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Abstract

Positive–unlabeled (PU) learning considers two samples, a positive set P with observations from only

one class and an unlabeled set U with observations from two classes. The goal is to classify observations in

U . Class mixture proportion estimation (MPE) in U is a key step in PU learning. Blanchard et al. [2010]

showed that MPE in PU learning is a generalization of the problem of estimating the proportion of true

null hypotheses in multiple testing problems. Motivated by this idea, we propose reducing the problem

to one dimension via construction of a probabilistic classifier trained on the P and U data sets followed

by application of a one–dimensional mixture proportion method from the multiple testing literature to the

observation class probabilities. The flexibility of this framework lies in the freedom to choose the classifier

and the one–dimensional MPE method. We prove consistency of two mixture proportion estimators using

bounds from empirical process theory, develop tuning parameter free implementations, and demonstrate that

they have competitive performance on simulated waveform data and a protein signaling problem.
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1 Introduction

Let

X1, . . . , Xn ∼ F = αF0 + (1− α)F1, (1)

XL,1, . . . , XL,m ∼ F1,

all independent, where F0 and F1 are distributions on Rp with densities f0 and f1 with respect to measure

µ. The goal is to estimate α and the classifier

C01(x) =
(1− α)f1(x)

αf0(x) + (1− α)f1(x)
, (2)

which can be used to separate the unlabeled data {Xi}ni=1 into the classes 0 and 1. The above problem

has been termed Learning from Positive and Unlabeled Examples, Presence Only Data, Partially Super-

vised Classification, and the Noisy Label Problem in the machine learning literature [Elkan and Noto, 2008,

Liu et al., 2002, Ramaswamy et al., 2016, Scott, 2015, Scott et al., 2013, Ward et al., 2009]. In this work,

we use the term PU learning to refer to Model (1). Here we denote the positive set P := {XL,i}mi=1 and the

unlabeled set U := {Xi}ni=1. This setting is more challenging than the traditional classification framework

where one possesses labeled training data belonging to both classes. In particular α and C01 are not gen-

erally identifiable from the P and U data. PU learning has been applied to text analysis [Liu et al., 2002],

time series [Nguyen et al., 2011], bioinformatics [Yang et al., 2012], ecology [Ward et al., 2009], and social

networks [Chang et al., 2016].

Several strategies have been proposed for solving the PU problem. Ward et al. [2009] assumes α is

known and uses logistic regression to classify U . The SPY method of Liu et al. [2002] classifies U directly by

identifying a “reliable negative set.” The SPY method has practical challenges including choosing the reliable

negative set. Other strategies estimate α directly. Ramaswamy et al. [2016] estimate α via kernel embedding

of distributions. Scott [2015] and Blanchard et al. [2010] estimate α using the ROC curve produced by a

classifier trained on P and U .

Blanchard et al. [2010] showed that MPE in the PU model is a generalization of estimating the propor-

tion of true nulls in multiple testing problems. Specifically, suppose that F0 and F1 are one–dimensional

distributions and F1 is known. Then the unlabeled set X1, . . . , Xn may be interpreted as test statistics with
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the hypotheses:

H0 : Xi ∼ F1,

Ha : Xi ∼ F0.

In this context, 1 − α is the proportion of true null hypotheses and the classifier C01 is the local FDR

[Efron et al., 2001]. There are many works on addressing identifiability and estimation of α and C01 in

this simpler setting [Efron, 2012, Genovese et al., 2004, Meinshausen and Rice, 2006, Patra and Sen, 2016,

Robin et al., 2007].

FDR α estimation methods have been developed for one–dimensional MPE problems and are not directly

applicable on the multidimensional PU learning problem in which Xi ∈ Rp. In this work, we show that the

PU MPE problem can be reduced to dimension one by constructing a classifier on the P versus U data

sets followed by transforming observations to class probabilities. One dimensional MPE methods from the

FDR literature can then be applied to the class probabilities. Computer implementation of this approach

is straightforward because one can use existing classifier and one–dimensional MPE algorithms. We prove

consistency for adaptations of two one–dimensional MPEmethods: Storey [2002] based on empirical processes

and Patra and Sen [2016] based on isotonic regression. These proofs use results from empirical process theory.

We show that the ROC method used in Blanchard et al. [2010] and Scott [2015] in the machine learning

literature is a variant of the method proposed by Storey Storey [2002] in the multiple testing literature.

These results strengthen connections between the PU learning and multiple testing communities.

The rest of the paper is organized as follows. In Section 2 we give a sketch of the proposed procedure,

which includes two proposed estimators C-PS and C-ROC. This section consists of three parts. First, a

motivation of the procedure from the hypothesis testing perspective is explained. Second, identifiability of α

is addressed. Third, a workflow is provided to explain how to implement the proposed procedure. In Section

3 we show that Model (1) can be reduced to one-dimension with a classifier. In Section 4 we show consistency

of two α estimators. In Section 5 we numerically show that the estimators perform well in various settings.

A conclusion is made in Section 6. Appendix A.1 gives proofs of theorems in the paper. Supporting lemmas

can be found in Appendix A.2.
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2 Background and Proposed Procedure

2.1 Multiple Testing, FDR, and Estimating the Proportion of True Nulls

Suppose one conducts n tests of null hypothesis H0 : Xi ∼ F1 versus alternative hypothesis Ha : Xi ∼ F0,

i = 1, . . . , n. The Xi are typically test statistics or p–values and the null distribution F1 is assumed known

(usually Unif [0, 1] in the case of Xi being p–values). The distribution of the Xi are F = αF0 + (1 − α)F1,

where 1 − α is the proportion of true null hypotheses. The false discovery rate (FDR) is the expected

proportion of false rejections. If R is the number of rejections and V is the number of false rejections then

FDR ≡ E[VR1R>0]. Benjamini and Hochberg [1995] developed a linear step–up procedure which bounds the

FDR at a user specified level β. In fact, this procedure is conservative and results in an FDR ≤ β(1−α) ≤ β.

This conservative nature causes the procedure to have less power than other methods which control FDR

at β. Adaptive FDR control procedures first estimate 1 − α and then use this estimate to select a β which

ensures control at some specified level while maximizing power. Many estimators of α have been proposed

[Benjamini and Hochberg, 2000, Benjamini et al., 2006, Blanchard and Roquain, 2009, Langaas et al., 2005,

Patra and Sen, 2016, Storey, 2002].

There are two reasons why these procedures cannot be directly applied to the PU learning problem.

First, many of the methods have no clear generalization to dimension greater than one because they require

an ordering of the test statistics or p–values. Second, the distribution F1 is assumed known where as in

the PU learning problem we only have a sample from this distribution. The classifier dimension reduction

procedure we outline in Section 2.3 addresses the first point by transforming the PU learning problem to

1–dimension. The theory we develop in Sections 3 and 4 addresses the second issue.

2.2 Identifiability of α and C01

Many works in both the PU learning and multiple testing literature have discussed the non–identifiability

of the parameters α and F0. For any given (α, F0) pair with α < 1, one can find a γ > 0 such that

α′ ≡ α+ γ ≤ 1. Define F ′
0 ≡ αF0+γF1

α+γ . Then

F = α′F ′
0 + (1− α′)F1,

which implies (α′, F ′
0) and (α, F0) result in the same distributions for P and U .

To address this issue, we follow the approach taken by Blanchard et al. [2010] and Patra and Sen [2016]
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and estimate a lower bound on α defined as

α0 := inf

{
γ ∈ (0, 1] :

F − (1− γ)F1

γ
is a c.d.f.

}
. (3)

The parameter α0 is identifiable. Recall the objective is to estimate

C01(x) =
(1− α)f1(x)

αf0(x) + (1− α)f1(x)
.

Let π = m/(m+ n) be the proportion of labeled data. The classifier

C(x) =
πf1(x)

πf1(x) + (1− π)f(x)

outputs the probability an observation is from the labeled data set at a given x. We can approximate C by

training a model on the P versus U data sets. The classifiers C and C01 are related through α. To see this,

note that after some algebra

f1(x)

f(x)
=

C(x)

1− C(x)

1− π

π
.

Thus

C01(x) =
(1− α)f1(x)

f(x)
=

1− π

π

C(x)

1− C(x)
(1− α).

Since α is not generally identifiable, neither is C01. However the plug-in estimator, using Cn (a classifier

trained on P versus U) and α̂0 (some estimator of α0),

Ĉ0
01(x) ≡

1− π

π

Cn(x)

1− Cn(x)
(1− α̂0)

is an estimated upper bound for C01. We can classify an unlabeled observation Xi as being from F1 if

Ĉ0
01(Xi) >

1
2 . The problem has now been reduced to estimation of α0. The classifier Cn plays an important

role in estimation of α0 as well, as shown in the following section.
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2.3 Workflow for α0 Estimation
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Figure 1: Workflow of proposed procedure. In Step 1, “+” denotes the positive samples, and “?” denotes

the unlabeled samples of unknown class (can be “+” or “-”). Stack the set P and the set U together as a

large matrix, and add a new column y to manually impose pseudo labels on observations: “1” for XL,i and

“0” for Xi. In Step 2, a classifier Cn(·) is trained on the stacked matrix and the probability predictions

(y = 1 as reference) are obtained. In Step 3, a one-dimensional procedure is applied to the probability

output from Step 2. In this paper, two methods C-PS and C-ROC are proposed. The upper density curve is

used to demonstrate that the p1 := {p1i}mi=1 are from one population, while the bottom density curve shows

that p0 := {p0i}ni=1 are from mixture of two populations.

The proposed procedure to estimate α0 in Model (1) is summarized in Figure 1. The key idea of this

procedure is to reduce the dimension of PU learning problem via the classifier Cn trained on P versus U and

then apply a one-dimensional MPE method on the transformed data to estimate α0. The procedure consists

of three steps:

• Step 1. Label the P samples with pseudo label (Y = 1) and label the U samples with pseudo label

(Y = 0). Hence we have P̃ := {(XL,i, Yi = 1), i = 1, . . . ,m} and Ũ := {(Xi, Yi = 0), i = 1, . . . , n}.
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• Step 2. Train a probabilistic classifier Cn(·) = P̂ (Y = 1|X = ·) on P̃ versus Ũ . Compute probabilistic

predictions: p1 := {p1i, i = 1, . . . ,m} and p0 := {p0i, i = 1, . . . , n}, where p1i := Cn(XL,i) and

p0i := Cn(Xi).

• Step 3. Apply a one-dimensional MPE method to p1 and p0 to estimate α0.

We augment the original data with pseudo labels in Step 1, in order to use a supervised learning classifi-

cation algorithm. In Step 2 we use Random Forest [Breiman, 2001]. However in principle any classifier can

be used. Note that the p0i and p1i are scalars. Hence in Step 3 we can utilize any one-dimensional method

to estimate α0. In this work we adapt two methods – one from Storey [2002] and Scott [2015], another

from Patra and Sen [2016]. Note that the original theory developed for these methods assumed that the null

distribution is known, but in the PU problem we need to estimate it from p1. Since this setting is more

complex, new theory is needed. In Section 4, we prove the consistency of two estimators in the PU setting,

using Theorems 1 and 2.

3 Dimension Reduction via Classifier

Using the P and U samples we can make probabilistic predictions, i.e. compute the probability that the

observation is from distribution F1 versus from distribution F . The true classifier is

C(x) =
f1(x)π

f1(x)π + f(x)(1− π)
,

where π = m
m+n is the proportion of labeled sample within the entire data. We treat π as a known constant.

Denote the distribution of probabilistic predictions for P and U , respectively, as

GL(t) = P (C(X) ≤ t|X ∼ F1),

G(t) = P (C(X) ≤ t|X ∼ F ).

One can consider the two-component mixture model

G = αGGs + (1 − αG)GL, (4)

for αG and Gs, which are again potentially non-identifiable. Define

αG
0 := inf

{
γ ∈ (0, 1] :

G− (1− γ)GL

γ
is a c.d.f.

}
. (5)

Theorem 1. αG
0 = α0.
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See Section A.1.1 for a proof. Theorem 1 shows one can solve the p–dimensional MPE problem (3) by

solving the 1–dimensional MPE problem (5). In what follows we use α0 instead of αG
0 to simplify notation.

In practice, the classifier C(X) is approximated by a trained model Cn(X) on a given sample. For

convenience, we assume the classifier Cn(X) is trained using another independent sample D′
n. The D′

n

is omitted in the following to lighten notation. We require the approximated classifier to be a consistent

estimator of the true classifier.

Assumptions A. We assume

E|Cn(X)− C(X)| = O
(
n−τ

)
, (6)

for some τ > 0.

Such convergence results have been proven for a variety of probabilistic classifiers, including variants of

Random Forest [Biau, 2012]. Define

GL,n(t) :=
1

m

m∑

i=1

1Cn(XL,i)≤t,

Gn(t) :=
1

n

n∑

i=1

1Cn(Xi)≤t.

Intuitively, GL,n and Gn are approximate empirical distribution functions of GL and G respectively. The

approximation is due to the fact that C is estimated with Cn. Thus we would expect Glivenko-Cantelli

and Donsker properties for Gn(t) and GL,n(t). However problems can arise when C(X) is not continuous.

Essentially convergence in probability for C(X), implied by Assumptions A, only implies convergence of

distribution functions at points of continuity. By assuming GL and G possess densities, we can obtain

uniform convergence of distribution functions.

Assumptions B. We assume that G and GL are absolutely continuous and have bounded density functions

g and gL.

Theorem 2. Under Assumption A and B, for β = min(τ/3, 1/2)

nβ(GL,n(t)−GL(t)) is OP (1),

nβ(Gn(t)−G(t)) is OP (1),

where both OP (1) are uniform in t.
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See Section A.1.2 for a proof. The result from Theorem 2 is the key step in showing consistency of our

α0 estimators in the following sections.

4 Estimation of α0

We generalize a one–dimensional MPE method of Patra and Sen Patra and Sen [2016] to the PU learning

problem. We term the method C-PS to emphasize the fact that the method developed by Patra and Sen

is applied to the output of a classifier. Then we generalize a one–dimensional method of Storey Storey

[2002] to the PU learning problem. We term the method C-ROC because the ROC method developed in

Blanchard et al. [2010] and Scott [2015] can be viewed as a variant of the Story’s Storey [2002] original idea.

4.1 C-PS

Patra and Sen [2016] remove as much of the GL,n distribution from Gn as possible, while ensuring that

the difference is close to a valid cumulative distribution function. We briefly review the idea and provide

theoretical results to support use of this procedure in the PU learning problem. See Patra and Sen [2016]

for a fuller description of the method in the one–dimensional case.

For any γ ∈ (0, 1] define

Ĝγ
s,n =

Gn − (1− γ)GL,n

γ
.

If γ ≥ α0, Ĝ
γ
s,n will be a valid c.d.f. (up to sampling uncertainty) while the converse is true if γ < α0. Find

the closest valid c.d.f. to Ĝγ
s,n defined as

Ǧγ
s,n = argmin

all c.d.f. W (t)

∫ (
Ĝγ

s,n(t)−W (t)
)2

dGn(t). (7)

Isotonic regression is used to solve Equation 7. Measure the distance between two c.d.f W1 and W2 as

dn(W1,W2) =

√∫
(W1(t)−W2(t))

2
dGn(t).

If dn(Ĝ
γ
s,n, Ǧ

γ
s,n) ≈ 0, then α0 ≤ γ where the level of approximation is a function of the estimation uncertainty

and thus the sample size. Given a sequence cn define

α̂cn
0 = inf

{
γ ∈ (0, 1] : γdn(Ĝ

γ
s,n, Ǧ

γ
s,n) ≤

cn
nβ−η

}

where η ∈ (0, β) is a constant and the rate β is from Theorem 2.

Theorem 3. Under Assumptions A and B, if cn = o(nβ−η) and cn → ∞, then α̂cn
0

p−→ α0.
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The proof, contained in Section A.1.4, is a generalization of results in Patra and Sen [2016] which accounts

for the fact that both Gn and GL,n are estimators. While Theorem 3 provides consistency, there are a

wide range of choices of cn. Patra and Sen [2016] showed that γdn(Ĝ
γ
s,n, Ǧ

γ
s,n) is convex, non-increasing

and proposed letting α̂0 be the γ that maximizes the second derivative of γdn(Ĝ
γ
s,n, Ǧ

γ
s,n). We use this

implementation in our numerical work in Section 5.

4.2 C-ROC

Recalling the definitions of G, Gs, and GL from Section 3, note

G(t) = αGs(t) + (1− α)GL(t) ≤ α+ (1− α)GL(t)

for all t. Thus for any t such that GL(t) 6= 1 we have

k(t) ≡ G(t)−GL(t)

1−GL(t)
≤ α.

In the FDR literature, GL is the distribution of the test statistic or p–value under the null hypothesis

and is generally assumed known. Thus only G must be estimated, usually with the empirical cumulative

distribution function. Storey [2002] proposed an estimator for k(t) at fixed t (Equation 6) and determined

a bootstrap method to find the t which produces the best estimates of the FDR.

The PU problem is more complicated in that one must estimate G and GL. However the structure of G

and GL enables one to estimate the identifiable parameter α0. Specifically with t∗ = inf{t : GL(t) ≥ 1} we

have

lim
t↑t∗

k(t) = α0. (8)

See Lemma 1 for a proof. This result suggests estimating α0 by substituting the empirical estimators of Gn

and GL,n into Equation 8 along with a sequence t̂ which is converging to the (unknown) t∗. Such a sequence

t̂ must be chosen so that the estimated denominator 1− ĜL,n(t̂) is not converging to 0 too fast (and hence

too variable). For t̂ we use a quantile of the empirical c.d.f. which is converging to 1, but at a rate slower

than the convergence of the empirical c.d.f.. For some q ∈ (0, β), define

t̂ = inf{t : GL,n(t) ≥ 1− n−q} − n−1.

The n−1 term in t̂ avoids technical complications.
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Figure 2: Comparison of methods with different α values. On the x-axis, α varies from 0.01 to 0.99 by step

size 0.01. The left plot displays the estimates of the lower bound α0. The middle plot displays the accuracy

of classifying observations in U . The right plot displays the F1 score of the classifications.

Theorem 4. Under Assumptions A and B

kn(t̂) ≡
Gn(t̂)−GL,n(t̂)

1−GL,n(t̂)

P−→ α0.

See Section A.1.3 for a proof.

4.2.1 Connection with ROC Method

The ROC method of Scott [2015] solves a generalization of the PU learning problem in which the positive set

contains mislabeled data. When this method is specialized to the case of no misclassification in the labeled

data i.e. the PU learning problem, it becomes a variant of the Storey [2002] method with a particular cutoff

value t. Specifically, define the true ROC curve by the parametric equation

{(GL(t), G(t)) : t ∈ [0, 1]}.

Scott [2015] (Proposition 2) showed that α0 is the supremum of one minus the slope between (1,1) and any

point on the ROC curve.1 This is equivalent to the Storey method of Storey [2002] because

α0 = sup
t

1− 1−G(t)

1−GL(t)

= sup
t

G(t)−GL(t)

1−GL(t)

= sup
t

k(t).

1Scott [2015] estimated κ = 1−α. We have modified the ROC method notation to reflect the α notation used in this work.
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The true ROC curve is not known, so α0 cannot be computed directly from this expression. Blanchard et al.

[2010] found a consistent estimator and Scott [2015] determined rates of convergence using VC theory. For

application to data, Scott [2015] splits the labeled and unlabeled data sets in half, constructs a kernel logistic

regression classifier on half the data, and estimates the slope between (1,1) and a discrete set of points on

the ROC curve. The α0 estimate is the supremum of 1 minus each of these slopes. Thus we see that the

ROC method and earlier methods developed in the FDR literature are in the same family of α estimation

strategies. Choosing a t in the Storey approach is equivalent to choosing a point on the ROC curve.

4.2.2 Practical Implementation

We consider two implementations of these ideas. The method of Scott [2015], using a kernel logistic regression

classifier and a PU training–test set split to estimate tuning parameters, is referred to as “ROC.” To facil-

itate comparison with C-PS, we consider another version with a Random Forest classifier using out–of–bag

probabilities to construct the ROC curve. We call this method C-ROC.

5 Numerical Experiments

To illustrate the proposed methods we carry out numerical experiments on simulated waveform data and

a real protein signaling data set TCDB-SwissProt. We compare the performance of the three methods

(C-PS, C-ROC and ROC) discussed in Section 4 and the SPY method. With the SPY method, once the

classifications (“positive” or “negative”) in set U are made, we use the proportion of “negative” cases as

an approximation of α0. For the C-ROC and C-PS methods [Breiman, 2001], we use Random Forest to

construct Cn(·).

5.1 Waveform Data

We simulate observations from the waveform data set using the R-package mlbench [Leisch and Dimitriadou,

2010]. The waveform data is a binary classification problem with 21 features. We fix π = 0.5 for all

simulations.

5.1.1 Varying α

We vary α from 0.01 to 0.99 in Model (1) in increments of 0.01. For each α the sample sizes are fixed at

m = n = 3000. At each α we run the methods described to estimate α and classify observations in U .

Results are shown in Figure 2. SPY produces inflated α estimates at low α (left panel) and has the the

11



100 400 1600 6400

0
.1

0
.5

0
.9

C−PS

100 400 1600 6400

0
.1

0
.5

0
.9

C−ROC

100 400 1600 6400

0
.1

0
.5

0
.9

ROC

100 400 1600 6400

0
.1

0
.5

0
.9

SPY

100 400 1600 6400

0
.1

0
.5

0
.9

100 400 1600 6400

0
.1

0
.5

0
.9

α
0

100 400 1600 6400

0
.1

0
.5

0
.9

100 400 1600 6400

0
.1

0
.5

0
.9

100 400 1600 6400

0
.1

0
.5

0
.9

n
100 400 1600 6400

0
.1

0
.5

0
.9

n
100 400 1600 6400

0
.1

0
.5

0
.9

n
100 400 1600 6400

0
.1

0
.5

0
.9

n

Figure 3: Comparison of methods with different sample sizes. The red solid horizontal lines represent the

true α (0.1,0.5,0.9). The range for all y-axes is [0, 1] from bottom to top. The unlabeled sample size n varies

with 100× 2j(j = 0, . . . , 6). Each boxplot summarizes 20 repeated estimates α̂0 for each (n, α) pair.

worst overall classification performance (center panel). Both C-ROC and ROC have substantial variability

for α near 0.5. Overall, C-PS appears to be the best method.

5.1.2 Varying Sample Size

We empirically examine consistency and convergence rates of the methods by estimating α at increasing

sample sizes, keeping the number of labeled and unlabeled observations equal, i.e. n = m. In Figure 3, every

method is repeated 20 times for each (n, α) pair. The 20 α0 estimates are displayed as a boxplot, which

show estimator bias and variance. We see that all methods, except SPY, appear consistent under different

settings (α = 0.1, 0.5, 0.9). The estimators may have substantial bias at small n. C-PS struggles at n = 100,

but has the best overall performance, followed by C-ROC and ROC.
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5.1.3 Single Feature α0 Estimation
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Figure 4: Estimation of α0 using individual features. In the left panel the horizontal blue dash line is the

true α (= 0.6), the vertical black dashed lines are the feature importances (right y–axis), and the red cross

symbol are the α0 estimate using the Patra/Sen procedure on a single feature (left y–axis). The right panels

are kernel density estimates of unlabeled (U) and labeled (L) data for features 5 and 8.

One approach to solving the multidimensional PU learning problem is to estimate α separately using

each feature. If Xi ∈ Rp, this results in p estimates α̂1
0, . . . , α̂

p
0 of the parameter α. Each of these is an

estimated lower bound on α. Thus a naive estimate of α0 is max(α̂1
0, . . . , α̂

p
0). This approach ignores the

correlation structure among features.

Using the waveform data, we compare this strategy to the multi–dimensional classifier approach. To

make the problem challenging we select the 14 weakest features, defined as having the lowest Random

Forest importance scores. We apply the Patra–Sen one–dimensional method to obtain individual feature α0

estimates. The results are summarized in Figure 4. Feature importance matches well with the performance

of the α estimates. On the right panels of Figure 4, we see that feature 5 is not useful because there is little

difference between the unlabeled and labeled samples, leading to a feature based α estimate of approximately

0.012. In contrast, feature 8 is better in that it gives an alpha estimate of approximately 0.542. The SPY,

C-ROC, and C-PS methods all perform better than the individual feature estimates (upper left of Figure 4).

5.2 Protein Signaling

The transporter classification database (TCDB) [Saier et al., 2006], here the P set, consists of 2453 proteins

involved in signaling across cellular membranes. It is desirable to add proteins to this database from unlabeled

databases which contain a mixture of membrane transport and non–transport proteins. Elkan and Noto

[2008] and Das et al. [2007] manually identified 348 of the 4906 proteins as being related to transport in the
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SwissProt [Boeckmann et al., 2003] database. We treat the SwissProt data as the unlabeled set U for which

we have ground truth α = (4906− 348)/4906 ≈ 0.929. Information from protein description documents are

used as features including function, subcellular location, alternative products, and disease. In total there

are p = 741 features. We fit models with both the original feature set and with 2p and 10p features where

all additional features are simulated by randomly selecting one of the original p features and permuting its

values among the observations. So for 10p, p features are original (and potentially useful for classifying

observations) while 9p of the features are simulated noise. Since 10p > n +m (total training set size), this

represents a high dimensional setting for estimating α.

We compare C-PS with single feature PS for p, 2p, and 10p features. A common strategy in high

dimensional classification problems is to perform feature screening prior to classifier construction. Since

the features are all binary, we screen features based on p–values from univariate chi-squared tests (Fisher

exact when any 2 × 2 table cell counts are less than 10). We test the methods after screening for the top

k = 500, 200, 100, 50, 10, 1 features with smallest p–values. The C-PS method is applied directly as described

earlier on the k best features. For the single feature PS method, after screening for k features, the PS

method is applied to all k features individually and the largest estimate is taken as an estimate of α. As

explained in Section 5.1.3, for each feature the PS method is an estimate of a lower bound on α, thus taking

the maximum of these estimated lower bounds is sensible.

Table 1 shows α estimates for each number of features and each k. First consider the two p feature

columns representing the C-PS and single feature PS methods. C-PS with p features produces estimates

which are high for k = 50 to 500 features, nearly correct for k = 10 features, and biased quite low for k = 1

feature. There appears to be some overfitting with large k, but extreme screening to k = 1 results in a loss

of information and a poor lower bound on α. Single feature PS produces estimates that are too high for

k = 500 through 10 and too low for p = 1. It is either worse or no better than C-PS at each k. Single

feature PS with k = 1 represents choosing the best feature (based on p-values) and then applying the PS

method. There is not sufficient information in this single best feature to obtain a good lower bound on α.

The behavior of PS overestimating α at k = 10 through 500 features is due to the sensitivity of taking the

maximum of single feature PS estimates. Even a single large estimate on one feature results in an overall

estimate which is too high. The natural way to correct this is to choose a smaller set of k features, but with

k = 1 there is not sufficient information in this single feature to obtain a good lower bound. In contrast,

C-PS effectively pools information across multiple features to produce improved estimates.
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The results are quite consistent across p, 2p and 10p. This is due to the fact that feature screening retains

a very similar set of features regardless of the number of noisy features added to the data set. For example,

with k = 500, the p and 10p feature models retain 316/500 of the same features while for k = 10 they

retain 10/10 of the same features. Thus the estimation methods (C-PS and PS) produce similar α estimates

with p and 10p features. This suggests that feature prescreening combined with C-PS can be an effective α

estimation strategy in high–dimensional settings with many pure noise features.

p 2p 10p

k C-PS PS C-PS PS C-PS PS

500 0.97 1.00 0.96 1.00 0.97 1.00

200 0.97 1.00 0.97 1.00 0.97 1.00

100 0.96 0.99 0.96 0.99 0.96 0.99

50 0.95 0.99 0.95 0.99 0.95 0.99

10 0.93 0.98 0.93 0.98 0.93 0.98

1 0.77 0.77 0.77 0.77 0.77 0.77

Table 1: α estimates from C-PS and single feature PS with p, 2p, and 10p features when prescreening the

top k features. True α ≈ 0.93.

6 Conclusion

In this paper we proposed a framework for estimating the mixture proportion and classifier in the PU

learning problem. We implemented this framework using two estimators from the FDR literature, C-

PS and C-ROC. The framework has the power to incorporate other one-dimensional MPE procedures,

such as Meinshausen and Rice [2006], Genovese et al. [2004], Langaas et al. [2005], Efron [2007], Jin [2008],

Cai and Jin [2010] or Nguyen and Matias [2014]. More generally we have strengthened connections between

the classification–machine learning literature and the multiple testing literature by constructing estimators

using ideas from both communities. Potential directions for future research include generalizing results to

the case where the labeled data contains some mislabeling of observations, relaxing Assumption A, and

developing methods to handle cases where labeled and unlabeled data sets sizes are substantially different

(class imbalance).

Supplementary Materials

R–code and data needed for reproducing results in this work are available online at github.com/zflin/PU_learning.
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Technical Notes for
A Flexible Procedure for Mixture Proportion Estimation in

Positive–Unlabeled Learning

A.1 Proof of Theorems

A.1.1 Proof of Theorem 1

Equivalently, we are trying to prove

G− (1− γ)GL

γ
is a c.d.f. ⇔ F − (1 − γ)F1

γ
is a c.d.f. (A.1)

Sufficient to show

G− (1− γ)GL non-decreasing ⇔f − (1 − γ)f1 ≥ 0 (A.2)

with probability 1.

First we show ⇐. Consider any t2 > t1. Then

(G(t2)− (1− γ)GL(t2))− (G(t1)− (1 − γ)GL(t1))

=

∫

{x:C(x)∈(t1,t2]}

f(x)− (1− γ)f1(x)︸ ︷︷ ︸
≥0 by assumption

dµ(x)

≥ 0.

Now we show ⇒ by proving the contrapositive. By assumption there exists

A = {x : f(x)− (1− γ)f1(x) < 0}

such that P (A) > 0. Further we have

A =

{
x : (1− γ)

(1 − π)

π
>

f(x)

f1(x)

(1− π)

π

}

=




x :

1

1 + (1− γ) (1−π)
π︸ ︷︷ ︸

≡t∗

< C(x)





.

So

(G(1)− (1− γ)GL(1))− (G(t∗)− (1− γ)GL(t
∗))

=

∫

A={x:C(x)>t∗}

f(x)− (1 − γ)f1(x)dµ(x)

< 0.
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A.1.2 Proof of Theorem 2

nβ(Gn(t)−G(t)) =
nβ

n1/2
n1/2

(
Gn(t)− E[1Cn(X)≤t|Cn]

)
︸ ︷︷ ︸

≡Rn(t)

+ nβ
(
E[1Cn(X)≤t|Cn]−G(t)

)
︸ ︷︷ ︸

≡Qn(t)

We now show that Rn(t) and Qn(t) are OP (1) uniformly in t. Together these facts show the expression is

OP (1) uniformly in t.

Rn(t): Note

Rn(t) =
√
n

(
1

n

n∑

i=1

1Cn(Xi)≤t − E[1Cn(X)≤t|Cn]

)
.

By the DKW inequality

P (||Rn||∞ > x
∣∣Cn) ≤ 2e−2x2

.

Thus ||Rn||∞ is OP (1).

Qn(t): We have

Qn(t) = E[

≡Tn︷ ︸︸ ︷
(1Cn(X)≤t − 1C(X)≤t)

∣∣Cn]

≤ |E[Tn1|C(X)−t|≤ǫn

∣∣Cn]|︸ ︷︷ ︸
B1

+ |E[Tn1|C(X)−t|>ǫn1|C(X)−Cn(X)|<ǫn

∣∣Cn]|︸ ︷︷ ︸
B2

+ |E[Tn1|C(X)−t|>ǫn1|C(X)−Cn(X)|>ǫn

∣∣Cn]|︸ ︷︷ ︸
B3

Noting that |Tn| ≤ 1 and Cn is independent of C(X), we have

B1 ≤ P (|C(X)− t| ≤ ǫn) ≤ 2ǫn sup
t

g(t)

where g is the density of C(X), which exists and is bounded by Assumptions B. B2 is 0 because Tn = 0

whenever the indicator functions in B2 are both 1. Finally noting B3 ≤ E[1|C(X)−Cn(X)|>ǫn |Cn] and using

Markov’s inequality twice, we have

P (B3 > rn) ≤ P (E[1|C(X)−Cn(X)|>ǫn |Cn] > rn)

≤ P (|C(X)− Cn(X)| > ǫn)

rn

≤ E[|Cn(X)− C(X)|]
ǫnrn

.

Setting ǫn = n−τ/3, rn = n−τ/3, and β = τ/3 achieves the desired result. Identical arguments hold for

showing nβ(GL,n(t)−GL(t)) is OP (1) uniform in t.
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A.1.3 Proof of Theorem 4

Since t̂ = inf{t : GL,n(t) ≥ 1− n−q} − n−1 and 0 < q < β, we have

(nβ(1−GL,n(t̂)))
−1 =

nq

nβ
= o(1).

Recall by Theorem 2 we have

nβ(GL,n(t)−GL(t)) ≡ dL(t) = OP (1)

nβ(Gn(t)−G(t)) ≡ d(t) = OP (1)

where this and subsequent OP and oP are uniform in t. We have

Gn(t̂)−GL,n(t̂)

1−GL,n(t̂)
=

G(t̂)−GL(t̂)

1−GL,n(t̂)
+

n−β(dL(t̂)− d(t̂))

1−GL,n(t̂)

=

(
1−GL(t̂)

1−GL,n(t̂)

)

︸ ︷︷ ︸
≡A

(
G(t̂)−GL(t̂)

1−GL(t̂)

)

︸ ︷︷ ︸
≡k(t̂)

+
dL(t̂)− d(t̂)

nβ(1−GL,n(t̂))︸ ︷︷ ︸
oP (1)

.

Note that

A = 1 +
dL(t̂)

nβ(1−GL,n(t̂))
= 1 + oP (1).

Thus it is sufficient to show that k(t̂) → α0. By Lemma 1, k(t) ↑ α0 as t ↑ t∗. We show that for any ǫ > 0

P (t̂ ∈ (t∗ − ǫ, t∗)) → 1.

Thus by the continuous mapping theorem, the estimator is consistent.

Part 1: We show P (t∗− t̂ > ǫ) → 0. By the definition of t∗, there exists γ > 0 such that GL(t
∗−ǫ/2) = 1−γ.

We have

P (t∗ − t̂ > ǫ)

= P (GL,n(t
∗ − ǫ + n−1) > GL,n(t̂+ n−1))

≤ P (GL,n(t
∗ − ǫ + n−1) > 1− n−q)

≤ P (GL(t
∗ − ǫ+ n−1) > 1− n−q − γ/2)︸ ︷︷ ︸

≡A

+ P (|GL,n(t
∗ − ǫ+ n−1)−GL(t

∗ − ǫ+ n−1)| > γ/2)︸ ︷︷ ︸
→0 by Theorem 2

.

A → 0 because for sufficiently large n, GL(t
∗ − ǫ+ n−1) ≤ GL(t

∗ − ǫ/2) = 1− γ < 1− n−q − γ/2.
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Part 2: We show P (t̂ ≥ t∗) → 0. We have

P (t̂ ≥ t∗) = P (Gn,L(t̂+ n−1) ≥ Gn,L(t
∗ + n−1))

= P (1− n−q ≥ Gn,L(t
∗ + n−1))

= P (1−Gn,L(t
∗ + n−1) ≥ n−q)

= P (nβ(GL(t
∗ + n−1)−Gn,L(t

∗ + n−1))︸ ︷︷ ︸
OP (1) by Theorem 2

≥ nβ−q).

Since β > q we have the result.

A.1.4 Proof of Theorem 3

Proof. ∀ǫ > 0, we need to show P (|α̂cn
0 − α0| > ǫ) → 0. Note

P (|α̂cn
0 − α0| > ǫ) = P (α̂cn

0 < α0 − ǫ) + P (α̂cn
0 > α0 + ǫ).

First we show that P (α̂cn
0 < α0 − ǫ) → 0. If α0 ≤ ǫ, then

P (α̂cn
0 < α0 − ǫ) ≤ P (α̂cn

0 < 0) = 0.

If α0 > ǫ, suppose we have α̂cn
0 < α0 − ǫ, then by Lemma 7,

dn(Ĝ
α0−ǫ
s,n , Ǧα0−ǫ

s,n ) ≤ cn
nβ−η(α0 − ǫ)

.

The LHS of above converges to positive constant by Lemma 6, while the RHS converges to zero by the choice

of cn, hence P (α̂cn
0 < α0 − ǫ) → 0.

Now we show that P (α̂cn
0 > α0 + ǫ) → 0. Suppose we have α̂cn

0 > α0 + ǫ, then by Lemma 7,

nβ−ηdn(Ĝ
α0+ǫ
s,n , Ǧα0+ǫ

s,n ) >
cn

(α0 − ǫ)
.

The LHS of above converges to zero by Lemmas 6 and 5, while the RHS diverges to infinity by the choice of

cn, hence P (α̂cn
0 > α0 + ǫ) → 0.

A.2 Lemmas

Lemma 1. limt↑t∗ k(t) = α0.

Proof. Define α′
0 = limt↑t∗ k(t).

Show α′
0 ≤ α0: By the definition of α0 there exists c.d.f. Gα0

such that

G(t) = α0Gα0
(t) + (1− α0)GL(t)

≤ α0 + (1− α0)GL(t).

Thus

k(t) =
G(t)−GL(t)

1−GL(t)
≤ α0
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for all t. Thus α′
0 = limt↑t∗ k(t) ≤ α0.

Show α′
0 ≥ α0: Consider any γ < α0. We show γ < α′

0. Since γ < α0,

G− (1 − γ)GL

γ

is not a c.d.f. Thus there exists t1 < t2 such that

G(t1)− (1− γ)GL(t1)

γ
>

G(t2)− (1 − γ)GL(t2)

γ
. (A.3)

Case 1: L.H.S. of Equation (A.3) > 1: If GL(t1) = G(t1), L.H.S. = GL(t1) ≤ 1. Thus GL(t1) 6= G(t1).

By Lemma 3 GL(t1) ≤ G(t1) ≤ 1. Thus GL(t1) < 1. By assumption

G(t1)− (1− γ)GL(t1)

γ
> 1

Rearranging terms

γ <
G(t1)−GL(t1)

1−GL(t1)
(A.4)

Since GL(t
∗) = 1 and GL(t) < 1, t1 < t∗. Thus by Lemma 2 the R.H.S. of Equation (A.4) is bounded by α′

0.

Case 2: L.H.S. of Equation (A.3) ≤ 1: If t2 ≥ t∗, then GL(t2) = 1. Since G(t) ≥ GL(t) (Lemma 3),

G(t2) = 1. Thus the R.H.S. of Equation (A.3) equals 1. This violates the assumption of Case 2, thus t2 < t∗.

From Equation (A.3) we have

G(t1)−G(t2) > (1− γ)(GL(t1)−GL(t2))

which implies (since GL(t1)−GL(t2) < 0) that

G(t2)−G(t1)

GL(t2)−GL(t1)
< (1− γ). (A.5)

From Lemma 4 we have

1−GL(t2)

1−G(t2)
=

GL(1)−GL(t2)

G(1)−G(t2)
≥ GL(t2)−GL(t1)

G(t2)−G(t1)

Combining this result with Equation (A.5) we obtain

1−G(t2)

1−GL(t2)
≤ 1− γ

which implies

γ ≤ G(t2)−GL(t2)

1−GL(t2)
= k(t2)

Since k(t) ↑ as t ↑ t∗ (see Lemma 2), we have the result.

Lemma 2. k(t) is increasing on t ∈ [0, t∗).

Proof. Recall Q(p) = inf{t ∈ (0, 1] : GL(t) ≥ p} and t∗ = Q(1). Note that with a, b, c, d > 0 and a/b < c/d,

a+ c

b+ d
>

a

b
.
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Next note that by Lemma 4, for t∗ > t2 > t1,

G(t2)−G(t1)

GL(t2)−GL(t1)
>

1−G(t2)

1−GL(t2)
.

Thus we have

1− k(t1) =
1−G(t1)

1−GL(t1)

=
1−G(t2) +G(t2)−G(t1)

1−GL(t2) +GL(t2)−GL(t1)

≥ 1−G(t2)

1−GL(t2)

= 1− k(t2).

Lemma 3.
gL(t)

g(t)
=

1− π

π

t

1− t

and

G(t) ≥ GL(t)

for all t.

Proof. Define A = {x : πfL(x)
πfL(x)+(1−π)f(x) = t}

gL(t)

g(t)
=

∫
A fL(x)∫
A
f(x)

=
1− π

π

∫
A

πfL(x)
πfL(x)+(1−π)f(x)πfL(x) + (1− π)f(x)

∫
A

(1−π)f(x)
πfL(x)+(1−π)f(x)πfL(x) + (1− π)f(x)

=
1− π

π

∫
A
t(πfL(x) + (1− π)f(x))∫

A(1− t)(πfL(x) + (1− π)f(x))

=
1− π

π

t

1− t

Thus gL(t)
g(t) ↑ as t ↑. Since gL(t)

g(t) is monotone increasing in t, gL stochastically dominates g and thus

G(t) ≥ GL(t) for all t. Formally this can be shown by considering any t2 > t1 and noting

gL(t2)

g(t2)
≥ gL(t1)

g(t1)
.

Thus

gL(t2)g(t1) ≥ gL(t1)g(t2). (A.6)

Integrating (A.6) from 0 to t2 with respect to t1 we obtain

gL(t2)G(t2) ≥ GL(t2)g(t2),

which implies
G(t)

GL(t)
≥ g(t)

gL(t)
. (A.7)
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Integrating (A.6) from t1 to 1 with respect to t2 we obtain

(1−GL(t1))g(t1) ≥ gL(t1)(1 −G(t1)),

which implies
g(t)

gL(t)
≥ 1−G(t)

1−GL(t)
. (A.8)

Combining Equations (A.7) and (A.8) we have

G(t)

GL(t)
≥ 1−G(t)

1−GL(t)

which implies the result

G(t) ≥ GL(t).

Lemma 4 (Ratio). For all 0 ≤ t1 < t2 ≤ 1 where G(t2)−G(t1) > 0 we have

1− π

π

t1
1− t1

<
GL(t2)−GL(t1)

G(t2)−G(t1)
≤ 1− π

π

t2
1− t2

where 1/0 ≡ ∞.

Proof. The classifier is

C(x) =
πfL(x)

πfL(x) + (1− π)f(x)
=

1

1 + 1−π
π

f(x)
fL(x)

Define At = {x : C(x) ≤ t} = {x : 1−t
t

π
1−πfL(x) ≤ f(x)}. Therefore on the set At2 ∩ AC

t1 we have

1− t2
t2

π

1− π
fL(x) ≤ f(x) <

1− t1
t1

π

1− π
fL(x)

So

GL(t2)−GL(t1)

G(t2)−G(t1)
=

∫
At2

∩AC
t1

fL(x)
∫
At2

∩AC
t1

f(x)

>

∫
At2

∩AC
t1

fL(x)

1−t1
t1

π
1−π

∫
At2

∩AC
t1

fL(x)

=
t1

1− t1

1− π

π
.

We can obtain the upper bound in an identical manner.

Lemma 5.

nβ−ηdn(G,Gn) = oP (1),

nβ−ηdn(GL, GL,n) = oP (1).
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Proof.

nβ−ηdn(G,Gn) =

√√√√√√
∫

 n−η
︸︷︷︸

=oP (1)

nβ (Gn(t)−G(t))︸ ︷︷ ︸
=OP (1)




2

dGn(t),

where nβ (Gn(t)−G(t)) = OP (1) uniformly, and then n−ηnβ (Gn(t)−G(t)) = oP (1) uniformly. Therefore

nβ−ηdn(G,Gn) ≤ sup
t

|n−ηnβ (Gn(t)−G(t)) | = oP (1).

The GL, GL,n case can be proven in an identical manner.

Lemma 6. For 1 ≥ γ ≥ α0,

γdn(Ĝ
γ
s,n, Ǧ

γ
s,n) ≤ dn(G,Gn) + (1− γ)dn(GL, GL,n).

Thus,

γdn(Ĝ
γ
s,n, Ǧ

γ
s,n) →

{
0 if γ ≥ α0,

> 0 if γ < α0.

Proof. Let

Gγ
s =

G− (1− γ)GL

γ
.

If γ ≥ α0, then

γdn(Ĝ
γ
s,n, Ǧ

γ
s,n) ≤ γdn(Ĝ

γ
s,n, G

γ
s )

≤ dn(G,Gn) + (1− γ)dn(GL, GL,n).

The first inequality holds by the definition of Ǧγ
s,n due to the fact that Gγ

s is a valid CDF when 1 ≥ γ ≥ α0,

and the second inequality is due to triangle inequality.

Now we prove the limit property of γdn(Ĝ
γ
s,n, Ǧ

γ
s,n). If γ ≥ α0, then γdn(Ĝ

γ
s,n, Ǧ

γ
s,n) → 0 since

dn(G,Gn) → 0 and dn(GL, GL,n) → 0 by Lemma 5. If γ < α0, by the definition of αG
0 , Gγ

s is not a

valid c.d.f.. Pointwise, Ĝγ
s,n → Gγ

s . So for large n, Ĝγ
s,n is not valid c.d.f., while Ǧγ

s,n is always a c.d.f.. So

γdn(Ĝ
γ
s,n, Ǧ

γ
s,n) would converge to some positive constant.

Lemma 7. Bn := {γ ∈ [0, 1] : nβ−ηγdn(Ĝ
γ
s,n, Ǧ

γ
s,n) ≤ cn} is convex. Thus, Bn = (α̂cn

0 , 1] or Bn = [α̂cn
0 , 1].

Proof. Obviously, 1 ∈ Bn. Assume γ1 ≤ γ2 from Bn, let γ3 = ξγ1 + (1 − ξ)γ2, where ξ ∈ [0, 1]. Then by

definition of Ĝγ
s,n,

ξγ1Ĝ
γ1

s,n + (1− ξ)γ2Ĝ
γ2

s,n = γ3Ĝ
γ3

s,n.
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Note that 1
γ3

(
ξγ1Ǧ

γ1

s,n + (1− ξ)γ2Ǧ
γ2

s,n

)
is a valid c.d.f. We have γ3 ∈ Bn because

dn(Ĝ
γ3

s,n, Ǧ
γ3

s,n)

≤ dn

(
Ĝγ3

s,n,
1

γ3

(
ξγ1Ǧ

γ1

s,n + (1 − ξ)γ2Ǧ
γ2

s,n

))

= dn

(
1

γ3

(
ξγ1Ĝ

γ1

s,n + (1− ξ)γ2Ĝ
γ2

s,n

)
,
1

γ3

(
ξγ1Ǧ

γ1

s,n + (1− ξ)γ2Ǧ
γ2

s,n

))

≤ ξγ1
γ3

dn(Ĝ
γ1

s,n, Ǧ
γ1

s,n) +
(1− ξ)γ2

γ3
dn(Ĝ

γ2

s,n, Ǧ
γ2

s,n)

≤ ξγ1
γ3

cn
nβ−ηγ1

+
(1− ξ)γ2

γ3

cn
nβ−ηγ2

=
cn

nβ−ηγ3
.
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