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Abstract

We study regression using functional predictors in situations where these functions
contain both phase and amplitude variability. In other words, the functions are mis-
aligned due to errors in time measurements, and these errors can significantly degrade
both model estimation and prediction performance. The current techniques either ig-
nore the phase variability, or handle it via pre-processing, i.e., use an off-the-shelf tech-
nique for functional alignment and phase removal. We develop a functional principal
component regression model which has comprehensive approach in handling phase and
amplitude variability. The model utilizes a mathematical representation of the data
known as the square-root slope function. These functions preserve the L2 norm under
warping and are ideally suited for simultaneous estimation of regression and warping
parameters. Using both simulated and real-world data sets, we demonstrate our ap-
proach and evaluate its prediction performance relative to current models. In addition,
we propose an extension to functional logistic and multinomial logistic regression
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1 Introduction

The statistical analysis of functional data is fast gaining prominence in the statistics commu-

nity because “big data” is central to many applications. For instance, functional data can be

found in a broad swath of application areas ranging from biology, medicine, and chemistry;

to geology, sports, and financial analysis. In this problem, some of the random quantities

of interest are functions of independent variables, (e.g., time, frequency), and are studied as

elements of an appropriate function space, often a Hilbert space. The analysis can include

common statistical procedures such as computing statistical summaries, estimating para-

metric and nonparametric distributions, and generating inferences under noisy observations.

One common problem in functional data analysis is regression modeling where the function

variables are used as predictors to estimate a scalar response variable.

More precisely, let the predictor functions be given by {fi : [0, T ]→ R, i = 1, 2, . . . , n}

and the corresponding response variables be yi. The standard functional linear regression

model for this set of observations is

yi = α +

∫ T

0

fi(t)β(t) dt+ εi, i = 1, . . . , n (1.1)

where α ∈ R is the intercept, β(t) is the regression-coefficient function and εi ∈ R are random

errors. This model was first studied by Ramsay and Dalzell (1991) and Cardot et al. (1999).

The model parameters are usually estimated by minimizing the sum of squared errors (SSE),

{α∗, β∗(t)} = arg min
α,β(t)

n∑
i=1

|yi − α−
∫ T

0

fi(t)β(t) dt|2.

These values form maximum-likelihood estimators of parameters under the additive white-

Gaussian noise model. One problem with this approach is the solution is an element of an

infinite-dimensional space while its specification for any n is finite dimensional; resulting in

an infinite number of possible solutions without further restrictions imposed on the problem.

Ramsay and Silverman (2005) proposed two approaches to handle this issue: (1) Represent

β(t) using p basis functions in which p is kept large to allow desired variations of β(t), and

(2) add a roughness penalty term to the objective function (SSE) which selects a smooth

solution by finding an optimal balance between the SSE and the roughness penalty. The

basis can come from Fourier analysis, splines, or functional PCA (Reiss and Ogden (2007)).
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Current literature in functional linear regression is focused primarily on the estimation of

the coefficient of β(t) under a basis representation. For example, (Cuevas et al., 2002; Cardot

et al., 2003; Hall and Horowitz, 2007; James et al., 2009) discuss estimation and/or inference

of β(t) for different cases for the standard functional linear model and the interpretation

of β(t). Focusing on prediction of the scalar response, Cai and Hall (2006) studied the

estimation of
∫
fi(t)β(t) dt. In some situations the response variable yi, is categorical and

the standard linear model will not suffice. James (2002) extended the standard functional

linear model to functional logistic regression to be able to handle such situations. Müller

and Stadtmüller (2005) extended the generalized model to contain a dimension reduction

by using a truncated Karhunen-Loève expansion. Recently, Gertheiss et al. (2013) included

variable selection to reduce the number of parameters in the generalized model.

In practice the predictor functions are observed at discrete points and not the full interval

[0, T ]. Furthermore, in some situations, these observations are corrupted by noise along the

time axis. That is, one observes {(t + η(t), f(t))} instead of {(t, f(t))} where the random

variables η(t) are constrained so that the observation times do not cross each other. While

some papers have assumed parametric models for η(t) (Carroll et al. (2006)) and incorpo-

rated them in the estimation process, the others have ignored them completely. It is more

natural to treat these measurement variables in a nonparametric form as follows: We assume

that observation times are given by γ(t) where γ is a monotonic function with appropriate

boundary conditions (γ(0) = 0, γ(T ) = T ). Consequently, the observations are modeled

as {γ(t), f(t)} where γ captures a random noise component that needs to be accounted for

in the estimation process. The effect of γ is a warping of f , with a nonlinear shift in the

locations of peaks and valleys but no changes in the heights of those peaks and valleys. In

this effect warping differs across realizations (observations) and, hence, is termed as warping

or compositional noise. Some authors have also called it the phase variability in functional

data. If the phase variability is ignored, the resulting model may fail to capture patterns

present in the data and will lead to inefficient data models. One way to handle this noise

is to capture both the phase and amplitude variability properly in the regression model. It

is more natural to include handling of warping noise, or alignment, in the regression model

estimation itself; and perform a joint inference on all model variables under the same ob-

jective function. Recently, Gervini (2015) has proposed a functional linear regression model
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that includes phase-variability in the model. This uses a random-effect simultaneous linear

model on the warping parameters and the principal component scores (of aligned predictor

functions). However, this method involves PCA on the original functional space and has

shown to be inferior for unaligned data (Tucker et al. (2013):Lee and Jung (2017)). Tucker

et al. (2013) showed that if this variability is not accounted for properly when performing

fPCA, the results will be misleading due to incorrect shape of the calculated mean function.

In this paper we focus on problems where the functional data contains random phase

variability. To handle that variability, we propose a regression model that incorporates the

phase variability through the use of functional principal component regression (fPCR); where

this variability is handled in a harmonious way. The basic idea is to use a PCA method as

the basis that is able to capture the amplitude variability, phase variability, or both in the

regression problem. This allows the model to capture the variability that is important in

predicting the outcome from the data. Using this representation and the geometry of the

warping function γ, we construct the model and outline the resulting prediction procedures.

The fPCR method was first proposed by Reiss and Ogden (2007), but they neglected to

account for the phase-variability found in functional data. We extend this framework to the

logistic regression case where the response can take on categorical data. We will illustrate

this application using both simulated and real data sets, which includes sonar, gait, and

electrocardiogram data. The physiological data is studied in the context of classification of

disease types or the separation of individuals.

This paper is organized as follows: In Section 2 we review the relevant material from

functional regression, and in Section 3 we develop the elastic functional PCR model. In

Section 4 we extend the elastic fPCR to the logistic and multinomial logistic case. In Sections

5 and 6, we report the results of applying the proposed approach to a simulated data set

and seven real data sets from various application domains. Finally, we close with a brief

summary and some ideas for future work in Section 7.

2 Functional Principal Component Regression

We start with a more common functional regression model, and then develop an “elas-

tic” principal component version that accounts for phase variability of the functional data.
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Without loss of generality we assume the time interval of interest to be [0, 1]. Let f be a

real-valued function on [0, 1]; from a theoretical perspective we restrict to functions that are

absolutely continuous on [0, 1] and we let F denote the set of all such functions. In practice,

since observed data are discrete, this assumption is not a restriction.

2.1 Functional Principal Component Regression Model

Let {fi} denote observations of a predictor function variable and let yi ∈ R, be the corre-

sponding response variable. The standard functional linear regression model for this set of

observations is

yi = α +

∫
fi(t)β(t) dt+ εi, i = 1, . . . , n (2.1)

where α is the bias and β(t) is the regression coefficient function. The model is usually

determined by minimizing the sum of squared errors (SSE).

{α∗, β∗(t)} = arg min
α,β(t)

n∑
i=1

|yi − α−
∫
fi(t)β(t) dt|2. (2.2)

One problem with this approach, is that for any finite n, it is possible to perfectly interpolate

the responses if no restrictions were are placed on β(t). Specifically, since β(t) is infinite

dimensional, we have infinite degrees of freedom to form β(t) in which we can make the

SSE equal zero. Ramsay and Silverman (2005) proposed two approaches with the first,

representing β(t) using a p-dimensional basis in which p is hopefully large enough to capture

all variations of β(t). The second approach is adding a penalty term which shrinks the

variability of β(t) or smooths its response.

Functional principal component regression uses the principal components as the basis

functions where the model is determined by minimizing

{α∗,b∗} = arg min
α,b

n∑
i=1

|yi − α−
no∑
j=1

〈fi(t), ξj(t)〉 bj|2, (2.3)

where no principal components are used, ξ(t) is the corresponding eigenfunction, and b =

[b1, . . . , bj]. It should be noted that fi(t) here is mean centered.
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3 Elastic Functional Principal Component Regression

Model

In order to properly account for the variability, we can use the vertical fPCA and horizontal

fPCA presented in Tucker et al. (2013). These PCA methods account for the variability,

by first separating the phase and amplitude and then performing the PCA on the spaces

separately. Using these methods, one can construct a regression on the amplitude space using

the square-root slope function (SRSF), q and specifically the aligned SRSF or the phase space

using the warping functions, γ, the motivation for the using of SRSF will be explained later.

A third option is to use the method developed by Lee and Jung (2017) which is an extension

of the method developed by Tucker et al. Lee proposes a combined fPCA which generates a

function gC , which combines the function (f) and the warping function. We propose a slight

modification to this work to use the SRSF, due to its theoretical properties. The combined

function does work on a simplified geometry of the warping function where the warping

function, is transformed to the Hilbert Sphere; and the shooting vector that maps to the

tangent space is analyzed. This simplification, and SRSF modification allows the use of a

metric that is a proper distance as in the vertical and horizontal case. By using the combined

fPCA the regression model can be performed on the amplitude and phase simultaneously.

Table 1 presents the three domains and where the regression is performed.

Table 1: Functional Principal Component Regression Domains.

Vertical fPCA Horizontal fPCA Combined fPCA

Domain q̃ γ gC = [q̃ Cv(t)]

Variability Amplitude Phase Amplitude + Phase

Metric Fisher-Rao Fisher-Rao Fisher-Rao

3.1 Elastic Functional fPCA

We begin by giving a short review of the vertical and horizontal fPCA of Tucker et al. (2013)

and the combined phase-amplitude fPCA method of Lee and Jung (2017), with a slight
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modification which will be described clearly in later sections. These methods are based

on the functional data analysis approach outlined in Srivastava et al. (2011), Kurtek et al.

(2011), and Tucker et al. (2013); see those references for more details on this background

material.

Let Γ be the set of orientation-preserving diffeomorphisms of the unit interval [0, 1]:

Γ = {γ : [0, 1] → [0, 1]| γ(0) = 0, γ(1) = 1, γ is a diffeomorphism}. Elements of Γ play the

role of warping functions. For any f ∈ F and γ ∈ Γ, the composition f ◦ γ denotes the

time-warping of f by γ. With the composition operation, the set Γ is a Lie group with the

identity element γid(t) = t. This is an important observation since the group structure of Γ

is seldom utilized in past papers on functional data analysis.

As described in Tucker et al. (2013), there are two metrics to measure the amplitude

and phase variability of functions. These metrics are proper distances, one on the quotient

space F/Γ (i.e., amplitude) and the other on the group Γ (i.e., phase). The amplitude or

y-distance for any two functions f1, f2 ∈ F is defined as

da(f1, f2) = inf
γ∈Γ
‖q1 − (q2 ◦ γ)

√
γ̇‖, (3.1)

where q(t) = sign(ḟ(t))
√
|ḟ(t)| is known as the square-root slope function (SRSF) (ḟ rep-

resents the derivative of f). The optimization problem in Equation 3.1 is most commonly

solved using a Dynamic Programming algorithm; see Robinson (2012) for a detailed de-

scription. If f is absolutely continuous, then q ∈ L2([0, 1],R) (Robinson (2012)), henceforth

denoted by L2. For the properties of the SRSF and the reason for its use in this setting,

we refer the reader to Srivastava et al. (2011), Marron et al. (2015) and Lahiri et al. (2015).

Moreover, it can be shown that for any γ1, γ2 ∈ Γ, we have da(f1 ◦ γ1, f2 ◦ γ2) = da(f1, f2),

i.e., the amplitude distance is invariant to function warping.

3.2 Simplifying Geometry of Γ

The space of warping functions, Γ, is an infinite-dimensional nonlinear manifold, and there-

fore cannot be treated as a standard Hilbert space. To overcome this problem, we will use

tools from differential geometry to perform statistical analyses and to model the warping

functions. The following framework was previously used in various settings including; (1)

modeling re-parameterizations of curves (Srivastava and Jermyn (2009)), (2) putting prior
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Figure 1: Depiction of the SRSF space of warping functions as a sphere and a tangent space

at the identity element ψid.

distributions on warping functions (Kurtek (2017) and Lu et al. (2017)), (3) studying execu-

tion rates of human activities in videos (Veeraraghavan et al. (2009)), and many others. It

is also very closely related to the square-root representation of probability density functions

introduced by Bhattacharya (1943), and later used for various statistical tasks (see e.g.,

Kurtek and Bharath (2015)).

We represent an element γ ∈ Γ by the square-root of its derivative ψ =
√
γ̇. Note that this

is the same as the SRSF defined earlier, and takes this form since γ̇ > 0. The identity γid maps

to a constant function with value ψid(t) = 1. Since γ(0) = 0, the mapping from γ to ψ is a

bijection, and one can reconstruct γ from ψ using γ(t) =
∫ t

0
ψ(s)2ds. An important advantage

of this transformation is that since ‖ψ‖2 =
∫ 1

0
ψ(t)2dt =

∫ 1

0
γ̇(t)dt = γ(1)− γ(0) = 1, the set

of all such ψs is the positive orthant of the Hilbert sphere Ψ = S+
∞ (i.e., a unit sphere in the

Hilbert space L2). In other words, the square-root representation simplifies the complicated

geometry of Γ to a unit sphere. The distance between any two warping functions, i.e., the

phase distance, is exactly the arc-length between their corresponding SRSFs on the unit

sphere S∞:

dp(γ1, γ2) = dψ(ψ1, ψ2) ≡ cos−1

(∫ 1

0

ψ1(t)ψ2(t)dt

)
.

Figure 1 shows an illustration of the SRSF space of warping functions as a unit sphere.
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3.3 Mapping to the Tangent Space at Identity Element

While the geometry of Ψ ⊂ S∞ is more tractable, it is still a nonlinear manifold and com-

puting standard statistics remains difficult. Instead, we use a tangent (vector) space at a

certain fixed point for further analysis. The tangent space at any point ψ ∈ Ψ is given

by: Tψ(Ψ) = {v ∈ L2|
∫ 1

0
v(t)ψ(t)dt = 0}. To map between the representation space Ψ

and tangent spaces, one requires the exponential and inverse-exponential mappings. The

exponential map at a point ψ ∈ Ψ denoted by expψ : Tψ(Ψ) 7→ Ψ, is defined as

expψ(v) = cos(‖v‖)ψ + sin(‖v‖) v

‖v‖
, (3.2)

where v ∈ Tψ(Ψ). Thus, expψ(v) maps points from the tangent space at ψ to the represen-

tation space Ψ. Similarly, the inverse-exponential map, denoted by exp−1
ψ : Ψ 7→ Tψ(Ψ), is

defined as

exp−1
ψ (ψ1) =

θ

sin(θ)
(ψ1 − cos(θ)ψ), (3.3)

where θ = dp(γ1, γ). This mapping takes points from the representation space to the tangent

space at ψ.

The tangent space representation v is sometimes referred to as a shooting vector, as

depicted in Figure 1. The remaining question is which tangent space should be used to

represent the warping functions. A sensible point on Ψ to define the tangent space is the

sample Karcher mean µ̂ψ (corresponding to µ̂γ) of the given warping functions or the identity

element ψid. For details on the definition of the sample Karcher mean and how to compute

it, please refer to Tucker et al. (2013).

3.4 Vertical Functional Principal Components

Let f1, · · · , fn be a given set of functions, and q1, · · · , qn be the corresponding SRSFs, µq

be their Karcher Mean, and let q̃is be the corresponding aligned SRSFs using Algorithm 1

from Tucker et al. (2013). In performing vertical fPCA, one needs to include the variability

associated with the initial values, i.e., {fi(0)}, of the given functions. Since representing

functions by their SRSFs ignores this initial value, this variable is treated separately. That

is, a functional variable f is analyzed using the pair (q, f(0)) rather than just q. This way,
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the mapping from the function space F to L2 × R is a bijection. In practice, where q is

represented using a finite partition of [0, 1], say with cardinality T , the combined vector

hi = [qi fi(0)] simply has dimension (T + 1) for fPCA. We can define a sample covariance

operator for the aligned combined vector h̃ = [q̃1 fi(0)] as

Kh =
1

n− 1

n∑
i=1

E[(h̃i − µh)(h̃i − µh)T] ∈ R(T+1)×(T+1) ,

where µh = [µq f̄(0)]. Taking the SVD, Kh = UhΣhV
T
h we can calculate the directions

of principle variability in the given SRSFs using the first p ≤ n columns of Uh and can be

converted back to the function space F , via integration, for finding the principal components

of the original functional data. Moreover, we can calculate the observed principal coefficients

as
〈
h̃i, Uh,j

〉
.

One can then use this framework to visualize the vertical principal-geodesic paths. The

basic idea is to compute a few points along geodesic path τ 7→ µh + τ
√

Σh,jjUh,j for τ ∈ R

in L2, where Σh,jj and Uh,j are the jth singular value and column, respectively. Then, obtain

principle paths in the function space F by integration.

3.5 Horizontal Functional Principal Components

To perform horizontal fPCA we will use the tangent space at µψ to perform analysis, where

µψ is the mean of the transformed warping functions. Algorithm 2 from Tucker et al. (2013)

can be used to calculate this mean. In this tangent space we can define a sample covariance

function:

Kψ =
1

n− 1

n∑
i=1

E[viv
T
i ] ∈ RT×T .

The singular value decomposition (SVD) of Kψ = UψΣψV
T
ψ provides the estimated principal

components of {ψi}: the principal directions Uψ,j and the observed principal coefficients

〈vi, Uψ,j〉. This analysis on S∞ is similar to the ideas presented in Srivastava et al. (2005)

although one can also use the idea of principal nested sphere for this analysis Jung et al.

(2012). The columns of Uψ can then be used to visualize the principal geodesic paths.
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3.6 Combined Functional Principal Components

To model the association between the amplitude of a function and its phase, Lee and Jung

(2017) use a combined function gC on the extended domain [0, 2] (for some C > 0)

gC(t) =

 f ∗(t), t ∈ [0, 1)

Cv(t− 1), t ∈ [1, 2]
(3.4)

where f ∗ only contains the function’s amplitude (i.e., after alignment via SRSFs). Further-

more, Lee and Jung (2017) assume that gC ∈ L2([0, 2],R). The parameter C is introduced

to adjust for the scaling imbalance between f ∗ and v. In their current work, we make a

slight modification to the method of Lee and Jung (2017). In particular, it seems more

appropriate to construct the function gC using the SRSF q∗ of the aligned function f ∗, since

q∗ is guaranteed to be an element of L2. Thus, with a slight abuse in notation, we proceed

with the following joint representation of amplitude and phase:

gC(t) =

 q∗(t), t ∈ [0, 1)

Cv(t− 1), t ∈ [1, 2]
(3.5)

where C is again used to adjust for the scaling imbalance between q∗ and v.

Henceforth, we assume that q∗ and v are both sampled using T points, making the

dimensionality of gC ∈ R2T . Then, given a sample of amplitude-phase functions {gC1 , . . . , gCn },

and their sample mean µ̂Cg = [µ̂q∗ µ̂Cv ], we can compute the sample covariance matrix as

KC
g =

1

n− 1

n∑
i=1

(gCi − µ̂Cg )(gCi − µ̂Cg )T ∈ R(2T )×(2T ) . (3.6)

Taking the Singular Value Decomposition, KC
g = UC

g ΣC
g (V C

g )T, we calculate the joint prin-

cipal directions of variability in the given amplitude-phase functions using the first p ≤ n

columns of UC
g . These can be converted back to the original representation spaces (F and γ)

using the mappings defined earlier. Moreover, one can calculate the observed principal coef-

ficients as
〈
gCi , U

C
g,j

〉
, for the ith function with the jth principal component. The superscript

of C is used to denote the dependence of the principal coefficients on the scaling factor.

This framework can be used to visualize the joint principal geodesic paths. First, the

matrix UC
g is partitioned into the pair (UC

q∗ , U
C
v ). Then, the amplitude and phase paths

within one standard deviation of the mean are computed as
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q∗Cτ,j = µ̂q∗ + τ
√

ΣC
g,jjU

C
q∗,j (3.7)

vCτ,j = τ

√
ΣC
g,jj

C
UC
v,j , (3.8)

where τ ∈ R, Σg,jj and UC
j are the jth principal component variance and direction of vari-

ability, respectively (note that the mean µ̂Cv is always zero). Then, one can obtain a joint

amplitude-phase principal path by composing f ∗Cτ,j (this is the function corresponding to

SRSF q∗Cτ,j ) with γCτ,j (this is the warping function corresponding to vCτ,j).

The results of the above procedure clearly differ for variations of C. For example, using

small values of C, the first few principal directions of variability will capture more amplitude

variation, while for large values of C, the leading directions reflect more phase variation.

Lee and Jung (2017) present a data-driven method for estimating C for a given sample of

functions. We use this approach in the current work to determine an appropriate value of

C.

3.7 Elastic Functional Principal Component Regression Model

The regression model then is

y = α +
no∑
j=1

〈xi(t), ξj(t)〉 bj (3.9)

and can be found by solving

{α∗,b∗} = arg min
α,b

n∑
i=1

|yi − α−
no∑
j=1

〈xi(t), ξj(t)〉 bj|2, (3.10)

where the appropriate function is substituted in for xi and appropriate eigenfunction for ξj

from Table 1 depending on which fPCA is used for the regression.

The solution of finding the optimal α∗ and b∗ is found using ordinary least squares.

Define Z = [1 Θ], where 1 is a vector of ones and y = [y1, . . . , yn]T and Θ ∈ RN×no is the

matrix containing the principal coefficients for the N samples for no principal components.

Then the solution for α∗ and b∗ is

[α∗,b∗]T = (ZTZ)−1ZTy.
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4 Elastic Functional Logistic Regression

We now develop the logistic version of the Elastic fPCR model. This model is an extension

of the linear regression model with the appropriate link function.

4.1 Functional Logistic Regression Model

Let {fi} denote observations of a predictor function variable and let yi ∈ {−1, 1}, for i =

1, . . . , n be the corresponding binary response variable. We define the probability of the

function fi being in class 1 (yi = 1) as

P (yi = 1|fi) =
1

1 + exp
(
−
[
α +

∫ 1

0
fi(t)β(t) dt

]) .
This is nothing but the logistic link function φ(t) = 1/(1+exp(−t)) applied to the conditional

mean in a linear regression model: α +
∫ 1

0
fi(t)β(t)dt (James (2002)). Using this relation,

and the fact that P (y = −1|fi) = 1− P (y = 1|fi), we can express the data likelihood as:

π({yi}|{fi}, α, β) =
n∏
i=1

1

1 + exp
(
−yi

[
α +

∫ 1

0
fi(t)β(t) dt

]) .
Assuming we observe a sequence of i.i.d. pairs {fi(t), yi}, i = 1, · · · , n, the model is

identified by maximizing the log-likelihood according to,

{α∗, β∗} = arg max
α,β(t)

(log π({yi}|{fi}, α, β)) .

This optimization has been the main focus of the current literature (see e.g., Ramsay and

Silverman (2005), Cardot et al. (2003), Hall and Horowitz (2007)).

4.2 Elastic fPCR Logistic Regression

Now consider the situation where functional predictors can include phase variability as well

as the amplitude variability. We will use the Elastic fPCR method with the logistic link

function

π({yi}|{fi}, α,b) =
n∏
i=1

1

1 + exp
(
−yi

[
α +

∑no

j=1 〈xi(t), ξj(t)〉 bj
])

13



where the appropriate fPCA model is used for the proper variability.

The optimization over α and b is found by maximizing the log-likelihood. We can combine

all the parameters – intercept α and coefficients bis – in a vector form θ = [α, b1, . . . , bno ]
T.

Let zi = [1, 〈xi, ξ1(t)〉 , . . . , 〈xi, ξno(t)〉]T. The optimal parameter vector is given as follows:

θ∗ = arg max
θ∈Rp+1

n∑
i=1

log
(
φ
(
yiθ

Tzi
))
, (4.1)

There is no analytical solution to this optimization problem. Since the objective function

is concave, we can use a numerical method such as Conjugate Gradient or the Broyden–

Fletcher–Goldfarb–Shanno (BFGS) algorithm (Mordecai (2003)). To use these algorithms

we need the gradient of the log-likelihood, L, which is given by:

∇L(θ) =
n∑
i=1

−yizi(φ(yiθ
Tzi)− 1).

In this paper we will use the Limited Memory BFGS (L-BFGS) algorithm due to its low-

memory usage for large number of predictors (Byrd et al. (1995)). Similar to ideas discussed

in Gertheiss et al. (2013), one can also seek a sparse representation by including a L1 or L2

penalty on b in Eqn 4.1.

4.3 Extension to Elastic fPCR Multinomial Logistic Regression

We can extend the elastic functional logistic regression to the case of multinomial response,

i.e. yi has more than two classes. In this case, we have observations {(fi(t), yi)} and

the response variable can take on m categories, yi ∈ {1, . . . ,m}, for i = 1, . . . , n. For

simplification, we abuse the notation by coding the response variable y as a m-dimensional

vector with a 1 in the kth component when y = k and zero, otherwise. Next, let’s define the

probability of the function f being in class k as

P (y(k) = 1|{α(j)}, {b(j)}, f) =
exp

(
α(k) +

∑no

j=1 〈x(t), ξj(t)〉 b(k)
j

)
1 +

∑m−1
l=1 exp

(
α(l) +

∑no

j=1 〈x(t), ξj(t)〉 b(l)
j

)
we only need m − 1 α’s and b’s as we can assume α(m) = 0 and b(m) = 0 without loss of

generality.
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Using the above probability and the multinomial definition of the problem, we can express

the log-likelihood of observations {(xi(t), yi)} as

Lm({α(i)}, {b(i)}) =
n∑
i=1

[
m−1∑
k=1

y
(k)
i

[
α(k) +

no∑
j=1

〈xi(t), ξj(t)〉 b(k)
j

]

− log

(
1 +

m−1∑
l=1

exp

(
α(l) +

no∑
j=1

〈xi(t), ξj(t)〉 b(l)
j

))]
.

where again the appropriate fPCA model is used for the proper variability modeling.

The optimal {α∗(i)} and {b∗(i)} will be found again by maximizing the log-likelihood. We

can re-express the maximization problem of the log-likelihood as

θ∗ = arg max
θ

n∑
i=1

[
m−1∑
j=1

y
(j)
i θ(j)Tzi − log

(
1 +

m−1∑
j=1

exp
(
θ(j)Tzi

))]
, (4.2)

where θ = [α(k), b
(k)
1 , . . . , b

(k)
no ]T and zi = [1, 〈xi, ξ1(t)〉 , . . . , 〈xi, ξno(t)〉]T. There is no direct

solution to solving this optimization and it has to be performed numerically. Since, the

function is concave we will use the L-BFGS algorithm to find the solution numerically. To

use this algorithm we need the gradient of the log-likelihood. We need to find the partial

derivative of the log-likelihood for each b(k),

∂Lm(θ)

∂θ(k)
=

n∑
i=1

[
y

(k)
i zi −

1

1 +
∑m−1

j=1 exp (θ(j)Tzi)
exp

(
θ(k)Tzi

)
z

]
.

We can then find the optimal {α∗(j)} and {b∗(j)} using L-BFGS.

5 Simulation Results

5.1 Elastic Functional Principal Component Regression

To illustrate the developed elastic functional regression method we evaluated the model on

a simulated data constructed using

fi(t) = ai
1√

2πσ2
exp

(
−(t− µj)2

2σ2

)
,

where ai ∼ N (dj, 0.05). The means were chosen according to three models: 1) Com-

bined Amplitude & Phase Variability (µj ∈ [0.35, 0.37, 0.40] and dj ∈ [4, 3, 2]), 2. Am-

plitude Variability (µj ∈ [0.35, 0.35, 0.35] and dj ∈ [4, 3.7, 4]), and 3) Phase Variability
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Figure 2: Simulated regression data with phase and amplitude variability.
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Figure 3: Simulated regression data with amplitude variability.

(µj ∈ [0.35, 0.40, 0.50] and dj ∈ [4, 4, 4]). A total of 20 functions were generated for each case

and σ = 0.075. The generated functions are shown in Fig. 2(a), 3(a), and 4(a), for cases

1, 2, and 3, respectively The functions were the randomly warped to generate the warped

data, {fi} are shown in Fig. 2(b), 3(b), and 4(b). The response variable yi was generated

with α = 0, β(t) = 0.5 sin(2πt) + 0.9 cos(2πt) and is shown in Fig. 2(c), 3(c), and 4(c).

Table 2provides the SSE for each of the three cases with the lowest SSE shown in bold for

the applied fPCR method. For the data with the combined variability the combined fPCA

in the elastic fPCR model is slightly out performed by the horizontal fPCA. In the cases

with the vertical and horizontal variability, the combined elastic fPCA method performed

the best with the corresponding vertical or horizontal fPCA method being very close. This

is somewhat to be expected as the combined fPCA method is able to capture both types of
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Figure 4: Simulated regression data with phase variability.

Table 2: Calculated SSE values using four different functional PCR methods for 3 different

types of variability.

Elastic Combined Elastic Vertical Elastic Horizontal Standard

Combined 0.0875 (0.0237) 0.3498 (0.1248) 0.0838 (0.0300) 0.5075 (0.1483)

Vertical 0.2345 (0.0905) 0.2390 (0.0869) 2.0782 (1.9058) 0.3173 (0.0393)

Horizontal 0.1474 (0.0998) 9.1292 (5.3023) 0.2155 (0.1339) 1.8729 (1.1719)

variability. We compared the results from the elastic method to those using standard fPCR

found in the literature on the warped data and is shown in the last column. In all cases

the elastic method outperforms the standard fPCR method presented by Reiss and Ogden

(2007).

5.2 Elastic Logistic fPCR

To illustrate the developed elastic functional logistic regression method, we evaluated the

model on a similar simulated data used in the previous section. The means were chosen

according to three models: 1) Combined Amplitude & Phase Variability (µj ∈ [0.35, 0.37]

and dj ∈ [4, 3]), 2. Amplitude Variability (µj ∈ [0.35, 0.35] and dj ∈ [4, 3.7]), and 3) Phase

Variability (µj ∈ [0.35, 0.40] and dj ∈ [4, 4]). A total of 20 functions were generated for each

case and σ = 0.075. The functions were then randomly warped to generate the warped data;
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{fi} and the label was 1 for the first case and -1 for the second case.

Table 3provides the combined probability of classification (PC) for each of the three

cases. For the data with the combined variability the combined fPCA in the elastic logistic

fPCR model performed the best. In the cases with the vertical and horizontal variability, the

corresponding elastic fPCA methods performed well with the combined fPCA method and

showed the best performance. We compared the results to the standard logistic fPCR, where

the logistic link function is applied to the method of Reiss and Ogden (2007). The results are

shown in the last column. In all cases the elastic method outperforms the standard logistic

fPCR method.

Table 3: Calculated combined probability of classification values using four different func-

tional PCR methods, for 3 different types of variability for logistic regression.

Elastic Combined Elastic Vertical Elastic Horizontal Standard

Combined 0.9750 (0.0342) 0.9375 (0.0765) 0.9750 (0.0342) 0.9625 (0.0342)

Vertical 0.9250 (0.0280) 0.8500 (0.0948) 0.6250 (0.0625) 0.8750 (0.0442)

Horizontal 0.9250 (0.0815) 0.6000 (0.1630) 0.8875 (0.1355) 0.8750 (0.0442)

5.3 Elastic Multinomial Logistic fPCR

To illustrate the developed elastic functional regression method we evaluated the model on

the simulated data constructed in the elastic functional PCR case. Each of the functions

was randomly warped similar to the previous cases. The response variable yi in this case

was categorical with values j ∈ {1, 2, 3} depending on the corresponding model.

Table 4provides the combined probability of classification (PC) for each of the three

cases. For the data with the combined variability the horizontal and combined fPCA in the

elastic multinomial logistic fPCR model performed the best. In the cases with the vertical

and horizontal variability, the corresponding elastic fPCA methods performed the well with

the combined fPCA method having the best performance. We compared the results to

using standard multinomial logistic fPCR found in the literature on the warped data and

is presented in the last column. In all cases the elastic method outperforms the standard
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multinomial logistic fPCR method.

Table 4: Calculated combined probability of classification values using four different func-

tional PCR methods, for 3 different types of variability for multinomial logistic regression.

Elastic Combined Elastic Vertical Elastic Horizontal Standard

Combined 0.9420 (0.0633) 0.9246 (0.0355) 0.9670 (0.0348) 0.8663 (0.1597)

Vertical 0.8589 (0.0801) 0.8916 (0.0229) 0.3822 (0.0710) 0.8749 (0.0780)

Horizontal 0.9176 (0.0480) 0.3822 (0.1036) 0.9666 (0.0187) 0.9510 (0.0436)

6 Applications to Real Data

Here, we present the results on multiple real data sets for the three elastic regression models.

For the elastic fPCR we use the Sonar data set presented in (Tucker et al. (2014)) where we

predict the volumes of two targets. We demonstrate the elastic logistic fPCR model on four

sets. The data consists of physiological data, specifically, gait and electrocardiogram (ECG)

measurements from various patients. Phase-variability is naturally found in the data, as

during collection the signals always start and stop at the different time for each measurement.

For example, when measuring a heart beat one cannot assure that the measurement starts

on the same part of the heartbeat for each patient measured. For the elastic multinomial

logistic fPCR model we demonstrate on two sets that consist of physiologic data similar to

those used to test the logistic regression method.

6.1 Sonar Data

The data set used in these experiments was collected at the Naval Surface Warfare Center

Panama City Division (NSWC PCD) test pond. For a description of the pond and a similar

experimental setup the reader is referred to Kargl et al. (2010). The raw SONAR data

was collected using a 1 - 30kHz LFM chirp and data was collected for a solid aluminum

cylinder and an aluminum pipe. The aluminum cylinder is 2ft long with a 1ft diameter;

while the pipe is 2ft long with an inner diameter of 1ft and 3/8 inch wall thickness. During

19



Figure 5: Alignment of the sonar dataset. (a) Original functions. (b) Aligned functions

(amplitude). (c) Warping functions (phase).

the experiment the targets were placed with added uncertainty of their orientation. The

acoustic signals were generated from the raw SONAR data to construct target strength as a

function of frequency and aspect angle.

Figure 5(a) presents the original functions for the acoustic color measurements at 0◦

aspect angle. There appears to be significant amplitude and phase variability between func-

tional measurements due to experimental collection uncertainty. Not accounting for the

phase variability can greatly affect summary statistics and follow-on statistical models. Fig-

ure 5(b) and (c) show the aligned functions (amplitude) and warping functions (phase),

respectively. Overall there is significant difference between the original functions and the

aligned functions. With the large amount of phase variability, the frequency structure of the

data was lost. As a result, cross-sectional methods without alignment will not capture this

important difference in the functions.

Table 5: Calculated SSE values using four different functional PCR methods for the sonar

data set.

Elastic Combined Elastic Vertical Elastic Horizontal Standard

SSE 0.1210 (0.0472) 0.1497 (0.1399) 0.1597 (0.0485) 0.1908 (0.1184)

Table 5presents the sum of squared errors (SSE) calculated using 5-fold cross-validation.

For this data set, we use ten principal components resulting in a ten-dimensional model for

20



all four methods. In the table we present the mean of the SSE across the folds, along with the

standard deviation. We compare the three elastic versions and standard functional principal

component regression; the lowest SSE is shown in bold. The lowest SSE is the combined

elastic fPCR method and all three elastic methods have lower SSE than the standard method

in predicting the volume from the sonar data. With the high degree of phase and amplitude

variability in the data, the elastic method is more able to accurately predict and capture the

variability.

6.2 Gait Data

The Gait data is a collection of gait measurements for patients having Parkinson’s disease,

and those not having Parkinson’s disease. It is from the gaitpdb data set on Physionet

(Goldberger et al. (2000)). This database contains measures of gait from 93 patients with

idiopathic Parkinson’s disease and 73 healthy patients. The gait was measured using vertical

ground reaction force records of subjects as they walked at their usual, self-selected pace for

approximately 2 minutes on level ground.

Figure 6(a) presents the original functions for gait data and are colored for the two

different classes. There appears to be significant amplitude and phase variability between

functional measurements due to experimental collection uncertainty and where one subject

will start and stop their gate. Figure 6(b) and (c) show the aligned functions (amplitude)

and warping functions (phase), respectively. Overall there is significant difference between

the original functions and the aligned functions. With the large amount of phase variability,

the temporal structure of the gaits will be lost in the analysis. As a result, cross-sectional

methods without alignment will not capture this important difference in the functions.

The first row in Table 6presents the calculated mean probability of classification (PC)

using 5-fold cross-validation. For this data set, we use five principal components resulting in

a five-dimensional model for all four methods. In the table we present the mean of the PC

across the folds, along with the standard deviation. We compare the three elastic versions

and standard logistic fPCR and the largest PC is shown in bold. The largest PC is the

vertical elastic logistic fPCR method. All three elastic methods have higher PC than the

standard method for predicting if the subject has Parkinson’s based on gait measurement.

This suggests that a large portion of the information is contained in the amplitude variability.
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Figure 6: Alignment of the gait data dataset. (a) Original functions. (b) Aligned functions

(amplitude). (c) Warping functions (phase).

6.3 ECG200 Data

The ECG200 data is a collection of ECG measurements of heartbeats demonstrating an ar-

rhythmia, and those which do not. The data set is from the MIT-BIH Arrhythmia Database

available from Physionet. The database contains ECG recordings where each electrocar-

diogram was recorded from a single patient for a duration of approximately thirty minutes.

From the recordings heartbeats were extracted with the most prevalent abnormality—supra-

ventricular premature beat. Additionally, heartbeats were extracted from the recordings that

were representative of normal heartbeats. The task is then to distinguish between the ab-

normalities using the heartbeat. Naturally, the heartbeats are not aligned and no alignment

was made to the data.

Figure 7(a) presents the original electrocardiogram measurements. There appears to

be significant phase variability between functional measurements due to timing uncertainty

across collections. Figure 7(b) and (c) show the aligned functions (amplitude) and warping

functions (phase), respectively.

The second row in Table 6presents the calculated mean probability of classification (PC)

using 5-fold cross-validation. Again for this data set, we use five principal components

resulting in a five-dimensional model for all four methods, and present the mean of the PC

across the folds; along with the standard deviation. The largest PC is the vertical elastic

logistic fPCR method. All three elastic methods have higher PC than the standard method,

however, for this data it performs quite well.
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Figure 7: Alignment of the ECG200 data dataset. (a) Original functions. (b) Aligned

functions (amplitude). (c) Warping functions (phase).

Figure 8: Alignment of the TwoLead ECG data dataset. (a) Original functions. (b) Aligned

functions (amplitude). (c) Warping functions (phase).

6.4 TwoLead ECG Data Set

The TwoLead ECG data set, is a collection of ECG measurements from the MIT-BIH Long-

Term ECG Database available as well from Physionet. These contains long term ECG

measurements with beat annotations. Heartbeats were extracted that were annotated normal

and abnormal for the two classes.

Figure 8(a) presents the original electrocardiogram measurements. Again, there appears

to be significant phase variability between functional measurements due to timing uncertainty

across collections. Figure 8(b) and (c) show the aligned functions (amplitude) and warping

functions (phase), respectively. Overall there is a noticeable alignment and better definition

of the wave structure.

The third row in Table 6presents the calculated mean probability of classification (PC)
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Figure 9: Alignment of the ECGFiveDays data dataset. (a) Original functions. (b) Aligned

functions (amplitude). (c) Warping functions (phase).

using 5-fold cross-validation. Again for this data set, we use five principal components

resulting in a five-dimensional model for all four methods and present the mean of the

PC across the folds, along with the standard deviation. The largest PC is the vertical

elastic logistic fPCR method and all three elastic methods have higher PC than the standard

method.

6.5 ECGFiveDays Data Set

The ECGFiveDays data set, is a collection of ECG measurements from a 67 year old male.

There are two classes which are simply the data of the ECG measurements which are 5 days

apart. The task is then to distinguish between the two days, as the wandering baseline was

not removed and the heartbeats are not aligned. The data set is the ECGFiveDays from

the UCR Time Series Classification Database (Keogh et al. (2001)). Moreover, the previous

two data sets can also be obtained from the UCR database under the names ECG200 and

TwoLeadECG, respectively.

Figure 9(a) presents the original electrocardiogram measurements from the ECGFiveDays

set. Again, there appears to be some phase variability between functional measurements due

to timing uncertainty across collections. Figure 9(b) and (c) show the aligned functions (am-

plitude) and warping functions (phase), respectively. Overall there is a noticeable alignment

and separation of the two classes in both the aligned functions and the warping functions.

The last row in Table 6presents the calculated mean probability of classification (PC)
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Table 6: Calculated probability of correct classification using four different functional logistic

fPCR methods for four different data sets.

Elastic Combined Elastic Vertical Elastic Horizontal Standard

Gait 0.6467 (0.0321) 0.6900 (0.0465) 0.6333 (0.0425) 0.4300 (0.0923)

ECG200 0.7750 (0.0791) 0.8350 (0.0675) 0.7450 (0.0716) 0.8200 (0.0694)

TwoLead ECG 0.9113 (0.0125) 0.9845 (0.0163) 0.9156 (0.0146) 0.8012 (0.0133)

ECGFiveDays 0.9570 (0.0228) 0.8902 (0.0462) 0.8473 (0.0429) 0.9061 (0.0297)

using 5-fold cross-validation. Again for this data set, we use five principal components

resulting in a five-dimensional model for all four methods. We present the mean of the PC

across the folds, along with the standard deviation. The largest PC is the combined elastic

fPCR method and all three elastic methods have higher PC than the standard method. This

suggests that there is a combination of both phase and amplitude that contribute to correct

classification.

6.6 Gaitndd Data set

The Gaitndd data set is a collection of gait measurements for patients having Parkinson’s

disease, Amyotrophic lateral sclerosis, Huntington’s disease, and healthy controls; and is

from the gaitndd data set on Physionet (Goldberger et al. (2000)). This database contains

measures of gait from 15, 20, 13, and 16 patients for the respective diseases. The gait was

measured using vertical ground reaction force records of subjects as they walked at their

usual pace.

Figure 10(a) presents the original gait measurements and are colored for the different

classes. There is a large phase and amplitude variability between functional measurements.

Figure 10(b) and (c) show the aligned functions (amplitude) and warping functions (phase),

respectively. Overall there is a large improvement in the structure after alignment, and some

class definition can be noticed in the functions.

The first row in Table 7presents the calculated mean probability of classification (PC)

using 5-fold cross-validation. For this data set, we use ten principal components resulting in
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Figure 10: Alignment of the Gaitndd data dataset. (a) Original functions. (b) Aligned

functions (amplitude). (c) Warping functions (phase).

a ten-dimensional model for all four methods. We then present the mean of the PC across the

folds, along with the standard deviation. The largest PC is the vertical elastic fPCR method

and all three elastic methods have higher PC than the standard method. This suggests there

is a large amplitude component in how each disease affects the gait.

6.7 CinC ECG Data Set

The last data set is a collection of ECG measurements from multiple torso-surface sites.

There are measurements from 4 different people who are the 4 different classes. The data

set is from the 2007 Physionet CinC challenge and is also found as the CinC data set from

the UCR Time Series Classification Database (Keogh et al. (2001)).

Figure 11(a) presents the original ECG measurements and are colored for the different

classes. There is a large phase and amplitude variability between functional measurements.

Figure 11(b) and (c) show the aligned functions (amplitude) and warping functions (phase),

respectively. Overall there is a large improvement in the structure after alignment and

noticeable class separation in the warping functions. This suggests that the phase will have

a large contribution to the classification.

The last row in Table 7presents the calculated mean probability of classification (PC)

using 5-fold cross-validation. For this data set, we use ten principal components resulting in a

ten-dimensional model for all four methods and present the mean of the PC across the folds,

along with the standard deviation. The largest PC is the horizontal elastic fPCR method,
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Figure 11: Alignment of the CinC ECG data dataset. (a) Original functions. (b) Aligned

functions (amplitude). (c) Warping functions (phase).

Table 7: Calculated probability of correct classification using four different functional multi-

nomial logistic fPCR methods for two different data sets.

Elastic Combined Elastic Vertical Elastic Horizontal Standard

Gaitndd 0.3949 (0.0648) 0.4888 (0.0326) 0.3645 (0.0398) 0.3123 (0.0413)

CinC ECG 0.6785 (0.0403) 0.6342 (0.0311) 0.6954 (0.0452) 0.3297 (0.0374)

and all three elastic methods have higher PC than the standard method. This suggests

there is a large phase component in the classification performance. When accounting for this

performance of correct classification is dramatically larger than just performing standard

multinomial functional principal component regression.

7 Conclusion and Future Work

The statistical modeling and classification of functional data with phase variability is a chal-

lenging task. We have proposed a new functional principal component regression approach,

that addresses the problem of registering and modeling functions in one elastic-framework.

We demonstrated three PCA methods: 1) combined, 2) vertical, and 3) horizontal that can

be used depending on the type of data encountered. This enabled the implementation of a

regression model that is geometrically-motivated. We demonstrated the applicability of these

to models on a three different simulated examples, that contain different types of variability.
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We also tested seven real data examples with significant amplitude and phase variabilities.

In all cases, we illustrated improvements in prediction power of the proposed models.

We have identified several directions for future work. First, we will explore the influence

of the weight C in the combined amplitude and phase fPCA model on the resulting regression

model performance. Second, in many applications, the functional data of interest may be

more complex than the simple univariate functions considered in this work; some examples

include shapes of curves, surfaces, and images. These more complicated data objects often

exhibit different sources of variability, which must be taken into account when computing

regression models.
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