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Abstract

Calcium is a ubiquitous messenger in neural signaling events. An increasing number of techniques 

are enabling visualization of neurological activity in animal models via luminescent proteins that 

bind to calcium ions. These techniques generate large volumes of spatially correlated time series. 

A model-based functional data analysis methodology via Gaussian mixtures is suggested for the 

clustering of data from such visualizations is proposed. The methodology is theoretically justified 

and a computationally efficient approach to estimation is suggested. An example analysis of a 

zebrafish imaging experiment is presented.
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1 Introduction

Calcium is a ubiquitous secondary messenger that regulates vital signaling events in neurons 

and other excitable cells [1]. In neurons, synaptic input and action potential firing trigger the 

rapid input of large quantities of calcium ions [2]. By fusing a calcium-binding domain to a 

fluorescent protein it is possible to monitor calcium ions and therefore various spike features 

[3]. Genetically encoded calcium indicators (GECIs) can target specific cell types or 

subcellular compartments and have facilitated long-term optical recording of genetically 

targeted neurons in vivo. GECIs like GCaMP are the most widely used calcium indicators 

[4] and a range of mouse, drosophila, and zebrafish lines have been generated that express 

GCaMP pan-neuronally.

In recent years, the zebrafish has become a popular model in neurological research (e.g. [5] 

and [6]) and the number of studies imaging neuronal calcium dynamics in larval zebrafish 

has increased dramatically (e.g. [7] and [8]). Larval zebrafish are particularly amenable to 

calcium imaging as they are translucent making it easy to image large populations of 

neurons without surgery, possess a relatively small brain (≈ 800 × 600 × 200 μm3) thereby 

facilitating whole-brain imaging [9], and the generation of transgenic lines is relatively 

straightforward promoting the creation of a range of transgenic lines [10]. Light-sheet based 

microscopy methods can enable imaging in larval zebrafish with sufficient temporal 

resolution to record neural dynamics throughout the brain [5].

In this article, we devise a method for clustering time series that are obtained from whole-

volume calcium imaging experiments. Large time series data sets, consisting of thousands of 

time points, were acquired using using swept confocally-aligned planar excitation 

microscopy (SCAPE; [11]). SCAPE is a novel method for high-speed light sheet imaging, 

which enables imaging of the entire zebrafish brain using a single objective lens in a flexible 

geometry and at very high spatiotemporal resolution. The data set utilized here was a whole-

volume calcium image of a larval zebrafish brain at a spatial resolution of 640 × 130 × 300 

(x × y × z) voxels and a temporal resolution of 4 volumes per second.

Two primary factors make the clustering of whole-volume calcium imaging time series 

difficult. Firstly, the time series can often be obtained at sparse or irregular intervals. 

Secondly, the size of the data firmly places the problem within the realms of Big Data, 

where conventional methods are infeasible to implement (cf. [12, Sec. 1.2]). The method 

that we develop in this article is designed to address these primary concerns.

Time series clustering is a well-studied area in data analysis and signals processing; see [13] 

and [14] for recent literature reviews. From [14], it is clear that there are numerous 

approaches to the problem of time series clustering. Due to the high dimensionality of the 

raw time series that arise from calcium imaging experiments, an abstraction is necessary to 

limit computational burden. The general framework of functional data analysis (FDA) is 

Nguyen et al. Page 2

Stat Anal Data Min. Author manuscript; available in PMC 2019 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



amenable to our aims; see [15] for an introduction to FDA. In this article, we present a 

mixture model-based functional data approach, thus only a brief literature review of such 

methods will be provided in the sequel.

In [16], a mixture of polynomial basis-filtered models was suggested for the clustering of 

time-dependent trajectories. In [17], a regularized mixture of mixed-effects (MEM) basis-

filtered models using B-splines was considered for the clustering of sparsely-sampled 

univariate functional data. Both [18] and [19] suggested MEM basis-filtered models using 

Fourier bases for clustering of time-course gene expression data; [20] extended the method 

of [19] by allowing for autoregressive (AR) errors. An extension of the MEM model of [19] 

that allowed for concomitant covariates was proposed in [21]. An adaptation of the MEM 

model from [17] was suggested for the clustering of sparsely-sampled bivariate functional 

data in [22]. Lastly, a set of methods that are related to the mixture model-based FDA 

approach are the mixtures of AR models that utilize a parametric stochastic process 

abstraction of the time series instead; see [23], [24], and [25].

In this article, we consider a two-stage approach to clustering the calcium image obtained 

time series that is adapted from that of [26]. In the first stage, each time series is filtered via 

a common set of B-spline bases using ordinary least squares (OLS); this produces a set of 

basis coefficients for each time series. Here, our notion of filtering as an operation that 

projects the time series into a lower-dimensional space is the same as that of [17]. In the 

second stage, a GMM-like (Gaussian mixture model; for example, see [27, Ch. 3]) clustering 

of the basis coefficients for each time series is conducted to partition the time series into k 
classes, where k is determined by a BIC-like (Bayesian information criterion [28]) approach 

via the slope heuristic technique of [29]. In this article, we use the trimmed k-means 

algorithm [30] for clustering due to its speed in the large data context. The two-stage nature 

of our method shares similarities with the methods of [31] and [32].

To justify our two-stage approach, we demonstrate that it permits the same statistical 

interpretation as the MEM model of [17]. Although the method of [17] permits sparseness 

and irregularity in the time series, the iterative and slow-converging EM (expectation–

maximization [33]) algorithm that is required for its implementation is inappropriate for data 

sizes in calcium imaging time series clustering; the same reasoning applies to the 

infeasibility of the MEM model-based methods; see [26, Sec. 4] for details. The methods 

that are based on mixtures of AR models are also inappropriate in this context due to their 

inability to handle sparsity in the sampling of the time series.

Along with the statistical model for calcium imaging, time series clustering, and two-stage 

method for performing the clustering, we also discuss the theoretical conditions under which 

the maximum likelihood (ML) estimator of a GMM model is consistent, under dependence 

between spatially correlated voxels. We then extend this discussion towards the suitability of 

the trimmed k-means algorithm. A numerical study is provided to justify our approach. To 

demonstrate an application of our methodology, we conduct a clustering of time series data 

arising from a whole-volume calcium imaging experiment of a larval zebrafish brain at rest, 

acquired using SCAPE microscopy.
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The rest of the article proceeds as follows. A statistical model for calcium imaging time 

series clustering is presented in Section 2. A two-stage algorithm is suggested for 

performing clustering in Section 3. An application to a zebrafish brain calcium imaging data 

is presented in Section 4. Conclusions are drawn in Section 5. A description of the trimmed 

k-means method is also provided in the Appendix.

2 Statistical Model

Suppose that we wish to cluster a sample of time series 𝒴n = Y1(t), …, Yn(t)  that are treated 

as functions in t on some interval 𝕋 . Let each time series Yi (t) (i = 1, …, n) be observed at 

mi time points t1, …, tmi
∈ 𝕋  (they may be sparsely and irregularly sampled) and suppose 

that we observe Yi at tj (j = 1, …, mi) indirectly via the noise-corrupted variable

Zi(t j) = Y i(t j) + Ei(t j), (1)

where Ei (tj) is a random error from a univariate Gaussian density distribution with mean 0 

and variance σ2.

In order to cluster the data, we require an implicit model for the subpopulation heterogeneity 

of the elements in 𝒴n. We propose a parametric model for the purpose. Let Y i(t) = Bi
T x(t), 

where x (t) is a d-dimensional vector of evaluates at point t of a B-spline system with (d 
− 2)-breakpoints over 𝕋  (see [34, Ch. 9]), and let Bi ∈ ℝd be a random variable that captures 

the heterogeneity of 𝒴n. Here, the superscript T indicates matrix transposition. Cubic B-

splines are used in all of our applications. We suppose that the B-spline representation Bi 

arises from a k-component GMM with density function

f (b; θ) = ∑
c = 1

k
πcϕd(b; μc, Vc), (2)

where πc > 0, ∑c = 1
k πc = 1, μc ∈ ℝd, Vc ∈ ℝd×d is positive definite (c = 1, …, k), and

ϕd(b; μ, V) = |2πV |−1/2exp − 1
2(b − μ)TV−1(b − μ)

is the multivariate Gaussian density function with mean μ and covariance matrix V. We shall 

refer to πc as the prior probability of observing Yi is in cluster c, and ϕd (b; μ, V) as the 

component density function of cluster c. Here, we put the parameter components πc, μc, and 

Vc into the vector θ.

Remark 1

Any linear basis system can be used in place of the B-splines in this article. Examples of 

other basis systems are Fourier or polynomial bases; see [15, Sec. 3.3].
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The model described so far is close to that of [17]. However, in order to proceed as [17] 

does, estimation of each Bi is required using the data Zi (tj), for all i and j, via an EM 

algorithm. This is not feasible in the setting that we wish to conduct clustering. We instead 

suggest that we estimate each Bi only via the data Zi (tj) for the same i. We do this via the 

OLS estimator

B∼i = (Xi
TXi)

−1Xi
TZi, (3)

where we let Xi
T = x(t1) ⋯ x(tmi

)  and Zi
T = (Zi(t1), …, Zi(tmi

)). The following result is 

proved in [26].

Proposition 1—Under characterizations (1) and (2), B∼i (as characterized by (3)) has 

density function

f b
∼

i; ϑ = ∑
c = 1

k
πcϕd b

∼
i; μc, Vc + σ2 Xi

TXi
−1 , (4)

where we put the parameter components πc, μc, Vc, and σ2 into ϑ.

Remark 2

Density (4) is dependent on i only via the term σ2 Xi
TXi

−1
. If we let Xi = X for all i, then we 

can write

f b
∼, ψ = ∑

c = 1

k
πcϕd b

∼; μc, V∼c , (5)

where V∼c = Vc + σ2[XTX]−1
 and ψ contains the parameter components of the model.

Remark 3

Alternatively to Remark 2, if we assume some structure in the sampling of the time points t1, 

…, tmi
 for each i, then we can reasonably assume that Xi

TXi approaches some positive and 

invertible matrix Δ in probability, for each i, as n approaches infinity. In such a case, an 

appropriate Slutsky-type theorem would imply that B∼i approaches a random variable with a 

mixture distribution of form (4), where Xi
TXi is replaced by Δ.
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Remark 4

It is possible that for some choice of mi and d, the matrix product Xi
TXi may be singular. In 

such situations, we may replace Xi
TXi

−1
 is (3)–(5) by the Moore-Penrose inverse Xi

TXi
+

, 

instead. Since the Moore-Penrose inverse is unique and always exists, its use in our 

application causes no unintended effects (cf. [35, Sec. 7.4]).

2.1 Parameter Estimation

Suppose that we observe data zi that are realizations of Zi from the process (1). Also suppose 

that t1, …tmi
= t1, …tm  for all i (i.e. Xi = X for all i, from Remark 2). A natural parameter 

estimator for ψ in (5) is the MLE (maximum likelihood estimator). Define ∇ as the gradient 

operator, and let the MLE be ψn, which is a suitable root of 𝓁n(ψ) = ∑i = 1
n log f b

∼
i; ψ , 

where b
∼

i = XTX −1XTzi. The following useful result regarding the consistency of MLE 

under dependence (e.g. spatial dependence between voxels in imaging data) is obtained in 

[26].

Proposition 2—Let Z1, …, Zn be an identically distributed (ID) and stationary ergodic (or 

strong-mixing) random sample (as characterized by (1)), which generates a set of OLS 

estimators B∼1, …, B∼n. Suppose that each B∼i(i = 1, …, n) arises from a distribution with 

density f b
∼, ψ0 , where ψ0 (containing π0c, μ0c, and V0c for all c) is a strict-local maximizer 

of 𝔼 log f b
∼; ψ . If Ψn = {ψ : ∇ℓn = 0} (where we take Ψn = ψ , for some ψ in the domain 

of f b
∼; ψ , if ∇ℓn = 0 has no solution), then for any ε > 0,

lim
n ∞

ℙ inf
ψ Ψn

(ψ − ψ0)T(ψ − ψ0) > ε = 0.

The result establishes the fact that there exists a consistent root to the like-lihood score 

equation ∇ℓn = 0. This is a useful result since the likelihood for a GMM cannot possess a 

unique global maximum as it is unbounded and lacks identifiability. The proof of 

Proposition 2 invokes an extremum estimator theorem [36, Thm. 4.1.2] in conjunction with 

either an ergodic continuous mapping theorem or a strong-mixing continuous mapping 

theorem (see [37, Thms. 3.35 and 3.49]). A generic uniform law of large numbers (ULLN) 

such as [38, Thm. 5] can then be used to obtain the desired result; see [24, Appendix I] for 

the proof of a similar result.

Remark 5—Strong mixing can be guaranteed by assuming that the sequence Zi is M-

dependent (cf. [39, Sec. 2.1]). That is, there exists some M < ∞ such that if |i − i′| > M then 

Zi and Zi′ are independent. This is a reasonable assumption in imaging applications where 

features behave in locally coherent groups.
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Remark 6—The intended use of this article is for clustering time series at voxels on a 

three-dimensional array. The asymptotics of Proposition 2 in conjunction with Remark 5 

applies when one of the three dimensions are extended infinitely. In practice, this is 

unimportant, but a theoretical labelling of the voxels that would allow the M-dependent 

assumption to hold when all three dimensions are extended would be difficult. One could 

instead treat the problem as an estimation problem over data arising from a stationary three-

dimensional mixing random field. In such a case, the M-dependent assumption of Remark 5 

can still be made (cf. [40]). The generic ULLN of [41] can be used in place of [38, Thm. 4] 

to establish an equivalent result.

2.2 Clustering via the GMM

Under (5) and following the approach from [27, Secs. 1.15.1 and 1.15.2], we have that

ai = arg max
c = 1, …, k

π0cϕd b
∼

i, μ0c, V∼0c / f b
∼

i; ψ0 (6)

is an outright assignment of the ith observation according to the optimal (Bayes) rule of 

allocation. Since ψ0 is unknown, we can substitute ψn in (6) to obtain a plug-in allocation 

rule.

Remark 7—Extending upon Remark 2, if we also make the assumption πc = 1/k and 

V∼c = λId for all c and some λ > 0, then the clustering obtained from a k-means algorithm 

(e.g. [42]) approximates a clustering obtained via a GMM. The invariance of the clustering 

rule to the scaling parameter λ can be seen by inspecting the discriminant function between 

any two classes [43, Eqn. 3.3.7]. The similarities between the algorithms for conducting 

GMM and k-means clustering are highlighted in [44, Secs. 16.1.1 and 16.1.2].

2.3 Model Selection

Thus far, we have not commented on the selection of the number of components k as it 

cannot be conducted within the likelihood approach of Section 2.1. An external wrapper-

type method for selecting k is the penalized-contrast approach of [45]. In the context of this 

article, the method can be presented as follows.

Let 𝕂 = k1, …kK  be a set of K possible values for the number of components and let ψn
[k]

be the MLE of (5) with k ∈ 𝕂 components. Let k0 ∈ 𝕂 be the optimal number of components 

in the sense that it minimizes the expectation of the loss n−1𝓁n ψ0
[k0]

− n−1𝓁n ψn
[k]  for k ∈ 𝕂. 

We can estimate k0 by

k = arg min
k ∈ 𝕂 − 1

n𝓁n ψn
[k] + 2κ∼ pen (k), (7)
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where pen (k) is a problem-specific penalization function for a model with k components 

and κ∼ is the so-called slope heuristic that is estimated from the data (cf. [46]). According to 

[47, Tab. 1], an appropriate penalty function for the GMM is to use the number of 

parameters. That is, under the restricts of Remark 2, pen (k) = (d2/2 + 3d/2 + 1)k−1. 

Furthermore, under the additional restrictions of Remark 7, we get pen (k) = dk. The slope 

heuristic κ∼ can be estimated via the DDSE (data-driven slope estimation) method of [47]; 

see also [29].

3 Two-stage Algorithm

Make the assumptions from Remark 2. Let z1, …, zn be a realization of the random sample 

of time series Z1, …, Zn that are observed at the n voxels, where Zi
T = (Zi(t1), …, Zi(tm)) and 

t j ∈ 𝕋 (i = 1, …, n and j = 1, …, m). The first stage of the algorithm is to filter each Zi via a B-

spline system. The second stage of the algorithm is to cluster the OLS estimators that are 

obtained upon B-spline filtering.

3.1 Stage 1: B-spline Filter

As in Section 2, let x (t) be a d-dimensional vector of evaluates at point t of a B-spline 

system with (d − 2)-breakpoints over 𝕋 . In this article, we find that d = 200 is sufficient for 

our application. Further, let XT = x(t1) ⋯ x(tm)  be the matrix of B-spline system evaluates 

at the m sampled time points. For each i, we filter the time series zi via the OLS estimator 

b
∼

i = (XTX)−1XTzi.

3.2 Stage 2: Clustering

Upon obtaining the OLS estimates, we now proceed to cluster the sample b
∼

1, …, b
∼

n. 

Unfortunately, even with a modest size whole-volume brain calcium imaging dataset (e.g. n 
≈ 106 and m ≈ 2000), estimating the MLE of (5) for use with Rule (6) is prohibitively 

computationally intensive for sufficiently large k (e.g. k ≥ 10). Even the additional 

restrictions imposed in Remark 7 and the use of efficient k-means algorithm 

implementations do not improve the computational speed to an acceptable level.

Making the assumptions from Remark 7, we can sufficiently-quickly estimate the 

component means μc for c = 1, …, k (we will call the estimates μ∼nc), for relatively large k 

(e.g. k ≥ 20) via the trimmed k-means method of [30] as implemented via the TCLUST 

algorithm of [48]. A description of the trimmed k-means approach is provided in the 

Appendix.

Upon obtaining the estimates of all the component means γ∼n
T = (μ∼n1, …, μ∼nk), we can use 

Rule (6) to allocate each OLS estimate b
∼

i. Under the assumptions from Remark 7 and upon 

substitution of the component means, Rule (6) simplifies to the usual k-means rule
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ai = arg min
c = 1, …, k

b
∼

i − μ∼nc
T b

∼
i − μ∼nc . (8)

The value of k is determined by Rule (7) upon estimation of κ∼ via a sufficiently large sample 

from 𝕂 = 2, 3, … . Here, the log-likelihood ℓn (ψ) (from Section 2.1) simplifies to

𝓁n(γ) = ∑
i = 1

n
log ∑

c = 1

k
k−1ϕd b

∼
i; μc, λId (9)

for some fixed λ > 0. In this article, we set λ = 1.

3.3 Numerical Study

We perform a pair of simulation studies, S1 and S2, in order to justify the application of the 

assumptions from Remark 7, as well as the application of the trimmed k-means method for 

accelerated estimation. In S1, we simulate n ∈ {500, 1000, 2500, 5000} curves at m ∈ {100, 

200, 500, 1000} uniformly-spaced points on the unit interval 𝕋 = [0, 1]. Each of the curves 

are sampled with equal probability from k = 5 classes of (10 − 2)-node B-spline systems that 

are defined by (1) and (2) and the parameter components μ1
T = (0, …, 0), μ2

T = (1, 1, …, 0), 

μ3
T = ( − 1, − 1, …, 0), μ4

T = (0, …, 1, 1), μ5
T = (0, …, − 1, − 1), σ2 = 0.252, and Vc = diag 

(0.252, …, 0.252), for each c = 1, …, k. In S2, we perform the same simulation except we set

Vc =

0.252 0.152 ⋯ 0.152

0.152 0.252 ⋯ 0.152

⋮ ⋮ ⋱ ⋮

0.152 0.152 ⋯ 0.252

.

for each c = 1, …, k, instead.

For each combination of m and n in each of S1 and S2, we perform clustering using Rule (6) 

(i.e. GMM-based clustering without application of the assumptions of Remark 7), Rule (8) 

using the entire data set for the estimation of the component means, as well as Rule (8) using 

the trimmed k-means algorithm for mean estimation, with α set to 0.25 and 0.5. Each 

combination and scenario is simulated 50 times and the performance of each algorithm is 

measured using the adjusted-Rand index (ARI) of [49]. An ARI measure of 1 indicates a 

perfect match between the clustering and the generative labels, and a value of 0 indicates no 

association between the clustering and the generative labeling. The simulation results for S1 

and S2 are report in Tables 1 and 2 as means and standard errors (SEs) of the ARI results 

over the 50 repetitions.

From Tables 1 and 2, we can draw the conclusion that all clustering methods appear to 

improve in performance with increases in m and n. This is natural as more data allows for 

better estimation of the mean functions of the generative models and thus better clustering 
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around those mean functions. In S1, we surprisingly observe that there is no tradeoff in 

performance between the k-means and GMM clustering results. Furthermore, using smaller 

parts of the data set (i.e. α is increased) appears to simply increase the variance of the ARI 

rather than decrease the average performance by any significant amount. We can thus 

conclude that when the B-spline bases are not correlated, there appears to be little loss in 

performance from using a trimmed k-means approach when compared to a full data k-means 

or a GMM clustering.

In S2, we observe that the GMM clustering is improved at every m and n, when compared to 

S1, due to the added information from the correlation between the B-spline bases. Here, we 

do see that there is a small loss in performance from using a k-means approach over GMM 

clustering. However, we again observe that there is little effect on clustering performance 

when the trimmed k-means algorithm is used (even when the sample size is halved), rather 

than the full data k-means, other than an increase in the variability of the ARIs. Considering 

the significant gains in computational speed and the appearance of only a minor loss in 

performance from using a trimmed k-means approach over a full data k-means or GMM 

clustering, and considering the scaling in accuracy due to increasing m and n, we find our 

overall approach justifiable for large data sets such as our calcium imaging application.

4 Example Application

4.1 Data Description

We consider an analysis of a time series data set arising from the volumetric calcium 

imaging of a larval zebrafish brain. The in-vivo calcium imaging was performed on a 5 day 

post fertilization Tg(elavl3:H2B-GCaMP6s) fish [50]. Images were acquired using SCAPE 

microscopy with 488 nm excitation [11]. The zebrafish was imaged at rest over 

approximately 20 minutes and 640×130×300 (x × y × z) voxel volume (actual dimension ≈ 
800 × 600 × 200 μm3) of time series data were acquired at 4 volumes per second.

As an example, we analyze a central region of interest within the brain, with volume 170 × 

70 × 150 (x × y × z) voxels. Each time point of each time series measures image intensity on 

a scale between 0 and 1. The total number of time points at each voxel of the data is m = 

1935; due to irregularities, each series covers the wider time range of t1 = 1 to tm = 2797 

after cropping. All time series are observed at the same m time points. The volume contains 

a total of n = 1785000 spatially correlated time series from voxels potentially displaying 

interesting neuronal activity or anatomical features. Time-averaged images of the 60th to 

85th z-slices (in increments of 5) of the volume are presented in Figure 1. Upon inspection 

of Figure 1, we see that there exist spatial variation in the mean signal that may indicate the 

presence of voxel subpopulations.

4.2 Data Analysis via Two-Stage Approach

All statistical analyses in this article are conducted within the R statistical environment [51] 

via the Microsoft Open 3.2.3 build. Data analysis is conducted using a mix of open source 

packages along with bespoke scripts. All computations are performed on a MacBook Pro 
(retina, 15-inch, early 2013) with a 2.4 GHz Intel Core i7 processor and 16 GB of DDR3 

Nguyen et al. Page 10

Stat Anal Data Min. Author manuscript; available in PMC 2019 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



RAM. Computation times are measured using the proc.time function in the base package of 

R.

Imaging data were first converted from the raw time frames (ANDOR format) using a 

custom python script. Part of this pre-processing involves a conversion to MINC [52], a 

HDF5 based format such that we can more easily deal with datasets that approximate 1TB. 

Once in the MINC format, the data is then realigned within each volume, realigned for each 

time series, and intensity normalized using the MINC tools. This post-processing is 

performed on a ≈ 200 core Linux cluster using gridengine. A sub-section of the data are then 

extracted and converted to NIfTI format for statistical analysis. The NIfTI format images 

were read into R via the AnalyzeFMRI package [53]. Before initializing Stage 1 of our 

process, we firstly detrend the data. This is performed rapidly via the speedlm.fit function 

within the speedglm package [54]. The detrending is required due to the decaying effect of 

the fluorescence contrast over time, and is justified by the the imaged specimen being at rest. 

Using a d = 100 bases (i.e. a 98-node) B-spline system, the OLS estimates of the B-spline 

representation b
∼

i(i = 1, …, 1785000) for Stage 1 of the procedure are quickly computed via 

the functions within the fda package [55]. An example sample of 10 time series 

Zi
T = (Zi(1), …, Zi(2797)) along with their estimated B-spline representations 

Y∼(t) = b
∼

i
T x(t)(t = 1, …, 2797) is visualized in Figure 2. Reading, detrending, and OLS 

estimation of every voxel in the volume was performed in a total computation time of 0.89 

hours.

Prior to conducting Stage 2 of the process, we firstly column normalize the obtained OLS 

estimates b
∼

i
T = b

∼
i1, …, b

∼
id . That is, for each j = 1, …, d, we normalize each of the jth 

column of coefficients b
∼

1 j, …, b
∼

n j by the respective mean and standard deviation. This is 

done to reduce the effects of differing dimensional scales. Upon normalization, the trimmed 

k-means algorithm is used to cluster the data. The TCLUST algorithm was applied via the 

tkmeans function from the tclust package [56]. Numbers of clusters in the set 𝕂 = 2, …, 50
were considered, and the algorithm was repeated 20 times for each k ∈ 𝕂, in order to 

mitigate against convergence to a spurious solution. The solution that maximized the 

objective (9) over all repetitions is taken to be the optimal k-cluster trimmed k-means 

estimator γ∼n
[k].

Using the objective sequence 𝓁n γ∼n
[k] (k ∈ 𝕂), we utilize the capushe package [57] to 

implement the the DDSE method of [29]. Under the penalty pen (k) = dk, The slope 

heuristic is estimated to be κ∼ = 1.335 × 10−3. This results in the model selection rule

k = arg min
k ∈ 𝕂 −

∑i = 1
n log∑c = 1

k πcϕd b
∼

i; μ∼cn
[k], Id

n + 2.67kd
103 . (10)
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Under Rule 10, the optimal number of clusters is determined to be k = 10. Panel A of Figure 

3 visualizes the average time taken to perform 20 repetitions of the TCLUST algorithm for 

each k ∈ 𝕂; Panel B of Figure 3 visualizes the model selection criterion values 

−n−1𝓁n γ∼n
[k] + 2κ∼ pen (k) for each considered k. The total computation time for 20 

repetitions of the TCLUST algorithm for each k is 82.61 hours.

4.3 Results

Upon reversing the normalization discussed in Section 4.2, we can write the k = 10 cluster 

mean functions as μ∼c(t) = μ∼cn
T x(t) (c = 1, ….10). A plot of the 10 cluster mean functions 

appears in Panel A of Figure 4; a frequency plot of the number of voxels that are allocated 

into each cluster (via Rule (8)) appears in Figure 4. From Figure 4, we notice that although 

the majority of mean functions appear parallel, there are a few that exhibit behavior that 

differs over time, and not simply differing in mean; for example, the c = 3 and c = 9 mean 

functions exhibit behavior that is substantially different to the others.

Visualizations of the clustering at the 60th to 85th z-slices (in increments of 5) are presented 

in Figure 5. From Figure 5, we can make some inferences regarding the nature of the voxels 

that are allocated to each cluster. For example, c = 1 can be inferred as background, lack of 

brain matter, or highly inactive neuronal material. Clusters c = 2, 3, 4, 5, 6, 7 can be inferred 

as edge effects on the interface between the background and the brain matter; the differences 

in these background effects may be explained by the various types of cellular materials such 

as membranes and tissues. Clusters c = 8; 9; 10 can be inferred as various types of brain 

matter. Furthermore, the cluster allocations in Figure 5 appears to be spatially coherent, thus 

indicating that the methodology is producing biologically meaningful results and not 

spurious allocations. The resulting clustering patterns require further investigation regarding 

their significance and interpretability. It is difficult to make a comment regarding the 

inferential significance of these particular cluster allocations at this stage, as the science 

regarding the analysis of such imaging protocols is still undergoing development. Further, 

we observe that the frequencies of the different clusters are quite varied, indicating that the 

process is able to identify both rare and common subpopulations of voxels.

5 Conclusions

High-speed volumetric microscopy technologies hold great potential for the investigation of 

neurological activity in animals; see for example [11]. The methodology for analysis of 

whole-volume calcium imaging data has not been well developed and especially not adapted 

to the Big Data pathologies that are inherit in the class of data. In this article, we have 

developed a model-based clustering method that addresses the problems of sparse sampling, 

high dimensionality, and spatial dependency, which are inherent in whole-volume calcium 

imaging data. Our methodology is a two-stage mixture model-based approach for the 

functional data analysis of time series that arise from calcium imaging experiments.

We derived a theoretical model under which our approach can be interpreted. The approach 

is demonstrated to coincide with the estimation of a GMM for OLS estimates of B-spline 

coefficients. The consistency (under data dependence) of the MLE of the model parameter 
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that is required for the application of the approach is provided. For feasibility, a a 

simplification of the GMM is estimated using a trimmed k-means algorithm. A consistency 

result (under data dependence) is proven for the trimmed k-means estimators. This 

consistency result is novel and extends the previous results of [30] and [48] regarding the 

consistency of such estimators under independence of observations.

An example application of this method on a resting-state zebrafish calcium imaging dataset 

is presented. The computational timing of the approach, using freely-available open 

software, demonstrated the feasibility of the procedure. The outcome of the data analysis 

showed that the approach produces spatially coherent cluster allocations that are biologically 

interpretable and meaningful. Here, reasonable spatial contiguity is achieved without the 

need for direct account of spatial correlation.

Future directions for this research will involve the application of the approach on animals 

undergoing stimulation; such data will likely exhibit more functional asychronicities than 

those observed in the provided example. Computational times may be made faster via 

bespoke software for the problem, that are implemented in C, this may be incorporated in 

the current workflow via the Rcpp package [58]. The bespoke software may also make 

possible the application of less restrictive models for clustering.

Although spatial coherency is achieved in our obtained cluster allocations, such allocations 

can be made more spatially consistent via the application of an MRF (Markov random field) 

model, such as those successfully implemented in [59] and [24]. The MRF model can be 

applied as a third stage to the approach.

Finally, we note that the methodology that has been developed is not limited in application 

to calcium imaging studies but also any situation where large numbers of time series require 

clustering. Here, we say that data is large if conventional methodologies require an 

unreasonable amount of computational time. The settings that are suitable for our 

methodology include those where the time series may or may not be spatially correlated, and 

where they may or may not be sparsely sampled. Such situation occur frequently in modern 

scientific analysis. Some recent settings where our methodology may be applied in the future 

are towards the analysis of activity sensor data and functional magnetic resonance imaging 

data, such as those analyzed by [60] and [25], respectively.
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Appendix

Description of Trimmed k-means

Let u1, …, un be a realization of an ID (identically distributed) random sample U1, …, U ∈ 
ℝd. Based on [48, Prop. 1], we can describe the α-trimmed k-means problem as the 

estimation of the mean vectors γT = (μ1, …, μk), where μc (c = 1, …, k), via the 

maximization of the objective

ℒn(γ) = 1
n ∑

i = 1

n
∑

c = 1

k
δc(ui; γ) log Dc(ui; γ), (11)

where Dc (u; γ) = k−1ϕd (u; μc, λId) and

δc(u; γ) = 𝕀 u ∈ max
c′

Dc′(u; γ) = Dc(u; γ) ∩ Dc(u; γ) ≥ R(γ) . (12)

Here λ > 0 is a fixed constant, 𝕀(A) equals 1 if A is true and 0 otherwise, and R (γ) = infv {G 

(v; γ) ≥ α}, where G(v; γ) = ℙ( maxc Dc(u; γ) ≤ v) under the distribution of U1. Call the α-

trimmed k-means estimate γ∼n
T = (μ∼n1, …, μ∼nk).

Upon inspecting the objective (11), we observe that (12) sets the contribution of all 

observations ui that have maxc Dc (ui; γ) values below the α-quantile to 0; traditionally, the 

observations below the α-quantile are seen to be outliers. Thus, only (1 − α) × 100% of the 

data contributes non-zero values to the computation of the objective. This explains the faster 

computational speed of the trimmed k-means over its untrimmed counterpart, when α is 

sufficiently large. With respect to the size of data in our application, we found α = 0.9 to be 

reasonable.

TCLUST Algorithm

Like the k-means problem, the α-trimmed k-means problem is combinatorial and thus 

difficult to solve exactly. An approximate solution for maximizing (11) is to use the 

TCLUST algorithm. Here, we adapt the description of the TCLUST algorithm (given in [48, 

Sec. 3]) for the α-trimmed k-means problem.

Let γ(0) denote some randomized initialization of the vector γ, and let γ(r)T = μ1
(r), …, μk

(r)

denote the rth iterate of the algorithm. At the (r + 1) th iterate of the algorithm, perform the 

steps:

1. Compute di
(r) = maxc Dc(ui; γ(r)) and store the set of ui with the ⎿n (1 − α)⏌ 

largest di
(r) values in the set ℍ(r + 1).

2. Split ℍ(r + 1) into sets ℍ1
(r + 1), …, ℍk

(r + 1), where
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ℍc
(r + 1) = ui ∈ ℍ(r + 1):Dc ui; γ(r) = di

(r) .

3. For each c = 1, …, k, compute the updates

μc
(r + 1) = |ℍc

(r + 1)|−1 ∑
i = 1

n
ui𝕀 ui ∈ ℍc

(r + 1) .

Here ⎿x⏌ is the floor of x ∈ ℝ. Steps 1–3 are repeated until some convergence criterion is 

met upon which the final iterate is declared the α-trimmed k-means estimator γ∼n. In this 

article, we follow the default option of the tkmeans function and terminate the algorithm 

after 20 iterations.

Theoretical Considerations

The consistency of the α-trimmed k-means estimator γ∼n is established for the case of 

independent and identically distributed random variables in [48]; see also [30]. Due to the 

application to CI, we require that the α-trimmed k-means estimator be consistent for data 

with some dependence structure. Let ⪯ denote the lexicographic order relation in ℝd (cf. [61, 

Example 2.1.10 (3)]), and let Γ = {γ ∈ ℝkd : μ1 ⪯ … ⪯ μk}. Further, let 

l(u; γ) = ∑c = 1
k δc(u; γ)logDc(u; γ). The following proposition establishes one such result.

Proposition 3

Let U1, …, Un ∈ ℝd be an ID and stationary ergodic (or strong-mixing) random sample from 

a continuous distribution and assume that |cov (U1)| < ∞. Assume that there exists some γ0 

∈ Γ such that for every open subset 𝒢 ⊂ Γ, γ0 ∈ 𝒢 implies that 

𝔼l(U1; γ0) > supγ ∈ Γ\𝒢𝔼l(U1; γ). If γ∼n ∈ Γ is a sequence of estimators such that 

γ∼n = arg maxγ ∈ Γ ℒn(γ), then γ∼n
P

γ0

Proof—We invoke the M-estimator theorem of [62, Thm. 2.12], which requires we 

establish that

sup
γ ∈ Γ

|ℒn(γ) − 𝔼l(U1; γ) | P 0.

Under the ID stationary ergodic (or strong-mixing) condition, we can use the ULLN of [38, 

Thm. 5] by verifying that 𝔼l(U1; γ) < ∞ (which also verifies the use of an appropriate law of 

large numbers; e.g. [37, Thm. 3.34]). Since δc (u1; γ) are binary, we require that 𝔼logDc(u; γ)

be finite for each c. Since log Dc (u; γ) is nonlinear in u via only quadratic terms, we have 

𝔼logDc(u; γ) < ∞ and hence 𝔼l(u; γ) < ∞, under the assumption that |cov (U1)| < ∞. □

Nguyen et al. Page 15

Stat Anal Data Min. Author manuscript; available in PMC 2019 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Remark 8

The constraint of the parameter space to Γ is require to break the symmetries of potential 

solutions. Without the restriction, the assumption that there exists some γ0 ∈ Γ such that for 

every open subset 𝒢 ⊂ Γ, γ0 ⊂ 𝒢 implies that 𝔼l(U1; γ0) > supγ ∈ Γ\𝒢𝔼l(U1; γ) cannot hold, 

since there will always be a γ ∈ Γ\𝒢 such that 𝔼l(U1; γ0) = 𝔼l(U1; γ). The lexicographic 

ordering restriction is similar to that which is used by [63], in order to break symmetries in 

mixture of experts models.

Remark 9

As with Proposition 2, an M-dependence assumption can be used to enforce strong-mixing; 

see Remark 5. However, similarly to Remark 6, M-dependence may be difficult to establish 

if all dimensions of the calcium imaging is allowed to extend infinitely. An alternative 

theorem based on the results of [41] can be used instead in such a case.
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Figure 1. 
Time-averaged image of the the 60th to 85th z-slices (in increments of 5) of the zebrafish 

brain calcium imaging volume acquired using SCAPE microscopy. The legend on the right-

hand sides indicate the average level of signal intensity at any particular voxel.
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Figure 2. 
Panel A visualizes 10 randomly sampled time series of intensities from the total of n = 

1785000 voxels; different colors indicate the signals from different time series. Panel B 

visualizes the d = 100 basis (98-node) B-spline representations Y∼(t) = b
∼

i
T x(t) for each of the 

10 randomly sampled series; the colors correspond to those from Panel A.
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Figure 3. 
Panel A visualizes the total amount of time (in seconds) taken to run the TCLUST algorithm 

for each k ∈ 𝕂(𝕂 = 2, …, 50 ). Panel B visualizes the model selection criterion values for 

each k, as per Rule (10); the dotted line and circled point indicate the optimal value of the 

criterion and k = 10, respectively.
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Figure 4. 

Visualization of the k = 10 mean functions μ∼c(t) = μ∼cn
T x(t) (c = 1, …, 10) that are obtained via 

the TCLUST algorithm for trimmed k-means; the colors are as in Figure 5.

Nguyen et al. Page 22

Stat Anal Data Min. Author manuscript; available in PMC 2019 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
Cluster allocations (as per Rule (8)) of the 60th to 85th z-slices (in increments of 5) of the 

zebrafish brain calcium imaging volume. The legend on the right-hand sides indicate the 

cluster allocation and corresponds with the colors that are used in Figure 4.
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