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Abstract

Linear regression models depend directly on the designixraxtd its proper-
ties. Techniques that efficiently estimate model coeffisiby partitioning rows of
the design matrix are increasingly popular for large-spadblems because they fit
well with modern parallel computing architectures. We sgpa simple measure
of concordancebetween a design matrix and a subset of its rows that esmate
how well a subset captures the variance-covariance steiofia larger data set.
We illustrate the use of this measure in a heuristic methoddtecting row parti-
tion sizes that balance statistical and computationalieffay goals in real-world
problems.

1 Introduction

A common procedure in supervised learning problems whemtimeber of rows of
data is large and far exceeds the number of columns is tdipartie rows, fit models
on individual partitions, and combine them by averaging thieo aggregation into a
single model. This computational approach is referred ttbasde and Recombine”
(D&R) in|Guhaet al. (2012) and has gained wide use in part because it can beloegcri
as a single MapReduce (Dean and Ghemawat,| 2008) step ansilisigglemented
in software frameworks like Hadoop (Apache Software Fotinda2014) and Spark
(Zahariaet all,12010).

Partitions are constructed either bgnditioning-variable divisioror replicate di-
vision The former adds samples to a partition based on one or mdhe ofariables
in the data. For categorical variables this generally meaesartition per level and is
equivalent to a variable interaction between the categbvariable being conditioned
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on all other regressors in the model. For continuous vaggathlis means one partition
per range of values. Alternatively, data can be partiticsdedg multiple conditioning
variables. Replicate division creates partitions usimglcem sampling without replace-
ment.

Guhaet all (2012) provide conditions such that a model constructedvieyaaing
coefficients from ordinary least squares models alongeafdidivision data partitions
converges asymptotically to the single ordinary least segimodel fitted to all of the
data, called theeference modelWe constrain our attention to D&R under replicate
division to create a single, averaged model.

Note that the D&R method is related to boosting since in befes an ensemble
of models is created by sampling from the original data sdterg& are differences,
however. First, when boosting samples with replacemenD&R averaged model
samples without replacement. Second, where the resuliiofrig a boosted model is
an ensemble of individual learners the result of traininggdrlnodel is a single model
where parameters have been averaged together.

D&R describes a general computational approach to larde smgression and clas-
sification requiring only a single pass through the dataBleis gives D&R a compu-
tational advantage over those models which require malfyplsses through the data.
Matloffi (2014) extends both the statistical results by jlong a broader class estima-
tors under which D&R converges as well as the complexityyamigby showing that
the computational speed up can be greater than the numberadigbprocesses applied
to each division| Kleineet al. (2011) also developed the statistical theory further by
identifying a general class of models that converge underahdom partition assump-
tion as well as showing that bootstrap models can be createdch partition and the
ensemble of models over all partitions converges asynuatittito a single bootstrap
model over the entire data set.

There are at least two practical issues to consider wheneimgting the D&R
approach to model fitting with replicate division on distiibd data. First, partitions
should consist of random sets of rows to ensure that the ggrenodel converges to
its reference. This is important in real-world, finite-gizeroblems to avoid artifacts
related to ordering in the data, for example from the datbectbn process. If sam-
ples are arranged in partitions, without randomizatioantindividual partitions may
capture information that is drastically different from tbther partitions or the total
population. As a result, an aggregate model can performiypadren compared to its
reference.

The second challenge is in deciding the number of sampleblpek. The con-
vergence results show that the ensemble of models conveergles reference model
asymptotically in the number of random samples in the pamntt This implies that, to
minimize the difference between the ensemble and the referdlock sizes should be
as large as possible. However, the amount of speed-up &chiggenerally directly
proportional to the number of partitions (assuming eacklbis allocated its own pro-
cess). Therefore, there is a trade-off between the statistonsistency of a model
created using the D&R approach (with respect to its refaand the parallelism that
can be achieved when fitting the model.

The regression techniques presented work on subsets ofndispws and, with
this observation, a natural subsequent question is howdedhese individual subsets



represent the data set as a whole? This is a relevant qussimmif we have a small
representative subset then we may not need all of the datam&yebe able to fit a
model more efficiently by only using the representative sub# we find that some
subsets differ drastically from the rest of the data set we ne®d to investigate these
subsets further. They may indicate different underlyirgtienships that can be con-
ditioned upon or they may indicate data integrity issueseitner case they motivate
further investigation.

This paper explores the trade-off between statisticalisterecy and computational
efficiency by introducing a statistic that estimates thecomdance between a subset
and the entire data set based on their respective varian@giance structures. We
provide reproducible experiments that illustrate our egpicof concordance and its
use along with benchmark results. A final section is devatatigcussion and future
directions.

2 Motivating Case: Least Squares Regression

Consider the following example linear model and corresjrumigast squares problem:
Y =X +e¢, 1)

whereY, e € R", ands € R%, n > d; each element of is an i.i.d. random variable
with mean zero; and is a matrix inR™*% with full column rank. The ordinary
least squares problem is posedaas- argminy, || X3 — Y||* and has the closed form
analytic solution defined by the normal equations:

B=(X"X)"" X"y )

We remark that computed solutions rarely use Equéiion Ztljrbut rather use QR or
SVD decompositions oK for numerical stability. Equation] 2 remains important for
analysis purposes. Consider the row-wise partitioningopfdfior 1.:

Y; Xy €1

Yo X, €9
= B8+,

Y, X, Er

whereYy,Ys, ..., Y,, X1, Xo, ..., X, andeq, €9, ..., &, are data partitions such that each
block is composed of subsets of rows of a data set, blockdsjoérd, and the aggregate
of all blocks is the original data set. Without loss of gefigrave assume that /r = ¢
is an integer so that the number of samples in each submeatiieisame. The blocks
may, for example, be located in files across a network of caerpiuor distributed
computation.

When each of th&;’s represent a random partition Xfthen the estimate for least
squares regression coefficients using D&R averages th&-l@e estimates of the
slope coefficients;,

Bi = (X?Xz‘)il X7y, B= %Zﬁz (3)
i=1



Compare the D&R approach to block-wise computation of th#)(feast squares so-

lution:
T -1,
b= (ZX?XZ) > XY @)
=1 =1
Both approaches are similarly easy to compute in paralleé dverall computational
cost of both approachesa¥(d?), although the D&R approach (Equatidn 3) has a larger
constant term by a factor of compared to block-wise solution of the full problem
(Equatiori #).

Recall that the D&R solutiop is an estimate of the true solutigh It's reasonable
to ask the why one would spenabrecomputational effort to produce only an estimate
of a solution, when a similarly easy direct solution methedvailable. Despite the
apparent advantage of the direct block-wise solution ntetfmwn in Equatiobl4, the
D&R approach is potentially superior in two ways: lower netlwvcommunication cost
in parallel computing settings and better numerical stgbilVe outline each advantage
below.

Lower network communication cogtssume that the problem is distributed so that
each data block = 1,2,...,r is located on a different computer in a network. The
D&R approach shown in Equatigh 3 averagesets ofd model coefficients to produce
an averaged output model, for a totdlnumbers transmitted between computers over
the network. Block-wise solution of the full problem oudith in[4, by comparison,
sumsr partiald x d matrix products and vectors of lengthi, for a total ofrd? + rd
numbers to transmit over the network. Tdfecommunication cost for the full solution
is expensive when there are moderately large numbers ainciin the model matrix.
For example with 8-byte double precision floating point nenshr = 100 andd =
1000, the full problem solution must transn@00 MB across the network. The D&R
approach only transmit)0 KB by comparison.

Better numerical stability. Although we routinely use the normal equations for
analysis of least squares problems in exact arithmetia, tise computationally is not
recommended because the maXiX X is generally less well-conditioned (and never
better conditioned) thaK. Instead, least squares problems are typically computed us
ing either a QR or singular value decomposition of the modatixX. Unfortunately,
parallel computation of a QR or SVD factorization for blockwdistributed matrices
is neither easy nor readily available to most high-leveppaonming languages like R
and Python, especially in MapReduce-like computing aﬁinNote also that model
matrices involving contrast variables derived from sdezhfactor variables are often
sparse. SVD and QR decompositions destroy sparsity patsert the resulting fac-
torized model matrix may consume much more memory than tigsat. Distributed
computation of the full problem is typically performed ugithe normal equations as
shown in Equatiof]4 for these reasons. The D&R approach, hyrast, is free to
use numerically stable solution methods in each block. lh\ee since the blocks
are relatively small, loss of a sparse model matrix reprasiem in each block due to
factorization is more tolerable.

1A notable exception is HPC systems using ScaL APACK and M#-tlse Robd package, for example—
but these are usually very specialized systems.



We illustrate our point about numerical stability with a gimexample.

109 —1 1
X_(—l 105)7 ﬁ_(l)a and, y—Xﬁ
Note thatX is an ill-conditioned matrix, but not so ill-conditionedgoevent numerically-
stable technigues from working. This can be demonstratied tise R programming

environment|(R Core Tearn, 2014) to compare least squaré@®wf this example
computed using a stable technique and using the normaliegsat

> X <- matrix( c(le9,-1,-1,1le-5), 2)
(.1 [.2]

[1,] 1e+09 -1e+00

[2,] -1e+00 1e-05

>y <- X %%c(1,1)
One stable least-squares solution approach gives us tleetexisolution:

> qr.solve(Xy)
[.1]

[1,] 1

[2,] 1

Now with the normal equations. Note thatRwe form the inverse oK 7 X as
described in Equatidd 2.

> qr.solve(t(X) %% X) %%t(X) %%y
Error in gr.solve : singular matrix '’

a’ in solve

An informative error. If we override the error, we get a basiethat is very different
from what we expected:

> qgr.solve(t(X) %% X, tol=0) %%t(X) %%y
[.1]

[1,] 0. 9999995

[2,] 1080.4998042

The example, although pathological by design, shows thaguke normal equa-
tions directly to solve least squares problems can leadltomésor poor results. Evenin
better-conditioned problems, use of the normal equatidthsagult in a loss of numer-
ical accuracy in the solution. The D&R method is free to ergplamerically-stable
techniques in each block.

The normal-equation approach does have the advantagengf easily updatable.
data are received they can be added to a new block. If the {nloeKicients are stored
then updating the model is simply a matter of getting theestt for the new block
and once again averaging over all of the coefficient estimaithe removal of data
or the updating of an existing block can be handled similaiiize D&R method is
only updatable when the incoming data are guaranteed tesbrébdied at random, that
is there is no local correlation structure that exists onlyea block. The effect of
non-randomness is explored further in Secfion 6.2.



3 Common-basis Concordance

The previous section shows the trade-offs and charadtsrist estimating the slope
coefficients in a ordinary linear regression using the nbegaations along with D&R.
In both cases the slope coefficients are a function of thewee-covariance structure
among regression and regressor variables and it seemsaddesthat fitting subsets
a subset of data could give similar results and require lesgpatational complexity.
This section introduces concordance as a statistic fouuciagt how well a subset of
data represents the whole. For this paper, a data set ise4eptative” of a larger
data set if the correlation structure of the two data setsmndar and we are most
interested in the case where one data set is a small subset aiws of a larger data
set. In Sectiofi]7 other potential applications and direstiare proposed.

Let A andB ben x d andm x d matrices respectively The previous section is
meant to motivate withn, n > d; let AT A andB” B have eigenvalue decompositions
VIAAVandVT AV, VIV = I, respectively; and assunfiA”A)~* and(BTB)*
exist. The concordance of these two matrices is defined as

S(A,B) = - [|AB|[;.. 5)

whereBT = (B”B)~!B7 is the Moore-Penrose matrix pseudo-inverseBofand

| - |7 is the Frobenius matrix norm. This measure essentially evagpthe variance-
covariance structure between two matrices. A concordaalce\of one results when
ATA = BTB. The concordance value is less than one when there is, ongaer
less variance iA thanB, and the concordance value is greater than one in the reverse
case. Statistical characteristics of common-basis caacme will be derived in the
next section. The rest of this section derives some detéstiticharacteristics.

Proposition 1. If the common-basis concordance conditions specified aboidethen

2 = Aali)
1B =2 356 (6)

(i)

where) 4 (i) and Ap (i) are theith eigenvalues cA” A and B” B respectively.

Proof.
|AB'|[; =t (B (B"B) ' ATA (B"B) ' BT)
~tr(B"B (B"B) ' ATA (B'B) ') (7)
—tr (A A (B'B) 1) 8)
=tr (VIALVVIALV)
=tr (VVTAurEY) (9)
=1tr ()\A)\E )
Step$¥ and]9 follow from the cyclic permutation propertyte trace. O



Corollary 1. The matrix concordance remains unchanged if bAtand B are right-
multiplied by any orthonormal matrix, in particular the eigvector matrixV.

The corollary follows directly fronf AV(BV) |2 = || AVVTBT||2. = | ABT|).
Propositiori ]l and Corollaty 1 require that eigenvectorbefscatter matrices ¢f and
B are the same to show that the concordance of their variaomariance structure
only depends on their eigenvalues.

The matrix concordance for matrices sharing a common scat&ix eigenvector
basis is the ratios of the eigenvalues of their scatter oestriApplied to data-analytic
statistical challenges, concordance between two datdaesittan be analyzed to see
if both are samples from the same distribution. Furtherncoreordance allows us to
estimate how well a sample from a data set captures the carieovariance structure
of the entire data set.

4 Deriving the Ratio Distributions from the Concor-
dance Statistic

The previous section proposed a measure of concordancedretwo matrices with
the same variance-covariance structure based on the Fugbeorm of one matrix
normalized by the pseudo-inverse of the other. Furtherpibsgas shown that the
proposed concordance measure is preserved when each efahmedtrices is right-
multiplied by the eigenvector matrix of the shared varianoeariance matrix. In this
section, matrices will be assumed to be drawn at random frepeaified distribution
and the concordance’s distribution will be derived.

In particular, it will be assumed that the data to be analygeattawn from some
distribution with zero mean and known variance-covarianagrix >. A data set with
n samples will be denoteX|,,; indicating that the data set is made up of the set of
samples from 1 ta. By introducing this absolute index to the samples we caityeas
express the first samples inX,,) asXy; fori < n. Likewise, we can express all of
the samples except the firsas X,,}\ ;). When the concordance is calculated between
an entire data set and a subset it will be referred tovaslappingand when the data
sets are disjoint they will be referred to rmsn-overlapping

The concordancg (X[i] , X[n]) normalizes the variance-covariance matrixXf
by X, By Corollary[1 this is equivalent to projecting the datamtiie common
orthonormal column basis. The resulting orthonormalizatdance-covariance matrix
has zero expected values for all off-diagonal elements. didgonal elements are the
ratios of the common variance estimates, which reduce toracurandom variables
centered at one with standardized dispersion.

Proposition 2. Suppose thaX,,; is sampled from an i.i.d. multivariate normal distri-
bution. Then for sufficiently largé

S (X[i]7X[n]) AN (17 6121((7:;7__"_22)))

whereN is a normal distribution with specified mean and variancegpaeters.



Proof. The normed matrices in Equatibh 5 reduceitsums ofn squared standard
normals. Furthermoreof the samples are repeatedXy;; andX,,;. Then the concor-
dance can be expressed as:

1< Zkl M(k, j]?
S (X, X)) = = § k=1 I 10
(Xip, X)) d;iZkzl Nk 2 (10)
_1 - 122 194
_dglzk 1052
1 12“22
SiL AT -

whereM = X[,V ando; is thejth eigenvalue ok andZ;, is distributed as standard
normal. Each of thel terms in the summation are a ratid random variables. The
degrees of freedom in the numerator and denominator aré @qguandn respectively
with i of the sampled random variables appearing in both the nuoreand denom-
inator. The ratio ofy? distributions, where samples are repeated in the denoanjnat
is distributed as Beta. The result follows by applying thetca limit theorem to the
sample mean of independent Beta distributions each of which are multipbg the
constant: /. O

Proposition 3. Assume the same conditions as in Proposition 2 along witadaded
condition thatn >> ¢ >> 2. Then

. 2n
S (Xpigs Xpuja) ~ N (17 7)

Proof. By definition, the concordance is the same as in Equéfibn témxhat the
summation in the denominator goes from 1 to n. As a result we get a result similar
to Equatiori I where

Iy 3502
S (X, = 12
( [ ] d g k z+1 ( )
The ratio of independent? distributions, where the numerator and denominator are
normalized by their respective degrees of freedon#; iwith i andn — i. The result
follows by applying the central limit theorem to the sampleam ofd independenf
distributions. O

Proposition 4. Suppose thaK|,; is sampled from some distribution with constant
mean and variance-covariance. LBf be X,V as before. Ifl < j < d, Z is
standard normal, and the following joint convergence holds

ZMM ZM/@;] [ \/%2,14—%2.

k 1+1



Then the concordance is approximately distributed as Caugth location parameter

1 and scale parametey/(n — i) /i.

S (Xpig X\ i) ~ Cauchu( "z_l> (13)

Proof.
d

1 LSy Mk, 1
S (X, X)) = EZ LS Mk,
d

UJZ/\/_'
dZUJZ/\/TL—l (14)

mz
dz

Each term in the summation is a ratio of two normal randomakaeis. Equatioh 14
follows from the joint convergence assumption (Equalfioar the application of the
continuous mapping theorem. The ratio of two normally distied random variables,
with common location parameter, is distributed as Cauchs rEsult follows by real-
izing that the sample mean of independent Cauchy distabatiwith common location
and scale parameters is Cauchy with the same location atedErameter. O

The scale and location values based on the distributiosalteeare shown in Table
[I. It may be noted that, while the Cauchy approximation sebie fewer distributional
assumptions it is also less applicable. In particular itspsut includes the negative
reals. This is a result of taking the ratio of central limietiiem approximation of
two random variables, as shown in Equafioh 14. Howeverdivation may suggest
that, when the normal distribution assumptions do not hioédrésulting concordance
distribution is heavy-tailed.

Model L ocation Scale Approx. Concordance
Distr.
% Beta (%, 251) 1 "ol N (1,25-0)
Fan—i | 2 |2 | (L)
Cauchy (1, ":l) 1 \/? Cauchy (1, ?)

Table 1: The derived model distributions with their locatand scale parameters. Note
that for theF' and Beta model the approximate concordance assumes i >> 2.



5 Benchmark Description, Design, and | mplementation

To assess the behavior of the relative stability measumsosed in Equationl 5 this
section makes use of the “Airline on-time performance” da(RITA, 20009), which
was released for the 2009 American Statistical Associd@A) Section on Statisti-
cal Computing and Statistical Graphics biannual data déiipnsThe data set includes
commercial flight arrival and departure information fromt@mer 1987 to April 2008
for those carriers with at least 1% of domestic U.S. flights given year. In total, there
is information for over 120 million flights, with 29 varialdeelated to flight time, de-
lay time, departure airport, arrival airport, and so on.dtal, the uncompressed data
setis 12 gigabytes (GB) in size. Benchmarks in this sectiong on the model matrix
representation of the of the variables shown below in TabEh2 model matrix under
consideration will use the treatment-contrast expandidimeocategorical variables and
has a total of 43 columng/ (= 43).

Variable Name | Description Type Number of categories
(if applicable)
Year The year of flights categorical| 22 (1987 to 2008)
Month The month of flights categorical 12
DayOfWeek | The day of week of flights categorical 7
DepTime The departure time of flights| numeric NA
(minutes after midnight)
DepDelay The departure delay of flights numeric NA
(minutes)

Table 2: Variables that will be considered for the covareanaatrix stability bench-
mark.

The 12 GB Airline On-time data set will likely not be considered gbito many
readers. Papers such as Kaeal. (2013) have shown how the data set can be explored
and analyzed on relatively modest hardware. However, ilgdegy the benchmarks
two principles were considered before sheer data sizet, s data set is publicly
available. The code included in the Supplemental Matefigthis paper is capable of
downloading the data set and running the benchmarks. Useemnaouraged to engage
the data themselves and perform their own analyses. Setlmdiata set is large
enough to investigate the scatter matrix concordance piiep@long with the scaling
behavior of the various regression techniques describtisipaper. Together, the data
set and the code available with this paper provide a set @fssdde and reproducible
benchmarks that form a basis for instruction and subsegasearch.

The benchmarks presented in the next section were writteheiR program-
ming environment (R Core Team, 2014) and can be run on a smagthine sequen-
tially, a single machine in parallel, or on a cluster of maelsi using theoreach
(Revolution Analytics and Weston, 2014) package, whiclvigles a concurrent inter-
face to a number of different parallel computing technadsdor embarrassingly par-
allel challenges. The implementation also makes use oftnators anditertools
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(Revolution Analytics| 2014; Weston and Wickham, 2014)kaaes thereby decou-
pling data access from retrieval and management. The mosssible and straightfor-
ward implementation approaches are used to illustrate #thadological principles
of the models and their implementation. The benchmark implgation is flexible

enough to be deployed to any number of different data managgrmommunication

protocol, memory, and processing configurations. It is aisily modifiable to accom-
modate alternative technologies and methodologies.

6 Benchmark Results

This section provides benchmarks exploring the converg@fdhe concordance to
one on an increasingly larger subset of the Airline On-tina¢elset alongside the con-
vergence of the slope coefficients of a Generalized Linead@(GLM) of the same
subsets. These two sets of benchmarks establish an erhpoiuzection between re-
gression and concordance. However, it should also be nioé¢dince the concordance
approach does not distinguish between independent andhdepevariables it pro-
vides a diagnostic not only for the regression but for anyeggjon involving the same
variables. Furthermore, since the concordance calculéioa subset of the variables
can be found directly from the corresponding scatter medgric diagnostic easily be
calculated for any regression involving any subset of thiealbtes.

6.1 Random Sampling Similarity Convergence

The first set of benchmarks take random samples of varyires giom 10 to 5000
from the Airline On-time data set and calculates the oveilagpand non-overlapping
concordance between the random subset and the entire dafehseoverlapping and
non-overlapping values were equal up to seven decimal pkaoe so only the overlap-
ping concordance is reported.

Figured shows the convergence of the concordance to the walone when con-
cordance is calculated using both Equafibn 5 directly alwitly the trace-equivalent
version in(®. The plot shows that both versions capture thiawee-covariance struc-
ture after only several thousand samples (out of a total pfapmately 120 million).
Furthermore, it can be seen that the trace-equivalentareisislightly smaller than
the direct calculation. This is likely because the diredtaiation is more sensitive to
noise in the correlation terms of the scatter matrix andriay account for the over-
shoot when the sample size is zero and the small overshoat thieesample size is
1,000.

Each concordance-distribution derivation reduces to Vieeage ofd similarly dis-
tributed random variables. The terms summed in the conocslmeasure can there-
fore be thought of as samples, and their distribution carxeenaed. This distribution
information is shown in Figurg] 2 with varying sample size.eTot again shows lit-
tle difference between the direct calculation and its trageivalent, especially after
a few thousand random samples are taken and the varianeeiamse structure be-
comes known. The trace equivalent does appear to be sligbsiyively skewed when
the number of samples is smaller and then appears to be ieflgesymmetric, like the

11
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Figure 1: Convergence of concordance to one in the numbemopkes using random
sampling.
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Figure 2: The distribution of overlapping and non-overlagpconcordance values in
the number of samples using random sampling.
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Figure 3: Convergence of concordance to one in the numbeasiropkes using non-
random sampling.

direct calculation of the concordance. The figure also iagis that the concordance
is not heavy-tailed. The 95% percentile converges religtiyeickly in the number of
samples.

6.2 Non-Random Sampling Similarity Convergence

The second set of benchmarks take contiguous samplesngtattthe beginning of
the Airline On-time data set, varying the size from 10 to 0,000 to empirically
determine the effect of not using randomized subsets whienlating concordance.
Once again, the overlapping and non-overlapping concaalaalues were essentially
identical and only the overlapping concordance is reported

Figure[3 shows the convergence of the concordance values again using Equa-
tions[3 and Bb. Where both versions had nearly converged toatire only a few
thousand samples, non-random sampling requires milliaith, the trace-equivalent
concordance lagging the direct version.

Convergence in concordance is slow in the non-random casthammay be due
to the fact that that the model matrix corresponding to tltofaexpansion does not
include a sample of all of the information from tivear variable based on Figure
[B. The poor convergence characteristics extend to thelison of the concordance,
as shown in Figurgl3 thereby underscoring the random sagqliorder to achieve
representative subsets.
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Figure 4: The distribution of overlapping and non-overliaggsimilarities in the num-
ber of samples using non-random sampling.

6.3 Concordance and GLM Convergence

The third set of benchmarks compares the concordance vetloghmean square error
between the slope coefficient estimates fitted using a rarsldset of the data and
estimates fitted using the entire data set. The variabléare&hip under investigation
is the following logistic regression:

Late ~ Year + Month + DayofWeek 4+ DepartureTime + DepartureDelay

where a flight is Late” if its arrival is at least 30 minutes after its scheduledvaait
The other variables are described in Tdlle 2. For each salzsetthe procedure was
repeated 10 times and the average concordance and log MBE obefficients were
recorded.

Figuresd andl6 show the convergence behavior of the conuoeda one and log
MSE of the slope coefficients to zero respectively. When thelver of samples is
small with respect to the number of columns in the designim#ie concordance is
low indicating that the variance-covariance structureiswell-represented and the log
MSE of the slope coefficients is high indicating that thereates of the coefficients is
poor. These values quickly increase and decrease resggativtil approximately 500
samples where both the concordance and log MSE slope desreas

The slow convergence after 500 samples of both measureringpites that for a
precise estimate of the slope coefficients, and correspgratincordance value close
to one a larger subset will need to be fitted. When the subse2#0,000 samples
(about 1% of the total data size) the concordance values9820691 and the log
MSE is -2.788843. At 12,000,000 samples (10% of the datapdimeordance value
is 0.9822198 and the log MSE is -4.902919. This “slow” cogeeice in the number
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Figure 5: Convergence of concordance to one in the numbemopkes using random
sampling.
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Figure 6: Convergence of log MSE between slope coefficigithages using random
subsets and the entire Airline On-time data set.
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of samples may indicative of complex relationships amomguériables that require
larger samples to capture.

7 Conclusions

Regression models depend directly on the model designxaatd its properties. This
paper attempts to bridge the “small-data” and asymptotiabier of regression models
by proposing a simple measure of concordance between andasigix and a subset of
its rows that estimates how well a subset captures the \@riaavariance structure of
increasingly large data sets. We illustrate the use of tleiasuare in a heuristic method
for selecting row partition sizes that balance statistanad computational efficiency
goals in real-world problems.

Our future work in this area will focus on data fusion. In maages it may be desir-
able to combine two data sources with analogous measurstaeincrease the power
of statistical experiments. Concordance provides a distdretween the variance-
covariance structure with known distributional charastas. Tests for equivalence
can then be used to rigorously assess the appropriatenessnining data sources
thereby allowing practitioners to make better use of exgstpotentially under-powered
data.
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