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Abstract

Most work on predicting the outcome of basketball
matches so far has focused on NCAAB games. Since
NCAAB and professional (NBA) basketball have a
number of differences, it is not clear to what degree
these results can be transferred. We explore a num-
ber of different representations, training settings, and
classifiers, and contrast their results on NCAAB and
NBA data. We find that adjusted efficiencies work
well for the NBA, that the NCAAB regular season is
not ideal for training to predict its post-season, the
two leagues require classifiers with different bias, and
Naive Bayes predicts the outcome of NBA playoff se-
ries well.

1 Introduction

Predicting the outcome of contests in organized
sports can be attractive for a number of reasons
such as betting on those outcomes, whether in orga-
nized sports betting or informally with colleagues and
friends, or simply to stimulate conversations about
who “should have won”.

Due to wide-spread betting during the NCAAB
playoffs (or "March Madness“), much work has been
undertaken on predicting the outcome of college bas-
ketball matches. It is not clear how much of that
work can be transferred easily to the NBA. Profes-
sional basketball shows several differences to college
basketball:

1. Teams are typically closer in skill level, since re-

cruiting and resource bases play a lesser role.
2. Teams play almost all other teams every season.

3. Teams play more games, particularly in the play-
offs, where the NCAAB’s "one and done“ is in
sharp contrast to the NBA’s best-of-seven series.

To the best of our knowledge, it is not clear how
those differences affect the task of learning a predic-
tive model for the sports: the first point implies that
prediction becomes harder, whereas the other two in-
dicate that there is more and more reliable data.

Most of the existing work in the field is more or less
statistical in nature, with much of it developed in blog
posts or web columns. Many problems that can be
addressed by statistical methods also offer themselves
up as Machine Learning settings, with the expected
gain that the burden of specifying the particulars of
the model shifts from a statistician to the algorithm.
Yet so far there is relatively little such work in the
ML literature.

We intend to add to the body of work on sports an-
alytics in the ML community by building on earlier
work [13], and evaluating different match representa-
tions, learning settings, and classifiers. We compare
the results on NCAAB data to those on NBA data,
with a particular focus on post-season predictions.

In the next section, we will discuss how to represent
teams in terms of their performance statistics, fol-
lowed by ways of performing prediction in Section 3.
In Section 4, we discuss existing work on NCAAB and
NBA match prediction. Sections 6 and 7 are given
to the evaluation of different prediction settings on



NCAAB and NBA data, respectively, before we com-
pare classifier behavior on those two types of data in
more detail in Section 8.

2 Descriptive statistics for

teams

In this section, we will discuss the different options
for describing basketball teams via the use of game
statistics that we evaluate later in the paper. We
will begin by a recap of the state-of-the-art, after-
wards discussing our own extensions and aggregate
statistics over the course of the season.

2.1 State of the art

The most straight-forward way of describing basket-
ball teams in such a way that success in a match can
be predicted relate to scoring points — either scor-
ing points offensively or preventing the opponent’s
scoring defensively. Relatively easy to measure offen-
sive statistics include field goals made (FGM), three-
point shots made (3FGM), free throws after fouls
(FT), offensive rebounds that provide an additional
attempt at scoring (OR), but also turnovers that de-
prive a team of an opportunity to score (TO). De-
fensively speaking, there are defensive rebounds that
end the opponent’s possession and give a team con-
trol of the ball (DR), steals that have the same effect
and make up part of the opponent’s turnovers (STL),
and blocks, which prevent the opponent from scor-
ing (BLK). And of course, there are points per game
(PPG) and points allowed per game (PAG).

The problem with these statistics is that they are
all raw numbers, which limits their expressiveness. If
a team collects 30 rebounds in total during a game,
we cannot know whether to consider this a good re-
sult unless we know how many rebounds were there to
be had in the first place. 30 of 40 is obviously a bet-
ter rebound rate than 30 of 60. Similar statements
can be made for field goals and free throws, which
is why statistics like offensive rebound rate (ORR),
turnover rate (TOR), or field goals attempted (FGA)
will paint a better picture. Even in that case, how-
ever, such statistics are not normalized: 40 rebounds

in a game in which both teams combined to shoot
100 times at the basket is different from 40 rebounds
when there were only 80 scoring attempts. For nor-
malization, one can calculate the number of posses-
sions in a given game:

Possessions = 0.96x(FGA—OR—TO+(0.475«FT A))

and derive teams’ points scored/allowed per 100 pos-
sessions, deriving offensive and defensive efficiencies:

OF — PPG x ‘100 ,
Possessions
PAG %100

DE= — ——— 1
Possessions (1)

It should be noted that the factor 0.475 is empirically
estimated — when first introducing the above formu-
lation for the NBA, Dean Oliver estimated the factor
as 0.4 [10].

This is currently the most-used way of describ-
ing basketball teams in the NBA. When discussing
complete teams or certain line-ups (five (or fewer)
player groups), the phrase ”points per 100 pos-
sessions” makes frequent appearance on sites such
as fivethirtyeight.com, www.sbnation.com, and
hardwoodparoxysm. com.

While such statistics are normalized w.r.t. the
“pace” of a game, they do not take the opponent’s
quality into account, which can be of particular im-
portance in the college game: a team that puts up im-
pressive offensive statistics against (an) opponent(s)
that is (are) weak defensively, should be considered
less good than a team that can deliver similar statis-
tics against better-defending opponents. For best ex-
pected performance, one should therefore normalize
w.r.t. pace, opponent’s level, and national average,
deriving adjusted efficiencies:

OFE * avgaii teams(OF)

AdjOE =
J AdeEopponent ’
. DE * avgall tea’rns(DE)

AdjDE = 2
J AdjOEopponent ( )

The undeniable success of those two statistics, pi-
oneered by Ken Pomeroy [11], in identifying the
strongest teams in NCA A basketball have made them
the go-to descriptors for NCAA basketball teams.



Dean Oliver has also singled out four statistics as
being of particular relevance for a team’s success,
the so-called “Four Factors” (in order of importance,
with their relative weight in parentheses):

Effective field goal percentage (0.4):
FGM +0.5-3FGM

eFG% =

FGA
Turnover percentage (0.25):
TO
T0% = ———— 4
% Possessions )
Offensive Rebound Percentage (0.2):
OR
OR% = 5
’ (OR + DROpponent) ( )
Free throw rate (0.15):
FTA
FTR=—X
R FGA (6)

2.2 Adjusted Four Factors

In an earlier work [13], we have introduced the idea
of adjusting the Four Factors in the same way as effi-
ciencies and evaluated their usefulness for predicting
college basketball matches. While multi-layer per-
ceptrons (MLP) achieved better results using the ad-
justed efficiencies, Naive Bayes classifiers performed
better using the adjusted Four Factors.

2.3 Averaging over the course of the
season

To gain a comprehensive picture of a team’s perfor-
mance during the entire season, such statistics would
have to be averaged over all games up to the predic-
tion point in time. A simple average would give the
same weight to matches that happened at the begin-
ning of the season as to matches that happened the
week before the prediction. Since teams’ character-
istics change over time — players get injured, tactics
change — this is clearly undesirable. In addition, we
want matches that are close in time to have approx-
imately equal impact on the total average.

In this paper, we therefore consecutively enumerate
the days of a season — not the game days — and use
them to weight contributions to the average. As an

illustration, imagine a team that played on day 1, 3,
10, and 15 and we want to make a prediction for day
16. For TOR, for instance, we therefore average in
the following way (we use superscripts to denote the
day on which the statistic has been recorded):

TORaUg =
1-TOR'+3-TOR®+10-TORY 4+ 15 - TOR®
1+3+10+15=28

The impact of the most recent match is more than
half in this case, whereas match 1 — two weeks ago
— has very little impact. Enumerating game days
would give the first match a quarter of the impact of
the most recent one, instead.

2.4 Calculating adjusted statistics

Due to the averaging, each team’s adjusted statistics
are directly influenced by their opponents’, and indi-
rectly by those opponents’ opponents. As an illustra-
tion, consider a schedule like the one shown in Table
1. To calculate T'eam;’s adjusted offensive efficiency
after match 3, we need to know Team,’s adjusted de-
fensive efficiency before the match (i.e. after match
2), which takes the form:

AdjDE?*(Teamy)
DE*(Teams) * avgai teams(DE)
- AdjOE(Teams)
DE?(Teamy) * avgai teams(DE)
AdjOFE?(Teams)

We have left out the averaging weights for the sake
of readability but as is obvious, we need to add equa-
tions estimating the adjusted offensive efficiency for
Teams and Teams, and the further in the season we
advance, the more teams are involved.

We do not attempt to solve this set of equations
analytically but instead use an iterative algorithm:
1) we use the current values of statistics of teams
involved in the right-hand side of equations to cal-
culate new values for teams in the left-hand side. 2)
we update all teams’ statistics and re-iterate. This is
performed until values have stabilized.



Team Opponents

Teamy | Teams Teams Teamy
Teams | Teamy Teamy Teams
Teams | Teamy Team; Teamg
Teamy | Teamz Teams Teamy

Table 1: Partial example schedule

In practice, we observe that this approach finds two
stable solutions at some point, and flips among those
two in succeeding iterations. To break this tie, we
pick the solution for which the average absolute dif-
ference between AdjOFE and AdjDE is smaller. Let
us denote the set of all teams by 7, and solutions as
set of adjusted offensive and defensive efficiencies:

S; = {AdjOE;(T), AdjDE;(T) |VT € T}
then our tie breaker takes the form:

arg min

1 y .
{51,852} m Z |AdJOEi(T) - Ad]DEi(TN.

TeT

The same approach is followed when calculating
the adjusted Four Factors.

2.5 Employing standard deviations

An important element of teams’ performance is con-
sistency. A team can collect an average adjusted of-
fensive efficiency by alternating matches in which it
scores much more than expected with ones in which
it is virtually shut out. Especially against higher-
quality competition, we would expect one of the latter
type of matches, and this information can therefore
be relevant when trying to predict match outcomes.
A straight-forward way of encoding consistency con-
sists of adding the standard deviation of teams statis-
tics over the course of the season.

3 Approaches to prediction

A wide-spread state-of-the-art way of using the de-
rived statistics in predicting match outcomes consists

of using the so-called Pythagorean Expectation, e.g.:
Win Probability =

((Adjusted) OEqy4)Y
((Adjusted) OFEq4,4)Y + ((Adjusted) DEqy4)Y

to calculate each team’s win probability and predict-
ing that the team with the higher probability wins.
More generally, ranking systems can by used by rank-
ing the entire pool of teams and predicting for each
match-up that the higher ranked team wins.

Many existing approaches are somewhat or even
fully hand-crafted. This can be rather high-level,
as in defining the transition probabilities in LRMC’s
Markov chain by hand (cf. Section 4), or it can go
as far as Ken Pomeroy taking home court advantage
into consideration by multiplying the home team’s
stats by 1.014. Also, especially the Pythagorean Ex-
pectation seems to be a rather simple model.

Machine Learning promises to address both of
these issues: we would expect to be able to learn the
relative importance of different descriptive measures,
in particular if this importance changes for different
numerical ranges, and to be able to learn their re-
lationships, automatically making the model as dif-
ficult (or simple) as needed. We therefore turned
to classification learners representing several differ-
ent paradigms and evaluated their performance.

In a reversal of current practice, explicit prediction
of match outcomes could be used to rank teams by
predicting the outcome of all hypothetical pairings
and ranking teams by number of predicted wins.

Concretely, we evaluate the WEKA [5] implemen-
tations of the Multi-Layer Perceptron (MLP), Ran-
dom Forest (RF), and Naive Bayes (NB) classifiers.
The former two are run with default parameters,
whereas for NB we activated kernel estimation.

4 Related Work

The use of the Pythagorean Expectation goes back to
Bill James’ work on baseball. It was adapted for the
use in basketball prediction by numerous analysts,
e.g. Daryl Morey, John Hollinger, Ken Pomeroy, and
Dean Oliver. The difference between the different ap-
proaches comes down to which measures of offensive



and defensive prowess are used and how the expo-
nent is estimated. Dean Oliver also first introduced
possession-based analysis formally in his book “Bas-
ketball on Paper” [10], although he acknowledges
that having seen coaches use such analysis in prac-
tice. The same work introduced the “Four Factors”.

The adjustment of efficiencies to the opponent’s
quality is due to Ken Pomeroy who uses them as in-
put in his version of the Pythagorean Expectation
to rank NCAAB teams and predict match outcomes.
His is far from the only ranking system, however,
with other analysts like Jeff Sagarin, Ken Massey or
Raymond Cheung running their own web sites and
giving their own predictions. Comparisons of the re-
sults of different ranking systems can for instance be
found at http://masseyratings.com/cb/compare.
htm or http://www.raymondcheong.com/rankings/
perf13.html. The worst accuracy for those systems
is in the 62% — 64% range, equivalent to predict-
ing that the home team wins, the best ones achieve
up to 74% — 75%. The NCAAB itself uses the so-
called Ratings Percentage Index to rank teams, a lin-
ear weighted sum of a team’s winning percentage, its
opponents’ winning percentage, and the winning per-
centage of those opponents’ opponents.

As an alternative approach, Kvam et al. have pro-
posed a logistic regression/Markov chain model [8].
In this method, each team is represented as a state
in a Markov chain and state transitions occur if one
team is considered better than its opponent. Logistic
regression is used to estimate transition probability
parameters from the data. The authors have pro-
posed an updated version using Bayesian estimates
[4], and recently published work in which they esti-
mate their method’s success in comparison to other
ranking schemes [3].

In terms of NBA basketball, Loeffelholz et al. [1]
have trained a variety of neural networks for pre-
dicting NBA match outcomes. The highest accu-
racy that they report in the abstract is approximately
74%. Oh et al. [9] propose building graphical mod-
els from play-by-play data that can be used to sim-
ulate the flow of a match. They report on explor-
ing counterfactuals: simulating different substitution
patterns for particular matches, and observing the
resulting outcomes. A similar idea is explored in

[2]: using NBA teams’ substitution patterns and five-
man units’ plus/minus, they combine Markov chains
and ridge regression to predict the outcomes of the
2014/2015 playoff series, reporting training set accu-
racy of 68% (individual matches) and postseason ac-
curacy (complete seasons) of 80%. Finally, Franks et
al. have proposed exploiting the tracking data nowa-
days available for NBA matches to derive a new de-
fensive statistic called ” counterpoints* [6].

5 Experimental setup

The goal of our experimental evaluation is to gain
an understanding about which kind of information
is most conducive for achieving high-quality predic-
tions. This involves evaluating

1. different kinds of descriptive statistics,

2. training the classifier on all available data, or
only on a subset, and

3. using the preceding season’s statistics as stand-
in for the first game day’s statistics.

We will elaborate those aspects in the following para-
graphs. After having found good models, we will
explore predictions in more detail in Sections 8 and
draw conclusions related to the three differences de-
scribed in the introduction.

Different statistics We used WEKA’s
ChiSquared, GainRatio, InfoGain, and ReliefF
rankers to explore the attributes described in 2,
as well as season-level ones (e.g. win percentage),
using the “cross-validation” option with ten folds.
The results are rather consistent across rankers:
the attributes shown in Table 2 are always highly
ranked, as are location, and the adjusted efficiencies
(adjOEft, adjDEfT).

The (adjusted) Four Factors depend to a cer-
tain degree on the selected season: while effective
field goal percentage (eFG%) is almost always highly
ranked, offensive rebound (ORR), turnover (TOR),
and free throw rates (FTR) can go from being ranked
higher than field goal percentage to unranked and



Statistic
Win Percentage
Margin of Victory (MoV)
Possession-adjusted MoV
Possession-adjusted
Point Differential

Explanation
Number of Wins
Number of Games played

PPG-PAG in Wins
OEff - DEff in Wins
OEf-DEff

Table 2: Base team statistics

vice versa. We explore this phenomenon in more de-
tail by evaluating different attribute combinations in
the next sections.

We encode matches with the team statistics of the
two opponents, with the opponent with the lexico-
graphically lower name coming first. In addition,
matches are described by whether it is a away, home,
or neutral court from the perspective of this first
opponent, and by the date (name and day of the
month). This could be particularly helpful in the
case of NCAA basketball, where conference tourna-
ments (in which the competition is of higher quality)
occur later in the season.

Classifier evaluation and training data compo-
sition We are using two assumptions for our exper-
imental settings. The first is that there is a tempo-
ral aspect to basketball prediction. Using matches
from later in the season (when trends may have sta-
bilized) to predict matches from earlier could intro-
duce a bias. We therefore do not perform a random-
ized cross-validation but instead always only train on
data of matches that occurred before the matches to
be predicted.

Second, however, we assume that it is desirable to
have as fresh data as possible available for training.
To achieve this, we therefore predict matches day by
day, and add them afterwards to the batch of training
data., for the prediction of the following day. As is
known from Data Stream classification [7], however,
data in a temporal relationship can become “stale”.
We therefore also evaluate whether limiting training
to recent data has an effect.

Filling in first-day statistics On the first day of
a season, we have necessarily no statistics for teams

available yet are already faced with a prediction task.
One way of addressing this consists of using the
statistics the team exhibited at the end of the preced-
ing season. Since teams change during the off-season,
however — college players graduate/get drafted, NBA
players get traded — the preceding season’s statis-
tics may be rather misleading. The alternative, i.e.
not using the preceding season’s statistics, essentially
amounts to a coin flip (or more likely, predicting that
the home team wins).

6 NCAAB predictions

The data for the experiments on ncaa basketball
comes from Ken Pomeroy’s page [11], and comprises
the seasons 2007/2008-2012/2013. Since we cannot
build a model to predict 2007/2008, we predict from
2008/2009 onwards. In earlier work [13], we have
found that combining adjusted efficiencies with Four
Factors did not give competitive results. Since our
manner of calculating the adjustments and averaging
have changed, however, we reprise our experiments
with adjusted efficiencies and adjusted four factors.

In the first setting, shown in Table 3, we used only
a single season’s worth of data for training. This
means in particular that every time a day’s matches
are added to the training set, the oldest day’s matches
are removed.

Representation Season MLP NB RF
AdjEff 2012/2013 || 0.7088 | 0.7018 | 0.6867
2011/2012 0.7165 | 0.7103 | 0.7031
2010/2011 || 0.7070 | 0.7020 | 0.6894
2009/2010 || 0.7312 | 0.7207 | 0.7038
2008/2009 || 0.7127 | 0.7011 | 0.6841
AdjFF 2012/2013 || 0.7016 | 0.6906 | 0.6842
2011/2012 0.7098 | 0.7038 | 0.6912
2010/2011 || 0.6981 | 0.6899 | 0.6810
2009/2010 || 0.7083 | 0.7061 | 0.7016
2008/2009 || 0.6960 | 0.6903 | 0.6830

Table 3: Predictive accuracies per season (NCAAB),
one season worth of data, no filling in first-day statis-
tics

Similarly to our earlier results, we find that the
multi-layer perceptron performs better than Naive



Bayes, with the Random Forest classifier third. We  Representation Season MLP NB RF
also see that the adjusted efficiencies are superior to AdJEft 2012/2013 | 0.7090 | 0.6910 | 0.6960
adjusting Four Factors, in terms of predictive accu- 201172012 i 0.7174 | 0.7066 | 0.6931
racy. If we use all matches we have available as train- ggégﬁg}é 8;’1%42125 gggii 8?32?
ing data for the day to be predicted (Table 4), we can 2008/2009 07128 | 0.6874 | 0.6909
improve the results slightly. AdFF 2012/2013 || 0.7061 | 0.6919 | 0.6827
2011/2012 || 0.7179 | 0.7025 | 0.6959
Representation Season MLP NB RF 2010/2011 || 0.7065 | 0.6963 | 0.6753
AdjEff 2012/2013 || 0.7120 | 0.7024 | 0.6885 2009/2010 || 0.7233 | 0.7151 | 0.6944
2011/2012 || 0.7248 | 0.7155 | 0.6946 2008,/2009 || 0.7006 | 0.6971 | 0.6883
2010/2011 || 0.7115 | 0.7052 | 0.6851
2009/2010 || 0.7357 | 0.7318 | 0.7072 Taple 6: Predictive accuracies per season (NCAAB),
2008/2009 || 0.7163 | 0.7061 | 0.6907 ) preceding seasons for training, no filling in first-
AdjFF 2012/2013 || 0.6983 | 0.6942 | 0.6795 day statistics, standard deviations
2011/2012 || 0.7191 | 0.7076 | 0.6947
2010/2011 || 0.7082 | 0.6933 | 0.6847
2009/2010 || 0.7257 | 0.7086 | 0.7038 7  Predictive Results on NBA
2008/2009 || 0.7050 | 0.6850 | 0.6843

Table 4: Predictive accuracies per season (NCAAB),
training on all preceding seasons, no first-day statis-
tics

Even though the varying strength of opponents
in NCAA basketball should lead to fluctuations in
statistics, adding standard deviations to the descrip-
tion does not pay off, as Tables 5 and 6 show.

data

For our experiments in NBA match data, we crawled
the information for seasons 2007/2008-2014/2015
from www.basketball-reference.com. Since we do
not have data to build a model to predict 2007/2008,
all tests were run only from 2008/2009 onwards.
Our first experimental comparison can be found in
Table 7: in that setting, the classifier is trained on
only the season preceding the one to be predicted.
Furthermore, every time a game day is added to the
training data, the oldest one is removed. In this man-
ner, the model should always be based on the most
recent information, without trends from older sea-
sons acting in a distorting manner. We have evalu-

Representation Season MLP NB RF

AdjEff 2012/2013 || 0.7120 | 0.6906 | 0.6902
2011/2012 0.7089 | 0.6998 | 0.6946
2010/2011 || 0.7030 | 0.6998 | 0.6853
2009/2010 || 0.7174 | 0.7129 | 0.7024
2008,/2009 0.7075 | 0.6947 | 0.6903

AdjFF 2012/2013 || 0.6848 | 0.6887 | 0.6844
2011/2012 0.6936 | 0.6994 | 0.6970
2010/2011 || 0.6968 | 0.6920
2009/2010 || 0.7138 | 0.7094 | 0.6994
2008/2009 || 0.6887 | 0.6936 | 0.6828

Table 5: Predictive accuracies per season (NCAAB),
one season worth of data, no filling in first-day statis-
tics, standard deviations

Similarly, we do not find any benefit to using the
preceding season’s statistics to fill in team statistics
for their first match, an indicator that teams change
too much in the off-season, and omit the results here.

ated three representations (in addition to teams’ and
matches’ base statistics) — Adjusted Efficiencies (Ad-

0.6730 JEff), Adjusted Efficiencies and Four Factors (AdjEff-

FF), and Adjusted Four Factors (AdjEFF). The statis-
tics of Teams on the first day of the season are not
filled in.

All in all, this experiment indicates that Adjusted
Efficiencies are the most effective encoding. Espe-
cially Naive Bayes performs well on this representa-
tion (and outperforms the MLP — contrary to the
results on the NCAA data). Interestingly, Random
Forests recover in comparison to the MLP once repre-
sentations involve the Four Factors — adjusted or not
— those seem to be more useful to a tree model than



Representation Season MLP NB RF Representation Season MLP NB RF

AdjEff 2014/2015 || 0.6209 | 0.6552 | 0.6056 AdjEff 2014/2015 || 0.6438 | 0.6598 | 0.5988
2013/2014 || 0.6133 | 0.6300 | 0.5997 2013/2014 || 0.6240 | 0.6384 | 0.6035

2012/2013 || 0.5906 | 0.6446 | 0.5799 2012/2013 || 0.6187 | 0.6499 | 0.6005

2011/2012 || 0.6210 | 0.6294 | 0.6201 2011/2012 || 0.6331 | 0.6378 | 0.6006

2010/2011 || 0.6148 | 0.6606 | 0.6003 2010/2011 || 0.6506 | 0.6636 | 0.6293

2009/2010 || 0.6189 | 0.6524 | 0.6204 2009/2010 || 0.6494 | 0.6456 | 0.6151

2008,/2009 || 0.6433 | 0.6806 | 0.6312 2008,/2009 || 0.6608 | 0.6677 | 0.6395

AdjEff-FF 2014/2015 || 0.6079 | 0.6430 | 0.6018 AdjEff-FF 2014/2015 || 0.6346 | 0.6552 | 0.6323
2013/2014 || 0.5709 | 0.6187 | 0.5929 2013/2014 || 0.6315 | 0.6338 | 0.6065

2012/2013 || 0.5807 | 0.6476 | 0.6020 2012/2013 || 0.6134 | 0.6454 | 0.6058

2011/2012 || 0.5819 | 0.6313 | 0.6089 2011/2012 || 0.5857 | 0.6248 | 0.6071

2010/2011 || 0.6133 | 0.6522 | 0.6301 2010/2011 || 0.6392 | 0.6545 | 0.6186

2009/2010 || 0.5747 | 0.6418 | 0.6021 2009/2010 || 0.6159 | 0.6402 | 0.6349

2008,/2009 || 0.6137 | 0.6586 | 0.6160 2008/2009 || 0.6251 | 0.6586 | 0.6129

AdjFF 2014/2015 || 0.5927 | 0.6369 | 0.6133 AdjFF 2014/2015 || 0.6262 | 0.6590 | 0.6140
2013/2014 || 0.5982 | 0.6255 | 0.6133 2013/2014 || 0.6414 | 0.6338 | 0.5914

2012/2013 || 0.5776 | 0.6416 | 0.6012 2012/2013 || 0.6050 | 0.6431 | 0.6134

2011/2012 || 0.5736 | 0.6238 | 0.5847 2011/2012 || 0.5903 | 0.6313 | 0.6071

2010/2011 || 0.6240 | 0.6491 | 0.6270 2010/2011 || 0.6323 | 0.6560 | 0.6369

2009/2010 || 0.6052 | 0.6402 | 0.6235 2009/2010 || 0.6319 | 0.6433 | 0.6067

2008/2009 || 0.6274 | 0.6532 | 0.6297 2008/2009 || 0.6274 | 0.6563 | 0.6251

Table 7: Predictive accuracies per season (NBA), one
season worth of training data, no filling in first-day
statistics

the efficiencies. It is also remarkable that the order
of seasons according to predictive accuracy changes
— not only between classifiers but also between repre-
sentations. In contrast to this, the order remained
relatively stable for NCAA data. Given that the
training data in this setting were limited, using more
data might make a difference.

To explore this direction, and because it is not
clear how to decide how many prior seasons to use
for training, we keep all seasons’ data for training in
the setting that we show in Table 8.

In fact, MLP and RF profit from using more data,
NB less so, while continuing to perform best on av-
erage. It is somewhat surprising to see a relative
large negative change in its predictive accuracy for
2008/2009, AdJEff, since this is the season that was
predicted with the model having the least amount
of data. The impact of additional data is more pro-
nounced for the representations that involve the Four
Factors.

Table 8: Predictive accuracies per season (NBA),
training on all preceding seasons, no filling in

Experiments with a single season of training data
and standard deviations led to a deterioration, so we
refrain from reporting them here. Instead, Table 9
shows what happens when we augment the preced-
ing setting with standard deviations, indicating the
consistency of teams’ performance indicators.

The results can at best considered inconclusive but
generally speaking, including standard deviations de-
grades predictive accuracy. At first, this is surpris-
ing, but given that team statistics are already only
approximations (with adjustment and averaging po-
tentially introducing errors), calculating standard de-
viations over a season (or several of them) might very
well increase the effect of any errors.

Using the end-of-season statistics of the preceding
season as fill-in for the statistics of the first match
of teams has the potential to add some percentage
points but can also misrepresent the actual strength
of a team in the new season. Unfortunately, we have
found that the latter effect seems to hold. We report
only one setting (all seasons as training data, Table



Representation Season MLP NB RF Representation Season MLP NB RF

AdjEff 2014/2015 || 0.6499 | 0.6522 | 0.6178 AdjEff 2014/2015 || 0.6369 | 0.6659 | 0.6156
2013/2014 || 0.6323 | 0.6414 | 0.5883 2013/2014 || 0.6331 | 0.6331 | 0.5914

2012/2013 || 0.6286 | 0.6431 | 0.6073 2012/2013 || 0.6195 | 0.6499 | 0.5959

2011/2012 || 0.5978 | 0.6192 | 0.6257 2011/2012 || 0.6304 | 0.6341 | 0.6080

2010/2011 || 0.6278 | 0.6506 | 0.6270 2010/2011 || 0.6438 | 0.6697 | 0.6491

2009/2010 || 0.6463 | 0.6357 | 0.6220 2009/2010 || 0.6509 | 0.6425 | 0.6151

2008,/2009 || 0.6327 | 0.6722 | 0.6335 2008,/2009 || 0.6586 | 0.6700 | 0.6289

AdjEff-FF 2014/2015 || 0.6278 | 0.6491 | 0.6110 AdjEff-FF 2014/2015 || 0.6178 | 0.6613 | 0.6301
2013/2014 || 0.6149 | 0.6323 | 0.6096 2013/2014 || 0.6080 | 0.6376 | 0.6073

2012/2013 || 0.5997 | 0.6377 | 0.6081 2012/2013 || 0.6081 | 0.6476 | 0.5974

2011/2012 || 0.6155 | 0.6229 | 0.6071 2011/2012 || 0.6024 | 0.6238 | 0.6145

2010/2011 || 0.6331 | 0.6506 | 0.6171 2010/2011 || 0.6201 | 0.6560 | 0.6423

2009/2010 || 0.6044 | 0.6357 | 0.6067 2009/2010 || 0.6136 | 0.6479 | 0.6303

2008/2009 || 0.6160 | 0.6525 | 0.6084 2008/2009 || 0.6274 | 0.6593 | 0.6304

AdjFF 2014/2015 || 0.6438 | 0.6560 | 0.6293 AdjFF 2014/2015 || 0.6293 | 0.6682 | 0.6171
2013/2014 || 0.5906 | 0.6384 | 0.5936 2013/2014 || 0.6209 | 0.6361 | 0.6080

2012/2013 || 0.6058 | 0.6431 | 0.5982 2012/2013 || 0.5951 | 0.6499 | 0.6172

2011/2012 || 0.5773 | 0.6145 | 0.5875 2011/2012 || 0.6080 | 0.6369 | 0.6127

2010/2011 || 0.6598 | 0.6506 | 0.6217 2010/2011 || 0.6461 | 0.6583 | 0.6293

2009/2010 || 0.6258 | 0.6319 | 0.6212 2009/2010 || 0.6410 | 0.6418 | 0.6341

2008/2009 || 0.6144 | 0.6593 | 0.6167 2008/2009 || 0.6456 | 0.6624 | 0.6411

Table 9: Predictive accuracies per season, training on
all preceding seasons (NBA), no filling in, standard
deviations

10), and while there are occasional improvements, the
effect is not consistent.

In light of our results, the accuracy reported in [1]
(74.33%) is surprising. Unfortunately, we have not
been able to access a full version of that paper but
the abstract (where the accuracy is mentioned) notes
that the authors performed extensive tuning of the
neural networks used.

8 Comparing prediction curves

The numbers we have shown in tabulated form in the
preceding sections summarize the accuracy of clas-
sifiers over the entire season. As we explained in
Section 5, however, we classify each day’s matches
separately, before we relearn the classifier with that
day’s data added. We can therefore explore the de-
velopment of predictive accuracy over the course of a
season to gain better insight into classifier behavior.

We will use this information to explore the three

Table 10: Predictive accuracies per season, training
on all preceding seasons (NBA), filled in first-day
statistics

aspects that we highlighted in the introduction. We
begin by looking in more detail at the phenomen that
a) professional teams play more games during a sea-
son than university teams, and b) the skill differen-
tial among professional teams is smaller than between
university teams (and professional teams play all pos-
sible opponents at least once).

Concretely, professional teams play 82 games be-
fore the post-season, university teams only about 30.
Since team statistics are averaged over all matches
played before the test match, we would therefore as-
sume that descriptors for professional teams are more
representative than for university teams and predic-
tions should therefore stabilize better. If, on the
other hand, the skill differential has a larger impact,
NCAAB predictions should be quicker to stabilize.

Figures 1 and 2 (3 and 4) show the cumulative ac-
curacy over the course of a full season achieved by
Naive Bayes (MLP) for the NBA and NCAAB re-
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Figure 1: Accuracy on NBA data as a function of
game days, NB

spectively.! The x-axis is labeled with the number of
games days — since not all teams play on the same
day, there are siginificantly more game days per sea-
son than per team. In comparing the NB curves, we
see that they stabilize much more quickly for NCAAB
than for the NBA. For the NBA, the classifier need
about half a season (41 games), whereas for NCAAB
the classifier arrives at this point at about a third of
the season (10 games).

Moving on to the MLP, we see the clear difference
between a classifier with a strong bias, and one ex-
hibiting strong variance. The neural network shows
much bigger oscillations than the Naive Bayes, oc-
casionally outperforming NB at the same relative
(early) point of the NBA season. But as in the case
of the NB, predictions for the NCAAB stabilize more
quickly. Additionally, the swings for the MLP are
much smaller. This implies easier decision bound-
aries, i.e. the larger relative strength differential of
which we wrote in the introduction.

8.1 Post-season predictions

Compared to the post-season, regular season matches
are relatively easier to predict. In the post-season,
teams will be mostly more similar in strength, in the

1The end point of each curve corresponds to the results
reported in Tables 8 and 4.
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Figure 2: Accuracy on NCAAB data as a function of
game days, NB

NCAAB case probably much more similar. If this is
the case, we would expect that the models learned on
full seasons (including past post-seasons and the cur-
rent post-season up to the prediction date) would per-
form clearly worse in the post-season for the NCAAB,
only somewhat worse in the NBA.

There are also differences in the number of teams
involved in the post-season and the number of games
played:

e In the NCAAB, 64 teams reach the post-season
(in recent years 68, eight of which play in a “play-
in” weekend to complete the field). Each pairing
of teams only play each other once, for a total of
61 games.

e In the NBA, 16 teams reach the post-season.
Each pairing plays best-of-seven series, meaning
that a team needs to win four times to move on
to the next round. The whole post-season can
therefore have between 60 and 105 games.

In both leagues, teams are ranked within a particu-
lar group (4 regions in the NCAAB, 2 conferences in
the NBA) according to their performance during the
regular season. Higher-ranked teams get rewarded by
playing lower-ranked ones. Given the larger field in
the NCAAB, a first-ranked, i.e. best, team in a region
plays the 16th-best. In the NBA, the pairing is best
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Figure 3: Accuracy on NBA data as a function of
game days, MLP

and 8th-best. As a result of this, early rounds should
still be easier to predict in the NCAAB than in the
NBA. However, the one-shot nature of the NCAAB
means that a higher-ranked team that slips up cannot
recover — such upsets make up part of the attraction
of the post-season. In the NBA, the format will typ-
ically favor the better team.

Post-season predictions are therefore affected both
by the effects considered in the preceding section, and
the different post-season formats.

The NCAAB post-season curves, shown in Figures
5 and 6, show that with the exception of 2008/2009
(when notably all four first-ranked teams reached the
semi-final round), the cumulative accuracy of post-
season predictions are below the regular season ac-
curacy. This is the case by a rather wide margin for
NB, but still noticable for the MLP.

Of particular interest is the curve for the MLP for
the 2010/2011 post-season. By day three, the 32
matches of the first round (which we expected to be
easiest to predict) have been decided, i.e. more than
half the total of the post-season, and the MLP boasts
an accuracy of more than 80%. In the succeeding
rounds, the cumulative accuracy deteriorates consis-
tently, reaching the lowest point on day 11 before
recovering slightly with the correct prediction of the
final match. After the first round, the MLP was effec-
tively not better than chance. This aligns with what
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Figure 4: Accuracy on NCAAB data as a function of
game days, MLP

happened in the first round of that season’s post-
season when the higher-ranked teams mostly won
their first-round matches.

Hidden in this is a remarkable fact: between the
NB and MLP classifiers, there is only a single in-
correctly predicted champion! Unfortunately, such
post-season results would be useless for the task of
winning the office pool, one of the main motivations
in the non-academic world for predicting the NCAAB
post-season.

NBA post-season curves (Figures 7 and 8) show
less deviation from the regular season cumulative
accuracy than in the case of the NCAAB. Accu-
racies are roughly the same for 2010/11, 2014/15
(NB), 2009/10 (MLP), 2012/13 (MLP), better for
2011/12, 2009/10 (MLP), and when they are worse
(2008/09, 2013/14, 2014/15 (MLP), 2009/2010 (NB),
2012/2013 (NB)), the drop-off is not as steep as in the
NCAAB case.

They do, however, show much more variation than
regular season curves, especially in the beginning. At
one end of this is the 2012/13 season, a curve that
starts out with 100% accuracy for the first two game
days for either classifier. The first round that year
saw two of the eight pairings won 4-0 by the higher-
seeded team, yet also featured an “upset” (sixth over
third), bringing the cumulative accuray down. None
of the higher-seeded teams lost its first (home) game
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Figure 5: Accuracy for NCAAB post-season matches

as a function of game days, NB
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Figure 6: Accuracy for NCAAB post-season matches

as a function of game days, MLP
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Figure 7: Accuracy for NBA post-season matches as

a function of game days, NB
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Figure 8: Accuracy for NBA post-season matches as

a function of game days, MLP
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Season ANN | NB # finals games
2014/2015 | 5/15 | 11/15 6 (0.66)
2013/2014 | 5/15 | 11/15 5 (0.8)
2012/2013 | 3/15 | 9/15 7 (0.57)
2011/2012 | 3/15 | 7/15 5 (0.8)
2010/2011 | 2/15 | 8/15 6 (0.66)
2009/2010 | 3/15 | 7/15 7 (0.57)
2008/2009 | 0/15 | 11/15 5 (0.8)
Table 11: NBA postseason series-level accuracies,

and finals characteristics

in the first round. On the other end is the 2013/14
season, which saw three lower-seeded teams win their
first-round series, as well as four higher-seeded teams
needing seven games to win. In addition, in three
of those series, the lower-seeded team won the first
(away) game, another ingredient for the low early ac-
curacy in the predictions for that season.

We have written above that the best-of-seven for-
mat of the NBA playoffs allows the stronger team to
recover from off-games. If that were the case, predic-
tors should do well at a series level, i.e. predict the
four wins of the eventual winner.

Table 11 shows for each season, how many play-off
series each classifier predicted correctly. Notably, the
ANN never predicts more than 33% correctly yet its
cumulative post-season accuracies were much higher
than that. The reason is that it actually manages to
correctly predict wins by the eventual loser of a se-
ries, something that the NB has problems with. The
latter, on the other hand, predicts 11/15 (73.33%) for
three seasons.

Finally, there are the Finals series, offering a par-
ticularly attractive test case: they consist of at most
seven matches, with the number of actually played
games an indicator of the relative strength of the two
teams. Table 11 lists for each season the number of
finals games giving us an upper bound on the ac-
curacy when always predicting the series winner as
match winner.

Figure 9 shows that NB shows this behavior (cor-
rectly predicting the eventual champion’s wins, in-
correctly predicting the eventual series loser’s) for

e 2014/2015, when no one expected the Cleveland
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Cavaliers to win games 2 and 3, and the Golden
State Warriors won the championship,

2013/2014, when the San Antonio Spurs won
four matches by at least 15 points each, and lost
one match by 2,

2012/2013, when it correctly liked the Miami
Heat better than the San Antonio Spurs, al-
though the latter’s finals loss was considered
somewhat of an upset at the time,

2008/2009, when the Orlando Magic were over-
matched in the finals

but off

e (badly off) for the 2010/2011 series when Las
Vegas (along with many others) clearly expected

Miami to win, and
e for the competitive 2009/2010 series.

2011/2012 is a particular case: while NB predicts
four games correctly, one is for Oklahoma City, and
only three for the eventual champion (and clearly su-
perior team) Miami.

The MLP classifier, by contrast, does not predict a
single finals series correctly but predicts enough wins
of the series losers to achieve acceptable accuracies
for several years.
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8.2 Discussion and perspectives

The experimental evaluation shows that the three
phenomena we discussed in the introduction:

1. fewer matches in university basketball

2. wider skill spectrum during the regular season in
the NCAAB, and

3. strongly differing post-season formats,

have noticable effects on predicting the respective
leagues. The skill difference means that accuracies
in the NCAAB stabilize relatively quickly but com-
bined with the smaller number of games available for
estimating statistics, this handicaps the models when
it comes to predicting the post-season. This problem
is exacerbated by the fact that lower-ranked teams
need only one win to upset a higher-ranked one.

A way of addressing this issue could be to train
classifiers on a subset of available matches. Limit-
ing training data exclusively to post-season matches
seems too restrictive to us: for the 2008,/2009 season,
for instance, we would have only 61 games available.
Alternatively, one could try and augment these data
with all regular season matches between the eventual
post-season participants. Since NCAAB teams play
only around 30 opponents, however, there are not
too many of those available. We have recently shown

that one can use clustering [12] to identify clusters of
approximately equally strong teams. This could be
used to identify good training instances in the data,
beyond matches of post-season participants.

The models trained on the NBA regular season
transfer more easily to the post-season, since there
are more games for estimating statistics, closer skill
level, and encounters between all teams. As a result,
post-season accuracies are more in line with overall
ones, even though the post-seasons stays harder to
predict than for college teams. At the level of series
winner predictions, however, the best-of-seven format
helps the NB classifier to do rather well.

9 Conclusions and future work

In this paper, we have compared predictions on
NCAAB and NBA match data in terms of different
representations, predictive settings, and used classi-
fiers. We have found that the adjusted efficiencies
used in predicting college matches can be transferred
to the case of NBA basketball, and turn out to be
the most useful representation for that data. Other
statistics and augmentation, for instance with stan-
dard deviations, proved less effective.

The particularities of the NCAAB — fewer matches,
wider skill distribution, different playoff format —
means that its regular season is relatively easy to pre-
dict but is not an optimal training set for predicting
the post-season. In the NBA, the model can be more
easily transferred but the league remains somewhat
harder to predict, at least on the level of individual
games.

NCAAB data is more effectively modeled by a neu-
ral network, a learner with a weak bias that can fit
any decision boundary, whereas on the NBA data,
a learner with strong bias — Naive Bayes — is more
effective. This is particularly pronounced when pre-
dicting the winner of playoff series in the NBA, where
NB easily outperforms MLP.

A general issue is that our experimental results do
not show a single superior option for prediction —
neither in the case of the NCAAB nor in the case
of the NBA. In fact, changes to the representation
can change which seasons are predicted well, and
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which classifiers perform best. One possible future
option consists of using these different models (de-
rived from different representations and classifiers),
as ensembles. This will require solving the question
how to weight each model’s input and how to avoid
correlated errors. Preliminary results of research we
are currently undertaking indicate a second direction:
some models seem to perform better in the early sea-
son, whereas others need time to ramp up. Identify-
ing the best point to switch would allow to combine
models. A third option that we intend to explore is to
generate counterfactual data, inspired by Oh et al.,
and using these data to train classifiers on larger sets
of representative matches.

Finally, this study used cumulative accuracy as a
performance measure to compare different options.
In practical terms, the most immediate practical use
of a predictive model would lie in helping to place
sports bets. This requires that models be either a)
better than betting odds set by sports books, or b)
be close enough in accuracy that the times when the
model is right and the odds wrong outweigh the times
the opposite is true. Since this depends on the actual
odds given, correctly predicting big upsets pays out
more, evaluating predictive models in this manner
requires additional data collection of closing odds for
the matches under consideration.
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