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Abstract

Graphs are used to model interactions in a variety of contexts, and there is a growing
need to quickly assess the structure of such graphs. Some of the most useful graph metrics are
based on triangles, such as those measuring social cohesion. Algorithms to compute them can be
extremely expensive, even for moderately-sized graphs with only millions of edges. Previous work
has considered node and edge sampling; in contrast, we consider wedge sampling, which provides
faster and more accurate approximations than competing techniques. Additionally, wedge
sampling enables estimation local clustering coefficients, degree-wise clustering coefficients,
uniform triangle sampling, and directed triangle counts. Our methods come with provable
and practical probabilistic error estimates for all computations. We provide extensive results
that show our methods are both more accurate and faster than state-of-the-art alternatives.

1 Introduction

Graphs are used to model infrastructure networks, the World Wide Web, computer traffic, molecular
interactions, ecological systems, epidemics, citations, and social interactions, among others. Despite
the differences in the motivating applications, some topological structures have emerged to be
important across all these domains. In particular, the triangle is a manifestation of homophily
(people become friends with those similar to themselves) and transitivity (friends of friends become
friends). The triangle structure of a graph is commonly used in the social sciences for positing
various theses on behavior [11, 23, 7, 14]. Triangles have also been used in graph mining applications
such as spam detection and finding common topics on the WWW [13, 4]. A new generative
model, Blocked Two-Level Erdös-Rényi (BTER) [26], can capture triangle behavior in real-world
graphs, but necessarily requires the degree-wise clustering coefficients as input. Relationships
among degrees of triangle vertices can also be used as a descriptor of the underlying graph [12].

In this paper, we study the idea of wedge sampling, i.e., choosing random wedges (from a uniform
distribution over all wedges) to compute various triadic measures on large-scale graphs. We provide
precise probabilistic error bounds where the accuracy depends on the number of random samples.
The term wedge refers to a path of length 2; in Fig. 1, 2 – 1 – 3 is a wedge centered at node 1.
A triangle is a cycle of length 3; in Fig. 1, 3 – 4 – 5 is a triangle. We say a wedge is closed if its
vertices form a triangle. Observe that each triangle consists of three closed wedges.
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Figure 1: Example graph with n = 7 vertices, m = 8 edges, W = 18 wedges, and T = 2 triangles.

1.1 Triadic measures on graphs Let n, m, W , and T denote the number of nodes, edges,
wedges, and triangles, respectively, in a graph G. A standard algorithmic task is to count (or
approximate) T . There are many other “triadic” measures associated with graphs as well. The
following are classic quantities of interest, and are defined on undirected graphs. (Formal definitions
are given in Tab. 1.)

• Transitivity or global clustering coefficient [34]: This is κ = 3T/W , and is the fraction of
wedges that are closed (i.e., participate in a triangle). Intuitively, it measures how often friends of
friends are also friends, and it is the most common triadic measure.
• Local clustering coefficient [35]: The clustering coefficient of vertex v (denoted by Cv) is the

fraction of wedges centered at v that are closed. The average of Cv over all vertices v is the local
clustering coefficient, denoted by C.
• Degree-wise clustering coefficients: We let Cd denote the average clustering coefficient of

degree-d vertices. In addition to degree distribution, many graphs are characterized by plotting the
degree-wise clustering coefficients, i.e., Cd, versus d.

In Fig. 1, the transitivity is κ = 3T/W = 3 · 2/18 = 1/3. The clustering coefficients of the vertices
are 0, 0, 1/3, 1/5, 1, 1, and 1 in order, and the local clustering coefficient is 0.5048. In general, the
most direct method to compute these metrics is an exact computation that finds all triangles. For
degree-wise clustering coefficients, no other method was previously known.

Triangles and transitivity in directed graphs have also been the subject of recent work (see
e.g. [27] and references therein). In a directed graph, edges are ordered pairs of vertices of the
form (i, j), indicating a link from node i to node j. When edges (i, j) and (j, i) exist, we say there
is a reciprocal edge between i and j. If just one edge exists, then we say it is a one-way edge.
Considering all possible combinations of reciprocal and one-way edges leads to 6 different wedges
and 7 different triangles.

1.2 Our contributions In this paper, we discuss the simple yet powerful technique of wedge
sampling for counting triangles. Wedge sampling is really an algorithmic template, since various
algorithms can be obtained from the same basic idea. It can be used to estimate all the different
triadic measures detailed above. The method also provides precise probabilistic error bounds where
the accuracy depends on the number of random samples. The mathematical analysis of this method
is a direct consequence of standard Chernoff-Hoeffding bounds. If we want an estimate for κ with
error ε ≤ 0.1 with probability 99.9% (say), we need only 380 wedge samples. This estimate is
independent of the size of the graph, though the preprocessing required by our method is linear in
the number of edges (to obtain the degree distribution).

We discovered older independent work by Schank and Wagner that proposes the same wedge
sampling idea for estimating the global and local clustering coefficients [24]. Our work extends
that in several directions, including several other uses for wedge sampling (such as directed triangle
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counting, random triangle sampling, degree-wise clustering coefficients) and much more extensive
numerical results. This manuscript is an extended version of [28]; here we give more detailed
experimental results and also show how wedge sampling applies to computing directed triangle
counts. A detailed list of contributions follows.
• Computing the transitivity (global clustering coefficient) and local clustering

coefficient: We show how to use wedge sampling to approximate the global and local clustering
coefficients: κ and C. We compare these methods to the state of the art, showing significant
improvement for large-scale graphs.
• Computing degree-wise clustering coefficients: The idea of wedge sampling can be

extended for more detailed measurements of graphs. We show how to calculate the degree-wise
clustering coefficients, {Cd} for d = 1, . . . , dmax. The only other competing method that can
compute {Cd} is an exhaustive enumeration. We compare with the basic fast enumeration algorithm
given by [8, 25] (which has been studied and reinvented by [10, 29]).
• Computing triangles per degree: Wedge sampling can also be employed to sample

random triangles, including the application of estimating the number of triangles containing one
(or more) vertices of degree d, denoted {Td} for d = 1, . . . , dmax.
• Counting directed triangles: Few methods have been considered for counting triangles

in directed graphs. It is especially complicated because there are 7 types of triangles to consider.
Once again, the versatility of wedge sampling is used to develop a method for counting all types of
directed triangles.

1.3 Related Work There has been significant work on enumeration of all triangles [8, 25, 20, 5,
9]. Recent work by Cohen [10] and Suri and Vassilvitskii [29] give MapReduce implementations of
these algorithms. Arifuzzaman et al. [1] give a massively parallel algorithm for computing clustering
coefficients. Enumeration algorithms however, can be very expensive, since graphs even of moderate
size (millions of vertices) can have an extremely large number of triangles (see, e.g., Tab. 2).
Eigenvalue/trace based methods have been used by Tsourakakis [32] and Avron [2] to compute
estimates of the total and per-degree number of triangles. However, computing eigenvalues (even
just a few of them) is a compute-intensive task and quickly becomes intractable on large graphs.
In our experiment, even computing the largest eigenvalue was multiple orders of magnitude slower
than full enumeration.

Most relevant to our work are sampling mechanisms. Tsourakakis et al. [30] started the use
of sparsification methods, the most important of which is Doulion [33]. This method sparsifies
the graph by keeping each edge with probability p; counts the triangles in the sparsified graph;
and multiplies this count by p−3 to predict the number of triangles in the original graph. Various
theoretical analyses of this algorithm (and its variants) have been proposed [19, 31, 22]. One of
the main benefits of Doulion is that it reduces large graphs to smaller ones that can be loaded into
memory. However, the Doulion estimate can suffer from high variance [36]. Alternative sampling
mechanisms have been proposed for streaming and semi-streaming algorithms [3, 17, 4, 6]. Yet, all
these fast sampling methods only estimate the number of triangles and give no information about
other triadic measures.

In subsequent work by the authors of this paper, a Hadoop implementation of these techniques
is given in [18], and a streaming version of the wedge sampling method is presented in [16].
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Table 1: Graph notation and clustering coefficients for undirected graphs

n number of vertices nd number of vertices of degree d
m number of edges dv degree of vertex v
Vd set of degree-d vertices W total number of wedges
Wv number of wedges centered at vertex v T total number of triangles
Tv number of triangles incident to vertex v Td number of triangles incident to degree-d

vertices

κ = 3T/W transitivity
Cv = Tv/Wv clustering coefficient of vertex v
C = n−1

∑
v Cv local clustering coefficient

Cd = n−1
d

∑
v∈Vd Cv degree-wise clustering coefficient

2 Overview of wedge sampling

We present the general method of wedge sampling for estimating clustering coefficients. In later
sections, we instantiate this for different algorithms. Before we begin, we summarize the notation
presented in §1 in Tab. 1.

We say a wedge is closed if it is part of a triangle; otherwise, the wedge is open. Thus, in Fig. 1,
5 - 4 - 6 is an open wedge, while 3 - 4 - 5 is a closed wedge. The middle vertex of a wedge is called
its center, i.e., wedges 5 - 4 - 6 and 3 - 4 - 5 are centered at 4 .

Wedge sampling is best understood in terms of the following thought experiment. Fix some
distribution over wedges and let w be a random wedge. Let X be the indicator random variable
that is 1 if w is closed and 0 otherwise. Denote µ = E[X].

Suppose we wish to estimate µ. We simply generate k independent random wedges
w1, w2, . . . , wk, with associated random variables X1, X2, . . . , Xk. Define X̄ = 1

k

∑
i≤kXi as our

estimate. The Chernoff-Hoeffding bounds give guarantees on X̄, as follows.

Theorem 2.1. (Hoeffding [15]) Let X1, X2, . . . , Xk be independent random variables with 0 ≤
Xi ≤ 1 for all i = 1, . . . , k. Define X̄ = 1

k

∑k
i=1Xi. Let µ = E[X̄]. Then for ε ∈ (0, 1), we have

Pr
{
|X̄ − µ| ≥ ε

}
≤ 2 exp(−2kε2).

Hence, if we set k = d0.5ε−2 ln(2/δ)e, then Pr[|X̄−µ| > ε] < δ. In other words, for k samples, with
confidence at least 1− δ, the error in our estimate is at most ε.

Fig. 2 shows the number of samples needed as the error rate varies. We show three curves for
different confidence levels. Increasing the confidence has minimal impact on the number of samples.
The number of samples is fairly low for error rates of 0.1 or 0.01, but it increases with the inverse
square of ε.

3 Computing the transitivity and the number of triangles

We use the wedge sampling scheme to estimate the transitivity, κ. Consider the uniform distribution
on wedges. We can interpret E[X] as the probability that a uniform random wedge is closed or,
alternately, the fraction of closed wedges.

To generate a uniform random wedge, note that the number of wedges centered at vertex v is
Wv =

(
dv
2

)
and W =

∑
vWv. We set pv = Wv/W to get a distribution over the vertices. Note

that the probability of picking v is proportional to the number of wedges centered at v. A uniform
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Figure 2: The number of samples needed for different error rates and different levels of confidence.
A few data points at 99.9% confidence are highlighted.

random wedge centered at v can be generated by choosing two random neighbors of v (without
replacement).

Claim 3.1. Suppose we choose vertex v with probability pv and take a uniform random pair of
neighbors of v. This generates a uniform random wedge.

Proof. Consider some wedge w centered at vertex v. The probability that v is selected is
pv = Wv/W . The random pair has probability of 1/

(
dv
2

)
= 1/Wv. Hence, the net probability

of w is 1/W . �

Alg. 1 shows the randomized algorithm κ-wedge sampler for estimating κ in a graphG. Observe
that the first step assumes that the degree of each vertex is already computed. Sampling with
replacements means that we sample from the original distribution repeatedly and repeats are
allowed. Sampling without replacement means that we cannot pick the same item twice.

Algorithm 1 Computing the transitivity (κ-wedge sampler)

1: Select k random vertices (with replacement) according to the probability distribution defined
by {pv} where pv = Wv/W .

2: For each selected vertex v, choose two neighbors of v (uniformly at random without replacement)
to generate a random wedge. The set of all wedges comprises the sample set.

3: Output the fraction of closed wedges in the sample set as estimate of κ.

Combining the bound of Thm. 2.1 with Claim 3.1, we get the following theorem. Note that the
number of samples required is independent of the graph size, but computing pv does depend on the
number of edges, m.

Theorem 3.1. Set k = d0.5ε−2 ln(2/δ)e. The algorithm κ-wedge sampler outputs an estimate X̄
for the transitivity κ such that |X̄ − κ| < ε with probability greater than (1− δ).

To get an estimate on T , the number of triangles, we output X̄ ·W/3, which is guaranteed to
be within ±εW/3 of T with probability greater than 1− δ.

We implemented our algorithms in C and ran our experiments on a computer equipped with
a 2.3GHz Intel core i7 processor with 4 cores and 256KB L2 cache (per core), 8MB L3 cache, and
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Table 2: Properties of the graphs and runtimes for enumeration.

Graph Nodes Edges Wedges Triangles Transitivity Local CC Enum.
Name n m W T κ C Time (secs)

amazon0312 401K 2350K 69M 3686K 0.160 0.421 0.261
amazon0505 410K 2439K 73M 3951K 0.162 0.427 0.269
amazon0601 403K 2443K 72M 3987K 0.166 0.430 0.268
as-skitter 1696K 11095K 16022M 28770K 0.005 0.296 90.897

cit-Patents 3775K 16519K 336M 7515K 0.067 0.092 3.764
roadNet-CA 1965K 2767K 6M 121K 0.060 0.055 0.095

web-BerkStan 685K 6649K 27983M 64691K 0.007 0.634 54.777
web-Google 876K 4322K 727M 13392K 0.055 0.624 0.894

web-Stanford 282K 1993K 3944M 11329K 0.009 0.629 6.987
wiki-Talk 2394K 4660K 12594M 9204K 0.002 0.201 20.572

youtube 1158K 2990K 1474M 3057K 0.006 0.128 2.740
flickr 1861K 15555K 14670M 548659K 0.112 0.375 567.160

livejournal 5284K 48710K 7519M 310877K 0.124 0.345 102.142
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Figure 3: Speed-up over enumeration (in log-scale) for transitivity computation with increasing
numbers of wedge samples.

an 8GB memory. We performed our experiments on 13 graphs from SNAP [37] and per private
communication with the authors of [21]. In all cases, directionality is ignored, and repeated and
self-edges are omitted. The properties of these matrices are presented in Tab. 2. The last column
reports the times for the enumeration algorithm. This is based on the principles of [8, 25, 10, 29]:
each edge is assigned to the vertex with a smaller degree (using the vertex numbering as a tie-
breaker), and then vertices only check wedges formed by edges assigned to them for closure.

As seen in Fig. 3, wedge sampling is orders of magnitude faster than the enumeration algorithm.
The timing results show tremendous savings; for instance, wedge sampling only takes 0.026 seconds
on as-skitter while full enumeration takes 90 seconds.

Fig. 4 shows the accuracy of the wedge sampling algorithm. At 99.9% confidence (δ = 0.001),
the upper bound on the error we expect for 2K, 8K, and 32K samples is .043, .022, and .011,
respectively. Most of the errors are much less than the bounds would suggest. For instance, the
maximum error for 2K samples is .007, much less than that 0.43 given by the upper bound.
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Figure 4: Absolute error in transitivity for increasing numbers of wedge samples.
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Figure 5: Convergence of transitivity estimate as the number of samples increases for amazon0505.

We show the rate of convergence in Fig. 5 for the graph amazon0505 as the number of samples
increases. The dashed line shows the error bars at 99.9% confidence. Note that the convergence is
fast and the error bars are conservative in this instance.

4 Computing the local clustering coefficient

We now demonstrate how a small change to the underlying distribution on wedges allows us to
compute the clustering coefficient, C. Alg. 2 shows the procedure C-wedge sampler. The only
difference between C-wedge sampler and κ-wedge sampler is in picking random vertex centers.
Vertices are picked uniformly instead of from the distribution {pv}.

Algorithm 2 Computing the local clustering coefficient (C-wedge sampler)

1: Pick k uniform random vertices (with replacement).
2: For each selected vertex v, choose two neighbors of v (uniformly at random without replacement)

to generate a random wedge. The set of all wedges comprises the sample set.
3: Output the fraction of closed wedges in the sample set as an estimate for C.

Theorem 4.1. Set k = d0.5ε−2 ln(2/δ)e. The algorithm C-wedge sampler outputs an estimate X̄
for the clustering coefficient C such that |X̄ − C| < ε with probability greater than (1− δ).
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Proof. Let us consider a single sampled wedge w, and let X(w) be the indicator random variable
for the wedge being closed. Let V be the uniform distribution on edges. For any vertex v, let Nv
be the uniform distribution on pairs of neighbors of v. Observe that

E[X] = Pr
v∼V

[ Pr
(u,u′)∼Nv

[wedge {(u, v), (u′, v)} is closed]]

We will show that this is exactly C.

C = n−1
∑
v

Cv = Ev∼V [Cv]

= Ev∼V [frac. of closed wedges centered at v]

= Ev∼V [ Pr
(u,u′)∼Nv

[{(u, v), (u′, v)} is closed]]

= Pr
v∼V

[ Pr
(u,u′)∼Nv

[{(u, v), (u′, v)} is closed]] = E[X]

For a single sample, the probability that the wedge is closed is exactly C. The bound of Thm. 2.1
completes the proof. �

Fig. 6 presents the results of our experiments for computing the clustering coefficients.
Experimental setup and the notation are the same as before. The results again show that wedge
sampling provides accurate estimations with tremendous improvements in runtime. For instance,
for 8K samples, the average speedup is 10K.
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Figure 6: Local clustering coefficient results for increasing numbers of wedge samples.

5 Computing degree-wise clustering coefficients

The real power of wedge sampling is demonstrated by estimating the degree-wise clustering
coefficients {Cd}. Alg. 3 shows procedure Cd-wedge sampler.

Theorem 5.1. Set k = d0.5ε−2 ln(2/δ)e. The algorithm Cd-wedge sampler outputs an estimate
X̄ for the clustering coefficient Cd such that |X̄ − Cd| < ε with probability greater than (1− δ).
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Figure 7: Computing degree-wise clustering coefficients using wedge sampling

Proof. The proof is analogous to that of Thm. 4.1. Since Cd is the average clustering coefficient of
a degree-d vertex, we can apply the same arguments as in Thm. 4.1. �

Algorithms in the previous section present how to compute the clustering coefficient of vertices
of a given degree. In practice, it may be sufficient to compute clustering coefficients over bins of
degrees. Wedge sampling algorithms can be performed for bins of degrees by a small adjustment
of the sampling. Within each bin, we weight each vertex according to the number of wedges it
produces. This guarantees that each wedge in the bin is equally likely to be selected. For instance,
if we bin degree-3 and degree-4 vertices together, we will weight a degree-4 vertex twice as much
as a degree 3-vertex, since a degree vertex generates

(
3
2

)
= 3 wedges whereas a degree-4 vertex has(

4
2

)
= 6. See [18] for details of binned computations.
Fig. 7 shows results of Alg. 3 on three graphs for clustering coefficients. In these experiments,

we chose to group vertices in logarithmic bins of degrees, i.e., { 2 } , { 3, 4 } , { 5, 6, 7, 8 } , . . . . In
other words, 2i−1 < dv ≤ 2i form the i-th bin. The same algorithm can be used for an arbitrary
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Algorithm 3 Computing clustering coefficients by degree (Cd-wedge sampler)

1: Pick k uniform random vertices of degree d (with replacement).
2: For each selected vertex v, choose a uniform random pair of neighbors of v to generate a

wedge.choose two neighbors of v (uniformly at random without replacement) to generate a
random wedge. The set of all wedges comprises the sample set.

3: Output the fraction of closed wedges in the sample set as an estimate for Cd.

binning of the vertices. We show the estimates with increasing number of samples. At 8K samples,
the error is expected to be less than 0.02, which is apparent in the plots. Observe that even 500
samples yields a reasonable estimate in terms of the differences by degree.

Fig. 8 shows the time to calculate the binned Cd values compared to enumeration; there is a
tremendous savings in runtime as a result of using wedge sampling. In this figure, runtimes are
normalized with respect to the runtimes of full enumeration. As the figure shows, wedge sampling
takes only a tiny fraction of the time of full enumeration, especially for large graphs.
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Figure 8: Speed-up in binned degree-wise clustering coefficient computation time for increasing
numbers of wedge samples

6 Counting undirected triangles per degree

By modifying the template given in §2, we can also get estimates for Td (the number of triangles
incident to degree-d vertices). Instead of counting the fraction of closed wedges, we take a weighted
sum. Alg. 4 describes the procedure Td-wedge sampler. We let Wd = nd ·

(
d
2

)
denote the total

number of wedges centered at degree-d vertices.

Theorem 6.1. Set k = d0.5ε−2 ln(2/δ)e. The algorithm Td-wedge sampler outputs an estimate
Wd · Ȳ for the Td with the following guarantee: |Wd · Ȳ − Td| < εWd with probability greater than
1− δ.

Proof. For a single sampled wedge wi, we define Yi. We will argue below that the expected value
of E[Y ] is exactly Td/Wd. Once we have that, an application of the Hoeffding bound of Thm. 2.1
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Algorithm 4 Computing triangles by degree (Td-wedge sampler)

1: Pick k uniform random vertices of degree d (with replacement).
2: For each selected vertex v, choose two neighbors of v (uniformly at random without replacement)

to generate a random wedge. The set of all wedges comprises the sample set.
3: For each wedge wi in the sample set, let Yi be the associated random variable such that

Yi =


0 if w is open,
1
3 if w is closed and has 3 vertices in Vd,
1
2 if w is closed and has 2 vertices in Vd,

1 if w is closed and has 1 vertex in Vd.

4: Set Ȳ = 1
k

∑
i Yi.

5: Output Wd · Ȳ as the estimate for Td.

shows that |Ȳ − Td/Wd| < ε with probability greater than 1 − δ. Multiplying this inequality by
Wd, we get |Wd · Ȳ − Td| < εWd, completing the proof.

To show E[Y ] = Td/Wd, partition the set of all wedges centered on degree d vertices into four
sets S0, S1, S2, and S3. The set Si (i 6= 0) contains all closed wedges containing exactly i degree-d
vertices. The remaining open wedges go into S0. For a sampled wedge w, if w ∈ Si, i 6= 0, then
Yi = 1/i. If w ∈ S0, then Yi = 0. The wedge w is a uniform random wedge from those centered on
degree-d vertices. Hence, E[Y ] = W−1

d (|S1|+ |S2|/2 + |S3|/3).
Now partition the set of triangles involving degree d vertices into three sets S′1, S

′
2, S
′
3, where S′i

is the set of triangles with i degree d vertices. Observe that |Si| = i|S′i|. If a triangle has i vertices
of degree d, then there are exactly i wedges centered in degree d vertices (in that triangle). So,
|S1|+ |S2|/2 + |S3|/3 = |S′1|+ |S′2|+ |S′3| = Td. Therefore, E[Y ] = Td/Wd. �

The results of Alg. 4 are shown in Fig. 9. Once again, the data is grouped in logarithmic bins of
degrees, i.e., { 2 } , { 3, 4 } , { 5, 6, 7, 8 } , . . . . In other words, 2i−1 < dv ≤ 2i form the i-th bin. The
number of samples is k = 2000. Here we also show the error bars corresponding to 99% confidence
(δ = 0.01).

7 Counting directed triangles

Counting triangles in directed graphs is more difficult, because there are six types of wedges and
seven types of directed triangles (up to isomorphism); see Fig. 10. As mentioned earlier, a reciprocal
edge is a pair of one-way edges {(i, j), (j, i)} that are treated as a single reciprocal edge. For each
vertex v, we have three associated degrees: the indegree, outdegree, and reciprocal degree, denoted
by d←v , d→v , and d↔v , respectively.

We can generalize wedge sampling to count the different triangles types in Fig. 10b. This is
done by randomly sampling the different wedges, and looking for various directed closures. We
need some notation to formalize various directed triangle concepts, which is adapted from [27].

Naturally, the first step is to construct methods for sampling the different wedge types (see
Fig. 10a). For wedge type ψ, let Wψ denote the number of wedges of this type. For vertex v, let
Wv,ψ be the number of ψ-wedges centered at v. It is straightforward to compute Wv,ψ given the
degrees of v; see the formulas in Fig. 10c.

Given the number of ψ-wedges per vertex, we can use our standard template to sample a uniform
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Figure 9: Number of triangles per degree bin. The red asterisk is the exact count, while the blue
box is the estimate based on 2000 samples. The bars show the error at 99% confidence.
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Figure 10: Information for counting triangles in directed graphs.

13



random ψ-wedge. This is given in the first two steps of Alg. 5. The procedure to select a uniform
random ψ-wedge centered at v depends on the wedge type. For example, to sample a type-(i)
wedge, we pick a uniform random pair of out-neighbors of v (without replacement). To sample a
type-(ii) wedge, we pick a uniform random out-neighbor, and a uniform random in-neighbor. All
other wedge types are sampled analogously.

To get the triangle counts, we need a directed transitivity that measures the fraction of closed
directed wedges. Of course, a directed wedge can close into many different types of triangles.
For example, an type-(i) wedge can close into a type-(a) or type-(c) triangle. To measure this
meaningfully, a set of directed closure measures are defined in [27]. We restate these definitions
and show how to count triangles using these measures.

Let χ(ψ, ρ) denote the number of type-ψ wedges in a type-ρ triangle. For example, a type-(a)
triangle contains exactly one type-(i) wedge, but a type-(b) triangle contains three type-(ii) wedges.
The list of these values is given in Fig. 10d.

We say that a ψ-wedge is ρ-closed if the wedge participates in a ρ-triangle. The number of such
wedges is exactly χ(ψ, τ)Tρ (where Tρ is the number of ρ-triangles). The (ψ, ρ)-closure, κψ,ρ, is the
fraction of ψ-wedges that are ρ-closed.

κψ,ρ =
χ(ψ, ρ)Tρ
Wψ

There are 15 non-trivial (ψ, ρ)-closures, corresponding to the non-zero entries in Fig. 10d. By the
wedge sampling framework, we can estimate any κψ,ρ value. This value can be used to estimate Tρ.

Algorithm 5 Computing directed closure ratios (κ(ψ, ρ)-sampler)

1: Select k random vertices (with replacement) according to the probability distribution defined
by {pv} where pv = Wv,ψ/Wψ.

2: For each selected vertex v, pick a uniform random ψ-wedge centered at v. Note that if both
edges are of the same type (i.e., two out-edges), then sampling is done without replacement.
Otherwise, since the two edge-types are distinct and the sampling is independent.

3: Determine k′, the number of ρ-closed wedges among the sampled wedges.
4: Compute estimate κ̂ψ,ρ = k′/k for κψ,ρ.
5: Output estimate κ̂ψ,ρ ·Wψ/χ(ψ, ρ) for Tρ.

Theorem 7.1. Fix a triangle type ρ and wedge type ψ such that χ(ψ, ρ) 6= 0. Set k =
d0.5ε−2 ln(2/δ)e. The algorithm κ(ψ, ρ)-sampler outputs an estimate T̂ρ for Tρ such that |T̂ρ−Tρ| <
εWψ/χ(ψ, ρ) with probability greater than (1− δ).

Proof. Using the Hoeffding bound, we can argue (as before) that |κ̂ψ,ρ− κψ,ρ| < ε with probability
at least (1−δ). We multiply this inequality by Wψ/χ(ψ, ρ) and observe that Tρ = κψ,ρ ·Wψ/χ(ψ, ρ).

The experimental setup is the same as in the previous sections. We performed our experiments
on 8 directed graphs, described in Tab. 3. The results of applying Alg. 5 are shown in Fig. 11. We
use 32K wedges samples for each of four specific wedge types (detailed below). As can be seen, we
get accurate results for all triangle types, except possibly type-(b) triangles. These are so few that
they do not even appear in the plot.
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Table 3: Properties of the directed graphs

Graph Name Nodes Dir. Edges Wedges Triangles r κ

amazon0505 410K 3357K 73M 3951K 0.55 0.162
web-Stanford 282K 2312K 3944M 11330K 0.28 0.009

web-BerkStan 685K 7601K 27983M 64691K 0.25 0.007
wiki-Talk 2394K 5021K 12594M 9204K 0.14 0.002

web-Google 876K 5105K 727M 13392K 0.31 0.055
youtube 1158K 4945K 1474M 3057K 0.79 0.006

flickr 1861K 22614K 14675M 548659K 0.62 0.112
livejournal 5284K 76938K 7519M 310877K 0.73 0.124
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Figure 11: Directed triangle counts using wedge sampling
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Figure 12: Relative error for the 7 triangle types

We take a closer look at the results, using relative error plots. For brevity, we provide these only
for amazon0505 and web-Stanford graphs, and give an average over all the graphs. A clear pattern
appears, where the relative error for type-(b) triangles is worse than the others. This is where a
weakness of wedge sampling becomes apparent: When a triangle type is extremely infrequent,
wedge sampling is limited in the quality of the estimate. More details are shown in Tab. 4, where
we show the relative error for these triangles, as well the fraction of these triangles (with respect to
the total count). Across the board, we see that type-(b) triangles are extremely rare; hence, wedge
sampling is unable to get sharp estimates. It would be very interesting to design a fast method
that accuractely counts such rare triangles.

Table 4: A closer look at type-(b) triangles

Graph Relative Error Count Ratio to all triangles

amazon0505 0.105 623 0.00013
web-Stanford 0.061 9016 0.00053

web-BerkStan 0.063 23035 0.00026
wiki-Talk 0.162 171903 0.01497

web-Google 0.166 34418 0.00189
flickr 0.030 773098 0.00111

youtube 0.113 118 0.00002
livejournal 0.173 188666 0.00047

There are some subtleties about the implementation that are worth mentioning. We have a
choice of which wedge types to use to count ρ-triangles. We can get some reuse if we use the
same wedge type to count multiple triangles. For instance, type-(a) triangles can be counted using
sampling over type (i), (ii), or (iii) wedges. By Thm. 7.1, sampling over ψ-wedges yields error is
εWψ/χ(ψ, ρ). Hence, less frequent wedge types give better approximations for the same triangle
type. Symmetrically, the same wedge type can be used to count multiple triangle types. For
instance, (ii)-wedges can be used to count type (a), (b), and (d) triangles. We use the following
wedges for our triangle counts:
• type-(ii) wedges are used to count triangles of type (a) and (b),
• type-(v) wedges are used to count triangles of type (c) and (f),
• type-(iv) wedges are used to count triangles of type (d) and (e), and
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Figure 13: Estimates of the number of type-(a) triangles using different wedges types. Sample size
is fixed to 32K.

• type-(vi) wedges are used to count triangles of type (g).
The combinations that we use are boldface in Fig. 10d. The choice of wedge can impact the accuracy
of the directed triangle counts. For example, type-(a)-triangles can be counted using wedges of type
(i), (ii), or (iii). In Fig. 13, we show the relative error in the estimate for type-(a) triangles using
32K samples via the different wedge types. Because of the high frequency of type-(iii) wedges, the
error in triangle counts using these wedges is quite large. Other than one case, (ii)-wedges are the
best choice.

8 Conclusions and future work

We proposed a series of wedge-based algorithms for computing various triadic measures on graphs.
Our algorithms come with theoretical guarantees in the form of specific error and confidence bounds.
The number of samples required to achieve a specified error and confidence bound is independent
of the graph size. For instance, 38,000 samples suffice for an additive error in the transitivity of less
than 0.01 with 99.9% confidence for any graph. The limiting factors have to do with determining
the sampling proportions; for instance, we need to know the degree of each vertex and the overall
degree distribution to compute the transitivity.

The flexibility of wedge sampling along with the hard error bounds essentially redefines what is
feasible in terms of graph analysis. The very expensive computation of clustering coefficient is now
much faster and we can consider much larger graphs than before. In an extension of this work, we
described a MapReduce implementation of this method that scales to billions of edges, leading to
some of the first published results at these sizes [18].

With triadic analysis no longer being a computational burden, we can extend our horizons into
new territories and look at attributed triangles (e.g., we might compare the clustering coefficient for
“teenage” versus “adult” nodes in a social network), evolution of triadic connections, higher-order
structures such as 4-cycles and 4-cliques, and so on.
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