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Using Data Mining to Enable Integration of Wind
Resources on the Power Grid

Chandrika Kamath and Ya Ju Fan

Abstract —As renewable resources, such as wind, start providing an increasingly larger percentage of our energy needs, we need to
improve our understanding of these resources so we can manage them better. The intermittent nature of the power generation makes
it challenging for control room operators to schedule wind energy while balancing the load on the grid. Forecasts of the energy to be
generated by a wind farm in the hours ahead tend to be inaccurate, even under normal conditions. The problem is exacerbated during
ramp events, where the generation changes by a large amount in a small time. In this paper, we analyze historical data to determine
ways in which data mining techniques can enable the integration of wind energy into the grid. Our results indicate that we can use
feature selection methods to identify important weather variables associated with ramp events and inaccurate forecasts, thus reducing
the number of data streams an operator must monitor. In addition, we can use ensembles of decision trees to predict days likely to have
ramp events or inaccurate forecasts, thus providing grid operators additional information they can use to make well-informed decisions
on scheduling wind energy.

Index Terms —wind energy, ramp events, energy forecasts, dimension reduction, classification

✦

1 INTRODUCTION

Adesire for energy independence from fossil fuels,
along with various climate change initiatives, have

resulted in an increasing interest in renewable sources
of energy, such as wind and solar. However, to manage
their successful integration into the power grid, we need
to understand the intermittent nature of these resources.
In the case of wind energy, we can have days when the
wind does not blow and the generation is low and flat,
or it may be high and flat on days when the wind speed
is at a sustained high level for most of the hours in the
day. Or, the generation may be high in the early hours,
drop down to near zero by noon, and rise again in the
late evening.
Scheduling an intermittent resource, such as wind, is

usually done through forecasts. Control room operators
typically use a 0- to 6-hour ahead forecast to deter-
mine the amount of energy to schedule for the hours
ahead. The forecasts are updated hourly and appropriate
changes made to the energy scheduled for the hours
ahead. Additional fine tuning is done in real time so that
the load and the generation are balanced at all times.
These wind power generation forecasts are obtained
from numerical weather prediction simulations which
predict the wind speeds for a time horizon of up to ten
days. The wind speed is then converted into wind power
generation using either a statistical approach based on
training with measurement data or a physical approach
based on a detailed physical description of the lower
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atmosphere, combined with the power curve of the wind
turbine [1], [2].
In a typical scenario, a control room operator uses the

forecast to schedule the energy to be contributed by the
wind farms within the balancing area being managed by
the electric utility. If the forecast is accurate, there are no
issues in scheduling. However, forecasting wind speed
accurately using numerical weather prediction models
can be difficult [3], especially in regions where the terrain
is complex and the meteorological processes controlling
the wind speed are difficult to model. When the forecast
is inaccurate, the operators might look at the actual wind
power generation for the previous hours or days, and,
based on their prior experience, as well as the current
weather conditions, appropriately schedule the wind
energy for the upcoming hour. This is understandably
difficult under normal operating conditions, but more
so during ramp events, where the energy generated
suddenly increases or decreases rapidly in response to
changes in wind velocity.
In the case of positive ramps, where the wind energy

increases by a large amount over a short period, the
operators must either reduce other generation or sell the
excess energy so that the load and generation remain
balanced. This is a challenge if the positive ramp had
not been forecast and it is not possible either to reduce
the other generation or to sell the excess energy at short
notice. Positive ramps can also cause problems if the
transmission lines cannot handle the sudden increase in
energy. A possible solution is to “spill” wind by letting
the wind energy go to waste, but this is not an option
if the wind energy is being traded in a market where
it is a “must take” resource. In case of a negative ramp
event, the operators must have enough backup power
to keep the load balanced. Having this additional back-
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up might not be cost-effective, especially if a negative
ramp is predicted but does not occur. The problem is
further aggravated if the energy markets levy a high
penalty when a wind farm is unable provide the energy
scheduled.
These inaccurate forecasts and ramp events were not

an issue in the past when the percentage of energy from
wind sources, relative to the peak load, was small. For
example, in 2006, the California Independent System Op-
erator (CaISO) managed over 2200 MW of wind power
generation, which was only 4% of the total generation
resources in the area [4]. The Tehachapi area in Southern
California, which is one of the largest wind power
generation areas under CaISO and provides electricity
through Southern California Edison (SCE), had 740 MW
installed capacity. At this capacity, the ramp events are
relatively small. So, it is relatively easy to keep the load
balanced, and the generation required to back up wind
power is small as well.
However, with increasing wind penetration, the size

of the ramp events has also increased. For example, the
installed wind capacity in the mid-Columbia Basin, a
region in the Bonneville Power Administration balancing
area (BPA [5]), at the end of 2008 was ∼1500 MW. By the
end of 2011, this had increased to ∼4000 MW, making
it a significant percentage of the peak load of ∼8,000
MW. At this capacity, the wind ramps can be quite large,
changing by nearly 1000 MW in an hour [6], and it
becomes more of a challenge to balance the load and the
generation. The control room operators and schedulers
now have to monitor the wind power generation more
closely, and plan appropriately for inaccurate forecasts
as well as positive and negative ramp events.
Figure 1 shows a sample of our data to illustrate the

problem. Panel (a) shows the actual generation (dotted
curve, bottom) and the actual load (continuous line, top)
for the first week of January 2008 for BPA. Note the daily
periodicity in the load curve and the intermittency in
the wind power generation. Panel (b) shows the actual
generation for BPA for the month of January 2008. Note
that some days have no generation, while on other days,
it can go over 1000 MW. Panel (c) shows the actual
(continuous line) vs. forecast (dotted line) wind power
generation for the first week of January 2008 for the
Antelope wind farm in the Tehachapi Pass region. Note
that the forecast may track the shape of the actual gener-
ation, but at a different magnitude, and can sometimes
be quite different from the actual generation. There is a
negative ramp that occurs in the morning of January 6,
which is much sharper than the drop forecast. Panel (d)
shows the actual generation for SCE for the month of
January 2008. This is the sum of the generation of two
wind farms in the region: Antelope and Vincent. Note
that the maximum generation is lower than in BPA.
There are several ways in which we can better manage

the challenges resulting from the integration of inter-
mittent resources, such as wind, on the power grid. We
can improve the accuracy of forecasts either through the

assimilation of higher quality data obtained by the ju-
dicious placement of appropriate sensors [7] or through
improved models [8]. We can also analyze historical data
to understand wind power generation better, and in the
process, use the insights obtained to enable control room
operators to make well informed scheduling decisions
especially on days when there are ramp events or the
forecasts are inaccurate.

In this paper, we investigate the use of dimension
reduction and classification techniques to analyze his-
torical data from the wind farms in the Tehachapi Pass
and mid-Columbia Basin regions to determine if we can:

• identify the weather conditions associated with days
with ramp events and build models to predict if a
day will have ramp events.

• identify the weather conditions associated with days
with inaccurate forecasts and build models to pre-
dict if a day will have an inaccurate forecast.

If successful, this will reduce the number of weather
variables the control room operators must monitor and
provide them some advance notice of days likely to have
ramp events or inaccurate forecasts.

This paper builds on prior work in several ways. In [6],
[9], we first studied ramp events in the Tehachapi Pass
and mid-Columbia Basin regions to evaluate different
definitions of these events. We also extracted simple
statistics to address questions such as, do ramps occur
more frequently in the mornings or evenings, do the
negative ramps occur as frequently as the positive ramps
and are they as severe, and do severe ramps occur
rarely or are they relatively frequent? Next, in follow-
on work [10], we used feature selection techniques to
identify weather conditions that were associated with
days with ramp events. A control room operator could
then monitor only those weather variables related to
ramps and not be overwhelmed by irrelevant weather
information. This paper extends our previous work as
follows. First, we complement the use of feature selec-
tion methods for identifying important weather vari-
ables associated with ramp events by investigating linear
and non-linear transform-based, dimension reduction
techniques. Second, we use classification techniques to
determine if the weather variables can be used to build
accurate predictive models for days with ramp events.
Finally, we extend our work to include not just ramp
events, but also days with inaccurate forecasts.

This paper is organized as follows. First, in Section 2,
we present the wind generation and weather data avail-
able for our analysis. Next, in Section 3, we describe how
we can use the above data to address the two questions
posed earlier; (i) identifying important variables asso-
ciated with ramp events and inaccurate forecasts and
(ii) building predictive models. We describe our analysis
approach in Section 4 followed by experimental results
and discussion in Section 5. Related work is described
in Section 6 and we conclude with some thoughts on
future work.
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Fig. 1. (a) The load (top curve) and the wind power generation (bottom curve) for the first week of January 2008 for the BPA
balancing area. Data are available every 5 minutes. (b) The wind power generation for January 2008 for the BPA balancing area.
Data are available every 5 minutes. (c) Forecast (solid line) vs. actual (dotted line) generation for the Antelope wind farm in SCE
for the first week of January 2008. Data are hourly. (d) The wind power generation for January 2008 for the Tehachapi Pass area.
Data are available every 15 minutes.

2 DESCRIPTION OF THE DATA

We apply our analysis techniques to data from the
Tehachapi Pass in Southern California (referred to as the
SCE data) and the mid-Columbia Basin region (referred
to as the BPA data). In light of the increasing wind power
generation in the last few years, we focus our analysis on
data from the recent past as these are likely to be more
relevant. For the SCE region, we use data from 2007-
2008 and for the BPA region, we use data from 2007-
2009. Our datasets will use the prefix BPA or SCE to
indicate the region, followed by a ’G’ or ’W’ to indicate
generation or weather, and then a number or a letter
reflecting the time between samples. Note that the data
available are frequently averages over data collected at a
higher frequency, for example, data at 5 minute intervals
are actually averages of data collected at intervals of 1
minute. As is often the case with observed data from
sensors, these data are of varying quality, with noise and
many missing values. They are also sampled at different
frequencies, which may be an issue if the sampling

frequency is not sufficiently high to capture the event
of interest, for example, ramp events that occur over
30 minutes. One of our challenges is to appropriately
pair the wind power generation data with a similarly
sampled weather dataset, and address the missing val-
ues suitably, to achieve our analysis goals and improve
our understanding of issues related to integrating wind
energy on the power grid.

2.1 Wind power generation data

We have three datasets available for the wind power
generation in mid-Columbia Basin and the Tehachapi
Pass:

• BPA 5 minute data (BPA-G-5): The BPA data avail-
able for the period 2007-2009 are the total genera-
tion from all the wind farms in the BPA balancing
area [11], sampled at 5 minute intervals. There are
missing values in the data - if values were missing
for one or two consecutive intervals, they were
filled-in using interpolation, while longer periods
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were replaced by ”-9999” to indicate such values for
future processing. In addition, to reduce the noise
in the wind energy data, we smoothed the original
data by two applications of a mean filter of size 3.
We refer to this dataset as BPA-G-5.

• SCE 15 minute data (SCE-G-15): The Tehachapi
Pass wind generation data are sampled more
coarsely than the Columbia Basin data. These data
are available at 15 minute intervals for the wind
farms in the Vincent and Antelope regions of the
Tehachapi Pass. As these regions are close by, their
wind power generation is very similar, and we
consider the sum of the generation in our analysis.
The generation from the Antelope region occasion-
ally had small negative values which were replaced
by zero before being added to the data from the
corresponding interval from the Vincent region. Un-
like the data from Columbia basin, no smoothing
was used, as it would have adversely affected the
calculation of 30 and 60 minute ramps [6]. We refer
to this dataset as SCE-G-15.

• SCE 60 minute data (SCE-G-60): For the SCE region,
we also have hourly data on both the forecast and
actual generation for 2007-2008. These data were
from a different source than the 15 minute data (see
Section 8 for source information). There were several
periods of 3 hours each, where there were missing
values for both the forecast and actual generation.
These were replaced by interpolated values. There
were also time periods where the actual generation
was reported as 0.0, though the forecast was ∼200
MW. A comparison with the 15 minute data, SCE-
G-15, indicated that the values were in error. We
also found that the actual generation in this dataset
was very close to the hourly generation derived
from SCE-G-15. So, for consistency of analysis, we
replaced all values of the actual generation by the
hourly generation derived from the 15 minute data.
These data are analyzed without any smoothing. We
refer to this dataset as SCE-G-60.

2.2 Weather data

There are several weather data sources available for use
in our analysis. These data are available at different
temporal resolutions from several meteorological towers
in and around the two regions of interest.

• SCE hourly data (SCE-W-H): The first weather
dataset, which is from the same source as the SCE-
G-60 data, is from seven towers in the Tehachapi
Pass. These data are hourly data and different vari-
ables are available from each station as summarized
in Table 1. We refer to these data as SCE-W-H. They
are of relatively poor quality, with some repetitions
(contiguous values representing the variables for
the same hour), missing time periods (where rows
representing time periods were missing from the
data file), and missing variables (where the missing

values were replaced by a suitable number, such
as -99 or -9.9). To clean the data, we removed the
duplicate rows and added rows for missing time
periods, using the appropriate “missing” value for
the variables. After this, we found that nearly 46%
of the rows in the data had one or more variables
with a “missing” value. Figure 2 shows some of
the hourly weather variables in the Tehachapi Pass
region.

• SCE daily average data (SCE-W-D): In addition
to the hourly weather data for Tehachapi Pass, we
also have daily averages obtained from the Remote
Automated Weather Station (RAWS). These data are
available from the Western Regional Climate Center
(http://wrcc.dri.edu). There are several variables
available from each station, as listed in Table 2. Note
that the variables at these stations are different from
the variables in the SCE-W-H data.
Figure 3(a) shows the different weather stations in
the Tehachapi Pass region. We started by consid-
ering the ones near the wind farms and selected
those with no missing values for the variables.
The three sites that met our criteria, along with
their latitude/longitude, are Jawbone (35.294722,-
118.226389); Bearvalley (35.139722, -118.625); and
Piutes (35.431667, -118.329722), with Tehachapi Pass
located at (35.102222, -118.282778). We also found
that some variables (barometric pressure and the
average, maximum, and minimum soil temperature)
were missing for all days at all stations and there-
fore, removed from consideration. We refer to this
dataset as SCE-W-D. Figure 4 shows some of the
daily averaged weather variables in the Tehachapi
Pass region.

• BPA daily average data (BPA-W-D): Using a sim-
ilar approach, we identified four RAWS locations
in the mid-Columbia Basin, at Locks (45.669444,
121.881667); Patjens (45.322222, 120.925); Umatilla
NWR (45.916667, 119.566667); Wasco (45.61,121.33)
(see Figure 3(b)). The variables at these stations are
listed in Table 2. As in the case of SCE-W-D data,
we do not consider barometric pressure and the
average, maximum, and minimum soil temperature,
as these are missing for all days. We refer to this
dataset as BPA-W-D.

Selecting the weather datasets for use in our work was
a challenge as we were constrained to using publicly
available data from existing weather stations. As a result,
the locations of the stations, and the variables they mea-
sure, may not be the optimal ones for use in our analysis.
On one hand, the expansion of wind farms without a cor-
responding increase in the number of weather stations
has resulted in an acknowledged lack of weather data
suitable for accurate prediction of wind speeds. At the
same time, given that the wind farms are often spread
out over a large area (see, for example, Figure 3(b)), it
is unclear what should be the appropriate locations for
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Name of station (initials) Latitude/Longitude Variables

Sky River (SR) 35.260980 N 118.246958 W wspeed30, wdir30

GE Wind (GE) 35.081558 N 118.37193 W wspeed30, wdir30, wspeed10, wdir10,
temp30, temp10, pressure

STP (ST) 35.134747 N 118.458735 W wspeed30, wdir30, wspeed10, wdir10,
temp30, temp10, pressure

Morewind (MW) 35.052237 N 118.285772 W wspeed30, wdir30

Oak Creek M11-13 (OC1) 35.041738 N 118.370612 W wspeed30, wdir30

Oak Creek M54-25 (OC2) 35.031377 N 118.346922 W wspeed30, wdir30

The Rock (TR) 35.12956 N 118.349897 W wspeed30, wdir30

TABLE 1
The hourly weather data available at the seven meteorological stations in the Tehachapi area. The variables are measured at

heights of either 10m or 30m (as indicated by the two numerals at the end of the variable name), and include wind speed, wind
direction, temperature and pressure. Note that not all variables are available at all stations.
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Fig. 2. Some examples of the hourly weather data available for the SCE region. (a) The hourly wind speed at 30m for GE from
SCE-W-H. (b) The hourly wind speed at 10m for GE from SCE-W-H. (c) The hourly temperature at 30m for GE from SCE-W-H.
These hourly data are for a period of 15 days in July 2007.

(a) (b)
Fig. 3. The locations of the WRCC weather stations (indicated by the small black squares). (a) The Southern California region,
where the white cross indicates the Tehachapi Pass area. The three circles indicate the specific sites chosen in our analysis:
Bearvalley, Jawbone, and Piutes. (b) The Oregon-Washington border region, where the square box indicates the region of the wind
farms in the BPA BA. The four circles indicate the specific sites chosen in our analysis: Locks, Patjens, Umatilla, and Wasco.

weather stations and what variables should be measured
at each, so these variables will improve our predictions.
We justify our choice of weather datasets as these are the
same weather stations that are available to the control
room operators. Our goal is to understand to what extent
we can exploit the existing weather information available
to us, while recognizing that the sensor data from the
weather stations may not be optimal. We also observe
that we use the actual weather data in our analysis,
though in practice, any predictions would be done using

forecast values for the weather variables.

2.3 Processing the weather data

For the daily and hourly weather data used in our anal-
ysis, we observed that certain variables were likely to be
correlated, for example, the air temperature and the fuel
temperature, or the two definitions of growing degree
days, or the air temperature average, maximum, and
minimum. In addition, the variables could be correlated
across the meteorological sites as well, for example, two
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Solar Rad. total kW-hr/m2 Speed average m/s Wind dir vector deg

Speed Gust m/s ASCE Et. total mm Penman Et. total mm

Air temp Average deg C Air temp Maximum deg C Air temp Minimum deg C

Fuel Temp Average deg C Fuel Temp Maximum deg C Fuel Temp Minimum deg C

Soil temp Average deg C Soil temp Maximum deg C Soil temp Minimum deg C

Relative humidity average percent Relative humidity maximum percent Relative humidity minimum percent

Heating Degree Days Cooling Degree Days Growing Degree Days Base 40

Growing Degree Days Base 50 Precipitation Total mm Barometric Pressure Average mbar

TABLE 2
The daily averages for the above weather variables (along with their units) are available from the Remote Automated Weather

Stations (RAWS) at the Western Regional Climate Center.
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Fig. 4. Some examples of the daily weather data available for the SCE region. (a) The daily wind speed for 2007 for Jawbone from
SCE-W-D. (b) The daily wind gusts for 2007 for Jawbone from SCE-W-D. (c) The daily average temperature for 2007 for Jawbone
from SCE-W-D.

nearby sites might have correlated air temperatures. We
identified such variables using the Pearson correlation
coefficient and removed them from consideration. Given
two vectors, x and y, each of length n, the Pearson
correlation coefficient between them is given by

1

n

∑n

i=1(xi − x̄)(yi − ȳ)

σ(x) σ(y)

where xi is the i-th element of the vector x, x̄ is its mean
value, and σ(x) is its standard deviation. In our analysis,
we considered two variables to be correlated if they had
a coefficient greater than 0.75.

For the daily average weather variables, after the
removal of correlated variables at each site, we were left
with the following seven variables in the RAWS datasets:
total solar radiation, average wind speed, wind direction,
wind speed gusts, average air temperature, average rela-
tive humidity, and the precipitation. Concatenating them
for the 3 and 4 stations in the SCE and BPA areas gave us
a total of 21 and 28 daily weather variables, respectively.
We could have pre-processed the data further to remove
potential outliers and variables correlated across sites.
This was not done as we wanted to ensure that small
scale weather phenomena, which might affect one site,
but not another nearby site, would be included in the
analysis. Also, some variable values which appeared as

outliers, were not really outliers, such as the few days
when precipitation at a site was high.
The hourly weather data (SCE-W-h) was also pro-

cessed in a similar manner to identify correlated vari-
ables. However, since there are fewer variables for each
station and the stations are close together, we considered
all 24 variables from Table 1 in identifying correlations.
As a result of this analysis, we were left with the fol-
lowing seven uncorrelated variables: SR-wspeed30, SR-
wdir30, ST-wdir30, ST-wdir10, GE-temp30, st-pressure,
and GE-pressure.

3 FORMULATING THE PROBLEMS

In our analysis, we are interested in understanding if
weather conditions can be associated with, and used
to predict, ramp events and inaccurate wind power
generation forecasts. We next show how we can use the
data described in Section 2 to meet these goals.

3.1 Calculating ramp events

For both the BPA and SCE regions, we define a ramp
event [6], of magnitude Tr in MW, to occur between
time intervals T and (T + ∆T ) if

max(MW [T, T + ∆T ]) − min(MW [T, T + ∆T ]) > Tr.
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The ramp is considered to be a negative ramp, if the
maximum occurs before the minimum, and is positive
otherwise. Then, we identify days when ramp events
have occurred using the following values for the param-
eters:

• The time interval ∆T : We considered two cases -
30 minutes and 60 minutes as these are durations
typically considered for ramps.

• The threshold Tr: The choice of the threshold was
non-obvious. We started by selecting an absolute
threshold of 120 MW and 240 MW for the 30 minute
and 60 minute ramps, respectively, for the BPA
data. An absolute threshold made sense as it gives
operators a sense of how much back-up generation
they need or how much they should reduce other
generation. However, in the case of BPA, as the in-
stalled wind capacity increased substantially during
the analysis period, use of a fixed threshold resulted
in many more ramps being identified during the
latter part of the period. So, a day with certain
weather conditions early in the analysis period may
have no ramps, while a day with similar weather
conditions later in the analysis period could have
many ramps. To avoid this unintended consequence
of the increase in installed capacity on our analysis,
we used a percentage of the installed capacity on
any day as the threshold.
We considered thresholds of 10% and 12% of ca-
pacity for 30 minute ramps and 15% and 20% of
capacity for 60 minute ramps for both regions. For
the Tehachapi Pass, where the installed capacity was
constant at 740 MW over the analysis period, this
results in the use of 75 MW and 90 MW thresholds
for 30 minute ramps and 115 MW and 150 MW
thresholds for 60 minute ramps. For the Columbia
basin region, the installed capacity, which is avail-
able only from October 2007 onwards, ranges from
a low of 922 MW to a high of 2617 MW at the
end of the analysis period. These percentages of
installed capacity were chosen so that the results
at low capacity were not only close to our choice
of absolute thresholds, but also led to a moderate
number of days with ramps so that we had roughly
equal number of days with and without ramps. A
threshold set too low (or too high) would have led
to too many (or too few days) with ramp events.

Having identified the ramp events in the data, we
next had to assign a label to each day. We considered
a day to have a ramp event if any one of the intervals
during the day was part of a ramp event, regardless
of its sign. This option resulted in a two-class problem,
where a day either had a ramp or not. We could have
also considered this as a four class problem, where
a day was assigned a label based on whether it had
no ramps, only positive ramps, only negative ramps,
or both positive and negative ramps. This, and other
options with multiple classes based on the severity or the

number of ramps in a day, were not considered further
as they led to too few examples of each of the classes.

3.2 Calculating forecast accuracy

We can use the hourly actual and forecast generation for
SCE to calculate the error in the forecast for each hour.
Then, an hour is assigned the label 1, indicating accurate
forecast, if the error is less than an hourly threshold,
and zero otherwise. We can also calculate the daily error
by taking the sum of the absolute error over the hourly
intervals for each day. Each day can then be assigned a
label of 1, indicating an accurate forecast, if the error is
less than a daily threshold, and zero otherwise.
In both cases, we need to determine an appropriate

threshold. Since the maximum generation at the SCE
site (the sum of the generation from the Antelope and
Vincent wind farms) is ∼500 MW, we select a threshold
that is 10% or 15% of this maximum. In other words, an
hourly error of 50 or 75 MW is considered as tolerable
in the context of balancing the load with generation; a
higher error would be considered an inaccurate forecast.
Converting this to a daily threshold results in a daily
error of 1200 or 1800 MW.

3.3 Pairing the wind power generation and weather
data

We address the questions raised in Section 1 by ap-
propriately pairing the the wind power generation and
the weather data described in Sections 2.1 and 2.2,
respectively. We do this by considering the suitability of
the data available, the sampling rate, and the questions
we are trying to address.
But first, a few observations on the quality of the

data are helpful in understanding the pairing of the
datasets. We found that the wind generation data are
of higher quality than the weather data. They are at a
higher resolution, being sampled at 5 minute, 15 minute,
or 60 minute intervals. There are few missing values,
and when the values are missing, it is only one or
two consecutive values which can be easily filled in by
interpolation. In contrast, the weather data, regardless
of whether they are from RAWS or other meteorological
stations, have a large number of missing values over a
long duration, making it infeasible to use interpolation
to fill in these values. These data are also at a coarser
resolution, which may not necessarily be a drawback.
If the data are sampled at a finer resolution (say, at 5
minute intervals), then, for variables such as wind speed,
we may need to incorporate a lag into the analysis to
account for the wind farm being far away from the
station. This lag could change over time, making the
alignment difficult.
We also observe that the hourly forecast and actual

wind power generation data, along with the hourly
weather data, are available only for SCE. The variables
in the hourly weather data (SCE-W-H) are also different
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Problem Description Sites Number of Number of Parameters Class

instances features Distribution
1. Associating daily weather
conditions with days ramp events:
pairs SCE-G-15 with SCE-W-D and
BPA-G-5 with BPA-W-D.

SCE 731 21 (a) 30 min, 10% 58%

(b) 30 min, 12% 72%

(c) 60 min, 15% 58%

(d) 60 min, 20% 77%

BPA 819 28 (a) 30 min, 10% 50%

(b) 30 min, 12% 66%

(c) 60 min, 15% 46%

(d) 60 min, 20% 70%
2. Associating daily weather
conditions with days with
inaccurate forecasts: pairs
SCE-G-60 with SCE-W-D.

SCE 731 21 (a) 1200 MW 38%

(b) 1800 MW 69%

3. Associating hourly weather
conditions with hours with
inaccurate forecasts: pairs
SCE-G-60 with SCE-W-H

SCE all 9330 7 (a) 50MW 54%

(b) 75 MW 69%

TABLE 3
Summary of the problems considered: for each problem, the table presents the number of instances, the number of features, the

parameters used in generating the class labels, and the class distribution. All problems are two-class problems, and the class
distribution indicates the percentage of the more desirable class. This is the percentage of days without ramp events or the

percentage of time intervals with accurate forecasts.

from the ones in the daily RAWS data (SCE-W-D and
BPA-W-D) .

Based on the above, we considered the following
pairing of the data, resulting in three problems:

• Associating daily weather averages with days with
ramp events: First, as described in Section 3.1, we
extract 30 and 60 minutes ramp events from the
wind power generation data which is available at
5 minute and 15 minute intervals for BPA and SCE,
respectively. Then, we associate with each day a
class label indicating if it does or does not have
ramp events of a certain magnitude and duration.
This information is paired with the daily weather
data and used to associate weather variables with
days with ramp events. By considering ramp events
at the resolution of a day, we can exploit the weather
information in the RAWS data that are available as
daily averages. This problem pairs SCE-G-15 with
SCE-W-D and BPA-G-5 with BPA-W-D.

• Associating daily weather averages with days with
inaccurate forecasts:We can use a similar argument
to take days with inaccurate forecasts for the SCE
region (for which we have both the hourly forecast
and the actual generation) and identify the daily
average weather conditions that are associated with
such days. This would pair SCE-G-60 and SCE-W-D.

• Associating hourly weather conditions with hours

with inaccurate forecasts:We have thus far focused
on using the daily weather data as they are of better
quality and measure a varied set of variables. How-
ever, it is natural to ask if we can exploit the hourly
weather data available for SCE (SCE-W-H), despite
the large number of missing values. Considering
only those hours which have no missing weather
variables, we created a dataset of 9330 instances out
of a total of 17547. This problem pairs SCE-G-60
with SCE-W-H.

Table 3 summarizes the datasets for the problems con-
sidered, including the number of instances, the numher
of features, the parameters considered, and the distri-
bution of classes. All problems are two-class problems,
with the instances labeled 0 and 1, where 1 refers to
the more favorable or desirable case, that is, instances
without ramp events or with accurate forecasts.

4 ANALYSIS APPROACH

In our work, we are interested in using data min-
ing techniques to determine if we can provide con-
trol room operators information they can use to make
well informed decisions on days with ramp events or
inaccurate forecasts. We identified two ways in which
we can help. First, we can identify important weather
variables associated with ramp events and inaccurate
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forecasts, thus reducing the number of data streams that
the operators have to monitor. This obviously points to
the use of dimension reduction techniques, specifically,
feature selection methods. Second, we can predict days
likely to have ramp events or inaccurate forecasts, so the
operators can be better prepared. This points to the use
of classification methods. We next briefly describe the
dimension reduction and classification methods used in
our work.

4.1 Dimension reduction

One of our goals is to determine which of the many
weather variables at the different sites in a region are
associated with wind related events in that region. If
we can determine a small set of such variables, then
the control room operators need only monitor this small
set, reducing their data overload. Feature selection tech-
niques are a natural solution to this problem. In our
work, we focus on “filter” methods [12]. They select
features based on properties we would expect of good
feature subsets, such as class separability or high corre-
lation with the target. They are also computationally less
expensive than the “wrapper” methods which evaluate
the subset selected using the classifier; however, this may
lead to the filter methods producing less accurate results
when the subset of features is used in classification.
We consider the following four filter methods in our
analysis:

• Distance filter: The distance filter calculates the
class separability of each feature using the Kullback-
Leibler (KL) distance between histograms of feature
values. For each feature, there is one histogram for
each class. In our two class problem, if a feature has
a large distance between the histograms for the two
classes, then the feature is likely to be an impor-
tant feature. If, on the other hand, the histograms
overlap, then the feature is unlikely to be helpful
in differentiating between days with and without
ramp events. We discretized numeric features using
√

|D|/2 equally-spaced bins, where |D| is the size of
the data. The histograms are normalized by dividing
each bin count by the total number of elements to
estimate the probability that the j-th feature takes a
value in the i-th bin of the histogram given a class
n, pj(d = i|c = n). For each feature j, we calculate
the class separability as

∆j =

c
∑

m=1

c
∑

n=1

δj(m,n),

where c is the number of classes (= 2 for our
problem) and δj(m,n) is the KL distance between
histograms corresponding to classes m and n:

δj(m,n) =

b
∑

i=1

pj(d = i|c = m) log

(

pj(d = i|c = m)

pj(d = i|c = n)

)

,

where b is the number of bins in the histograms.

The features are ranked simply by sorting them
in descending order of the distances ∆j (larger
distances mean better separability).

• Chi-squared filter: This filter computes the Chi-
square statistics from contingency tables for every
feature. The contingency tables have one row for
every class label and the columns correspond to
possible values of the feature as shown in Table 4.1,
adapted from [13]. Numeric features are represented
by histograms, so the columns of the contingency
table are the histogram bins.

Class f1=1 f1=2 f1=3 Total

0 31 (22.5) 20 (21) 11 (18.5) 62

1 14 (22.5) 22 (21) 26 (18.5) 62

Total 45 42 37 124

TABLE 4
A 2× 3 contingency table, with observed and expected

frequencies (in parenthesis) of a fictitious feature f1 that takes
on 3 possible values (=1, 2, and 3).

The Chi-square statistic for feature j is

χ2
j =

∑

i

(oi − ei)
2

ei

,

where the sum is over all the cells in the r×c contin-
gency table, where r is the number of rows and c is
the number of columns; oi stands for the observed
value (the count of the items corresponding to the
cell i in the contingency table); and ei is the expected
frequency of items calculated as:

ei =
(column total) × (row total)

grand total

The variables are ranked by sorting them in de-
scending order of their χ2 statistics.

• Stump filter: This filter is derived from the process
of building a decision-tree classifier. Decision trees
split the data by examining each feature and finding
the split that optimizes an impurity measure. To
search for the optimal split of a numeric feature
x, the feature values are sorted (x1 < x2 < ... <
xn) and all intermediate values (xi + xi+1)/2 are
evaluated as possible splits using a given impurity
measure. The features are then ranked according to
their optimal impurity measures.
There are several options we can use for the impu-
rity measure. In our work, we use the Gini index [14]
which is based on finding the split that most reduces
the node impurity, where the impurity for a c class
problem is defined as follows:

LGini = 1.0 −
c

∑

i=1

(Li/|TL|)
2

RGini = 1.0 −
c

∑

i=1

(Ri/|TR|)
2
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Impurity = (|TL| ∗ LGini + |TR| ∗ RGini)/n

where |TL| and |TR| are the number of examples, Li

and Ri are the number of instances of class i, and
LGini and RGini are the Gini indices on the left and
right side of the split, respectively.
A stump is a decision tree with only the root node;
the stump filter ranks features using the same pro-
cess as the one used to create the root node.

• ReliefF: The original Relief algorithm [15], was pro-
posed for a 2-class problem, though it has since
been extended to multi-class problems and regres-
sion [16]. It estimates the importance of features
based on how well they distinguish between in-
stances near to each other. It essentially maintains a
quality estimate for each feature. Given a randomly
selected instance, it finds the nearest instance from
the same class (called a hit) and of a different class
(called a miss). If a feature has different values for
the random instance and the hit, it is not a desirable
feature and its quality is reduced. Similarly, a feature
which has different values for the random instance
and the miss, can be considered a useful feature
and its quality estimate is increased. The process
is repeated for different random instances; in our
work, we use all instances. We can also use the
k nearest hits and misses (the ReliefF algorithm),
instead of a single hit and miss. We experimented
with k = 3, 10, and20; the performance tends to be
similar, so we include the results for just k = 3.

In our earlier work [10], we focused exclusively on
feature selection methods as these give results which are
interpretable. We did not consider transform-based ap-
proaches, such as principal component analysis (PCA),
to reduce the dimension as the transformation makes it
difficult to identify which of the original variables are
the important ones. However, given the recent research
in non-linear dimension reduction techniques, it is ob-
vious to ask if the reduced dimensional representation
obtained by such methods could give better prediction
accuracy relative to the feature selection methods. With
this intent, we also considered the following techniques:

• Isomap: This method [17] preserves pairwise
geodesic distances between data points. It starts
by constructing an adjacency graph that determines
which points are neighbors in the input space. These
neighbors can be either the k-nearest neighbors or
points which lie within an ǫ-neighborhood. Next,
the geodesic distances between all pairs of points
are estimated by computing their shortest path dis-
tances over the graph. Let DG = {dG(i, j)}i,j=1,...,n

be the matrix of geodesic distances, where dG(i, j)
is the distance between point i and j. Isomap
then constructs an embedding in a d-dimensional
Euclidean space such that the pair-wise Euclidean
distances between points in this space approximate
the geodesic distances evaluated in the input space.
Let DY = {dY (i, j)}i,j=1,...,n be the Euclidean dis-

tance matrix and dY (i, j) = ‖Yi − Yj‖2. The goal is
to minimize the cost function ‖τ(DG) − τ(DY )‖2,
where the function τ performs double centering on
the matrix to support efficient optimization. The
optimal solution can be found by solving the eigen-
decomposition of τ(DG), where the matrix DG is a
dense matrix. The Y coordinates are then computed
based on the d largest eigenvalues and their corre-
sponding eigenvectors.

• Locally Linear Embedding (LLE): This method [18]
preserves the reconstruction weights ωij that are
used to describe a data point Xi as a linear com-
bination of its neighbors Xj , j ∈ N (i), where N (i)
denotes the set of points that are neighbors of point
i. The optimal weights for each i are obtained by
minimizing the cost function,

min
ω

{‖Xi −
∑

j∈N (i)

ωijXj‖
2
∣

∣

∣

∑

j∈N (i)

ωij = 1}.

LLE assumes that the manifold is locally linear and
hence the reconstruction weights are invariant in the
low-dimensional space. The embedding Y of LLE is
obtained from the eigenvectors corresponding to the
smallest d nonzero eigenvalues of the embedding
matrix, defined as M = (I −W )T(I −W ), where W
is the reconstruction weight matrix whose element
Wij = 0 if j /∈ N (i); Wij = ωij otherwise. I is an
identity matrix and (I − W ) is a sparse, symmetric
matrix. Similar to Isomap, LLE constructs the adja-
cency graph of data points, but it is less sensitive
to outliers as it preserves solely local properties.
The sum to one constraint on the weights forces
the reconstruction of each data point to lie in the
subspace spanned by its nearest neighbors [19].

• Laplacian Eigenmaps: Laplacian eigenmaps pro-
vide a low-dimensional representation of the data
in which the weighted distances between a data
point and other points within an ǫ-neighborhood
(or its k-nearest neighbors) are minimized [20]. The
distances to the neighbors are weighted according

to the Laplacian operator Wij = e−
‖Xi−Xj‖2

t , or
the sparse adjacency matrix W whose element Wij

is 1 if Xi and Xj are neighbors and 0 otherwise.
Here, t = 2σ2, where σ is the standard deviation
of the Gaussian kernel. The representation of Y is
computed by solving the generalized eigenvector
problem: (S−W )v = λSv, where Sii =

∑

j Wij . Only
the eigenvectors (v) corresponding to the nonzero
eigenvalues (λ) are used for the embedding.

To complement the above non-linear dimension re-
duction techniques, we also included PCA, a linear
transform-based method.

4.2 Classification

The use of feature selection techniques to identify the
important features enables the control room operators to
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focus on a few weather variables instead of being over-
whelmed by multiple variables from different stations
in the vicinity of the wind farms. While these insights
are useful, we may well ask if it is possible to use the
weather variables to predict days likely to have ramp
events or intervals where the forecast is likely to be
inaccurate. To build these predictive models, we consider
ensembles of decision trees. Our choice of decision trees
stems from the fact that they are interpretable and there-
fore, easier for application scientists to understand and
incorporate into their work.
In our work, we used three ensemble based meth-

ods: adaboost [21], bagging [22], and ASPEN, a method
based on approximate splits [23]. This approach creates
ensembles by introducing randomization at each node
of the tree in two ways. It first randomly samples the
examples at a node and selects a fraction (we use 0.7)
for further consideration. Then, for each feature, instead
of sorting these examples based on the values of the
feature, it creates a histogram, evaluates the splitting
criterion (we use Gini [14]) at the mid-point of each bin
of the histogram, identifies the best bin, and then selects
the split point randomly in this bin. The randomization
is introduced both in the sampling and in the choice
of the split point. The use of the histograms and the
smaller samples speeds up the creation of each tree in
the ensemble.

5 EXPERIMENTAL RESULTS AND DISCUSSION

We next present the results of the application of the var-
ious dimension reduction methods and ensemble-based
classifiers to the problems described in Table 3. The
ensemble-based methods all use 11 trees in the ensemble
and the results are evaluated using the percentage error
rate obtained for five-fold cross validation repeated five
times. The dimension reduction results include the top
variables identified by the different feature selection
methods as important as well as the variation in the
percentage error rate for the ASPEN method as we
use the first d features in constructing the classifier. We
selected the ASPEN method as it gave better accuracy
than Adaboost or Bagging.
To evaluate the dimension reduction methods, we also

included an additional feature which is a noise variable.
In feature selection methods, when we consider the list
of features ordered by importance, any variables ranked
lower than the noise variable will be unimportant. In
transform-based methods, the inclusion of the noise
variable gives us an estimate of how robust the methods
are to irrelevant features.
For the non-linear dimension reduction methods, we

experimented with several different parameters and
chose the ones which gave good results overall. The
three methods - Isomap, LLE, and Laplacian eigenmaps
- all work better when we consider the points in an ǫ-
neighborhood instead of the k-nearest neighbors. How-
ever, this required experimenting with the values of ǫ as

small values could result in no neighbors for many of
the points.
We next present the results for the three different

problems outlined in Table 3 and discuss these results
for each problem, followed by some overall observations
in Section 5.4.
To place the experimental results in context, we recall

our goals in this analysis: first, to determine if we can
identify important weather variables associated with
wind ramp events and inaccurate forecasts, and second,
to investigate if we can use these variables to predict the
ramp events and inaccurate forecasts. Our intent is to
provide control room operators additional information
they can use to make better decisions in scheduling wind
power generation.

5.1 Results: Problem 1

In this section, we present the results for Problem 1
described in Table 3, where we consider daily weather
conditions in the BPA and SCE regions in the context of
ramp events. Each region has four datasets correspond-
ing to two time intervals and two thresholds used in
the calculation of the ramp events. The results for SCE
are presented in Figure 5 and Table 5 for the 30 minute
ramps and Figure 6 and Table 6 for the 60 minute ramps.
The corresponding information for BPA is summarized
in Figure 7 and Table 7 for the 30 minute ramps and
Figure 8 and Table 8 for the 60 minute ramps.
For the SCE data, when we compare the three different

ensemble methods - Adaboost, Bagging, and ASPEN -
we find the percentage error rate for all four datasets
to be the lowest for the ASPEN approach. While the
error rate may appear to be high, for example, 24.33%
for 30 min ramps with 10% threshold or 26.98% for 60
min ramps with 15% threshold, we need to evaluate this
in the context of the problem being addressed. Recall
that the weather data are relatively low quality, so their
predictive ability for ramp events is not expected to be
very high. However, we are interested in determining if
we can do better than a random guess (50% accuracy for
our two class problem) or the accuracy obtained by as-
signing the majority class based on the class distribution
in Table 3. Our results in Figures 5 and 6 indicate that
we certainly meet the former criterion. If we consider
the latter criterion, we find that for the lower values of
threshold, we obtain an error rate of 24-28%, which is
better than an error rate of 42% if we were to assign
all cases to the majority class. For the larger thresholds,
the reduction in error rate from 23-28% to 18-22% is
not as large, but is non-negligible. This indicates that
there is some benefit to be gained by using the weather
conditions to predict the ramp events.
We next consider the feature selection results for SCE

presented in Tables 5 and 6. For both the 30 min and 60
min ramp events, we observe that three of the feature
selection methods - distance, chi-squared, and stump
filters - all tend to select common variables as the top
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seven important features. These features include the
average relative humidity and average air temperature
at the Bearvalley and Jawbone stations and the wind
speed at the Jawbone and Piutes stations. We also found
that the wind speed and wind gusts at Bearvalley ranked
among the least important variables. A closer inspection
indicated that many of these values were erroneous. For
example, of the total of 731 days in the study, 112 days
had speed gusts in Bearvalley of 44.70 m/s, indicating
an inoperable or faulty sensor. In contrast, we observe
that the ReliefF approach, with k = 3, tends to select
somewhat different features as important, such as the
solar radiation and the noise feature. It also includes
the erroneous feature of wind gusts at Bearvalley. We
conclude that the distance, chi-squared, and stump filters
are more robust than ReliefF, and the important features
identified by these methods are useful in helping con-
trol room operators reduce the number of data streams
they must monitor when they consider weather data in
making their scheduling decisions.
Finally, for SCE, we consider how the percentage error

rate of ASPEN varies as we use the top d features
identified by the different dimension reduction methods
(Figures 5 and 6). We observe that the feature selection
methods, including ReliefF, tend to give lower error
rates than the non-linear dimension reduction methods,
sometimes even below that obtained by using all features
(the horizontal line in the plots). This indicates that
some of the features are irrelevant. The noise feature
is typically the feature identified as least important by
the distance, chi-squared, and stump filters. Note that
even though the noise feature is sometimes considered
as important by ReliefF, the in-built dimension reduction
in the creation of the decision tree, ignores this feature
when other more important features are present. We also
observe that the error rate with PCA is usually higher
than with the non-linear dimension reduction methods.
For the BPA results, we have similar observations. AS-

PEN tends to give more accurate results than Adaboost
or Bagging. The distance, chi-squared, and stump filters
tend to identify common weather variables as important,
though these variables are different from those for SCE
data in the Tehachapi Pass area. This is expected as
the meteorological processes in the two regions are very
different. As with the SCE dataset, the ReliefF algorithm
identifies the noise variable as important; it also selects
a different set of weather variables in comparison to the
other feature selection methods.
For BPA, we also observe that the reduction in per-

centage error rate is higher for the lower threshold
ramps, when we consider the error made by assigning
all instances to the majority class. Use of the decision
tree ensemble is better than assigning a class randomly
for all the four datasets for this region.
And finally, for the BPA datasets, as with the SCE

datasets, the feature selection techniques tend to give
lower error rates than the non-linear dimension reduc-
tion techniques, which, in turn, are better than PCA. The

feature selection methods also reduce the error rate to
below what can be obtained by using all the features.

5.2 Results: Problem 2

In this section, we present the results for Problem 2 in Ta-
ble 3, where we consider daily weather conditions in the
SCE region associated with inaccurate forecasts. There
are two datasets corresponding to different thresholds
used in the calculation of the accuracy of the forecasts.
The results are presented in Figure 9 and Table 9.
These results reflect the observations made for the

SCE datasets for problem 1, where we considered ramp
events instead of inaccurate forecasts. The accuracy with
ASPEN is better than with Adaboost or Bagging. The use
of decision trees is better than making a random call for
the class label or selecting the majority class, indicating
that the weather conditions have some predictive value
in identifying days with inaccurate forecasts.
We again observe that the three filter methods - dis-

tance, chi-squared, and stump filters - identify common
variables as important, while the ReliefF method selects
less important variables, such as solar radiation, noise,
or wind gusts at Bearvalley (a variable with many er-
roneous values). However, unlike problem 1, the filter
methods and the non-linear dimension reduction meth-
ods give similar results as we consider the variation in
percentage error rate with the number of features. Since
PCA did not perform well in problem 1, we did not
apply it to the problem 2 dataset. We also observe that
the results using fewer features are not much better than
using all the features.

5.3 Results: Problem 3

In this section, we present the results for Problem 3 in
Table 3, where we consider hourly weather conditions
in the SCE region associated with inaccurate forecasts.
There are two datasets corresponding to different thresh-
olds used in the calculation of the accuracy of the
forecasts. The results are presented in Figure 10 and
Tables 10. Recall that the weather conditions for this
problem are hourly data from a different set of weather
stations.
These results reflect the observations made for the

SCE datasets for problems 1 and 2. The accuracy with
ASPEN is better than with Adaboost or Bagging. How-
ever, the use of decision trees does not provide as large
an improvement in comparison with making a random
call for the class label or selecting the majority class.
For the smaller threshold dataset, the improvement is
much smaller than before, while for the larger threshold
dataset, there is no improvement. This is likely due to
the fact that hourly weather data tend to be more noisy
as they do not benefit from the smoothing effect of
averaging that is used to generate the daily weather data.
It is also possible that the weather variables (which are
different from, and fewer in number, than those used in
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Fig. 5. Results for problem 1, SCE, 30 minute ramps: Percentage error rate for the ASPEN method for (a) 10% threshold; (b) 12%
threshold using the top k features identified by various dimension reduction methods. The horizontal line is the percentage error
rate using all features. (c) Percentage error rate (standard error) for different ensemble methods using all features.
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TABLE 5
Results for problem 1, SCE, 30 minute ramps: The seven top-ranked variables using (a) 10% and (b) 12% thresholds.
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Chisq filter

Stump filter
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isomapY_ep30
lapY_ep300_t5
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pcaY_dim22

18.63

Method 60 min, 15% 60 min, 20%

Adaboost 27.92 (2.36) 21.39 (0.81)

Bagging 27.56 (0.28) 19.75 (0.57)

ASPEN 26.98 (0.44) 18.63 (0.25)

(a) (b) (c)
Fig. 6. Results for problem 1, SCE, 60 minute ramps. Percentage error rate for the ASPEN method for (a) 15% threshold; (b) 20%
threshold using the top k features identified by various dimension reduction methods. The horizontal line is the percentage error
rate using all features. (c) Percentage error rate (standard error) for different ensemble methods using all features.

problems 1 and 2) are not as predictive of hours with
inaccurate forecasts.

We again observe that the three filter methods - dis-
tance, chi-squared, and stump filters - identify common
variables as important, while the ReliefF method selects
less important variables, such as noise or GE temp30.
In contrast, the other filter methods all rank noise as the
least important variable, and when the noise variable is
excluded, give better accuracy than using all the features.

5.4 General observations

We next make some general observations about the
results presented in the previous sections, both from a
data mining viewpoint and in the context of the insights
obtained in enabling the integration of an intermittent
resource, such as wind, on the power grid.

First, we observe that the ASPENmethod tends to give
better accuracy than Adaboost and Bagging. Second,
in many of the datasets, especially those with a large
number of features, it is possible to improve classifica-
tion accuracy by using fewer than all the features. This
indicates that some weather variables are irrelevant to
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Distance Chi-squared Stump ReliefF

filter filter filter filter

J speed g B rhumid avg B rhumid avg J speed g

B rhumid avg J rhumid avg J rhumid avg B rhumid avg

J rhumid avg J speed g J speed g P solar rad

J dir J dir J speed avg noise

J speed avg B atemp avg J dir J solar rad

B dir B dir B atemp avg J rhumid avg

B atemp avg J speed avg J atemp avg J atemp avg

Distance Chi-squared Stump ReliefF

filter filter filter filter

J speed g B rhumid avg B rhumid avg noise

B atemp avg J rhumid avg J rhumid avg B rhumid avg

B rhumid avg B atemp avg B atemp avg B speed g

J rhumid avg J speed g J atemp avg P solar rad

J atemp avg J atemp avg J speed g P rhumid avg

J speed avg P atemp avg P atemp avg J atemp avg

P atemp avg P dir B precip J solar rad

(a) (b)

TABLE 6
Results for problem 1, SCE, 60 minute ramps. The seven top-ranked variables for 60 min ramps using (a) 115 MW and (b) 150

MW thresholds for Tehachapi Pass.
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Dataset: b3012

Dist filter
Chisq filter

Stump filter
reliefF_k3

isomapY_ep30
lapY_ep300_t5

lleY_ep300
pcaY_dim29

23.46

Method 30 min, 10% 30 min, 12%

Adaboost 24.09 (1.54) 26.92 (0.70)

Bagging 24.29 (0.14) 24.44 (0.37)

ASPEN 22.67 (0.40) 23.46 (0.23)

(a) (b) (c)

Fig. 7. Results for problem 1, BPA, 30 minute ramps: Percentage error rate for the ASPEN method for (a) 10% threshold; (b) 12%
threshold using the top k features identified by various dimension reduction methods. The horizontal line is the percentage error
rate using all features. (c) Percentage error rate (standard error) for different ensemble methods using all features.

Distance Chi-squared Stump ReliefF

filter filter filter filter

W speed g W speed g W speed g W speed g

P speed g W speed avg W speed avg W dir

W speed avg P speed g U speed g P dir

W dir W dir P speed g noise

U speed g U speed g W dir U speed g

P speed avg U speed avg P speed avg L speed g

L dir L dir L dir P speed g

Distance Chi-squared Stump ReliefF

filter filter filter filter

W speed g W speed g W speed g W dir

P speed g P speed g P speed g P dir

P speed avg U speed g U speed g W speed g

W speed avg W dir W speed avg L dir

U speed g W speed avg U speed avg L rhumid avg

P dir P dir W dir L speed g

W dir U speed avg L precip W rhumid avg

TABLE 7
Results for problem 1, BPA, 30 minute ramps. The seven top-ranked variables for 30 min ramps using (a) 10% and (b) 12%

thresholds for mid-Columbia Basin.

ramp events or inaccurate forecasts. Third, the linear
and non-linear transform methods are not as accurate
as the feature selection methods. The latter are also
computationally inexpensive and, by identifying a sub-
set of the original variables, produce results which are
interpretable. And finally, the ReliefF algorithm, though
a feature selection method, tends to select features which
are ranked low by the other methods. We expect that
this, and the poor performance of non-linear dimen-
sion reduction methods, is partly the result of the use
of the nearest neighbors in these algorithms. Identify-
ing the nearest neighbors can be problematic in high-
dimensional spaces [24].

Our goal in this work was to investigate if we could
provide control room operators additional information
they can use to make better decisions in scheduling wind
power generation, especially during ramp events and
inaccurate forecasts. There are three main observations
from this study that are useful to operators. First, the
feature selection methods, by ranking the weather vari-
ables in order of importance, indicate to the control room
operators which variables they should monitor. Second,
the plots of the error rates of the decision tree ensembles
indicate that the lowest error rate is often obtained using
far fewer weather variables than available. This, in effect,
implies that the control room operators can reduce the
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22.92

Method 60 min, 15% 60 min, 20%

Adaboost 23.92 (0.23) 24.46 (0.44)

Bagging 23.80 (0.41) 22.48 (0.47)

ASPEN 21.89 (0.39) 22.92 (0.47)

(a) (b) (c)

Fig. 8. Results for problem 1, BPA, 60 minute ramps: Percentage error rate for the ASPEN method for (a) 15% threshold; (b) 20%
threshold using the top k features identified by various dimension reduction methods. The horizontal line is the percentage error
rate using all features. (c) Percentage error rate (standard error) for different ensemble methods using all features.

Distance Chi-squared Stump ReliefF

filter filter filter filter

W speed g W speed g W speed g noise

P speed g W speed avg W speed avg W speed g

W speed avg W dir W dir U speed g

W dir P speed g P speed g L speed g

U speed g U speed g U speed g U speed avg

P speed avg L dir U speed avg P dir

L dir U speed avg L dir P speed g

Distance Chi-squared Stump ReliefF

filter filter filter filter

W speed g W speed g W speed g P dir

W speed avg P speed g P speed g W speed g

P speed g U speed g U speed g W dir

P speed avg W speed avg W speed avg U speed g

U speed g P dir L precip noise

L speed avg U speed avg U speed avg L dir

U atemp avg W dir W dir L rhumid avg

TABLE 8
Results for problem 1, BPA, 60 minute ramps. The seven top-ranked variables for 30 min ramps using (a) 15% and (b) 20%

thresholds for mid-Columbia Basin.
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22.65

Method 1200 MW 1800 MW

Adaboost 24.03 (0.13) 26.27 (1.21)

Bagging 21.23 (0.31) 24.22 (0.47)

ASPEN 18.41 (0.35) 22.66 (0.38)

(a) (b) (c)
Fig. 9. Results for problem 2, SCE. Percentage error rate for the ASPEN method for (a) 1200 MW and (b) 1800MW using the top
k features identified by various dimension reduction methods. The horizontal line is the percentage error rate using all features. (c)
Percentage error rate (standard error) for different ensemble methods using all features.

number of weather data streams they need to monitor.
Third, the use of decision tree classifiers to predict days
with ramp events or inaccurate forecasts, gives better
results than a random guess. While additional weather
stations, with more accurate measurements, could cer-
tainly improve the predictions, our experiments show
that data mining techniques could be beneficial even
with the current weather data. However, for the analysis
using hourly weather data to predict inaccurate fore-
casts, we found that more data, of higher quality, are
required when we consider analysis at a lower temporal
resolution.

6 RELATED WORK

The process of generating wind power forecasts often
involves machine learning techniques, used either by
themselves or in conjunction with numerical weather
prediction codes. These codes do not provide perfect pre-
dictions as the atmosphere is a highly non-linear chaotic
system [25]. To improve the prediction, forecasters use
several approaches [8]. In some cases, they may use
more than one code and identify an optimal combination
based on a classification of the weather situation. Or they
may address systematic forecast errors using linear re-
gression techniques. Classification techniques have also
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Distance Chi-squared Stump ReliefF

filter filter filter filter

J speed avg J speed avg J speed g P solar rad

J speed g J speed g J speed avg noise

J dir J dir J dir B rhumid avg

P dir B dir B dir J speed g

B dir P dir P dir J solar rad

P speed avg B humidity avg P speed avg J speed avg

P speed g P speed avg B rhumid avg B speed g

Distance Chi-squared Stump ReliefF

filter filter filter filter

J speed avg J speed g J speed g J speed g

J speed g J speed avg J speed avg J speed avg

J dir B rhumidity avg J rhumidity avg noise

P speed avg J rhumidity avg B rhumidity avg B dir

B rhumidity avg P dir P speed avg B speed g

J rhumidity avg P speed avg P dir P solar rad

P dir J dir J dir B rhumid avg

(a) (b)

TABLE 9
Results for problem 2, SCE. The seven top-ranked variables for (a) 1200 MW and (b) 1800 MW thresholds for Tehachapi Pass.
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30.17

Method 50 MW 75 MW

Adaboost 38.30 (0.14) 33.38 (0.22)

Bagging 37.67 (0.08) 31.65 (0.07)

ASPEN 36.61 (0.19) 30.17 (0.13)

(a) (b) (c)
Fig. 10. Results for problem 3, SCE. Percentage error rate for the ASPEN method for (a) 50 MW threshold; (b) 75 MW threshold
using the top k features identified by various dimension reduction methods. The horizontal line is the percentage error rate using
all features. (c) Percentage error rate (standard error) for different ensemble methods using all features.

Distance Chi-squared Stump ReliefF

filter filter filter filter

ST wdir10 ST wdir10 ST wdir30 GE temp30

ST wdir30 ST wdir30 ST wdir10 SR wspeed30

SR wdir30 SR wdir30 SR wdir30 ST wdir30

SR wspeed30 SR wspeed30 SR wspeed30 ST wdir10

Distance Chi-squared Stump ReliefF

filter filter filter filter

ST wdir10 ST wdir10 ST wdir10 GE temp30

ST wdir30 ST wdir30 ST wdir30 noise

SR wdir30 SR wdir30 SR wdir30 SR wspeed30

SR wspeed30 SR wspeed30 SR wspeed30 ST wdir10

(a) (b)

TABLE 10
Results for problem 3, SCE. The seven top-ranked variables for (a) 50 MW and (b) 75 MW thresholds for Tehachapi Pass.

been proposed to convert the wind speed and direction
generated by the numerical weather prediction codes
into the power forecast from a wind farm [26], [27].
These techniques help to address the uncertainty in the
wind speed and direction obtained from the codes and
the nonlinearity of the power curve used to convert the
speed into power. A similar approach is used in [28],
where data mining techniques are used in two ways:
to directly predict the power from weather data and
to use the weather data to predict the wind speed and
then generate the wind power. To reduce the number of
weather variables, principal component analysis is first
applied to the weather data. Alternately, one could use
time series analysis to predict wind power, as described
in [29], where the focus is on predicting ramp events.

Our work presented in this paper differs from the
above in one crucial way. We are not using data mining

techniques to either predict, or improve the prediction
of, wind power forecasts from a wind farm. Instead,
we assume that the forecasts are already provided and
investigate how we can use data mining techniques,
applied to historical data, to provide insights the con-
trol room operators can use to make better scheduling
decisions. Our approach is applicable when the forecasts
available are not accurate enough, resulting in a need for
additional information.

7 CONCLUSIONS AND FUTURE WORK

In this paper, we discussed how we can use data mining
techniques to provide control room operators additional
information they can use to make informed decisions in
scheduling wind energy on the power grid. Our focus
was on days with inaccurate forecasts and ramp events
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as these conditions pose the greatest challenge to opera-
tors. Using data from Tehachapi Pass and mid-Columbia
Basin, we showed that feature selection techniques and
predictive models, such as decision trees, can provide
useful insights.
There are several ways in which we can extend this

work. From an algorithm viewpoint, we can investigate
some of the newer feature selection methods, such as
those based on a spectral approach [30], and explore
the use of cost-sensitive learning [31] to address the
unequal costs of different types of errors. As the cost
information is unlikely to be available precisely, working
with cost intervals [32] might be more appropriate in our
problem. From the application viewpoint, we can apply
the techniques to data over longer time periods to deter-
mine how the results are affected by changing weather
patterns over several years as well as the increase in
installed wind capacity. The longer time series would
also allow us to evaluate if the accuracy of predictions
is seasonal, for example, is the accuracy of prediction of
ramp events in the summer months the same as in the
winter months? Finally, as more sensors are deployed
to improve the forecasts of wind power generation, we
can also exploit the data from these sensors in predictive
analysis.
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