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Abstract

Integrative analysis has been used to identify clusters by integrating data of disparate types, such 

as deoxyribonucleic acid (DNA) copy number alterations and DNA methylation changes for 

discovering novel subtypes of tumors. Most existing integrative analysis methods are based on 

joint latent variable models, which are generally divided into two classes: joint factor analysis and 

joint mixture modeling, with continuous and discrete parameterizations of the latent variables 

respectively. Despite recent progresses, many issues remain. In particular, existing integration 

methods based on joint factor analysis may be inadequate to model multiple clusters due to the 

unimodality of the assumed Gaussian distribution, while those based on joint mixture modeling 

may not have the ability for dimension reduction and/or feature selection. In this paper, we employ 

a nonlinear joint latent variable model to allow for flexible modeling that can account for multiple 

clusters as well as conduct dimension reduction and feature selection. We propose a method, 

called integrative and regularized generative topographic mapping (irGTM), to perform 

simultaneous dimension reduction across multiple types of data while achieving feature selection 

separately for each data type. Simulations are performed to examine the operating characteristics 

of the methods, in which the proposed method compares favorably against the popular iCluster 

that is based on a linear joint latent variable model. Finally, a glioblastoma multiforme (GBM) 

dataset is examined.
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1. INTRODUCTION

With the rapid development of microarray technologies, many molecular changes become 

possible to be monitored at the DNA and RNA levels. In addition to gene expression, 

genome-wide data, capturing both DNA methylation changes and DNA copy number 
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alterations, are also available for the same biological samples [1–3]. As advocated in [4–6], 

integrative analysis incorporating multiple data types simultaneously offers a novel 

characterization of tumor etiology, often based on a joint probability model [7–10].

Commonly used methods for integrative analysis assume a joint probability Model, such as a 

latent variable model [8–11], representing the joint distribution of the multiple types of data 

over a common lower-dimensional space defined by latent variables. On this ground, 

integrative clustering is performed over the lower-dimensional space, where a latent vector 

can be considered a cluster indicator vector. Generally, there are two main approaches to 

formulating a latent variable model for integrative analysis: joint factor analysis [8,10] and 

joint mixture modeling [7]. Joint factor analysis introduces a continuous parameterization of 

the cluster indicator vector and further assumes that the continuous parameterization follows 

a Gaussian distribution with a zero mean and an identity covariance matrix [8,10]; in 

contrast, joint mixture modeling directly defines the cluster indicator vector to be a discrete 

latent vector [7]. Despite their successes, many issues remain. For joint factor analysis, one 

issue is that the conventional Gaussian latent variable model may be inadequate to model 

multiple clusters due to its unimodality. For mixture-based analysis, existing methods, for 

example, the integrative method in ref. [7], cannot perform feature selection and dimension 

reduction.

This article introduces a new framework of integrative modeling to account for multiple 

clusters and conduct dimension reduction and feature selection. This framework involves a 

nonlinear Gaussian mixture latent model with regularization, called integrative and 

regularized generative topographic mapping (irGTM). We specifically propose a regularized 

log-likelihood to integrate multiple types of data, achieving dimension reduction by seeking 

a common latent vector across all data types while simultaneously performing feature 

selection on each data type by regularizing the model parameters. As showed by our 

numerical results, irGTM yields a great improvement over existing methods in terms of 

clustering accuracy.

The major contributions of irGTM are two-fold: modeling multiple integrative clusters (i.e. 

clusters defined by multiple types of data) while achieving feature selection, which tends to 

overcome the difficulty that existing integrative analysis methods are incapable of achieving 

the two goals simultaneously. Although the nonlinear framework of GTM [12] may describe 

and distinguish clusters with special shapes, it is greatly inefficient in computation due to 

overparametrization. Therefore, to be computationally feasible in high-dimensional 

situations, we modify GTM to model multiple clusters using a smaller number of parameters 

Based on this, some examples will be studied subsequently to investigate the performance of 

irGTM with respect to distinguishing multiple integrative clusters or subtypes of cancers.

Note that in addition to clustering analysis as focused here, integrative analysis of multiple 

types of genomic data has also been developed and applied for other purposes, [13–16]. As 

these purposes are not our main concern, we will not introduce them in detail in this article.

This article is organized as follows: Section 2 introduces irGTM in detail. Section 3 

compares irGTM with iCluster based on some benchmark examples, demonstrating the 
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advantage of the proposed method. In Section 4, we apply irGTM to integrate gene 

expression, DNA methylation and copy number data for subtype discovery based on a 

glioblastoma multiforme dataset.

2. METHODS

2.1. Joint probability model

Given multiple types of data expressed as  = { (s), s ∈ {1, …, S}}, where each s ∈ {1, …, 

S} indexes one type of data, and  is observed data of type s, with 

 for each n ∈ {1, …, N}. Specifically, { , n ∈ {1, ···, N}} are 

independent and identically distributed (i.i.d.) with the same distribution as a length-D(s) 

random vector .

In our framework, random vectors {X(s), s ∈ {1, ···, S}} are linked to a common latent vector 

Z = (Z1, ···, ZD)T, which has a lower-dimension with D possibly much smaller than D(s) for 

each s ∈ {1, ···, S} and is introduced to simultaneously express the distributions of all data 

types, Based on this, we assume that the latent vector corresponds to the integrative 

clustering of the pooled multiple types of data .

We now introduce the framework of a joint probability model of these multiple types of data. 

First, assume that {X(s), s ∈ {1, ···, S}} are conditionally independent given the latent 

variables Z, that is:

(1)

where each conditional distribution p(X(s)|Z) with s ∈ {1, ···, S} is given through a nonlinear 

mapping W(s)ϕ(Z) from the latent variables Z to the observed data variables X(s):

(2)

In particular, for each s ∈ {1, ···, S}, W(s) is a D(s) × K coefficient matrix; ϕ(Z) = (ϕ1(Z), ···, 

ϕK(Z))T is a radially symmetric Gaussian basis function with

(3)

for each k ∈ {1, ···, K}, and {E(s), s ∈ {1, ···, S}} are Z-independent noise random vectors 

following mutually independent isotropic Gaussian distributions with variances {σ(s)2, s ∈ 
{1, ···, S}}, respectively, where K denotes the number of integrative clusters of the multiple 
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types of data , δ > 0 is the scale of the Gaussian basis function, and {μk, k ∈ {1, ···, K}} 

are the centers corresponding to the K integrative clusters. As the dependent variable of the 

proposed Gaussian basis functions is the latent vector Z, where all the possible values of Z 
belong to a sample-independent latent space, we set the radius of the latent space as the 

scale, which seems to perform well as shown in the simulation results in Section 3.

Generally, in a latent variable model of (integrative) clustering analysis, such as iCluster [8], 

a length-(K−1) continuous parameterization Z* following a Gaussian distribution is used to 

replace the cluster indicator vector (I[{X(s), s ∈ {1, ···, S}} belongs to cluster 1], ···, I[{X(s), s 
∈ {1, ···, S}} belongs to cluster K])T for computational reasons, and then, clustering is 

achieved based on the posterior mean of Z*. As a Gaussian distribution implies only one 

mode or center, a continuous parameterization of Z* by a Gaussian distribution may not be 

sufficient to represent multiple clusters. As in a K-means algorithm or a Gaussian mixture 

model, multiple centers are introduced to describe multiple clusters, suggesting that a more 

flexible parameterization with multiple centers may perform better than that with a single 

center. Based on this, we propose using the radially symmetrical Gaussian basis functions 

ϕ(Z) with K centers {μk, k ∈ {1, ···, K}} to approximate the cluster indicator vector.

Next, we assume that Z follows a discrete uniform distribution:

(4)

where for each m ∈ {1, ···, M}, δ(Z − νm) = 1 if Z = νm, otherwise δ(Z − νm) = 0. We let 

the latent space be a unit circle on ℝ2, and let the latent-space sample points {νm, m ∈ {1, 
···, M}} be spread uniformly along the circle, that is, νm = (cos(2π(m − 1)/M), sin(2π(m 
− 1)/M))T for each m ∈ {1, ···, M}. Accordingly, we let μk = (cos(2π(k − 1)/K), sin(2π(k 
− 1)/K))T for each k ∈ {1, ···, K}, which are the most mutually exclusive K points on the unit 

circle. As suggested by ref. [12], the choice of the number M and the locations of the latent-

space sample points are not critical. Therefore, hereafter, we set the latent-space sample 

points and the centers of the basis functions as above and fix M = 100

Combining (1), (2) and (4) leads to the joint probability distribution of {X(1), ···, X(S)} as 

follows:

(5)

where
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is a Gaussian distribution with a mean vector of W(s)ϕ(νm) and covariance matrix of 

σ(s)2ID(s), and ID(s) is an identity matrix of size D(s). Given the observed multiple types of 

data  = { (s), s ∈ {1, …, S}}, we estimate  and  by maximizing the 

log-likelihood:

(6)

Maximization may proceed by using the expectation maximization (EM) algorithm [17] to 

deal with the latent variables, which we will elaborate next.

2.2. The EM algorithm

To detail our EM algorithm, we first introduce the E-step. Let {Zn, n ∈ {1, ···, N}} denote 

the latent vectors of all the samples in , which are independent and identically distributed 

(i. i. d.) with the same distribution as Z. Then, the complete-data log-likelihood is

(7)

To seek sparse estimates of the coefficient matrices , we employ an L1-penalized 

complete-data log-likelihood as in ref. [8]:

(8)

where

(9)

is the L1-penalty of the sth data type with a non-negative tuning parameter λ(s), controlling 

its model complexity ref. [18].
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Given the current coefficient matrices  and the current noise variances , 

the conditional expectation of the penalized complete-data log-likelihood is as follows:

(10)

where for each m ∈ {1, ···, M} and each n ∈ {1, ···, N}, the posterior probability

(11)

is evaluated using Bayes’ theorem.

For the M-step, note that maximizing (10) with respect to {W(s), s ∈ {1, ···, S}} is equivalent 

to minimizing S L1-penalized least squares problems separately. As a result, for each s ∈ {1, 

···, S}, the solution  can be evaluated using some existing software for a penalized least 

squares problem, such as glmnet package of R or Matlab. Alternatively, we can simply use 

the soft-thresholding estimator  as an approximation:

(12)

with

(13)

where sign(·)(|·| − λ(s))+ is applied component-wise; Φ is an M × K matrix with elements 

Φmk = ϕk(νm), m ∈ {1, ···, M}, k ∈ {1, ···, K}; X(s) is an N × D(s) matrix with elements , 

n ∈ {1, ···, N}, d ∈ {1, ···, D(s)}; Rold is an M × N matrix with elements 

, m ∈ {1, ···, M}, n ∈ {1, ···, N}; and Gold is an M ×M 
diagonal matrix with elements
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(14)

m ∈ {1, ···, M}. In particular, (13) can be solved using standard matrix inversion methods 

based on the singular value decomposition to allow for possible ill conditioning. Moreover, 

maximizing (10) in {σ(s)2, s ∈ {1, ···, S}} leads to the following updating formula based on 

:

(15)

for each s ∈ {1, ···, S}. The EM algorithm iterates between the E-step and M-step until 

convergence, and we use  and  to denote the converged estimates.

In the above EM algorithm, we initialize W(1) so that the GTM model of X(1) initially 

approximates the corresponding principal component analysis (PCA) following the 

initialization method in ref. [12]. To be specific, we first evaluate the sample covariance 

matrix of (1), compute its first and second principal eigenvectors, and then determine the 

initial estimate of W(1) by minimizing the following error function:

(16)

where the columns of U(1) are given by the two eigenvectors. As suggested by ref. [12], this 

represents the sum-of-squares error between the projections of the latent points into the data 

space by the GTM model of X(1) and the corresponding projections obtained from PCA. 

Next, we initialize each W(s) with s ∈ {2, ···, S} as a D(s) × K matrix with zero-elements. In 

addition, for each s ∈ {1, ···, S}, we initialize σ(s)2 as the third eigenvalue of the sample 

covariance matrix of (s), representing the variance of (s) away from the corresponding 

PCA plane of (s). It is worth noting that based on our limited experience, initializing each 

W(s) with s ∈ {2, ···, S} using the same method as in (16), irGTM often performs poorly. 

This is possibly because separate estimates of W(s) may not contribute to a common latent 

vector Z across all the data types. As suggested by the following simulation studies, 

clustering performance of irGTM is quite similar to that based on different orders of data 

types.
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2.3. Tuning parameters

Here, we introduce a resampling-based procedure for selecting the regularization 

parameters, similar to that of [19]. The procedure partitions the multiple types of data into a 

training set and a test set iteratively. In each iteration, we first train the irGTM model using 

the training set and let  and  be the corresponding estimators. Then, 

for each observation  in the test set, we compute the posterior mean of the 

latent variables

(17)

Next, we compute the Euclidean distance dte|tr of the posterior means. We denote by 

 the Nne-nearest neighbors of the posterior mean of the latent variables for each 

nte in the index set of the test set, where Nne is a given number smaller than the sample size 

of the test set. On the other hand, we train the irGTM model using the test set, compute the 

corresponding posterior mean of the latent variables for each observation indexed by nte in 

the test set, and then compute the corresponding Euclidean distance dte of the posterior 

means. Let  denote the Nne-nearest neighbors of the posterior mean of the latent 

variables for each nte in the index set of the test set.

Then, we define the prediction strength as follows:

(18)

where | · | represents the number of elements in a set. For selection of the penalty parameters 

{λ(s), s ∈ S}, we choose the ones with the highest average prediction strength.

Note that while the penalty parameters are large enough, the posterior means of the latent 

variables of the points in the test set will converge to one point. Then,  and 

 will be the same if they are obtained by choosing Nne points with the lowest 

indices in the test set without nte, which forces the prediction strength to be 1. To avoid such 

a situation, we add small random Gaussian noise to the posterior mean of the latent variables 

of each data point in the test set before computing the Euclidean distance dte|tr and dte.

Liu et al. Page 8

Stat Anal Data Min. Author manuscript; available in PMC 2018 January 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



This procedure is used to select the regularization parameters in a situation where the 

number of clusters K is fixed in advance. When K is unknown, we may use a method that is 

commonly used in determining the number of clusters in clustering analysis, such as the 

highest Silhouette index [20]. To be specific, for each K >1 in  (a candidate set of positive 

numbers), we obtain the resulting clustering assignment l(K) by fixing the number of 

clusters as K and then select K̂ ∈  with the highest Silhouette index as the optimal 

estimate of the number of clusters, based on which, we obtain the final estimate of the 

clustering assignment, say l(K̂).

2.4. Integrative clustering

The goal of irGTM is for integrative clustering, which is achieved by using Bayes’ theorem, 

to invert the transformation from the latent space to the data space. To be specific, for each 

data point  with n ∈ {1, · · ·, N}, we summarize the posterior distribution by the 

posterior mean:

(19)

These posterior means are used for dimension reduction and then integrative clustering. The 

cluster memberships will then be specifically figured out by applying a standard K-means 

clustering algorithm [21] on the posterior means.

Alternatively, we can compute the posterior mean of ϕ(Z) rather than of Z:

(20)

and assign  to cluster k ∈ {1, · · ·, K} whenever the kth element of

is the largest element of the vector as ϕ(Z) is an approximation of the cluster indicator 

vector.

3. SIMULATION STUDIES

This section performs simulations to examine the operating characteristics of the proposed 

method and compare it against its competitors: iCluster [8], naive integration of PCA (NI) 
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[22], and several methods applicable to two types of data, such as partial least squares 

regression (PLS) [23], co-inertia analysis (CIA) [24], and canonical correlation analysis 

(CCA) [25] in terms of clustering accuracy measured by the Rand index and the adjusted 

Rand index [26]. Note that we exclude comparison with ref. [7] as the latter is not designed 

for cases involving many non-informative variables.

3.1. Simulation set-ups

Three examples are considered, which are based on benchmark examples in refs. [8,10]. In 

these examples, for each type of data, the cluster information is associated with a small 

number of variables that are thought of as clustering features, based on which one cluster is 

distinguishable from the other two that remain non-separable.

Case 1: A random sample of n = 150 is taken from three clusters with {1, · · · , 50}, {51, · · 
· , 100}, and {101, · · · , 150} from clusters 1–3, respectively. Let D(1) = D(2) = 500 and μ = 

1.5. For s = 1, ; i = 1, · · · , 50, j = 1, · · · , 10; ; i = 51, · · ·,100, 

j = 101, · · · , 110; and  for the rest. For s = 2, , where εij ~ 

(0, 1); i = 1, · · · , 50, j=1, · · · , 10; ; i = 101, · · · , 150, j = 101, · · · , 110; 

and  for the rest. Interestingly, the two types of data in Case 1 are correlated 

in the first 10 dimensions. In addition, for each data type, there are two groups of features, 

{1, · · · , 10} and {101, · · · , 110}, which allow us to discriminate one cluster from the other 

two.

Cases 2 and 3 are similar to Case 1, except μ = 1.3 and μ = 1.1, respectively. As the value of 

μ determines the strength of clustering features, these cases are used to investigate the 

clustering performance of the methods in the presence of weaker clustering features.

To guard against potential confounding due to different choices of the number of integrative 

clusters K, we fix K at 3 for Cases 1–3. To choose the tuning parameter λ = (λ(1), · · · , 
λ(S))T ∈ Λ ⊆ ℝS for irGTM, we use the resampling-based procedure in Section 2.3 with |Λ| 

= |{λ(1,1), · · · , λ(1,8)}×· · ·×{λ(S,1), · · · , λ(S,8)}| = 8S and for iCluster with |Λ| = |{λ1, · · · , 
λ8}| = 8, which is set in default in the R package ‘ iCluster’. Here, | · | denotes the number 

of elements in a set. All the simulations are performed on a PC with a single processor 

Intel(R) Core(TM) i7 CPU @ 3.40GHz (16G Memory), except that iCluster was run with 

four processors for parallel computation. For a fair comparison, reported run times for 

iCluster were simply four times the original run times.

Note that to investigate clustering performances of irGTM with different orders of data 

types, let irGTM1 denote the proposed method of the order of (X(1), X(2)) and irGTM2 

denote that of the order of (X(2), X(1)).

3.2. Simulation results

Table 1 summarizes the results of all the methods considered in Cases 1–3 based on 100 

repetitions respectively.
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For Case 1, as indicated by Table 1, irGTM and iCluster outperform their competitors in 

terms of the accuracy of clustering, measured by the Rand index and adjusted Rand index. 

As suggested by panel (A) of Figure 1, irGTM and iCluster make the three clusters almost 

separable. Moreover, in view of panel (A) of Figure 2, we note that the informative variables 

{1, · · · , 10} and {101, · · · , 110} are almost correctly identified by irGTM. Note that this 

example was ideal for iCluster, which was used in [8] to demonstrate the advantages of 

iCluster over integration by PCA for each type of data. For Cases 2–3, iCluster and naive fail 

to capture the clustering structure due to weaker clustering information. Again, as 

demonstrated in Table 1, irGTM outperforms its competitors in terms of the clustering 

accuracy.

In summary, irGTM is competitive for high-throughput genomic data and is much more 

accurate than iCluster in integrative clustering of different types of data, especially in 

situations where clustering features are relatively weak. Moreover, it is more 

computationally more efficient than iCluster.

4. APPLICATIONS

We now consider a glioblastoma multiform (GBM) dataset generated by The Cancer 

Genome Atlas (TCGA) [27], which is available in the R package ‘iCluster’. Based on only 

1,740 most variable expression levels [27], four distinct GBM subtypes, Proneural (P), 

Neural (N), Classical (C), and Mesenchymal (M), were identified.

The Kaplan–Meier (K–M) curves [28] are often used to confirm whether some patient 

groups identified by a clustering analysis have distinct survival outcomes. From the K–M 

plot of the four GBM subtypes (panel (e) of Figure 4), the survival probability of the 

Proneural subtype is higher than those of the other three subtypes, while the differences in 

survival among the latter three subtypes are small. For instance, after 2 years, about 50% 

patients in the Proneural subgroup survive, but only less than 20% patients in each of the 

latter three subgroups of GBM survive.

For the four subtypes, the overall differences among the four survival curves are only 

Moderate, with a relatively high p-value 0.018 from the Log-rank test, testing survival 

differences among the four patient groups [29].

Integrative analysis of gene expression data and other data may help identify novel subtypes 

with more distinguished survival outcomes. Shen et al. [8] performed an integrative analysis 

by iCluster, combining the use of DNA copy number, methylation, and mRNA expression in 

the GBM data. They divided 55 GBM patients into three integrative clusters (iClusters 1, 2, 

and 3). From panel (d) of Figure 4 (regenerated Figure 6 of ref. [9]), iCluster 1 is associated 

with a higher survival curve, while both iClusters 2 and 3 are associated with two lower and 

similar survival curves. Furthermore, the p-value of the Log-rank test is 0.003, much more 

significant than that of the above four subtypes.

To test the performance of the proposed method and to compare with iCluster, we analyze 

the same dataset with the same 55 GBM patients and three types of data. Details of the 

corresponding results are summarized in Figures 3 and 4, including the heat map of each 
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data type, plot of posterior means of the latent vector, and the survival curves (K–M plots) of 

the subtypes via iCluster and irGTM. From panel (c) of Figure 4, it seems that cluster 1 is 

associated with the highest survival curve, which mainly includes the Proneural (P) subtype; 

cluster 3 is associated with the lowest survival, and the survival of cluster 2 is intermediate 

between those of the other two clusters. In contrast to the three clusters identified by iCluster 

[9], the three clusters uncovered by the proposed method can be better distinguished from 

each other with more significant survival differences with a smaller p-value, 0.001, by the 

Log-rank test. Note that in this application, the results of irGTM with different orders of the 

three data types are almost the same and thus omitted.

5. DISCUSSIONS

5.1. Alternative choice of ϕ(Z)

In this subsection, we investigate the performance of irGTM with an alternative choice of 

ϕ(Z) = (ϕ1(Z), ···, ϕK (Z))T in (2). In particular, for each k ∈ {1, ···, K}, ϕk(Z) is replaced by 

the angle distance between Z and μk,

Now, reconsider all the three set-ups in Section 3 with the above angle distance to obtain 

quite similar Rand and adjusted Rand index results, measuring the integrative clustering 

performance, which is summarized in Table 2.

5.2. Alternative choice of latent space and centers of clusters

As mentioned in [12], in general, the performance of GTM does not greatly depend on the 

choice of latent space and its centers. Here, we investigate the performance of irGTM with 

an alternative choice of latent space and cluster centers. Here, we let the latent space be a 

three-dimensional unit sphere and choose M = 100 points uniformly from the surface of the 

unit sphere as the sample points. Then, we choose K mutually exclusive points on the 

surface of the unit sphere as the corresponding centers of the K clusters. We reconsider all 

the three set-ups in Section 3 with the above choice of latent space and cluster centers. From 

Table 3, the Rand and adjusted Rand index results are similar to those of the proposed 

method in Table 1. However, we see that the computational cost increases as the number of 

latent variables (or the dimension of the latent space) increases.

On the other hand, once the latent space is still a unit circle, and the latent-space sample 

points as well as its cluster centers perform a rotation on the circle, the clustering 

performance of the proposed method may be almost unchanged, which is supported by some 

additional numerical results not exhibited in this article to avoid reduplicate statements.

5.3. Alternative choice of basis functions

In this subsection, we rebuilt irGTM by replacing the basis functions of latent variables with 

the latent vector itself, that is, the cluster indicator vector. In addition, we let the latent space 
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be composed of all the values of the length-K cluster indicator, that is, {(1, 0, ···, 0)T, (0, 1, 

0, ···, 0)T, ···, (0, ···, 0, 1)T}, and just let the sample points be these values of the cluster 

indicator. We summarize the corresponding results in Table 4, where the computation of the 

rebuilt irGTM is improved, but the clustering performance becomes a bit worse.

5.4. Alternative choices of the scale of the basis function

In this subsection, we investigate the performance of irGTM with other choices of the scale 

of the basis function. From Table 5, in Cases 1–3, the performance of irGTM with the scale 

δ belonging to [0.5,1] is similar to that with δ = 1.

Finally, based on all the exhibited numerical results in this section, in general, the clustering 

performance of the proposed method may not greatly depend on the choice of basis function, 

latent space and space centers, which implies that the proposed method may mainly benefit 

from using a discrete distribution of the latent variables, while a nonlinear framework with 

alternative choices of basis functions, latent space, and space centers may offer a more 

flexible and general model.

6. CONCLUSION

This paper introduces a novel integrative analysis method based on a nonlinear latent model, 

called irGTM, which is computationally efficient using an EM algorithm. It has one key 

feature in defining a novel parameterization to better approximate the latent cluster 

indicators by introducing a discrete latent space as well as a nonlinear mapping from the 

latent space to each data space. This permits flexible modeling to account for multiple 

clusters and to perform dimension reduction and feature selection. As a result, it may 

improve the performance for integrative clustering.
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Fig. 1. 
Plots of the first two dimensions after dimension reduction by both methods compared for 

each case. Panels (a–c) and Panels (d–f) correspond to Cases 1–3, respectively. Here, 

irGTM, iCluster denote the proposed method (irGTM1) and iCluster of ref. [8], respectively. 

[Color figure can be viewed in the online issue, which is available at 

wileyonlinelibrary.com.]
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Fig. 2. 
Plots of the estimates of parameters in irGTM1. Panels (a–c) correspond to Cases 1–3. For 

each panel, the (k, s)-th entry is the plot of  (the kth column of W(s)) for k ∈ {1, ···, K = 

3} and s ∈ {1, ···, S = 2}.
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Fig. 3. 
Panels (a–c) are heat maps of the DNA copy number data, the mRNA expression data and 

the methylation data of the 55 GBM patients from The Cancer Genome Atlas (TCGA) 

respectively, where the columns (tumors) are arranged by clusters identified by irGTM1.

[Color figure can be viewed in the online issue, which is available at 

wileyonlinelibrary.com.]
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Fig. 4. 
Panels (a–e) are based on the DNA copy number data, the mRNA expression data and the 

methylation data of the 55 GBM patients from TCGA, where P denotes the p-value of the 

Mantel-Haenszel test. [Color figure can be viewed in the online issue, which is available at 

wileyonlinelibrary.com.]
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Table 2

Running time (in minutes), Rand and adjusted Rand index results of Cases 1–3 by using irGTM1 with ϕ(Z) = 

arccos .

Rand aRand RT (min)

Case 1 0.984 (0.012) 0.964 (0.027) 8.780 (0.422)

Case 2 0.969 (0.018) 0.931 (0.042) 8.634 (0.416)

Case 3 0.920 (0.048) 0.819 (0.110) 8.792 (0.425)
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Table 3

Running time (in minutes), Rand and adjusted Rand index results of Cases 1–3 by using irGTM1 with an 

alternative choice of latent space (three-dimensional space) and cluster centers.

Rand aRand RT (min)

Case 1 0.988 (0.010) 0.974 (0.023) 24.57 (0.206)

Case 2 0.973 (0.027) 0.939 (0.061) 24.59 (0.170)

Case 3 0.933 (0.061) 0.849 (0.139) 24.56 (0.186)
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Table 4

Running time (in minutes), Rand and adjusted Rand index results of Cases 1–3 by using irGTM with an 

alternative choice of basis functions of latent variables.

Rand aRand RT (min)

Case 1 0.986 (0.023) 0.970 (0.051) 5.873 (0.046)

Case 2 0.967 (0.045) 0.927 (0.101) 5.953 (0.079)

Case 3 0.926 (0.076) 0.833 (0.171) 5.976 (0.078)
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Table 5

Running time (in minutes), Rand and adjusted Rand index results of Cases 1–3 by using irGTM1 with 

alternative choices of the scale of the proposed basis function.

δ Rand aRand

Case 1 0.5 0.990 (0.011) 0.978 (0.022)

0.75 0.990 (0.011) 0.979 (0.026)

1.5 0.976 (0.016) 0.946 (0.036)

Case 2 0.5 0.981 (0.013) 0.957 (0.031)

0.75 0.982 (0.045) 0.959 (0.101)

1.5 0.923 (0.078) 0.828 (0.175)

Case 3 0.5 .956 (0.018) 0.900 (0.042)

0.75 .958 (0.020) 0.906 (0.045)

1.5 .849 (0.099) 0.661 (0.223)
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