.90%) 98.91% (1.32%)
4 Firescar 100.00% (0.00%) 99.25% (0.16%) 99.82% (0.25%)
5 Island Interior 49.30% (8.54%) 89.81% (5.86%) 93.14% (15.13%)
6 Woodlands 3.86% (1.88%) 8.27% (3.87%) 39.29% (16.02%)
7 Savanna 2.25% (1.65%) 64.94% (41.46%) 99.44% (0.35%)
8 Short mopane 32.78% (7.02%) 79.63% (19.72%) 55.35% (0.18%)
9 Exposed soil 47.34% (9.06%) 93.19% (2.06%) 87.60% (24.71%)
(b) May to July
1 Water 83.18% (2.92%) 99.72% (0.12%) 100.00% (0.00%)
2 Primary floodplain 38.60% (8.74%) 69.06% (2.64%) 89.37% (3.94%)
3 Riparian 47.95% (6.00%) 79.22% (7.26%) 96.69% (0.93%)
4 Firescar 99.21% (0.41%) 95.50% (0.71%) 99.00% (0.64%)
5 Island Interior 27.56% (10.29%) 77.73% (25.13%) 86.64% (25.64%)
6 Woodlands 19.67% (5.47%) 48.33% (11.08%) 58.16% (2.13%)
7 Savanna 9.77% (2.87%) 70.68% (15.74%) 68.75% (0.04%)
8 Short mopane 44.39% (8.02%) 96.09% (0.58%) 99.97% (0.10%)
9 Exposed soil 50.76% (12.92%) 82.73% (2.30%) 99.37% (0.61%)
(c) June to July
1 Water 97.80% (0.71%) 99.93% (0.09%) 100.00% (0.00%)
2 Primary floodplain 39.43% (4.44%) 61.80% (8.20%) 81.13% (7.80%)
3 Riparian 42.42% (8.37%) 67.76% (25.03%) 83.47% (4.23%)
4 Firescar 77.86% (2.83%) 93.76% (0.33%) 97.28% (1.35%)
5 Island Interior 82.85% (3.93%) 86.36% (2.71%) 99.01% (0.67%)
6 Woodlands 64.20% (6.06%) 59.28% (15.01%) 60.24% (4.97%)
7 Savanna 67.82% (5.93%) 91.66% (9.53%) 99.79% (0.07%)
8 Short mopane 92.18% (2.33%) 97.82% (0.37%) 99.52% (0.21%)
9 Exposed soil 97.79% (0.78%) 93.79% (0.94%) 97.56% (0.38%)
(d) May + June to July
1 Water 99.60% (0.29%) 99.88% (0.08%) 100.00% (0.00%)
2 Primary floodplain 60.70% (1.88%) 81.93% (0.97%) 88.54% (0.22%)
3 Riparian 24.75% (3.13%) 38.61% (13.68%) 73.68% (1.15%)
4 Firescar 94.56% (0.36%) 96.04% (0.40%) 98.49% (0.24%)
5 Island Interior 83.22% (2.28%) 86.58% (2.00%) 99.58% (0.14%)
6 Woodlands 81.92% (1.39%) 81.24% (4.57%) 75.86% (0.61%)
7 Savanna 96.87% (0.71%) 97.25% (0.20%) 99.86% (0.00%)
8 Short mopane 87.85% (2.00%) 97.48% (0.66%) 100.00% (0.00%)
9 Exposed soil 90.50% (1.62%) 94.52% (0.60%) 98.57% (0.20%)
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results for May to June and May to July experiments. This is
because May and June/July images are not spatially aligned;
hence there are more significant discrepancies between May
and June/July images than between June and July images.
GP-EM algorithm still shows consistently better results than
the EM algorithm though it is seeded with the same model
from the ML classifier. It is noteworthy that the baseline
accuracies of the ML classifier is now much lower than the
spatial transfer cases, but the proposed framework success-
fully achieves reasonable classification results.

Table 7 shows error rates for individual classes for each
configuration. With a few exceptions, GP-EM shows good
per-class accuracies in almost all cases. In Table 7(a), aver-
age accuracy for the Savanna class is only 2.25% initially,
but the GP-EM algorithm achieves 99.44%. In Table 7(a)—
(c), improvements from the GP-EM algorithm is most
noticeable for classes 2 and 3, Primary floodplain and
Riparian classes. As these land covers are typically nar-
row strips located between water and upland, it is difficult
to differentiate spectral signatures of these classes from its
surroundings. As GP-EM exploits spatial correlations of
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land covers, these hard-to-distinguish land cover classes are
now successfully identified.

Figure 7 shows average accuracies per iteration two EM-
based algorithms. As shown in the figure, GP-EM now
has the same starting points as the EM algorithm, but
it achieves better accuracies much faster than EM in the
following rounds. The difference between two algorithms
are more significant in June to July and May + June
to July experiments, suggesting that better initialization
helps faster convergence of the proposed GP-EM algorithm.
Figure 8 shows how the negative log-likelihood changes
over iterations for two EM-based algorithms, and it also
accords the overall accuracy results.

6. CONCLUSIONS

We have proposed a novel semi-supervised learning
technique for the classification of hyperspectral data with
spatially adaptive model parameters. It directly addresses
the issue of spatially and temporal variations in class
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Fig. 7 Overall accuracies of EM-based methods for temporally separated Botswana data. (a) May to June; (b) May to July; (c) June to
July; (d) May + June to July. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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Fig. 8 Negative log-likelihood of EM-based methods for temporally separated Botswana data. (a) May to June; (b) May to July; (c)
June to July; (d) May + June to July. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

signatures, and also exploits the availability of unlabeled
pixels in typical hyperspectral imagery. The proposed
approach models the test data by a spatially adaptive
mixture-of-Gaussians model, where the spatially varying
parameters of each Gaussian component are obtained by
Gaussian process regressions with soft memberships using
the mixture-of-Gaussian-processes model. Experiments on
the spatially separated test data show that the proposed
framework performs significantly better than any previously
reported results on the same datasets. The proposed GP-
EM algorithm is also experimented on temporally separate
training and test data, and shows superior results compared
to other baseline algorithms although it no more benefits
from the better initial modeling of the GP-ML classifier.
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