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Abstract

Latent variable models are frequently used to identify structure in dichotomous network

data, in part because they give rise to a Bernoulli product likelihood that is both well un-

derstood and consistent with the notion of exchangeable random graphs. In this article we

propose conservative confidence sets that hold with respect to these underlying Bernoulli pa-

rameters as a function of any given partition of network nodes, enabling us to assess estimates

of residual network structure, that is, structure that cannot be explained by known covari-

ates and thus cannot be easily verified by manual inspection. We demonstrate the proposed

methodology by analyzing student friendship networks from the National Longitudinal Survey

of Adolescent Health that include race, gender, and school year as covariates. We employ a

stochastic expectation-maximization algorithm to fit a logistic regression model that includes

these explanatory variables as well as a latent stochastic blockmodel component and additional

node-specific effects. Although maximum-likelihood estimates do not appear consistent in this

context, we are able to evaluate confidence sets as a function of different blockmodel partitions,

which enables us to qualitatively assess the significance of estimated residual network structure

relative to a baseline, which models covariates but lacks block structure.

1 Introduction

Network datasets comprising edge measurements Aij ∈ {0, 1} of a binary, symmetric, and anti-

reflexive relation on a set of n nodes, 1 ≤ i < j ≤ n, are fast becoming of paramount interest in the

statistical analysis and data mining literatures (Goldenberg et al., 2010). A common aim of many

models for such data is to test for and explain the presence of network structure, primary examples

being communities and blocks of nodes that are equivalent in some formal sense. Algorithmic

formulations of this problem take varied forms and span many literatures, touching on subjects

as diverse as spectral graph theory (Chung, 1996), statistical physics (Albert and Barabasi, 2002;

Newman, 2003), theoretical computer science (Cooper and Frieze, 2003; Achlioptas et al., 2009;
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Easley and Kleinberg, 2010), economics (Jackson, 2008), and social network analysis (Wasserman

and Faust, 1994).

One popular modeling assumption for network data is to assume dyadic independence of the

edge measurements when conditioned on a set of latent variables (Snijders and Nowicki, 1997;

Handcock et al., 2007; Airoldi et al., 2008; Hoff, 2008). The number of latent parameters in such

models generally increases with the size of the graph, however, meaning that computationally

intensive fitting algorithms may be required and standard consistency results may not always hold.

As a result, it can often be difficult to assess statistical significance or quantify the uncertainty

associated with parameter estimates. This issue is evident in literatures focused on community

detection, where common practice is to examine whether algorithmically identified communities

agree with prior knowledge or intuition (Newman, 2006; Traud et al., 2011). This practice is less

useful if additional confirmatory information is unavailable, or if detailed uncertainty quantification

is desired.

Confidence sets are a standard statistical tool for uncertainty quantification, but they are not

yet well developed for network data (Wasserman and Faust, 1994). In this paper, we propose a

family of confidence sets for network structure that apply under the assumption of a Bernoulli

product likelihood. The form of these sets stems from a stochastic blockmodel formulation which

reflects the notion of latent nodal classes, and they provide a new tool for the analysis of estimated

or algorithmically determined network structure. We demonstrate usage of the confidence sets by

analyzing a sample of 26 adolescent friendship networks from the National Longitudinal Survey

of Adolescent Health (available at http://www.cpc.unc.edu/addhealth), using a baseline model

that only includes explanatory covariates and heterogeneity in the nodal degrees. We employ

these confidence sets to validate departures from this baseline model taking the form of residual

community structure. Though the confidence sets we employ are known to be conservative (Choi

et al., 2011), we show that they are effective in identifying putative residual structure in these

friendship network data.

2 Model specification and inference

We represent dichotomous network data via a sociomatrix A ∈ {0, 1}N×N that reflects the adjacency

structure of a simple, undirected graph on N nodes. In keeping with the latent variable network

analysis literature, we assume entries {Aij} for i < j to be independent Bernoulli random variables

with associated success probabilities {Pij}i<j , and complete A as a symmetric matrix with zeros
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along its main diagonal. The corresponding data log-likelihood is given by

L(A;P ) =
∑
i<j

Aij log(Pij) + (1−Aij) log(1− Pij), (1)

where each Pij can itself be modeled as a function of latent as well as explanatory variables.

Typically, the nodal indices themselves impart no inferential information and the latent variable

formulation is exchangeable; in fact, in lieu of independence one may start with a much weaker

assumption that the graph itself is generated from an exchangeable distribution (see Bickel and

Chen (2009); Hoff (2009)). Exchangeability accommodates many types of dependencies that are of

interest in network analysis, such as triadic closure.

Given an instantiation of A and a latent variable model for the probabilities {Pij}i<j , it is

natural to seek a quantification of the uncertainty associated with estimates of these Bernoulli

parameters. A standard approach in non-graphical settings is to posit a parametric form for each

Pij and then compute confidence intervals with respect to the corresponding parameter values,

for example by appealing to standard maximum-likelihood asymptotics. However, as mentioned

earlier, the formulation of most latent variable network models dictates an increasing number of

parameters as the number of network nodes grows; as we have observed in our own exploratory data

analysis, this amount of expressive power appears necessary to capture many salient characteristics

of network data. As a result, standard asymptotic results do not necessarily apply, leaving open

questions for inference.

2.1 A logistic regression model for network structure

To illustrate the complexities that can quickly arise in this inferential setting, we adopt a latent

variable network model with a standard flavor: a logistic regression model that simultaneously in-

corporates aspects of blockmodels, additive effects, and explanatory variables (see Hoff (2009) for a

more general formulation). Specifically, we incorporate a K-class stochastic blockmodel component

parameterized in terms of a symmetric matrix Θ ∈ RK×K and a membership vector z ∈ {1, . . . ,K}N

whose values denote the class of each node, with Pij depending on Θzizj . A vector of additional

node-specific latent variables α is included to account for heterogeneity in the observed nodal de-

grees, along with a vector of regression coefficients β corresponding to explanatory variables x(i, j).

Thus we obtain the log-odds parameterization

log
Pij

1− Pij
= Θzizj + αi + αj + x(i, j)′β, (2)

where we further enforce the identifiability constraint that
∑

i αi = 0.
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Intuitively, the blockmodel component of model (2) serves to enforce stochastic equivalence of

nodes in the same class (Holland et al., 1983; Fienberg et al., 1985), after accounting for node-

specific additive effects and covariates. Blockmodeling in this manner is historically motivated

by the deterministic notion of structural equivalence (Lorrain and White, 1971; Doreian et al.,

2005), under which the network must remain identical under any relabeling of nodes within each

community. While this notion is typically too strong to hold exactly, relaxations such as regular

equivalence1 and other variations (Doreian et al., 2005) can be thought of as deterministic precursors

to the stochastic blockmodel (Nowicki and Snijders, 2001) and its modern extensions (Airoldi et al.,

2005, 2008; Xing et al., 2010).

2.2 Likelihood-based inference

Analogous to the deterministic setting, exact maximization of the corresponding log-likelihood

L(A; z,Θ, α, β, x) is computationally demanding even for moderately large K and N , owing to the

total number of possible nodal partitions induced by z. However, when z is fixed the corresponding

conditional likelihood maximization task is convex, and so we may adopt a stochastic expectation-

maximization (EM) approach to inference in which z is treated as missing data (Dempster et al.,

1977; van Dyk and Meng, 2010).

Algorithm 1 Stochastic Expectation-Maximization Fitting of model (2)

1. Set t = 0 and initialize (z(0),Θ(0), α(0), β(0)).

2. For iteration t, do:

E-step Sample z(t) ∝ exp{L(z |A; Θ(t), α(t), β(t), x)}
(e.g., via Gibbs sampling)

M-step Set (Θ(t), α(t), β(t)) = argmaxΘ,α,β L(Θ, α, β | z(t);A, x)
(convex optimization)

3. Set t← t+ 1 and return to Step 2.

Exact sampling of z according to the E-step of Algorithm 1 requires computing the normalizing

constant of exp{L(z |A; Θ, α, β, x)}, and so we may instead approximate this step by a series of

univariate draws from a coordinate-wise Gibbs sampler that conditions on all other elements of

z in turn. When K is moderate, both steps of Algorithm 1 are computationally tractable, since

the Gibbs sampler requires only discrete distributions over K values, and the M-step optimization

problem is convex. We note that the confidence sets developed in Section 2.3 will accommodate

1In deterministic equivalence, the bipartite subgraph of edges between two communities is either empty or com-
plete. In regular equivalence, the same subgraph is either empty, or has no isolated nodes. See (Doreian et al., 2005)
for further discussion.
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the sub-optimality of Algorithm 1.

When α and β are fixed to zero, model (2) reduces to a re-parameterization of the standard

stochastic blockmodel. Consistency results for this model have been developed for a range of condi-

tions (Snijders and Nowicki, 1997; Nowicki and Snijders, 2001; Bickel and Chen, 2009; Rohe et al.,

2011; Choi et al., 2011; Celisse et al., 2011); alternative fitting methods with lower computational

complexity, such as spectral clustering (Rohe et al., 2011) and modularity maximization (Bickel and

Chen, 2009), are also available for the stochastic blockmodel, with (Bickel and Chen, 2009) noting

that such approaches appear to perform well in practice. However, it is not clear how uncertainty

in z and Θ should be quantified or even concisely expressed: in this vein, previous efforts to assess

the robustness of fitted structure include (Karrer et al., 2008), in which community partitions are

analyzed under perturbations of the network, and (Massen and Doye, 2006), in which the behavior

of local minima resulting from simulated annealing is examined; a likelihood-based test is proposed

in (Copic et al., 2009) to compare sets of community divisions.

Without the blockmodel components z and Θ, the model of Eq. (2) reduces to a generalized

linear model whose likelihood can be maximized by standard methods. If α is further constrained

to equal 0, the model is finite dimensional and standard asymptotic results for inference can be

applied. Otherwise, the increasing dimensionality of α brings consistency into question, and in fact

certain negative results are known for the related p1 exponential random graph model (Holland and

Leinhardt, 1981). Specifically, (Haberman, 1981) reports that the maximum likelihood estimator

for the p1 model exhibits bias with magnitude equal to its variance. Although estimation error does

converge asymptotically to zero for the p1 model, it is generally not known how to generate confi-

dence intervals or hypothesis tests; (Wasserman and Weaver, 1985) prescribes reporting standard

errors only as summary statistics, with no association to p-values. The predictions of (Haberman,

1981) were replicated (reported below) when fitting simulated data drawn from the model of Eq. (2)

with parameters matched to observed characteristics of the Adolescent Health friendship networks.

2.3 Confidence sets for network structure

Instead of quantifying the uncertainty associated with estimates of the model parameters (z,Θ, α, β),

we directly find confidence sets for the Bernoulli likelihood parameters {Pij}i<j . To this end, for

any fixed K and class assignment z, define symmetric matrices Φ̄, Φ̂ in [0, 1]K×K element-wise for

1 ≤ a ≤ b as

Φ̄
(z)
ab =

1

nab

∑
i<j

Pij 1{zi = a, zj = b}, Φ̂
(z)
ab =

1

nab

∑
i<j

Aij 1{zi = a, zj = b},
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with nab denoting the maximum number of possible edges between classes a and b (i.e., the corre-

sponding number of Bernoulli trials). Thus Φ̄
(z)
ab is the expected proportion of edges between (or

within, if a = b) classes a and b, under class assignment z, and Φ̂
(z)
ab is its corresponding sample

proportion estimator.

Intuitively, Φ̄(z) measures assortativity by z; whenever the sociomatrix A is unstructured, el-

ements of Φ̄(z) should be nearly uniform for any choice of partition z. When strong community

structure is present in A, however, these elements should instead be well separated for corresponding

values of z. Thus, it is of interest to examine a confidence set that relates Φ̂
(z)
ab to its expected value

Φ̄(z) for a range of partitions z. To this end, we may define such a set by considering a weighted sum

of the form
∑

a≤b nabD(Φ̂
(z)
ab ||Φ̄

(z)
ab ), where D(p||p′) = p log(p/p′)+(1−p) log[(1−p)/(1−p′)] denotes

the (nonnegative) Kullback–Leibler divergence of a Bernoulli random variable with parameter p′

from that of one with parameter p.

A confidence set is then obtainable via direct application of the following theorem.

Theorem 1 (Choi et al., 2011). Let {Aij}i<j be comprised of
(
N
2

)
independent Bernoulli(Pij) trials,

and let Z = {1, . . . ,K}N . Then with probability at least 1− δ,

sup
z∈Z

∑
a≤b

nabD(Φ̂
(z)
ab ||Φ̄

(z)
ab ) ≤ N logK + (K2 +K) log

(
N

K
+ 1

)
+ log

1

δ
. (3)

Because Eq. (3) holds uniformly over all class assignments, we may choose to apply it directly

to the value of z obtained from Algorithm 1—and because it does not assume any particular form

of latent structure, we are able to avoid the difficulties associated with determining confidence sets

directly for the parameters of latent variable models such as Eq. (2). However, it is important to

note that this generality comes at a price: In simulation studies undertaken in (Choi et al., 2011) as

well as those detailed below, we have observed the bound of Eq. (3) to be loose by a multiplicative

factor ranging from 3 to 7 on average.

2.4 Estimator consistency and confidence sets

Recalling our above discussion of estimator consistency for the related p1 model, we undertook a

small simulation study to investigate the consistency of maximum-likelihood (ML) estimation in a

“baseline” version of model (2) with K = 1 and the corresponding (scalar) value of Θ set equal to

zero. We compared estimates for the cases α = 0 versus α unconstrained for 500 graphs generated

randomly from a model of the form specified in Eq. (2) based on school 8 of the Add-Health data

set. The number of nodes N = 204 and covariates x(i, j) matched that of School 8 in the Adolescent

Health friendship network dataset, and the regression coefficient vector β = (−2.6, 0.025, 0.9,−1.6)′,
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Element of β Θ = 0, α = 0 Θ = 0 only

Intercept −0.001 (0.004) 2.26 (0.070)

Gender 0.003 (0.004) −0.005 (0.004)

Race −0.001 (0.004) −0.03 (0.005)

Grade 0.006 (0.003) 0.04 (0.003)

Table 1: Empirical bias (with standard errors) of ML-estimated components of β under a baseline
model, for the cases α = 0 versus α unconstrained. Note the change in estimated bias when α is
included in the model.

set to match the ML estimate of β for School 8, fitted via logistic regression with Θ = 0, α = 0.

The covariates x(i, j) comprised of an intercept term, an indicator for whether students i and j

shared the same gender, an indicator for shared race, and their difference in school grade.

The inclusion of α in the model of Eq. (2) appears to give rise to a loss of estimator consistency,

as shown in Table 1 where the empirical bias of each component of β is reported. This suggests, as

we alluded to above, that inferential conclusions based on parameter estimates from latent variable

models should be interpreted with caution.

To explore the tightness of the confidence sets given by the bound in Eq. (3), we fitted the

full model specified in Eq. (2) with K in the range 2–6 to 50 draws from a restricted version of

the model corresponding to each of the 26 schools in our dataset. In the same manner described

above, each simulated graph shared the same size and covariates as its corresponding school in the

dataset, with β fixed to its ML-fitted value with Θ = 0, α = 0. The empirical divergence term∑
a≤b nabD(Φ̂

(z)
ab ||Φ̄

(z)
ab ) under the approximate ML partition determined via Algorithm 1 was then

tabulated for each of these 1300 fits, and compared to its 95% confidence upper bound given by

Eq. (3). The empirical divergences are reported in the histogram of Fig. 1 as a fraction of the upper

bound.

It may be seen from Fig. 1 that the largest divergence observed was less than 41% of its cor-

responding bound, with 95% of all divergences less than 22% of their corresponding bound. This

analysis verifies that, despite the issues associated with estimator consistency in the context of la-

tent variable models, our confidence sets can be used as a tool to assess putative network structure.

This analysis also provides an indication of how inflated the confidence set sizes are expected to be

in practice; while conservative in nature, they seem usable for practical situations.
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Figure 1: Divergence terms
∑

a≤b nabD(Φ̂
(z)
ab ||Φ̄

(z)
ab ) as fractions of 95% confidence set values, shown

for approximate maximum-likelihood fits to 1300 randomly graphs matched to the 26-school friend-
ship network dataset. Smaller values indicate slack in the upper bound of Eq. (3).

3 Analysis of adolescent health networks

We now turn our attention to an analysis of friendship networks from the National Longitudinal

Survey of Adolescent Health; see, e.g., (Goodreau et al., 2009) for a recent analysis and in-depth

discussion. Previous studies have looked for trends which held across several schools, such as

clustering by race (González et al., 2007). Within a school, however, it may be desirable to go

beyond reported covariates such as gender, race, or grade in describing social structure. Here we

examine the schools individually to find residual block structure not explained by the covariates.

Since we will be unable to verify such blocks by checking against explanatory variables, we rely on

the confidence sets developed above to assess significance of the discovered block structure.

Recall from Section 2.3 that Eq. (3) enables us to calculate confidence sets with respect to

Bernoulli parameters {Pij} for any class membership vector z in terms of the corresponding sample

proportion matrices Φ̂(z). Then, by comparing values of Φ̂(z) to a baseline model obtained by

fitting K = 1,Θ = 0 (thus removing the stochastic block component from Eq. (2)), we may

evaluate whether or not the observed sample counts are consistent with the structure predicted

by the baseline model. This procedure provides a kind of notional p-value to qualitatively assess

significance of the residual structure induced by any choice of z.

In Section 3.1 below, we describe the dataset. Then, in Section 3.2, we verify empirically that
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School Nodes Edges School Nodes Edges School Nodes Edges

1 69 220 21 377 1531 67 456 926

2 105 349 22 614 2450 70 76 344

3 32 91 26 551 2066 71 74 358

5 157 730 29 569 2534 72 352 1398

6 108 378 38 521 1925 76 43 185

8 204 809 55 336 803 77 25 106

9 248 1004 56 446 1394 78 432 1334

10 678 2795 63 98 283 80 594 1745

18 284 1189 66 644 2865

Table 2: Network characteristics (number of students and reported friendship edges) corresponding
to each of the 26 schools used for analysis.

the models provide reasonable fits and conclusions, first by fitting our baseline model (K = 1) and

checking its behavior, and then by fitting a “pure” stochastic blockmodel (K > 1, α = 0, β = 0)

and observing that we can recover block structure corresponding to held-out grade covariates. In

Section 3.3, we consider estimates of z obtained via Algorithm 1 for K in the range 2–6, and

use our notion of confidence sets introduced above to evaluate how unlikely the corresponding

observed configurations of Φ̂(z) are, relative to an underlying set of Bernoulli random variables

whose parameters are assumed to be equal to those fitted under our baseline model.

3.1 Network data description

The data we examine were collected in 1994–95 through an in-school survey administered to 90,118

students at 145 schools. In the 26-school subset of the data we consider, each student was given

a paper-and-pencil questionnaire and a copy of a roster listing every student in that school; the

schools that we considered did not have a sister school from where friends could also be listed

(which would complicate the analysis) and they had fewer than 700 students. Students were asked

to list up to five friends of each gender, and whether or not they had interacted with these friends

at particular venues within a certain time period. Gender, race (5 categories), and school year

(grades 7–12) covariates were also recorded for each student. The number of students and reported

friendships for this subset of schools are listed in Table 2.

We treat the friendship network data from these 26 schools as undirected graphs, with an edge

present between two students whenever either of them indicated any type of friendship with the

other. Other approaches are also possible and can be expected to influence inferential results (Butts,

2003), though we verified through exploratory data analysis that estimates were qualitatively similar

even if sparser versions of these networks were constructed by instead requiring mutual indication

of friendship within student pairs, resulting in a roughly 3-fold decrease in the observed number of
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edges in our data (cf. Table 2). As in Section 2.4, for each student pair the corresponding vector

x(i, j) of explanatory variables comprised an intercept term, binary indicator variables indicating

shared gender and shared race, and an ordinal value equal to the absolute difference in the grades

of the students; model (2) was then fitted to these data, with results described below.

3.2 Model checking

We first fit model (2) with Θ = 0 and α = 0, since it reduces to a logistic regression with explanatory

variables x(i, j), for which standard asymptotic results apply. The parameter fits were examined

and an analysis of deviance was conducted. The fits were observed to be well behaved in this

setting; estimates of β and their corresponding standard errors indicate a clustering effect by grade

that is stronger than that of either shared gender or race. The fitting thus appears consistent with

the previous analysis of (Handcock et al., 2007), in which student friendship clusters were observed

to closely align with grades. An analysis of deviance, where each variable was withheld from the

model, resulted in similar conclusions: Average deviances across the 26 schools were −69, −238,

and −3760 for gender, race, and grade respectively, with p-values below 0.05 indicating significance

in all but 3, 7, and 0 of the schools for each of the respective covariates; these schools had small

numbers of students, with a maximum N of 108.

Because standard analysis techniques do not apply to the parameters α and Θ, before fitting

the full model we first fit models using these terms separately, and checked if the results were

intuitive. When α was re-introduced into the model of Eq. (2), its components were observed to

correlate highly with the sequence of observed nodal degrees in the data, as expected. (Recall

that consistency results are not known for this model, so that p-values cannot be associated with

deviances or standard errors; however, in our simulations the maximum-likelihood estimates showed

moderate errors, as discussed in Section 2.4.) For two of the schools, the resulting model was

degenerate, whereas for the remaining schools the α-degree correlation had a range of 0.78–0.94

and a median value of 0.89. Estimates of β did not undergo qualitative significant changes from

their earlier values when the restriction α = 0 was lifted.

A “pure” stochastic blockmodel (α = 0, β = 0) was fitted to our data over the range K ∈
{2, . . . , 6}, to observe if the resulting block structure replicates that of any of the known covariates.

Figure 2 shows counts of students by latent class (under the approximate maximum-likelihood

estimate of z) and grade for School 6; it can be seen that the recovered grouping of students by

latent class is closely aligned with the grade covariate, particularly for grades 7–10.
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(a) K = 2 (b) K = 3 (c) K = 4

(d) K = 5 (e) K = 6

Figure 2: Student counts resulting from a stochastic blockmodel fit for K ∈ {2, . . . , 6}, arranged
by latent block and school year (grade) for School 6. The inferred block structure approximately
aligns with the grade covariate (which was not included in this model).

3.3 Residual block structure

We now report on the assessment of residual block structure in the Adolescent Health friendship

network data. Recalling that the confidence sets obtained with Eq. (3) hold uniformly for all

partitions of equal size, independently of how they are chosen, we therefore may freely modify the

fitting procedure of Algorithm 1 to obtain partitions that exhibit the greatest degree of structure.

Bearing in mind the high observed α-degree correlation as discussed above, we replaced the latent

variable vector α in the model of Eq. (2) with a more parsimonious categorical covariate determined

by grouping the observed network degrees according to the ranges 0–3, 4–7, and 8–∞. We also

expanded the covariates by giving each race and grade pairing its own indicator function. These

modifications would be inappropriate for the baseline model, as dyadic independence conditioned

on the covariates would be lost, and standard errors for β would be larger; however, the changes

were useful for improving the output of Algorithm 1 without invalidating Eq. (3).

Fig. 3 depicts partitions for which the observed Φ̂(z), fitted for various K > 1 using the modified

version of Algorithm 1 detailed above, is “far” from its nominal value under the baseline model fitted

with K = 1, in the sense that the corresponding 95% Bonferroni-corrected confidence set bound is

exceeded. We observe that in each partition, the number of apparently visible communities exceeds
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Jaccard coefficient / Variance ratio

School K Div. (Bound) Gender Race Grade Degree

10 6 0.0064 (0.0062) 0.14 0.16 0.097 0.93

18 5 0.0150 (0.0150) 0.17 0.19 0.14 0.88

21 6 0.0140 (0.0120) 0.15 0.16 0.12 0.95

22 5 0.0064 (0.0061) 0.18 0.14 0.11 0.99

26 3 0.0049 (0.0045) 0.25 0.21 0.13 0.99

29 6 0.0091 (0.0075) 0.15 0.16 0.10 0.88

38 5 0.0073 (0.0073) 0.17 0.18 0.17 0.86

55 4 0.0100 (0.0100) 0.20 0.18 0.21 0.97

56 6 0.0120 (0.0099) 0.15 0.14 0.15 0.98

66 6 0.0069 (0.0066) 0.15 0.16 0.099 0.91

67 3 0.0055 (0.0055) 0.25 0.23 0.25 1.00

72 4 0.0099 (0.0095) 0.21 0.21 0.12 0.96

78 6 0.0100 (0.0100) 0.15 0.12 0.15 0.98

80 4 0.0054 (0.0053) 0.20 0.19 0.15 0.99

Table 3: Block structure assessments corresponding to Fig. 3. Small Jacaard coefficient values
and variance ratios approaching 1 indicate a lack of alignment with covariates and hence the
identification of residual structure in the corresponding partition.

K, and they are comprised of small numbers of students. This effect is due to the intersection of

grade and z-induced clustering.

We take as our definition of nominal value the quantity Φ̂(z) computed under the baseline model,

which we denote by Φ(z). Table 3 lists normalized divergence terms
(
N
2

)−1∑
a≤b nabD(Φ̂

(z)
ab ||Φ

(z)
ab ),

Bonferroni-corrected 95% confidence bounds, and measures of alignment between the correspond-

ing partitions z and the explanatory variables. The alignment with the covariates are small, as

measured by the Jacaard similarity coefficient and ratio of within-class to total variance2, signifying

the residual quality of the partitions, while the relatively large divergence terms signify that the

Bonferroni-corrected confidence set bounds for each school have been met or exceeded.

We note that the usage of covariate information was necessary to detect small student groups;

without the incorporation of grade effects, we would require a much larger value of K for Algorithm

1 to detect the observed network structure (a concern noted by (Hoff, 2008) in the absence of

covariates), which in turn would inflate the confidence set, leading to an inability to validate the

observed structure from that predicted by a baseline model.

2The alignment scores are defined as follows. The Jacaard similarity coefficient is defined as |A ∩ B|/|A ∪ B|,
were A,B ⊂

(
N
2

)
are the student pairings sharing the same latent class or the same covariate value, respectively. See

(Traud et al., 2011) for further network-related discussion. Variance ratio denotes the within-class degree variance
divided by the total variance, averaged over all classes.
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(a) School 10, K = 6 (b) School 18, K = 5 (c) School 21, K = 6 (d) School 22, K = 5

(e) School 26, K = 3 (f) School 29, K = 6 (g) School 38, K = 5 (h) School 55, K = 4

(i) School 56, K = 6 (j) School 66, K = 6 (k) School 67, K = 3 (l) School 72, K = 4

(m) School 78, K = 6 (n) School 80, K = 4

Figure 3: Adjacency matrices for schools exhibiting residual block structure as described in Sec-
tion 3.3, with nodes ordered by grade and corresponding latent classes.
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4 Concluding remarks

In this article we have developed confidence sets for assessing inferred network structure, by lever-

aging our result derived in Choi et al. (2011). We explored the use of these confidence sets with an

application to the analysis of Adolescent Health survey data comprising friendship networks from

26 schools.

Our methodology can be summarized as follows. In lieu of a parametric model, we assume

dyadic independence with Bernoulli parameters {Pji}. We introduced a baseline model (K = 1)

that incorporates degree and covariate effects, without block structure. Algorithm 1 was then used

to find highly assortative partitions of students which are also far from partitions induced by the

explanatory covariates in the baseline model. Differences in assortativity were quantified by an

empirical divergence statistic, which was compared to an upper bound computed from Eq. (3) to

check for significance and to generate confidence sets for {Pji}. While the upper bound in Eq. (3)

is known to be loose, simulation results in Figure 1 suggest that the slack is moderate, leading to

useful confidence sets in practice.

In our procedure, we cannot quantify the uncertainty associated with the estimated baseline

model, since the nodal parameter estimates lack consistency. As a result, we cannot conduct a

formal hypothesis test for Θ = 0. However, for a baseline model where the MLE is known to

be consistent, we conjecture that such a hypothesis test should be possible by incorporating the

confidence set associated with the MLE.

Despite concerns regarding estimator consistency in this and other latent variable models, we

were able to show that the notion of confidence sets may instead be used to provide a (conservative)

measure of residual block structure. We note that many open questions remain, and are hopeful

that this analysis may help to shed light on some important current issues facing practitioners and

theorists alike in statistical network analysis.
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