
Adaptive Batching for Gaussian Process Surrogates with

Application in Noisy Level Set Estimation

Xiong Lyu* Michael Ludkovski∗

Abstract

We develop adaptive replicated designs for Gaussian process metamodels of stochastic experiments.

Adaptive batching is a natural extension of sequential design heuristics with the benefit of replication

growing as response features are learned, inputs concentrate, and the metamodeling overhead rises.

Motivated by the problem of learning the level set of the mean simulator response, we develop five novel

schemes: Multi-Level Batching (MLB), Ratchet Batching (RB), Adaptive Batched Stepwise Uncertainty

Reduction (ABSUR), Adaptive Design with Stepwise Allocation (ADSA) and Deterministic Design with

Stepwise Allocation (DDSA). Our algorithms simultaneously (MLB, RB and ABSUR) or sequentially

(ADSA and DDSA) determine the sequential design inputs and the respective number of replicates.

Illustrations using synthetic examples and an application in quantitative finance (Bermudan option pricing

via Regression Monte Carlo) show that adaptive batching brings significant computational speed-ups with

minimal loss of modeling fidelity.

Keywords: GP surrogates, level set estimation, stochastic simulation, design of experiments, stepwise

uncertainty reduction

1 Introduction

Metamodels offer a cheap statistical representation of complex and/or expensive stochastic simulators that

arise in applications ranging from engineering to environmental science and finance (Santner et al., 2003).

Gaussian process (GP) frameworks have emerged as the leading family of metamodels thanks to their

flexibility, analytical tractability and superior empirical performance. However, for GP metamodels to be

fast, it is imperative to keep the respective design size |A| manageable. In particular, unless the simulator is

truly expensive or the input domain is vast, the typical recommendation is to restrict to hundreds of inputs,

|A| � 103. This creates a major tension as frequently the stochastic simulator has low signal-to-noise

ratio or a complex noise structure. A prototypical example is where the simulator Y (x) = F (X[0,∆t])|X0=x

involves functionals of a continuous-time Markov chain or stochastic differential equation solution (Xt),

whereby the stochasticity tends to dominate the trend/drift term for short ∆t, and moreover simulation noise

is non-Gaussian and state-dependent (heteroskedastic).

*Department of Statistics and Applied Probability, University of California at Santa Barbara, Santa Barbara, CA 93106-3110,

USA (lyu@pstat.ucsb.edu; ludkovski@pstat.ucsb.edu)

1

ar
X

iv
:2

00
3.

08
57

9v
2

 [
st

at
.M

L
]

 1
3

Ju
l 2

02
1

mailto:lyu@pstat.ucsb.edu
mailto:ludkovski@pstat.ucsb.edu

A natural solution is to employ batching, known in the stochastic simulation community as nested Monte

Carlo. Re-using the same input to generate multiple outputs allows for a Law of Large Numbers (LLN)

averaging which can be analytically combined with the GP predictive equations to keep the computational

complexity as a function of k (number of unique inputs) rather than of the capital-N (number of simulator

calls). The seminal technique of stochastic kriging (Ankenman et al., 2010) shows that these computational

savings are exact assuming the GP hyperparameters, in particular the noise variance τ2, are known. Such

batching becomes critical in the use of GP models in our motivating application of solving optimal stopping

problems via Regression Monte Carlo, where tens of thousands of simulations are called for.

In the classical setup, the metamodeling objective is to learn the mean response over the entire domain

(Koehler et al., 1998; Le Gratiet and Garnier, 2015; Chen and Zhou, 2017), whereby, modulo heteroskedastic

noise, one expects to utilize the same batching level across all inputs, i.e. splitting the total budget N = k× r
into k batches of r replicates at locations x̄1, . . . , x̄k. See Ankenman et al. (2010) for a discussion of how to

pick k for a given budget N , as well as some proposals for handling non-constant τ2(x). We are interested

in more targeted objectives, where the picture is much less clear. As two canonical examples we recall

Bayesian Optimization (finding the maximum mean response) and Level Set Estimation (determining the

input sub-domain where the mean response exceeds a given threshold). In both settings GP metamodels have

been shown to especially shine, not least because they organically match the sequential adaptive designs

typically utilized; the respective Expected Improvement schemes form a major feature of the GP ecosystem.

Since these objectives imply preferentially sampling a small portion of the input space—the neighborhood

of the maximum, or the neighborhood of the desired contour—the exploration-exploitation paradigm leads

to increasingly concentrated designs. Such concentration suggests to adaptively determine the amount of

batching. Intuitively, replication should be low for more exploratory sites and should rise in the neighborhood

of interest, where we replicate to achieve computational savings. Indeed, the intrinsic cost of replication is

linked to the variability of the response at the respective inputs, which will be minimal if the inputs are very

close together. From a different perspective, replication trades off costly, precise outputs (large r) vis-a-vis

cheap outputs with low signal-to-noise ratio (low r).

The above motivates adaptively batched designs, where r is input-dependent. While this idea was

investigated for Bayesian Optimization (Klein et al., 2017; Poloczek et al., 2017) and for Integrated Mean

Squared Error (IMSE) minimization (Ankenman et al., 2010; Binois et al., 2019), neither of these fully reveal

the underlying tension between exploration (replicate less, larger metamodel overhead) and exploitation

(replicate more, generate computational savings). In this article we propose several schemes that explicitly

focus on this issue. To evaluate them we concentrate on the problem of level set estimation where the

contour is adaptively learned through the sequential design but retains a spatial structure (unlike Bayesian

Optimization where convergence to the single input yielding the global maximum is desired). Consequently,

we expect a complex interaction between the selection of inputs and the respective replication amounts. In

this context, our main contribution is to extend the paradigm of Expected Improvement to include sequential

selection of both the input locations xn and the replication counts rn. We benchmark the proposed algorithms

and show that they provide significant savings compared to the naive fixed-batching approach. In particular,

2

we are able to obtain schemes that reduce N ' 105 simulations to efficient replicated designs of just a few

hundred unique inputs.

Beyond benchmarking the developed algorithms on several synthetic examples, we also implement and

extend them to heteroskedastic modeling for the motivating application of valuation of Bermudan options.

In the latter context, the Regression Monte Carlo (RMC) paradigm is used to provide a simulation-based

algorithm that hinges on recursive estimation of certain level sets that correspond to the so-called stopping

boundaries. Building upon the successful use of GP surrogates for RMC (Ludkovski, 2018; Lyu et al., 2021),

we demonstrate that adaptive batching significantly speeds up this approach, making it more scalable and

efficient. In particular while in (Ludkovski, 2018) sequential design was typically too slow to be useful,

adaptively batched models beat basic implementation on both speed and memory requirements. We note

that there are other important applications of level set estimation, from quantifying the reliability of a system

or its failure probability (Bect et al., 2012), to ranking pay-offs from several available actions in dynamic

programming (Hu and Ludkovski, 2017).

The rest of the paper is organized as follows. Section 2 formalizes the GP model and the contour-learning

objective. Section 3 develops heuristics for sequential designs that jointly optimize over the new input and

replication level. Section 4 takes a different tack and explores dynamic replication through allocating new

simulations to existing inputs. Section 5 benchmarks the proposed schemes on three synthetic case studies

and Section 6 on two more examples from Bermudan option pricing. Section 7 concludes.

2 Statistical Model

Consider a latent f : D → R which is a continuous function over a d-dimensional input space D ⊆ Rd. We

wish to identify the contour ∂S, where, without loss of generality, S is the zero level set

S = {x ∈ D : f(x) ≥ 0}. (1)

Thus, our metamodeling objective is equivalent to learning the sign of f(x) for any x ∈ D. For any xi ∈ D,

we have access to a simulator Y (xi) that generates noisy outputs of f(xi):

Y (xi) = f(xi) + εi, (2)

where εi’s are realizations of independent, mean zero random variables with variance τ2. To describe

replicated inputs, let x̄i, i = 1, ..., k denote the unique inputs, and y(j)
i be the jth output of ri ≥ 1 replicates

observed at x̄i. Let ȳ1:k = {ȳi, 1 ≤ i ≤ k} store averages over replicates, ȳi := 1
ri

∑ri
j=1 y

(j)
i . This

notation follows the “unique-n” formulation proposed by Binois et al. (2019), which was shown to reduce the

computation cost from O(N3) to O(n3) compared to the “full-N” formulation.

The inference of ∂S proceeds by building a metamodel f̂ , which induces Ŝ = {x ∈ D : f̂(x) > 0}, and

evaluating its error rate ER, i.e. the integral over the symmetric difference between Ŝ and true S weighted

3

by a given measure µ(·):

ER(S, Ŝ) =

∫
x∈D

I(sign f̂(x) 6= sign f(x))µ(dx) = µ(S∆Ŝ), (3)

where S∆Ŝ := (S ∩ Ŝc)
⋃

(Sc ∩ Ŝ). S can also be defined using Vorob‘ev expectation Chevalier et al.

(2014a) or conservative probability estimate Bolin and Lindgren (2015); Azzimonti and Ginsbourger (2018).

Reconstructing S via a metamodel can be divided into two aspects: the construction of the response

model x 7→ Y (x), and the development of the design of experiments (DoE) for efficiently selecting the inputs

x̄1, x̄2, To account for the second aspect, we use n to denote the rounds of sequential DoE, kn to denote

the number of unique inputs x̄’s sampled by step n and Nn =
∑kn

i=1 r
(n)
i the respective number of simulator

calls made. The superscript on ri allows the replicate counts to evolve over n as well, see Section 4. The

metamodel training set by step n consists of An =
{

(x̄i, r
(n)
i , ȳi), 1 ≤ i ≤ kn

}
.

The Gaussian process paradigm treats f as a random function whose posterior distribution is determined

from its prior and the training set(s) An. We view f(·) ∼ GP (m(·),K(·, ·)) as a realization of a Gaussian

process specified by its mean function m(x) := E[f(x)] and covariance function K(x, x′) := E[(f(x) −
m(x))(f(x′)−m(x′))]. The noise distribution is ε ∼ N (0, τ2); and thus the observation ȳ also follows a

normal distribution. For simplicity we take m(x) = 0. The conditional distribution f |An is another Gaussian

process, with posterior mean f̂ (n)(x∗) and covariance v(n)(x∗, x
′
∗) at arbitrary inputs x∗, x′∗ given by

f̂ (n)(x∗) = k(x∗)[K + τ2R(n)]−1ȳ1:kn , (4)

v(n)(x∗, x
′
∗) = K(x∗, x

′
∗)− k(x∗)[K + τ2R(n)]−1k(x′∗)

T , (5)

with the 1 × kn vector k(x∗) = K(x∗, x̄1:kn), the kn × kn matrix K given by Kij = K(x̄i, x̄j), and the

kn × kn diagonal matrix R(n) given by R(n)
ii := 1

r
(n)
i

. The posterior mean f̂ (n)(x∗) is treated as a point

estimate of f(x∗), and the posterior standard deviation s(n)(x∗) :=
√
v(n)(x∗, x∗) as the uncertainty of this

surrogate.

Remark. It is also common in practice that the simulators exhibit input-dependent noise, calling for a

heteroskedastic metamodel. Given the noise distribution εi ∼ N (0, τ(xi)
2) with a known τ(·), the conditional

distribution f |An is given by

f̂ (n)(x∗) = k(x∗)[K + R̃(n)]−1ȳ1:kn ,

v
(n)
(x∗, x

′
∗) = K(x∗, x

′
∗)− k(x∗)[K + R̃(n)]−1k(x′∗)

T ,

with the diagonal matrix R̃(n) given by R̃(n)
ii := τ(xi)

2

r
(n)
i

. All the batching algorithms proposed in Section 3

and 4 naturally extend to the heteroskedastic context if we replace τ2R(n) with R̃(n). The main challenge is

then to handle estimation of the unknown conditional variance τ(·), see e.g. Ankenman et al. (2010); Binois

and Gramacy (2021). The algorithms proposed below have been ported to work with the R hetGP library

(Binois and Gramacy, 2021) that provides an efficient way to jointly learn the mean and variance response

surfaces under replicated designs.

4

3 Adaptive Designs

3.1 Level Set Estimation

An adaptive DoE approach is needed to select x̄1, x̄2, . . . sequentially since the level-set S is defined in terms

of the unknown f . The standard framework of DoE is to add new inputs one-by-one at each round, using

an acquisition function In(x) to pick x̄n+1. The acquisition function quantifies the value of information

from running a new simulation at x conditional on an existing training set An, and picks x̄n+1 as the myopic

maximizer of In:

x̄n+1 = arg sup
x∈D
In(x). (6)

Building upon the seminal Expected Improvement criterion (Jones et al., 1998), various level-set sampling

criteria were proposed by Bichon et al. (2008), Picheny et al. (2010), Bect et al. (2012) and Ranjan et al.

(2008). Further instances of I(x) can be found in Chevalier et al. (2013, 2014a), Azzimonti et al. (2016,

2021), and Bolin and Lindgren (2015). The basic idea in sequential level-set estimation is to assess the

information gain from new simulations, targeting the learning of the contour. Most of the above criteria were

originally proposed for deterministic experiments with no simulation noise, or cases with known τ2. We refer

to Lyu et al. (2021) for a summary of level set estimation in stochastic experiments with heteroskedastic τ2(x),

which can be seen as the counterpart of the earlier study in Jalali et al. (2017) for Bayesian Optimization

with stochastic simulators.

In this section we construct a sequential batched DoE to jointly select (x̄n+1, rn+1). At each DoE round

we pick a new input x̄n+1 and the associated replication amount rn+1; thus by round n there are n unique

inputs. In our first proposal, we formulate this task within a multi-fidelity framework, which is widely used

in Bayesian Optimization (Kandasamy et al., 2016a,b, 2017; Poloczek et al., 2017). Thanks to the LLN,

we interpret rn as fidelity: a small number of replicates is cheap but inaccurate; inputs with a large number

of replicates are viewed as high-fidelity queries: expensive but accurate. Our interest is then to choose the

fidelity level to query next, balancing the trade-off between accuracy and cost. As a second proposal, we

relate replication to simulation and model fitting overhead costs, leading to maximization of the information

gain I(x, r) per unit cost (Klein et al., 2017; McLeod et al., 2017).

Remark. Another meaning of batched DoE refers to selecting multiple new inputs x̄k in parallel, see Chevalier

et al. (2014a). In this article, batching always refers to using replicates; we add (at most) one new input at

each DoE round.

To begin, we repurpose two existing acquisition functions well suited to our needs. In our first proposal,

we formulate the choice of input xn+1 and its replicate count rn+1 as two separate steps, which implies that

In is only based on the existing information. The first acquisition function is Contour Upper Confidence

Bound (cUCB) (Lyu et al., 2021) which stems from the Upper Confidence Bound (UCB) strategies proposed

by Srinivas et al. (2012) for Bayesian Optimization. cUCB blends the minimization of |f̂ (n)(x)| (exploitation)

5

with maximization of the posterior uncertainty s(n)(x) (exploration):

IcUCB
n (x) :=

{
−|f̂ (n)(x)|+ ρ(n)s(n)(x)

}
µ(x), (7)

where ρ(n) is a sequence of UCB weights, and µ is a probability measure on the Borel σ-algebra B(D)

(e.g., µ = LebD the Lebesgue measure on D). Thus, cUCB targets inputs with high response uncertainty

(large s(n)(x)), and close to the contour ∂Ŝ (small |f̂ (n)(x)|). See Lyu et al. (2021) on the choice of the UCB

weight sequence ρ(n). Maximizing IcUCB
n (·) yields xn+1; see Sections 3.2 and 3.3 on various ways to select

the corresponding rn+1.

In the second proposal, we jointly pick xn+1 and rn+1 in a single step, utilizing a look-ahead criterion.

The gradient Stepwise Uncertainty Reduction (gSUR) criterion focuses on the local empirical error En
defined by

En(x) := Φ

(
− |f̂

(n)(x)|
s(n)(x)

)
. (8)

We interpret En(x) as the local probability of misclassification of {x ∈ S}, see Bichon et al. (2008); Echard

et al. (2010); Lyu et al. (2021); Ranjan et al. (2008). gSUR aims to select the input which produces the greatest

reduction between the current En(x) given An and the expected En+1(x) conditional on the one-step-ahead

design, An+1 = An ∪ (x̄n+1, rn+1, ȳn+1). To do so, gSUR ties the selection of x̄n+1 to the look-ahead

standard deviation s(n+1)(x, r) at x conditional on An and sampling r times at x. The latter is proportional

to the current standard deviation s(n)(x) with the proportionality factor linked to r (Chevalier et al., 2014b):

s(n+1)(x, r)2

s(n)(x)2
=

τ2

r
τ2

r + s(n)(x)2
, (9)

since the replicated outputs y(j)
n+1 are i.i.d.. Based on (9) and using the fact that EȲ (x)[f̂

(n+1)(x)] = f̂ (n)(x),

the gSUR metric approximates the effect of Ȳ (x) on the look-ahead local empirical error En+1(x):

IgSUR
n (x, r) :=

{
Φ

(
− |f̂

(n)(x)|
s(n)(x)

)
− Φ

(
− |f̂ (n)(x)|
s(n+1)(x, r)

)}
µ(x) (10)

'
{
En(x)− EȲ (x) [En+1(x)]

}
µ(x).

We note that IgSUR
n (x, r) = 0 for x ∈ ∂Ŝ(n) (i.e. when f̂ (n)(x) = 0) so that the gSUR metric naturally

enforces some exploration by sampling close to, but not exactly at, the estimated contour.

3.2 Multi-Level Batching

Having determined x̄n+1 via the cUCB criterion IcUCBn (7), we turn to the task of picking rn+1. The most

basic batching strategy is Fixed Batching (FB):

rn+1 ≡ r0

6

Algorithm 1 Multi-Level Batching (MLB)

Input: rL, η, k0, r0

Ak0 ← {(x̄i, r0, ȳi), 1 ≤ i ≤ k0}, (f̂ (k0), s(k0))← f |Ak0 , γ ← Ave(s(0)(x̄1:k0)).

Nk0 ← r0 × k0.

for n = k0, k0 + 1, . . . do
x̄n+1 ← arg maxx∈D IcUCBn (x).

while s(n+1)(x̄n+1, r
1) < γ . Check if need to lower threshold do

γ ← η × γ.

end while
rn+1 ← max{r ∈ rL : s(n+1)(x̄n+1, r) ≥ γ}.
ȳn+1 ← 1

rn+1

∑rn+1

j=1 y(j).

Update An+1 ← An ∪ {(x̄n+1, rn+1, ȳn+1)}.
Obtain (f̂ (n+1), s(n+1))← f |An+1.

Nn+1 ← Nn + rn+1.

end for

for some pre-specified batching level r0. To improve upon FB, we select rn+1 from a discrete set rL :=

{r1, . . . , rL}, interpreted as representing L different sampling fidelities. Query at x on the `-th level implies

using r` replicates to generate observations y(j), j = 1, . . . , r` yielding the average ȳ. The cost of the `-th

fidelity is proportional to r`. The multi-fidelity analogy (Kandasamy et al., 2016a) is based on the idea of

using low/cheap fidelities to explore and then high/expensive fidelities to exploit the desired contour.

In our context, we rely on the look-ahead standard deviation s(n+1)(x̄n+1, ·) in (9). Our Multi-Level

Batching (MLB) Algorithm 1 aims to match s(n+1)(x̄n+1, rn+1) with a given threshold γn which acts as

the target level for the next-step standard deviation. Intuitively, γn controls the credibility of the model;

it is progressively lowered as the input space is explored. Recall that r 7→ s(n+1)(x̄n+1, r) is monotone

decreasing in (9); MLB chooses the highest fidelity rn+1 ∈ rL for which s(n+1)(x̄n+1, rn+1) > γn. If

s(n+1)(x̄n+1, r) > γn for all r ∈ rL then we use the highest fidelity level rn+1 = rL; if s(n+1)(x̄n+1, r) <

γn for all r ∈ rL then we lower the threshold by multiplying γn by a reduction factor η < 1, and try to

identify rn+1 again, cf. Kandasamy et al. (2016a).

3.3 Ratchet Batching

By construction, the MLB Algorithm 1 will step back and forth between different replication levels r`. Since

intuitively the design should concentrate as n grows, we expect rn to grow over time which is achieved

through the decreasing γn. By enforcing that n 7→ rn is monotonically non-decreasing (in line with the

intuition that replication becomes increasingly beneficial as n grows) we can simplify the choice of rn+1 and

reduce algorithmic overhead. The resulting Ratchet Batching (RB) scheme picks rn+1 among just two fidelity

levels (compared to L levels in MLB) and is summarized in Algorithm 2. Let r↑n = min{r ∈ rL : r > rn} be

7

Algorithm 2 Ratchet Batching (RB)

Input: rL, η, k0, r0

Ak0 ← {(x̄i, r0, ȳi), 1 ≤ i ≤ k0}, (f̂ (k0), s(k0))← f |Ak0 , γ ← s(k0).

Nk0 ← r0 × k0.

for n = k0, k0 + 1, . . . do
x̄n+1 ← arg maxx∈D IcUCBn (x).

while s(n+1)(x̄n+1, rn) < γ do . Check if need to lower threshold

γ ← η × γ.

end while
r↑n ← min{r ∈ rL : r > rn}
rn+1 ← rn · 1{s(n+1)(x̄n+1,r

↑
n)<γ} + r↑n · 1{s(n+1)(x̄n+1,r

↑
n)≥γ}

ȳn+1 ← 1
rn+1

∑rn+1

j=1 y(j).

Update An+1 ← An ∪ {(x̄n+1, rn+1, ȳn+1)}.
Obtain (f̂ (n+1), s(n+1))← f |An+1.

Nn+1 ← Nn + rn+1.

end for

the next level. Then RB either keeps rn+1 = rn if s(n+1)(x̄n+1, rn) ≥ γn > s(n+1)(x̄n+1, r
↑
n) or increments

to rn+1 = r↑n if s(n+1)(x̄n+1, rn) > s(n+1)(x̄n+1, r
↑
n) ≥ γn. In the third case where s(n+1)(x̄n+1, rn) < γn

we lower the threshold γn as in MLB. For RB, the reduction factor η for γ should be close to 1, to avoid

excessive ratcheting up. If η is not large enough, there is a risk to skip levels in rL and to end up with

excessive replication relative to number of simulation calls, leading to insufficient exploration.

3.4 Adaptively Batched Stepwise Uncertainty Reduction

The FB, MLB and RB schemes all pick x̄n+1 first and then rn+1. We next propose a procedure to pick both

through a joint criterion optimization. The main idea is to tie the choice of rn+1 to cost, namely to maximize

the ratio of the information gain and the cost of generating r outputs, plus the optimization overhead. The

inclusion of the overhead in In comes from (Swersky et al., 2013; Klein et al., 2017; McLeod et al., 2017)

in Bayesian Optimization problems, where the authors treated the total cost as the sum of query cost Tsim
and the GP metamodeling overhead covh. Stroh et al. (2017) discussed estimating a probability of exceeding

a threshold in a multi-fidelity stochastic simulator, where the input x̄n+1 and the fidelity are estimated in a

sequential way. We develop an analogue for level-set estimation via a gSUR-based acquisition function

IABSURn (x, r) :=
IgSURn (x, r)

c(r) + covh(n)
, (11)

8

where covh(n) is the overhead and c(r) = r · Tsim is the cost of r evaluations, linear in r. Combining (11)

and (10), we obtain

IABSURn (x, r) :=

Φ

(
− |f̂

(n)(x)|
s(n)(x)

)
− Φ

(
− |f̂

(n)(x)|
s(n)(x)

√
rs(n)(x)2+τ2

τ

)
r · Tsim + covh(n)

. (12)

The resulting ABSUR Algorithm 3 myopically maximizes IABSUR over x ∈ D and r ∈ R = [r, r̄].

Intuitively, similar to the gSUR, ABSUR also targets the neighborhood of the zero contour ∂S and the value

of rn+1 is controlled by s(n)(x)2 and covh(n); more replication results when s(n)(x)2 is small (neighborhood

of the zero contour ∂S) or covh(n) is large (at a later stage of active learning). One could replace the

numerator in (12) with other similar metrics that target reduction of contour uncertainty (Lyu et al., 2021).

Algorithm 3 Adaptive Batched SUR (ABSUR)

Input: R = [r, r̄], k0, r0, Tsim, overhead cost function n 7→ covh(n)

Ak0 ← {(x̄i, r0, ȳi), 1 ≤ i ≤ k0}, (f̂ (k0), s(k0))← f |Ak0

Nk0 ← r0 × k0

for n = k0, k0 + 1, . . . do
(x̄n+1, rn+1)← arg supx∈D,r∈R IABSURn (x, r).

ȳn+1 ← 1
rn+1

∑rn+1

j=1 y(j).

Update An+1 ← An ∪ {(x̄n+1, rn+1, ȳn+1)}.
Obtain (f̂ (n+1), s(n+1))← f |An+1.

Nn+1 ← Nn + rn+1.

end for

There are four hyperparameters in ABSUR: the simulation cost Tsim, the overhead cost function covh(n)

and the lower/upper bounds of replication [r, r̄]. For covh(n) we follow the recipe in (McLeod et al., 2017),

modeling it as a quadratic function of n to reflect the prediction complexity of GPs:

covh(n;θ) = θ0 + θ1n+ θ2n
2, (13)

where θ are fitted empirically. Alternatively Klein et al. (2017) kept covh(n) as a constant. The constant Tsim
represents the cost of obtaining each observation, measured in the same units as covh(n) (up to rescaling θ,

we can assume Tsim = 1). If simulations are cheap, we would like to replicate more, and indeed lower Tsim
leads to larger rn’s and therefore smaller designs. This feature implies that ceteris paribus Tsim should be set

larger when input spaces are more voluminous, e.g. in higher-dimensional settings.

4 Adaptive Design with Stepwise Allocation

The four strategies (FB, MLB, RB and ABSUR) discussed in Section 3 visit each input site x̄n+1 only once.

Consequently, the respective replicate count rn+1 is determined at step n + 1 and then remains the same

9

throughout the latter steps. As an alternative, one can sequentially allocate new simulations across existing

designs, thereby gradually growing r(n)
i . Namely, the algorithm identifies existing “informative” inputs and

augments their replicate counts, without changing the number of unique inputs kn across the sequential

design rounds n. In our context, we pair this augmentation with the option of expanding the design set

itself. This choice is similar to the classical exploitation (do not change kn) versus exploration (increase

kn). The resulting ADSA approach resembles Stepwise Approximate Optimal Design (SAO), an IMSE-based

sequential design strategy proposed by Chen and Zhou (2017) for mean response prediction.

At each step n of the ADSA strategy we are given a budget of ∆r(n) additional simulations, and the

main decision is to determine whether we should choose a new input x̄kn+1 that then receives all these ∆r(n)

replicates, or we should allocate the ∆r(n) new simulator calls across the existing inputs x̄1:kn . In the latter

case, we aim to minimize the global look-ahead integrated contour uncertainty L(n+1) where the metric L(n)

is defined by

L(n) :=
M∑
j=1

ω
(n)
j f̂ (n)(xj,∗) = (ω(n))T f

(n)
∗ '

∫
D

Φ(−f̂(x)/s(n)(x))f̂ (n)(x)µ(dx), (14)

where x∗ = x1,∗, . . . , xM,∗ is a test set of sizeM , f
(n)
∗ ≡ f̂(x∗) is the vector of predicted responses at x∗, and

ω
(n)
j ≡ ω(xj,∗)µ(xj,∗) = Φ(−f̂ (n)(xj,∗)/s

(n)(xj,∗))µ(xj,∗) are the weights that target the level-set region

of interest (compare to the targeted integrated mean square error (tIMSE) criterion proposed by Picheny et al.

(2010)).

For allocation purposes, we approximate the look-ahead L(n+1) as a linear combination of the M predic-

tions f̂ (n+1)(xj,∗) with fixed weights ω(n), whereby our goal is to minimize the variance of (ω(n))T f
(n+1)
∗

conditional on the extra allocations ∆r
(n)
i at each input x̄i. Since the covariance matrix of f

(n+1)
∗ given

replication counts R(n+1) is

C(n+1) = k(x∗,x∗)− k(x∗, x̄1:kn)(K + τ2R(n+1))−1k(x∗, x̄1:kn)T (15)

the objective becomes the quadratic program that minimizes

ISAO((∆ri)
kn
i=1) = (ω(n))TC(n+1)ω(n) (16)

under the constraint
∑

i ∆r
(n)
i = ∆r(n).

Define the kn × kn matrix Σ(n) = K + τ2R(n) and the M × kn matrix K∗ := K(x∗, x̄1:kn). The next

proposition, proven in Section A, explains how to pick ∆r
(n)
i ’s to minimize (16).

Proposition 4.1. Let ∆R(n) := R(n) − R(n+1) be a kn × kn diagonal matrix with elements ∆R
(n)
ii =

∆r
(n)
i

(r
(n)
i +∆r

(n)
i)r

(n)
i

= [r
(n)
i]−1 − (r

(n)
i + ∆r

(n)
i)−1, i = 1, . . . , kn. Assume maxi=1,...,kn ∆R

(n)
ii � 1. The

optimal allocation rule that minimizes (16) is to assign ∆r
(n)
i to each x̄i such that

r
(n)
i + ∆r

(n)
i ∝ U

(n)
i , (17)

where

U(n) = (Σ(n))−1KT
∗ ω

(n). (18)

10

Algorithm 4 Adaptive Design with Stepwise Allocation (ADSA)

Input: x̄∗, x̄1:k0 , k0, r0, cbt
Ak0 ← {(x̄i, r0, ȳi), i = 1, ..., k0}. (f̂ (k0), s(k0))← f |Ak0 , N0 ← r0 × k0.

for n = k0, k0 + 1, . . . do
∆r(n) ← cbt

√
n.

Calculate allocations ∆r
(n)
i , 1 ≤ i ≤ kn with Algorithm 5 (see Appendix B).

x̄kn+1 ← arg maxx∈D IcUCBn (x,∆r(n)).

Calculate I(n)−all
SAO , I(n)−new

SAO in (21) and (19).

Case 1:
New ȳkn+1 ← 1

∆r(n)

∑∆r(n)

j=1 yj(x̄kn+1).

Update An+1 ← An ∪ {(x̄kn+1,∆r
(n), ȳkn+1)}.

Nn+1 ← Nn +
∑

i ∆r
(n)
i (May not be exactly ∆r(n)).

kn+1 ← kn + 1.

Case 2:

For i = 1, ..., kn, update ȳi ←
ȳi×r

(n)
i +

∑∆r
(n)
i

j=1 yj(x̄i)

r
(n)
i +∆r

(n)
i

, r(n+1)
i ← r

(n)
i + ∆r

(n)
i

Update An+1 ← {(x̄i, r(n+1)
i , ȳi)}i=1,...,kn .

Nn+1 ← Nn +
∑kn

i=1 ∆r
(n)
i

kn+1 ← kn

Obtain (f̂ (n+1), s(n+1))← f |An+1.

ADSA: Do Case 1 if I(n)−all
SAO > I(n)−new

SAO , otherwise do Case 2
{FDSA variant:} Do Case 2.

{DDSA variant:} Do Case 1 if n is odd, Case 2 if n is even.

end for

After obtaining the allocations ∆r
(n)
1,...,kn

, we compute the resulting look-ahead tIMSE metric:

I(n)−all
SAO :=

M∑
j=1

s̃(n+1)(xj,∗)
2ω

(n)
j , (19)

where the look-ahead variance s̃(n+1)(·)2 is based on the new replicate counts r(n+1)
i = r

(n)
i + ∆r

(n)
i , i =

1, . . . , kn, see proof in (Chevalier et al., 2014b; Hu and Ludkovski, 2017):

s̃(n+1)(x∗)
2 = s(n)(x∗)

2 − k∗(Σ
(n))−1∆R(n)(Σ(n))−1kT∗ . (20)

The alternative to allocating over existing x̄1:kn is to pick a new input xkn+1 and assign it ∆r(n)

simulations. To do so, we use the cUCB criterion to make it consistent with FB, MLB and RB. (Other

acquisition functions can also be used and experiments suggest that the algorithm is not sensitive to this

11

choice.) Then we evaluate the resulting I(n)−new
SAO :

I(n)−new
SAO :=

M∑
j=1

s(n+1)(xj,∗,∆r
(n))2ω

(n)
j , (21)

s(n+1)(xj,∗,∆r
(n))2 = s(n)(xj,∗)

2 − v(n)(xj,∗, x̄kn+1)2

τ2

∆r(n) + s(n)(x̄kn+1)2
.

The sums in (19)-(21) are used as approximations of the underlying integrals over x ∈ D. Finally, we

compare I(n)−new
SAO and I(n)−all

SAO to determine whether to sample at the new x̄kn+1 or to allocate to existing

x1:kn , picking the maximum of the two tIMSE metrics.

For FB, MLB, RB and ABSUR, as we select one new input at each step, we have kn = n. However, for

ADSA we either select a new input or re-allocate, so that the resulting design size satisfies kn < n. Thus,

relative to the earlier schemes, in ADSA the size of An and the number of DoE rounds n are no longer

deterministically linked and the number of unique inputs is endogenous to the particular algorithm run.

A major goal of all our schemes is for kn to grow sub-linearly in n, i.e. new inputs are added less

frequently as more simulations are run. There are two reasons for this: (1) As kn grows, the input space is

better explored and one should favor exploitation more and more; (2) the GP overhead increases in kn so that

each decision becomes more costly and therefore large batches are preferable. Put another way, kn ∝ n is

equivalent to fixed batching r̄ = n/kn and we wish for rn to grow (at least on average) in n. In ADSA, we

organically prefer re-allocation over adding inputs as n grows. The user can further enhance this situation by

making the batches ∆r(n) also grow in n. Specifically, we have found a good heuristic in taking ∆r(n) to be

proportional to
√
n (see proportionality constant cbt in Algorithm 4), which is faster compared to constant

batch sizes and more accurate than making ∆r(n) linear in n which is overly aggressive.

Deterministic DSA. In practice we observe that the ADSA scheme tends to alternate roughly equally

between re-allocation and addition of new inputs. To save computational overhead, we consider the simplified

Deterministic Design with Stepwise Allocation (DDSA) scheme that deterministically alternates between

re-allocation and adding inputs, making kn = k0 + d(n− k0)/2e also deterministic. Observe that DDSA no

longer needs to evaluate the expensive I(n)−all
SAO and I(n)−new

SAO .

5 Results

5.1 Synthetic Experiments and Computational Implementation Details

In this section we benchmark the schemes on three synthetic case studies, employing rescaled Branin-Hoo

(d = 2) and Hartman (d = 6) functions. We make linear transformations to the standard setups in order

to rescale the output to [−1, 1] and have the zero-contour “in the middle” of the input space. For the

Branin-Hoo case, we further restrict and rescale the original domain to make f monotone along x1 and to

generate a single zero-contour curve. Full specifications are provided in the Online Supplement, see also Lyu

et al. (2021). The 2-D case studies with the Branin-Hoo response function employ two noise settings: (i)

12

Table 1: Parameters for the 2-D modified Branin-Hoo and the 6-D modified Hartman experiments.

PARAMETER 2-D Branin-Hoo 6-D Hartman

Simulation budget NT 2000 6000

Initial design size k0 20 60

Initial replicates r0 10 10

ADSA test set in (14) M 500 1000

Replication levels rL
[5, 10, 15, 20, 30, 40, 50, 60, 80,

100, 140, 180, 240, 300]

ABSUR replication range R [5, 200] [5, 300]

ABSUR simulation cost Tsim 0.01 0.05

ABSUR overhead cost in (13) covh(n) θ = [0.137, 8.15× 10−4, 1.99× 10−6]

ADSA batch factor cbt 10 3.33

Gaussian ε ∼ N (0, 1); and (ii) heteroskedastic Student-t where the distribution of ε is input-dependent:

ε(x) ∼ t6−4x1(0, (0.4(4x1 + 1))2). The latter setting is to test the influence of noise mis-specification. The

third case study is in 6-D using the Hartman response and noise ε ∼ N (0, 1).

The squared-exponential kernel

Kse(x, x
′) := σ2

se exp

(
−

d∑
i=1

(xi − x′i)2

2`2i

)
is used throughout as the GP covariance function. The covariance hyperparameters ϑ = {`1, . . . , `d, σ2

se}
are estimated via MLE using the fmincon optimizer in MATLAB. We re-fit ϑ every five DoE steps and

otherwise treat it as fixed across n. The noise variance is taken to be known (i.e. τ = 1) in the first and third

case studies. It is fitted (as an unknown constant) along with ϑ for the experiments with Student-t simulation

noise.

For the 2-D case study the metrics ER, I(n)−all
SAO , and I(n)−new

SAO are computed as an equally weighted

average over test points constructed using Latin Hypercube Sampling over the entire input space. In the

6-D case study we pick 80% of the test points from the region {x ∈ D : |f(x)| < 0.7} that is close to the

zero-contour and the remaining 20% from the rest of the input space; the respective weights to compute the

metrics are based on the volume of the former region. The same setup was used in Lyu et al. (2021); see also

Chevalier et al. (2014a) for a detailed comparison between different sampling methods.

We use FB with batch size r ≡ 10 as a baseline, and compare the performance of MLB, RB, ABSUR,

ADSA and DDSA. Performance is based on the error rate ER in (3), i.e. evaluating (numerically, using a

test set of size M) the symmetric difference between the true and estimated level set. This is done at a fixed

simulation budget NT , i.e. each scheme is run for kT rounds until NkT = NT the budget is exhausted. Note

13

that the resulting number of DoE rounds kT will vary scheme-by-scheme and potentially run-by-run. We

index Nn, kn by the DoE sequential iterations, while NT , kT are indexed by total budget consumed. Table 1

provides further details about the parameters specific to each scheme. To optimize the various I acquisition

functions we use a global, gradient-free, genetic optimization approach as implemented in the ga function in

MATLAB, with tolerance of 10−3 and 200 generations.

We fit all the Gaussian Process surrogates using the GPstuff suite in MATLAB (Vanhatalo et al., 2013).

For easier reproducibility, our supplementary material contains R code, including the adaptive batching

heuristics, to reproduce Figure 6 below. We are happy to provide the MATLAB codes upon request.

The proposed adaptive batching strategies are not limited to the vanilla GP setup. Other metamodels can

be straightforwardly substituted as long as they allow to efficiently evaluate the In criteria and the batch

look-ahead variance s(n+1)(x, r). As an illustration, motivated by the non-Gaussian simulation noise in

the second case study and the option pricing application in Section 6, we implement a GP metamodel with

Student-t observation noise (henceforth t-GP). In the t-GP formulation εi in (2) is taken to be t-distributed

with variance τ2 and ν > 2 degrees of freedom. Lyu et al. (2021) showed that t-GP is a good choice in

the face of noise misspecification. Appendix C provides details of using a t-GP metamodel via a Laplace

approximation approach. Our schemes are moreover ported to work with the hetGP (Binois and Gramacy,

2021) in R, see Table 3 below.

5.1.1 Algorithm Tuning Parameters

In this section we briefly describe the various tuning parameters associated with the proposed algorithms.

For the UCB weight sequence ρ(n) in cUCB, we follow the recipe in Lyu et al. (2021) and set ρ(n) =

IQR(f̂ (n))/3Ave(s(n)) which keeps both terms in (7) approximately stable as n changes. For MLB, we

initialize γ as the average standard deviation Ave(s(k0)(x̄1:k0)) and take the reduction factor η = 0.5. For

RB we use the same initial γ but decrement it slower, η = 0.8. Higher η increases the overall design size

kT and therefore computation time. For MLB, η ∈ [0.5, 0.7] leads to the lowest error rate ER; for RB, we

recommend η ∈ [0.7, 0.9]. For the replication levels rL used in MLB and RB, we manually construct a

“ladder” of r`’s with spacing that increases roughly proportionally. In our experience, the choice of spacings

(i.e. number of levels L) does not play a major role, with the most important parameter of rL being its

upper bound rL. If rL is too low, the gains from replication are limited; if rL is too high we observe

over-exploitation with a design that does not have enough unique inputs.

For ABSUR, we recommend minimal replication level r of 5 or 10, and maximum replication of

r̄ = 0.05NT , i.e. 5% of the total budget NT . Table 6 in Appendix D shows the impact of varying r̄ from

1% to 100% of NT . Unsurprisingly, increasing r̄ decreases the design size kT and computation cost t. Note

that because the scheme tries to optimize actual rn in the interval [r, r̄], for very large r̄ that constraint is not

binding and so the impact is minimal, see last few rows in Table 6. In the middle of its range, the role of r̄ is

similar to that of rL for MLB and RB.

The coefficients θ in the quadratic overhead function covh(n) in (13), as well as the simulation cost

14

Tsim are pre-tuned via a linear least squares regression with the given simulator and hardware setup. Thus,

they are not really tuning parameters, but reflect the relative computational effort between regression and

simulation. Nevertheless, to provide some intuition, the right panel of Table 6 shows the impact of changing

Tsim for one of our experimental setups. Higher Tsim encourages exploration. Thus, to avoid too much

exploitation and very high rn’s we recommend not to make Tsim too small; in our experiments this translates

to Tsim ∈ [0.01, 1].

For the batch factor in ADSA and DDSA we take cbt = 20/d, which favors more exploration in higher-

dimensional problems with larger input domains. Table 7 in Appendix D shows the effect of changing

cbt ∈ [10/d, 80/d]. For both algorithms the design size kT decreases as cbt increases. However, the change in

kT , as well as in the error rate ER for DDSA is more significant than for ADSA, especially when simulation

noise is low. DDSA achieves lower ER with a smaller cbt, while ADSA has a lower error rate with cbt lower

than 20/d.

A benefit of working with simulation batches is that the related computation is trivially parallelizable.

Like all sequential methods, our schemes cannot be run fully in parallel, since the choice of xn+1 must be

done one-by-one. Nevertheless, assuming that most time is spent on simulation, distributing those across

several computing cores will generate substantial savings that are not possible without batching. To maximally

leverage this, one should set rn to be a multiple of the available number of cores. In the examples below we

do not employ any parallelization.

5.2 Algorithm Performance

2-D Branin-Hoo 6-D Hartman FB Comparison

Figure 1: Running time and ultimate error rate ERT across different schemes. Left panel: 2-D Branin-Hoo

with heteroskedastic noise and budget NT = 2000. Middle panel: 6-D Hartman function with Gaussian

noise and NT = 6000. Right panel: 6-D Hartman function with Gaussian noise for FB with different values

of r. The Pareto frontiers are highlighted for GP (solid line) and t-GP (dashed line).

Our main goal with adaptive batching is improved computational performance. Of course, a faster

algorithm generally requires to sacrifice predictive accuracy. As such, direct comparison of schemes is not

possible but must be considered through the above trade-off. Figure 1 and Table 2 show the link between the

15

Table 2: Scheme performance across the two synthetic case studies. Results are means (± standard deviations)

from 50 runs of each combination of a metamodel and batching scheme.

DESIGN ERROR RATE ERT TIME/S AVE kT

2-D Branin-Hoo WITH ε ∼ N (0, 1)

FB 0.019 ± 0.005 118.89 200.00

ABSUR 0.021 ± 0.007 10.32 35.20

RB 0.021 ± 0.008 8.30 38.72

MLB 0.018 ± 0.008 8.63 38.44

ADSA 0.020 ± 0.008 14.11 34.42

DDSA 0.022 ± 0.007 7.92 37.00

6-D Hartman WITH ε ∼ N (0, 1) AND NT = 6000

FB 0.030 ± 0.004 1934.51 600.00

ABSUR 0.070 ± 0.015 289.52 159.80

RB 0.058 ± 0.014 104.68 143.40

MLB 0.037 ± 0.008 294.49 240.62

ADSA 0.043 ± 0.007 198.82 171.74

DDSA 0.050 ± 0.009 101.59 142.00

6-D Hartman WITH ε ∼ N (0, 1) AND NT = 30000

FB rn = 50 0.015 ± 0.002 1654.32 600.00

FB rn = 100 0.016 ± 0.002 461.57 330.00

FB rn = 200 0.029 ± 0.006 152.21 195.00

ABSUR 0.022 ± 0.003 757.18 325.25

RB 0.024 ± 0.005 227.01 237.05

MLB 0.022 ± 0.006 240.61 242.95

ADSA 0.016 ± 0.002 995.57 373.80

DDSA 0.017 ± 0.002 522.00 350.00

error rate ER from (3) and the running time across the proposed schemes. Since we desire fast and accurate

schemes, there is a Pareto frontier going from top-left to bottom-right. In the 2-D case study (shown in the left

panel in Figure 1), we see that the most accurate scheme is t-GP with FB, while the fastest is GP with DDSA.

Another Pareto-efficient scheme is t-GP with MLB which is arguably the best (the second fastest among

t-GPs, and the second most accurate). In 6-D ABSUR works poorly, probably due to under-performance of

the gSUR criterion; see Lyu et al. (2021) who showed that cUCB appears to be empirically better for this 6-D

16

Hartman function. Another reason is that gSUR converges in a slower rate, see the middle panel in Figure 2:

gSUR takes NT ≈ 30000 simulations to achieve a comparably small error rate ER. However, in Figure 1,

NT = 6000 for 6-D experiments.

Looking at the running times, we see that there are major gains from adaptive batching; the baseline

FB scheme takes almost 10 times longer to run than designs with adaptive ri’s. Fixed batching generally

performs well in terms of ER (as it ends up being more exploratory) but practically those gains are crowded

out by the huge cost in computational efficiency. Overall, among the five proposed schemes the recommended

choice is MLB and ADSA which tend to produce low ER with a significant reduction in computational time.

As mentioned in the Introduction, the benefit of replication is inextricably tied to simulation noise. To this

end, in Appendix D we investigate the role of the signal-to-noise ratio (SNR) on algorithm’s performance by

varying the noise variance τ2 in the 2-D case study with Gaussian noise. Figure 7 shows that as τ2 increases,

designs become smaller (kT decreases, except for ADSA). The performance metrics are reported in Tables 6

and 7 in Appendix D. As expected, lower SNR increases ERT and algorithms should be tuned depending on

the level of noise. For example, for ADSA and DDSA, one should increase cbt if SNR is low; for ABSUR

one should increase r̄. Some intuition can also be gleaned from Table 2 and Table 3: the second experiment

with t-distributed noise has much lower SNR compared to the first one with ε ∼ N (0, 1). Lower simulation

noise means that less replication is needed, which implies reducing r̄ and rL and tends to advantage MLB

compared to ADSA and ABSUR. Consistent with conclusions in Lyu et al. (2021), t-GP performs better than

plain GP in such a setup where noise is heavy-tailed.

To further investigate the impact of noise on different schemes, as well as to showcase the use of

alternative GP metamodels, Table 3 shows results for the 2D Branin-Hoo experiment with heteroskedastic

noise ε ∼ t6−4x1(0, (0.4(4x1 + 1))2). In this experiment we test both the different batching schemes, as well

as two other metamodel familiies: t-GP and hetGP. t-GP extends the GP paradigm to allow for t-distributed

observations, see Appendix C. hetGP, implemented in the eponymous R library (Binois and Gramacy, 2021),

non-parametrically learns not just the mean response but also the input-dependent observation noise surface

τ2(·).

Using the hetGP library we further compare our adaptive batching to the cIMSPE algorithm described

in Section 4.2 of Binois and Gramacy (2021). cIMSPE is similar in spirit to ADSA except that it allocates

simulations one-by-one. At each step, cIMSPE uses a criterion In to decide whether to add a new unique

input, or increase by one the replicate count at an existing input. The comparison is based on the expected

value of In and is replication-biased by comparing not just one-step-ahead but over a horizon of h. We use

the cUCB criterion IcUCB and a horizon of h = 3. While cIMSPE offers a strong motivation for sequential

construction of replicated designs, it is extremely slow because it has as no intrinsic batching and therefore

requires N sequential steps to allocate N simulations. Consequently, it is only feasible when N is small and

takes orders of magnitudes more time in our setting with N = 2000. This limitation of the cIMSPE was one

of the motivations for explicitly incorporating batching (rather than simply accommodating replication) in

our approaches.

Several observations can be gleaned from Table 3: (1) In terms of metamodels, t-GP and hetGP perform

17

Table 3: Scheme performance in the 2-D heteroskedastic synthetic case study with 2-D Branin-Hoo response

and noise ε(x1, x2) ∼ t6−4x1(0, 0.16(4x1 + 1)2). Results are means (± standard deviations) from 50 runs of

each combination of a metamodel and batching scheme. Note that the running times for GP and t-GP, which

are from MATLAB, and for hetGP, which is from R, are not comparable.

DESIGN ERROR RATE ERT TIME/S AVE kT

PLAIN GP IN MATLAB

FB 0.034 ± 0.029 106.37 200.00

ABSUR 0.037 ± 0.039 15.50 39.14

RB 0.039 ± 0.035 10.93 39.92

MLB 0.041 ± 0.041 11.61 42.26

ADSA 0.033 ± 0.042 18.20 34.82

DDSA 0.034 ± 0.043 9.67 37.00

t-GP IN MATLAB

FB 0.024 ± 0.010 192.44 200.00

ABSUR 0.036 ± 0.014 29.55 35.00

RB 0.032 ± 0.014 23.65 39.66

MLB 0.030 ± 0.018 22.88 39.72

ADSA 0.031 ± 0.013 26.26 30.68

DDSA 0.034 ± 0.018 15.30 37.00

HETGP IN R

FB 0.035 ± 0.010 36.93 200.00

ABSUR 0.031 ± 0.011 5.38 46.40

RB 0.035 ± 0.010 1.45 48.10

MLB 0.034 ± 0.017 1.31 49.10

ADSA 0.035 ± 0.010 2.98 41.75

DDSA 0.030 ± 0.010 1.51 36.00

CIMSPE 0.032 ± 0.016 2.47 HRS 1028.20

better than plain GP in this context with heteroskedastic noise. (2) In terms of adaptive batching schemes,

their accuracy (ER) is generally quite similar. DDSA runs the fastest and has among the lowest running

times. (3) The comparator schemes yield similar error rates but are not competitive in terms of running times:

cIMSPE is about 100 times slower and generates over a 1000 unique inputs compared to less than 50 for our

schemes. FB is also slow (6 times slower), although in combination with t-GP it does achieve the overall

18

lowest error rate ER.

To give some intuition about how the replication level should depend on the total budget NT , the right

panel of Figure 1 shows the performance of FB as we vary r and NT . As expected, lower r generally leads

to lower error rate ER but longer running time. This indicates the intrinsic necessity to explore the input

space adequately which introduces a lower bound regarding the number of unique inputs kT = NT /r for

FB. However, for very low r (e.g. r < 20 for NT = 6000) there is essentially no gain from additional

exploration implying that one can safely agglomerate simulations into batches without sacrificing accuracy.

The resulting J-shape in the Figure implies that there is an "optimal" r∗(N) that minimizes ER without

needless performance degradation: r∗(6000) ' 10, r∗(2 · 104) ' 50, r∗(5 · 104) ' 100. This feature

showcases both the strength and the weakness of fixed batching: in principle excellent performance is

possible if r ' r∗ is fine-tuned; however such fine-tuning is very difficult and without it FB can be highly

inefficient. The proposed adaptive batching schemes aim to automatically fine-tune rn sequentially removing

this limitation.

Figure 2: Log Error rate log ERt as a function of simulator calls Nt for FB (r = 10), ABSUR, RB, MLB,

ADSA and DDSA and 6-D experiments (left panel). Log error rate log ERt as a function of running time

t for the 6-D case study with Gaussian noise (middle panel) with NT = 60000 and for the 2-D case study

with heteroskedastic noise (right panel) with NT = 2000. The FB algorithm is stopped at Nt = 6000 since

computation is too slow.

Another goal of adaptive batching is to enable an organic way to grow designs as NT changes (while

for FB r necessarily must be pre-chosen in terms of NT). A good algorithm is able to efficiently improve

its accuracy as NT grows, avoiding excessive exploration or exploitation. The left panel of Figure 2 shows

the log error rate ER as a function of NT for FB, ABSUR, RB, MLB, ADSA and DDSA for the 6-D

Hartman experiments, respectively. For FB, we stopped at NT = 6000 due to prohibitive running times

for designs. We observe that while all schemes perform somewhat similarly, MLB reduces the error rate

ER at the fastest rate when Nn < 600, and otherwise, ADSA is the fastest. ADSA shines in the later

stage of sequential development of DoE, since it needs enough “candidate inputs" to calculate the allocation

rule. In terms of computational efficiency, we are concerned not with ER in terms of NT but in terms of

running time—i.e. how much predictive accuracy can be achieved within a given time budget. The respective

relationship is shown in the middle and right panels of Figure 2 where the x-axis is now in terms of t seconds.

19

We observe that all the adaptive schemes reduce the error rate ER at a faster rate than a scheme with fixed

replication level. In the early stage, RB and DDSA are the fastest, and ABSUR is the slowest. However, as

NT or t continues to rise, ADSA keeps reducing the error rate ER and eventually achieves a smaller ER
than other algorithms. However, ADSA usually takes slightly longer time. In conclusion, ADSA is the most

accurate algorithm given a large enough cost t or simulator calls NT , and MLB is the most accurate algorithm

when NT is small. Results are consistent with those observed in Figure 1.

Figure 3: The design size kn as a function of simulator calls Nn. Left: 2-D case study with heteroskedastic

noise; Right: 6-D case study with Gaussian noise.

Recall that GP model fitting complexity is O(k3
n) (driven by the matrix inversion K−1), so that the

design size kn = |An| is the primary driver of computational efficiency. In the baseline FB scheme, r(n) ≡ r
is constant so that kn = Nn/r grows linearly in simulator budget Nn. This is precisely the reason that a

constant r becomes impossible to maintain as Nn grows and why we had to abandon FB in the left panel of

Figure 2. A key aim of adaptive batching is to achieve sub-linear growth of kn i.e. kn/Nn → 0 as n grows so

that r(n) keeps getting larger as we develop the DoE. Figure 3 plots kn as a function of Nn for 2-D and 6-D

experiments. As desired, we observe a generally concave shape, which is approximately of square-root shape.

The stair-case shape of kn for ADSA is due to the adaptive re-allocation of new simulations which allow to

increase Nn without changing kn at some steps. We note that RB and ADSA achieve the most concave shape

and hence would be the fastest for very large Nn which can be seen indirectly in Figure 2 as well.

5.3 Comparing Designs

To drill down into the designs obtained from different approaches, Figure 4 visualizes the adaptively batched

designs produced for the 2-D Branin-Hoo experiment with heteroskedastic Student-t noise. The left panel

displays the resulting design size kT with simulation budget of NT = 2000. Recall that besides FB and

DDSA, design sizes of all other schemes vary across algorithm runs (i.e. kT depends on the particular

realizations y1:NT
), so that kT is a random variable; in the plot we visualize its boxplot across 50 runs

of each scheme. The smallest designs are obtained from ADSA (31-39 unique inputs). DDSA produces

exactly kT = 37 unique inputs. Recall that DDSA alternates between adding a new site and re-allocating to

20

existing sites, while ADSA does the same adaptively; in this case we find that slightly more than half the

time re-allocation is preferred. The design size kn for ABSUR is slightly larger at 34-42. The value of kT for

RB varies from 37 to 45, while for MLB has the greatest number of unique inputs, ranging from 34 to 50.

Given NT = 2000 the above implies that the schemes average about Ave(r(n)) =40-60 replicates per site.

The middle panel of Figure 4 shows the replication level r(n) as a function of design size kn for a typical

run of schemes from Section 3.4, illustrating how replication is increased sequentially. Methods that raise

r(n) faster end up with smaller design size kT . ABSUR increases r(n) the fastest, with MLB having a similar

pattern. With RB r(n) grows slower, implying that RB builds designs with more unique inputs.

design size kn

35 40 45 50

ABSUR

RB

MLB

ADSA

DDSA

kn

0 10 20 30 40

r(
n
)

0

20

40

60

80

100

120

140

160

180
GP: ABSUR
GP: RB
GP: MLB

inputs 7x
5 10 15 20 25 30 35

re
p
li
ca

te
s
r(n

)
i

0

20

40

60

80

100

120

140

160

180

5

10

15

20

25

30

Figure 4: Visualizing adaptive batching for the 2-D case study with heteroskedastic noise. Left panel:

distribution of design size kT corresponding to NT = 2000 across 50 algorithm runs. Middle: number of

replicates r(n) as a function of algorithm step kn for the schemes of Section 3. Right: evolution of r(n)
i for

ADSA designs x̄1:kn . The total r(N)
i is decomposed into ∆r

(n)
i for n = 1, . . . , kT with each ∆r color-coded

by round n.

The right panel of Figure 4 visualizes the replication of a representative ADSA run which has the option

to add new inputs or re-allocate to existing ones. We show the sequential growth of r(n)
i through a stack

histogram: the x-axis represents the unique inputs xi as picked by the algorithm and the vertical stacks

represent ∆r
(n)
i , color-coded by the round n when they were added. We observe that only 10 out of the

n0 = 20 original inputs are revisited, and generally about half of the inputs are used in more than one round.

At the same time, some inputs, such as x̄13, x̄20, x̄25 are visited in numerous rounds.

Figure 5 shows the estimated zero-contour ∂Ŝ with its 95% posterior credible band at NT = 2000 in the

2-D test case with heteroskedastic noise. The volume of the credible band ∂Ŝ(±0.95), defined as

∂Ŝ(±0.95) =
{
x ∈ D :

(
f̂ (NT)(x) + 1.96s(NT)(x)

)(
f̂ (NT)(x)− 1.96s(NT)(x)

)
< 0
}
, (22)

captures inputs x whose sign classification remains ambiguous and quantifies the uncertainty about the

estimated zero-contour ∂Ŝ. As expected, all schemes start by exploring the input space using a few replicates

and then primarily sample in the target region around the level set, with increasing replication. Another

feature that can be seen is that all methods favor the upper-left and bottom-right corners, which are regions

that are simultaneously close to the edge of the input space (hence larger posterior sn(·)) and close to the

zero contour. In particular, highest replication occurs in the upper-left region.

21

Comparing the first four plots, we find that the ABSUR is more efficient than RB and MLB, concentrating

at the zero-contour faster and simultaneously ramping up r(n) quicker. In the plot, this happens already after

just half-a-dozen steps. In contrast, RB takes about a dozen steps to explore with correspondingly low r(n)’s.

Although MLB also ramps up rn quickly, it then steps back and forth between low and high replication levels,

resulting in a slightly larger kT than ABSUR. ADSA and DDSA perform similarly. One observation is that

they select similar inputs to allocate the extra simulator calls. For example the initial inputs close to the left

and top edge all get more replicates rn via reallocation in ADSA and DDSA. Across the DoE rounds, ADSA

chooses to reallocate budget in approximately 54% of them, so that kT = 0.54NT /∆r. Therefore, the value

of kT is approximately the same for ADSA and DDSA.

Some of the design differences can be attributed to the different behavior of the underlying heuristics

cUCB and gSUR. Indeed, cUCB tends to over-emphasize sampling around the zero-contour, while gSUR is

more exploratory and tends to place a few inputs right at the edge of the input domain (upper left corner and

lower right corner in the plot with ABSUR). The aggressiveness of cUCB generates more accurate estimates

∂Ŝ even if the posterior uncertainty is higher (wider CI band) sometimes.

To conclude, the performance of FB is sensitive to value of replicates rn. With higher rn, the running time

decreases while the error rate ER may increase or decrease. For different budget NT , the "optimal" value of

rn varies. We can tune rn to obtain FB scheme with best performance for a fixed NT in synthetic experiments

where the ground truth is known. However, NT is not always provided initially in real experiments. At this

time, it is impossible to tune rn for FB. Adaptive batching designs stand out perfectly. Instead of tuning

rn manually at the start of sequential design, adaptive batching algorithms self-adaptively pick the current

"optimal" rn during sequential design. Among all adaptive batching designs, DDSA and RB are the most

efficient algorithms, while ADSA ends up with the most accurate estimate in most cases with approximately

twice of running time. For low dimension experiments or larger NT or higher SNR, DDSA reaches similar

or even better error rate ER compared with ADSA, while in high dimension experiments or smaller NT or

lower SNR, results obtained with ADSA are significantly better than DDSA. ADSA is also more robust to

the choice of hyperparameters and has a more stable performance in all cases.

6 Application to Optimal Stopping

As a fourth and final case study, we consider an application of contour finding for determining the optimal

exercise policy of a Bermudan financial derivative (Ludkovski, 2018). The underlying simulator is based on a

d-dimensional geometric Brownian motion (Zt) = (z1
t , . . . , z

d
t) that represents prices of d assets and follows

the log-normal dynamics

Zt+∆t = Zt exp

(
(r − 1

2
diag Ξ)∆t+

√
∆tΞ∆Wt

)
, (23)

where r is the interest rate, Ξ is the d×d covariance matrix and ∆Wt ∼ N (0, Id) are the Gaussian stochastic

stocks. Let h(t, z) be the option payoff from exercising when Zt = z. We assume that exercising is allowed

22

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

20

40

60

80

100

120

140

160

180

FB: kn = 200 (r = 10)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

20

40

60

80

100

120

140

160

180

ABSUR: kT = 34

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15
16

17

18

19

20

21

20

40

60

80

100

120

140

160

180

RB: kT = 40

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

 2
 3

 4

 5

 6
 7

 8

 9
10

11

12

13

14

15

16

17

18

19

20

20

40

60

80

100

120

140

160

180

MLB: kT = 39

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

 4

 5

 6

 8
 9

11

13

15

17

21

24

26

31
20

40

60

80

100

120

140

160

180

ADSA: kT = 33

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

 2 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14
15

16

1718

20

40

60

80

100

120

140

160

180

DDSA: kT = 37

Figure 5: GP fits f |AkT and designs for 2-D case study with heteroskedastic noise. The dashed lines are the

estimated posterior zero-contours {x : f̂ (N)(x) = 0} to be compared to the true contour (solid line). The

dotted lines are the corresponding 95% credible intervals. The initial design (same across all panels) are the

blue unlabelled dots. The labels indicate the order of the inputs x̄i, i = 1, . . . kn and the respective color/size

are proportional to the replication level r(n). Design sizes kT vary across the schemes.

every ∆t time units, up to the option maturity T . The overall goal is to determine the stopping regions

{St : t = ∆t, 2∆t, . . . , T − ∆t} to maximize E[h(τ,Zτ)], where τ = min{t : Zt ∈ St} is the exercise

strategy. The dynamic programming principle implies that St can be recursively computed as the zero level set

of the timing function z 7→ f(t, z) = h(t, z)− E[h(τt,Zτt)] where the latter term is the continuation value

based on the exercise strategy from the forward-looking {Ss, s > t}. Numerically, this yields a simulator of

f(t, z) through pathwise reward over one-step-ahead simulations of Zt+∆t.

In this setting, the underlying distribution ofZt at time t is log-normal since logZt is multivariate normal.

To reflect this fact which dictates the importance of correctly identifying whether x ∈ St or not (since option

exercising decisions are made along trajectories of Z, conditional on the given initial value Z0 = z0), we

employ log-normal weights µ(dz) = pZt(·|z0) in (3). We further use µ to weigh the respective In criteria

when optimizing for new inputs. In line with the problem context, we assess performance using the ultimate

estimated option value. The latter is evaluated via an out-of-sample Monte Carlo simulation that averages

23

Table 4: Performance of GP metamodels with FB, MLB, RB, ABSUR, ADSA and DDSA designs in the 2-D

Average Put and 3-D Max Call examples. Results are averages from 20 runs of each scheme.

DESIGN MODEL PAYOFF TIME/S T INPUTS kT

2-D AVERAGE PUT

FB GP 1.451± 0.002 29.82 100.00

RB GP 1.443± 0.004 5.42 35.85

MLB GP 1.440± 0.004 4.92 33.97

ABSUR GP 1.446± 0.004 11.40 53.80

ADSA GP 1.445 ± 0.003 11.76 32.87

DDSA GP 1.445 ± 0.003 5.42 34.00

FB t-GP 1.449 ± 0.002 63.11 100.00

RB t-GP 1.445 ± 0.004 11.36 36.39

MLB t-GP 1.443 ± 0.004 10.52 35.35

ABSUR t-GP 1.443 ± 0.004 26.13 49.79

ADSA t-GP 1.447 ± 0.003 19.00 44.83

DDSA t-GP 1.446 ± 0.003 11.31 34.00

3-D MAX CALL

FB GP 11.26 ± 0.01 2239.10 1000.00

RB GP 11.23 ± 0.01 37.42 342.39

MLB GP 11.24 ± 0.01 38.17 342.07

ABSUR GP 11.23 ± 0.01 109.81 407.90

ADSA GP 11.25 ± 0.01 194.05 460.33

DDSA GP 11.26 ± 0.01 94.58 381.00

realized payoffs along a database of M ′ = 105 forward paths z1:M ′
0:T :

V̂ (0, z0) =
1

M ′

M ′∑
m=1

h(τm0 , z
(m)
τm0

), (24)

with τm0 := min{t : z
(m)
t ∈ Ŝt} ∧ T . Since our goal is to find the best exercise value, higher V̂ ’s indicate

a better approximation of {St}. To allow a direct comparison, we set parameters matching the test cases

in Ludkovski (2018)):

2-D average Put option: hPut(t, z) = e−rt(K − z1 − z2)+;

3-D Max-Call option: hCall(t, z) = e−rt(max(z1, z2, z3)−K)+.

24

Table 5: Parameters for the 2-D Basket Put Option and 3-D Max Call Option.

2-D Basket Put 3-D Max-Call

Option

Parameters

K = 40,∆t = 0.04, T = 1

r = 0.06, σ = 0.2, X0 = [40, 40]

K = 100,∆t = 1/3, T = 3

r = 0.05, σ = 0.2, X0 = [90, 90, 90]

Budget NT = 2000, k0 = 20, r0 = 20 NT = 30, 000, k0 = 300, r0 = 30

FB r = 20 r = 30

MLB/RB rL = {20, 30, 40, 50, 60, 80, 120, 160} rL = {20, 30, 40, 50, 80, 160, 240, 320, 480, 640}
ABSUR R = [20, 160], Tsim = 0.01 R = [20, 640], Tsim = 0.01

ADSA cbt = 10 cbt = 6.67

These settings have very low signal-to-noise ratio, and non-Gaussian heteroskedastic noise, so NT � 103

is imperative. We use plain GP and t-GP metamodels (refitted every ten steps) with a constant noise

variance τ2 to model the timing function f(t, z). All adaptive algorithms combined with homoskedastic and

heteroskedastic GP (t-GP) are publicly available as part of the mlOSP library in R Ludkovski (2020).

Table 4 shows the performance of different designs/models. In the 2-D setting the best performing scheme

is DDSA. We obtain savings of 80% in computation time compared to the baseline FB scheme. For the 3-D

Max Call, DDSA achieves the highest payoff, and at a fraction (∼ 1/20th) of time. RB and MLB lead to

slightly smaller payoff than DDSA, but with a saving of 60% in computation cost. ADSA leads to basically

the same payoff as DDSA and takes approximately twice as much time compared with DDSA. ABSUR takes

half the time of ADSA, leading to a lower payoff. In both 2-D and 3-D settings, ADSA and DDSA lead to a

higher payoff and have a more stable performance than the other adaptive batch designs. In terms of design

size kT , ABSUR yields the largest kT , while DDSA yields the most compact designs.

Figure 6 shows the GP fits f̂(t, z) for ABSUR and ADSA for the 2-D Put case study at t = 0.6. The

desired zero-level contour goes from NW to SE and due to the chosen setting should be symmetric about the

z1 = z2 line. We see that both strategies select inputs around the contour; consistent with the results shown in

Figure 5, ABSUR is somewhat more exploratory and yields wider credible intervals for the exercise boundary

{f̂ (kT) = 0} in regions close to the edge of the input space, especially at the NW and SE corners. ABSUR

uses slightly more design sites kT (ABSUR) = 40 > kT (ADSA) = 37 and has a flatter distribution of

replication counts. In contrast, ADSA uses up to maxn r
(n) = 188 replicates. We also observe that several

initial designs repeatedly receive more replications (up to 50 counts) in ADSA.

7 Conclusion

We have proposed and investigated five different schemes for adaptive batching in metamodeling of stochastic

experiments. All schemes explicitly address the shifting exploration-exploitation trade-off by capturing the

intuition of increasingly beneficial replication as sequential design is constructed. Our presentation focused

25

25

35

45

25 35 45
z1

z 2

50

100

150

0.0

0.5

1.0

1.5

ABSUR: kT = 40

25

35

45

25 35 45
z1

z 2

50

100

150

0

1

ADSA: kT = 37

Figure 6: GP fits f (kT)(t, ·) and designs A for 2-D average put option example at t = 0.6 and NT = 2000.

Left panel: ABSUR; right: ADSA. The solid lines are the estimated exercise boundary f̂ (kT)(t, z) = 0 and

the dashed lines are the corresponding 95% credible intervals. The scatter plot is the design AkT color-coded

by replicate counts ri, i = 1, . . . , kT .

on the plain Gaussian Process paradigm but as shown are straightforwardly extended to alternatives, such as

t-GP and hetGP. The key step is to construct an approximation of the batch look-ahead variance s(n+1)(x, r).

Our results demonstrate that adaptive batching offers a simple mechanism to extract significant computational

gains through building more compact designs and taking advantage of the symbiotic relationship between

GPs and replication. Thus, compared with using a constant value for replicates r over all inputs like in FB,

we are able to gain more than an order-of-magnitude speed-up with minimal loss of metamodeling fidelity.

Among the proposed adaptive batching schemes, we advocate the use of ADSA and DDSA (the latter being

essentially a faster heuristic). While they lead to similar results in lower dimensional experiments, ADSA is

observed to be more accurate in complex settings, such as higher dimension or low signal-to-noise ratio.

Our focus has been on adaptive batching in the context of level-set estimation. Related problems such as

evaluating the probability of failure, or evaluating a tail risk measure, would benefit from the same ideas and

will be investigated in follow-up projects. Another extension is to tackle ε-softened optimization, i.e. target

the region of ε-optimal inputs for a given ε > 0. Such objective might be desirable to practitioners who

simultaneously optimize over several (potentially non-qualitative) factors. This entails replacing the zero

level set with f(x) = 0 with f(x) = Mn where Mn is an estimator for maxx f(x)|An. For instance, one

could obtain Mn similar to the computation of the Expected Improvement criterion in Bayesian Optimization.

Another important problem that is beyond the scope of the present work is theoretical analysis about the

asymptotic complexity of the proposed schemes such as ADSA, for example to establish the long-run growth

rate of kn in order to quantify the asymptotic complexity of the GP metamodel as Nn →∞.

Acknowledgements. We thank the anonymous reviewers for their helpful comments that helped to

26

improve on earlier versionss of the manuscript; we are also grateful to Mickael Binois for useful discussions

and help in porting our algorithms from MATLAB to R. Both authors were partially supported by NSF

DMS-1521743. ML is additionally supported by NSF DMS-1821240.

A Allocation Rule

Proof of Proposition 4.1. Because the unique inputs are unchanged during the allocation step, comparing

C(n+1) = K(x∗,x∗) − K∗(Σ
(n+1))−1KT

∗ to C(n) = K(x∗,x∗) − K∗(Σ
(n))−1KT

∗ , the only term that

changes is Σ(n+1). Minimizing eq. (16) therefore reduces to maximizing

(ω(n))TK∗(K + τ2R(n+1))−1KT
∗ ω

(n) (25)

Decompose ∆R(n) =: B(n)B(n). Using the Woodbury Identity,

(Σ(n+1))−1 = (K + τ2(R(n) −∆R(n)))−1 ≈ (Σ(n))−1 + τ2(Σ(n))−1∆R(n)(Σ(n))−1, (26)

where the last expression is obtained by dropping the term B(n)[K+τ2R(n)]−1B(n) ≈ 0 due to maxi ∆R
(n)
ii �

1. Therefore, maximizing (25) subject to
∑kn

i=1 ∆r
(n)
i = ∆r(n) is equivalent to maximizing

ĨSAO(∆R) = τ2 · (ω(n))TK∗(Σ
(n))−1∆R(n)(Σ(n))−1KT

∗ ω
(n) + λ

(
∆r(n) −

kn∑
i=1

∆r
(n)
i

)
, (27)

where λ is a Lagrange multiplier. The first-order optimality conditions are

∂ĨSAO
∂∆r

(n)
i

= −τ
2 · (ω(n))TK∗(Σ

(n))−1(Σ(n))−1KT
∗ ω

(n)

(r
(n)
i + ∆r

(n)
i)2

− λ = 0 (28)

which leads to r(n)
i + ∆r

(n)
i ∝ [(Σ(n))−1KT

∗ ω
(n)]i, 1 ≤ i ≤ kn as in (18).

Following Liu and Staum (2010), we use a pegging procedure (Bretthauer et al., 1999) to obtain integer-

valued ∆r
(n)
i , see Algorithm 5 in the Appendix. Note that due to the rounding, the added number of replicates∑kn

i=1 ∆r
(n)
i is not exactly ∆r(n). Moreover, there are several approximations in Proposition 4.1 that render

∆r
(n)
i and (17) suboptimal: (1) we assume that maxi=1,...,kn ∆R

(n)
ii � 1; (2) we freeze the weights in (16)

rather than using ω(n+1); (3) we round off to integer ∆r
(n)
i .

Remark. Similar results about minimizing the look-ahead GP variance of a linear combination ωT f appear

in (Ankenman et al., 2010; Chen and Zhou, 2017; Liu and Staum, 2010; Ludkovski and Risk, 2018). Relative

to Ankenman et al. (2010) and Chen and Zhou (2017), we get rid of all integrals, making (17) computationally

efficient. The algorithm proposed by Ludkovski and Risk (2018) relied on in-sample test set x∗ = x̄1:kn

while our test set is different from the existing inputs.

Proposition 4.1 can be extended to the heteroskedastic setting by replacing the constant value τ2 in

equations (25), (26), (27) and (28) by a diagonal matrix S where Sii = τ2(xi), 1 ≤ i ≤ kn. Solving eq. 28

leads to r(n)
i + ∆r

(n)
i ∝ τ2(xi)U

(n)
i , 1 ≤ i ≤ kn.

27

B Pegging Algorithm for ADSA

Algorithm 5 Pegging Algorithm

Input: I0 = {1, . . . , kn}, r =
∑kn

i=1 r
(n)
i , U(n) from eq. (18)

j ← 0.

for all i ∈ Ij do

∆r
(n)
i ← U

(n)
i∑kn

j=1 U
(n)
j

× r − r(n)
i

if ∆r
(n)
i ≥ 0 for all i ∈ Ij then

break
else

Ij+1 ← {i ∈ Ij : ∆r
(n)
i > 0}

∆r
(n)
i = 0 for i /∈ Ij+1

r ← r −
∑

i∈Ij ,i/∈Ij+1
r

(n)
i

j ← j + 1

end if
end for
Round all ∆r

(n)
i , i = 1, .., kn to the nearest integer.

(If
∑kn

i=1 ∆r
(n)
i = 0, round maxkni=1 ∆r

(n)
i up to the next integer)

C GP with Student t-Noise

The marginal likelihood of ȳ1:kn with a t-GP is (with f := f1:kn = (f(x1), . . . , f(xkn)))

ptGP

(
ȳ1:kn

∣∣ x̄1:kn , r
(n)
1:kn

, f
)

=

kn∏
i=1

Γ((ν + 1)/2)

√
r

(n)
i

Γ(ν/2)
√
νπτ

(
1 +

r
(n)
i (yi − fi)2

ντ2

)−(ν+1)/2

, (29)

where Γ(·) is the incomplete Gamma function. To integrate (29) against the Gaussian prior p(f |ϑ) we use

Laplace approximation (Williams and Barber, 1998). Specifically, we use a second-order Taylor expan-

sion of the log-likelihood around its mode, f̃
(n)
tGP := arg maxf ptGP(f |x̄1:kn , ȳ1:kn), to obtain a Gaussian

approximation to the posterior f(x∗)|An ∼ N (f̂
(n)
tGP(x∗), s

(n)
tGP(x∗)

2) with

f̂
(n)
tGP(x∗) = k(x∗)K

−1f̃
(n)
tGP, (30)

v
(n)
tGP(x∗, x

′
∗) = K(x∗, x

′
∗)− k(x∗)

(
K + (W

(n)
tGP)−1

)−1

k(x′∗), (31)

= K(x∗, x
′
∗)− k(x∗)(Σ

(n)
tGP)−1k(x′∗)

28

where W
(n)
tGP is diagonal with

W
(n)
tGP,ii = −∇2 log ptGP(ȳi|f̃ (n)

i , x̄i) = (ν + 1)
ν τ2

r
(n)
i

− (ȳi − f̃ (n)
i)2

(ν τ2

r
(n)
i

+ (ȳi − f̃ (n)
i)2)2

, (32)

since the likelihood factorizes over observations. Note that ν is treated as part of the GP hyperparameters and

fitted via MLE.

Lyu et al. (2021) then calculated the approximate step-ahead variance of t-GP:

s
(n+1)
tGP (xkn+1, r

(n)
kn+1)2 ' s(n)

tGP(xkn+1)2 ·

τ2

r
(n)
kn+1

ν+1
ν−1

τ2

r
(n)
kn+1

ν+1
ν−1 + s

(n)
tGP(xkn+1)2

. (33)

We replace Eq. (9) with (33) to obtain the acquisition functions for t-GP.

Allocation Rule for t-GP: To implement ADSA and DDSA for t-GP we need (i) the analogue of

Proposition 4.1 for the allocation rule ∆r
(n)
1:kn

over the existing inputs x̄1:kn ; (ii) the look-ahead variance

s(n+1),new(x∗) conditional on adding a new input; (iii) look-ahead variance s(n+1),all(x∗) conditional on

allocating ∆r
(n)
1:kn

. For all these tasks, the non-Gaussian likelihood (29) underlying t-GP calls for further

approximations provided in the following three Lemmas.

Lemma C.1 (Allocation Rule). The allocation ∆r
(n)
1:kn

is like in Proposition 4.1 but relies on

Ũ
(n)
tGP = (Σ̃

(n)
tGP)−1KT

∗ ω
(n), with Σ̃

(n)
tGP :=

(
K +

ν + 1

ν − 1
τ2R(n)

)
. (34)

Proof of Lemma C.1. For t-GP, the noise matrix τ2R(n) in eq. (5) is replaced with (W
(n)
tGP)−1. To calculate

the ADSA/DDSA allocation rule with a t-GP metamodel we substitute (ȳi − f̃
(n)
tGP(x̄i))

2 u τ2

r
(n)
i

and

f̃
(n)
tGP(x̄i) u f̃

(n+1)
tGP (x̄i) in eq. (32) to obtain (cf. Lyu et al. 2021)

W
(n)
ii = (ν + 1)

ν τ2

r
(n)
i

− (ȳi − f̃ (n)
i)2

(ν τ2

r
(n)
i

+ (ȳi − f̃ (n)
i)2)2

u (ν + 1)
ν τ2

r
(n)
i

− τ2

r
(n)
i(

τ2

r
(n)
i

+ ν τ2

r
(n)
i

)2 =
(ν − 1)r

(n)
i

(ν + 1)τ2
:= W̃

(n)
ii .

Hence, (W
(n)
tGP)−1 u (̃W

(n)

tGP)−1 = ν+1
ν−1τ

2R(n) and the covariance matrix C
(n)
tGP of f(x∗) is approximated

as

C
(n)
tGP = K(x∗,x∗)−K∗

(
K + (W

(n)
tGP)−1

)−1

KT
∗

' k(x̄∗, x̄∗)− k∗

(
K +

ν + 1

ν − 1
τ2R(n)

)−1

kT∗

' K(x̄∗, x̄∗)−K∗(Σ̃
(n)
tGP)−1KT

∗ , (35)

29

where Σ̃
(n)
tGP matches eq. (34). The rest of the proof proceeds exactly like for the regular GP model in

Proposition 4.1, after boosting τ2 up by a constant ratio to (ν + 1)/(ν − 1)τ2. Then we obtain Ũ (n)
tGP as

defined in (34).

Next, we need to approximate the next-stepW (n+1)
tGP . Unlike in the Gaussian case where Σ(n+1) depends

only on R(n+1), for t-GP W (n+1)
tGP depends on ȳ1:kn (because it depends on f̃tGP). We therefore need an

approximation Ŵ (n+1)
tGP (the notation is to emphasize that it is different from the previous approximation

W̃
(n)
tGP toW (n)

tGP).

Lemma C.2 (Look-Ahead t-GP Variance). The look-ahead variance at x∗ conditional on allocating ∆r(n)

simulations to a new input x̄kn+1 is approximately given by

s̃
(n+1),new
tGP (x∗)

2 u s
(n)
tGP(x∗)

2 −
v

(n)
tGP(x∗, x̄kn+1)2

(ν+1)τ2

(ν−1)∆r(n) + s
(n)
tGP(x̄kn+1)2

. (36)

Finally, to obtain I(n),all
SAO we define

Ŵ
(n+1)
ii := (ν + 1)

ν τ2

r
(n+1)
i

− (ȳ
(n)
i − f̃ (n)

tGP(x̄i))
2(

(ȳ
(n)
i − f̃ (n)

tGP(x̄i))2 + ν τ2

r
(n+1)
i

)2 , (37)

based on the approximation (ȳ
(n+1)
i − f̃ (n+1)

tGP (xi))
2 u (ȳ

(n)
i − f̃ (n)

tGP(xi))
2. This yields

Lemma C.3 (Look-ahead t-GP variance after batch allocation).

s̃
(n+1),all
tGP (x∗) u K(x∗, x∗)−K∗

(
K + (Ŵ

(n+1)
tGP)−1

)−1

KT
∗ . (38)

D Tuning Parameters for ABSUR and ADSA

References

B. Ankenman, B. L. Nelson, and J. Staum. Stochastic kriging for simulation metamodeling. Operations

research, 58(2):371–382, 2010.

D. Azzimonti and D. Ginsbourger. Estimating orthant probabilities of high-dimensional Gaussian vectors

with an application to set estimation. Journal of Computational and Graphical Statistics, 27(2):255–267,

2018.

D. Azzimonti, J. Bect, C. Chevalier, and D. Ginsbourger. Quantifying uncertainties on excursion sets under a

Gaussian random field prior. SIAM/ASA Journal on Uncertainty Quantification, 4(1):850–874, 2016.

D. Azzimonti, D. Ginsbourger, C. Chevalier, J. Bect, and Y. Richet. Adaptive design of experiments for

conservative estimation of excursion sets. Technometrics, 63(1):13–26, 2021.

30

-5 -4 -3 -2 -1 0 1 2
20

25

30

35

40

45

50

55

ABSUR
RB
MLB
ADSA
DDSA

Figure 7: Design size kT as a function of noise variance τ2 at τ2 = {4−3, 4−2, 4−1, 1, 4} in the 2-D

experiment with ε ∼ N (0, τ2) and budget NT = 2000. Hyperparameters are set the same as in Table 1.

J. Bect, D. Ginsbourger, L. Li, V. Picheny, and E. Vazquez. Sequential design of computer experiments for

the estimation of a probability of failure. Statistics and Computing, 22(3):773–793, 2012.

B. J. Bichon, M. S. Eldred, L. P. Swiler, S. Mahadevan, and J. M. McFarland. Efficient global reliability

analysis for nonlinear implicit performance functions. AIAA Journal, 46(10):2459–2468, 2008.

M. Binois and R. B. Gramacy. hetGP: Heteroskedastic Gaussian process modeling and sequential design in

R. Journal of Statistical Software, 98(13):1–44, 2021. ISSN 1548-7660. doi: 10.18637/jss.v098.i13. URL

https://www.jstatsoft.org/v098/i13.

M. Binois, J. Huang, R. B. Gramacy, and M. Ludkovski. Replication or exploration? Sequential design for

stochastic simulation experiments. Technometrics, 61(1):7–23, 2019.

D. Bolin and F. Lindgren. Excursion and contour uncertainty regions for latent Gaussian models. Journal of

the Royal Statistical Society: Series B: Statistical Methodology, pages 85–106, 2015.

K. M. Bretthauer, A. Ross, and B. Shetty. Nonlinear integer programming for optimal allocation in stratified

sampling. European Journal of Operational Research, 116(3):667–680, 1999.

X. Chen and Q. Zhou. Sequential design strategies for mean response surface metamodeling via stochastic

kriging with adaptive exploration and exploitation. European Journal of Operational Research, 262(2):

575–585, 2017.

C. Chevalier, D. Ginsbourger, J. Bect, and I. Molchanov. Estimating and quantifying uncertainties on level

sets using the Vorob’ev expectation and deviation with Gaussian process models. In mODa 10–Advances

in Model-Oriented Design and Analysis, pages 35–43. Springer, 2013.

31

https://www.jstatsoft.org/v098/i13

Nomenclature

n Sequential design step, indexes most quantities

below

A Design set

D Input space

d Dimension of input space

Y (·) Response

X Design

k Number of unique inputs

N Total budget

r Replicate count

x̄ Design location

τ Noise variance

f Latent function

S Level set

ε Noise

ȳ Average response

ER Error rate

K(·, ·) Covariance function

f̂(·) Posterior mean

v(·) Posterior variance

s(·) Posterior standard deviation

I(·) Acquisition function

ρ cUCB weight

µ(·) Lebesgue measure

E Local empirical error

γ Standard deviation threshold

η Reduction factor

L Number of fidelities

covh Optimization overhead

Tsim Computation time

L Look-ahead integrated contour uncertainty

ω Level set contour weights

cbt Batch factor

l Length-scale

σse Function variance

M Test set size

32

C. Chevalier, J. Bect, D. Ginsbourger, E. Vazquez, V. Picheny, and Y. Richet. Fast parallel kriging-based

stepwise uncertainty reduction with application to the identification of an excursion set. Technometrics, 56

(4):455–465, 2014a.

C. Chevalier, D. Ginsbourger, and X. Emery. Corrected kriging update formulae for batch-sequential data

assimilation. In Mathematics of Planet Earth, pages 119–122. Springer, 2014b.

B. Echard, N. Gayton, and M. Lemaire. Kriging based Monte Carlo simulation to compute the probability

of failure efficiently: AK-MCS method. 6emes Journées Nationales de Fiabilité, 24–26 mars, Toulouse,

France, 2010.

R. Hu and M. Ludkovski. Sequential design for ranking response surfaces. SIAM/ASA Journal on Uncertainty

Quantification, 5(1):212–239, 2017.

H. Jalali, I. Van Nieuwenhuyse, and V. Picheny. Comparison of Kriging-based algorithms for simulation

optimization with heterogeneous noise. European Journal of Operational Research, 261(1):279–301,

2017.

D. R. Jones, M. Schonlau, and W. J. Welch. Efficient global optimization of expensive black-box functions.

Journal of Global Optimization, 13(4):455–492, 1998.

K. Kandasamy, G. Dasarathy, J. B. Oliva, J. Schneider, and B. Póczos. Gaussian process bandit optimisation

with multi-fidelity evaluations. In Advances in Neural Information Processing Systems, pages 992–1000,

2016a.

K. Kandasamy, G. Dasarathy, B. Poczos, and J. Schneider. The multi-fidelity multi-armed bandit. Advances

in neural information processing systems, 29:1777–1785, 2016b.

K. Kandasamy, G. Dasarathy, J. Schneider, and B. Póczos. Multi-fidelity Bayesian optimisation with

continuous approximations. In 34th International Conference on Machine Learning, ICML 2017, pages

2861–2878. International Machine Learning Society (IMLS), 2017.

A. Klein, S. Falkner, S. Bartels, P. Hennig, and F. Hutter. Fast Bayesian optimization of machine learning

hyperparameters on large datasets. In Artificial Intelligence and Statistics, pages 528–536. PMLR, 2017.

J. Koehler, A. Puhalskii, and B. Simon. Estimating functions evaluated by simulation: ABayesian-analytic

approach. Annals of Applied Probability, pages 1184–1215, 1998.

L. Le Gratiet and J. Garnier. Asymptotic analysis of the learning curve for Gaussian process regression.

Machine Learning, 98(3):407–433, 2015.

M. Liu and J. Staum. Stochastic kriging for efficient nested simulation of expected shortfall. Journal of Risk,

12(3):3, 2010.

33

M. Ludkovski. Kriging metamodels and experimental design for Bermudan option pricing. Journal of

Computational Finance, 22(1), 2018.

M. Ludkovski. mlOSP: Towards a unified implementation of regression Monte Carlo algorithms. arXiv

preprint arXiv:2012.00729, 2020.

M. Ludkovski and J. Risk. Sequential design and spatial modeling for portfolio tail risk measurement. SIAM

Journal on Financial Mathematics, 9(4):1137–1174, 2018.

X. Lyu, M. Binois, and M. Ludkovski. Evaluating Gaussian process metamodels and sequential designs for

noisy level set estimation. Statistics and Computing, 31(4):1–21, 2021.

M. McLeod, M. A. Osborne, and S. J. Roberts. Practical Bayesian optimization for variable cost objectives.

arXiv preprint arXiv:1703.04335, 2017.

V. Picheny, D. Ginsbourger, O. Roustant, R. T. Haftka, and N.-H. Kim. Adaptive designs of experiments for

accurate approximation of a target region. Journal of Mechanical Design, 132(7):071008, 2010.

M. Poloczek, J. Wang, and P. Frazier. Multi-information source optimization. In Advances in Neural

Information Processing Systems, pages 4288–4298, 2017.

P. Ranjan, D. Bingham, and G. Michailidis. Sequential experiment design for contour estimation from

complex computer codes. Technometrics, 50(4):527–541, 2008.

T. J. Santner, W. I. Notz, and B. J. Williams. The Design and Analysis of Computer Experiments. Springer,

2003.

N. Srinivas, A. Krause, S. M. Kakade, and M. W. Seeger. Information-theoretic regret bounds for Gaussian

process optimization in the bandit setting. IEEE Transactions on Information Theory, 58(5):3250–3265,

2012.

R. Stroh, S. Demeyer, N. Fischer, J. Bect, and E. Vazquez. Sequential design of experiments to estimate

a probability of exceeding a threshold in a multi-fidelity stochastic simulator. In 61th World Statistics

Congress of the International Statistical Institute (ISI 2017), 2017.

K. Swersky, J. Snoek, and R. P. Adams. Multi-task Bayesian optimization. In Advances in neural information

processing systems, pages 2004–2012, 2013.

J. Vanhatalo, J. Riihimäki, J. Hartikainen, P. Jylänki, V. Tolvanen, and A. Vehtari. GPstuff: Bayesian modeling

with Gaussian processes. Journal of Machine Learning Research, 14(Apr):1175–1179, 2013.

C. K. Williams and D. Barber. Bayesian classification with Gaussian processes. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 20(12):1342–1351, 1998.

34

Table 6: Varying r̄ (left panel) and Tsim (right panel) for ABSUR. We report the mean error rate ERT ,

running time t (in seconds) and the design size kT for the 2-D synthetic case studies with Gaussian noise

ε ∼ N (0, τ2) and budget NT = 2000. All other hyperparameters are set as in Table 1. Results are based on

20 macroreplications of each scheme.

r̄ ERT t kT

τ2 = 0.01

0.01NT 0.21% 54.1 111.5

0.025NT 0.24% 28.2 59.2

0.05NT 0.23% 20.9 43.5

0.1NT 0.30% 15.3 38.6

0.25NT 0.31% 13.7 36.0

NT 0.58% 9.0 30.1

τ2 = 0.25

0.01NT 1.26% 48.0 110.9

0.025NT 1.31% 22.0 57.6

0.05NT 1.18% 13.5 40.9

0.1NT 1.29% 9.7 34.7

0.25NT 1.41% 9.9 33.1

NT 1.64% 8.2 29.8

τ2 = 1

0.01NT 2.05% 46.1 110.8

0.025NT 2.01% 21.1 57.5

0.05NT 1.78% 12.4 40.8

0.1NT 1.93% 9.7 34.3

0.25NT 2.03% 9.2 32.9

NT 2.24% 9.2 30.8

Tsim ERT t kT

τ2 = 0.01

0.0001 2.16% 11.4 31.0

0.001 0.27% 12.5 31.9

0.01 0.30% 15.2 38.6

0.1 0.21% 23.6 60.4

1 0.19% 34.5 100.1

10 0.23% 31.6 115.1

τ2 = 0.25

0.0001 1.45% 9.6 30.1

0.001 1.44% 9.0 30.4

0.01 1.29% 10.1 34.7

0.1 1.38% 16.8 53.8

1 1.29% 31.6 97.7

10 1.30% 37.2 128.6

τ2 = 1

0.0001 2.27% 8.4 30.0

0.001 2.46% 8.8 30.4

0.01 1.93% 9.5 34.3

0.1 1.89% 16.5 53.9

1 1.98% 31.5 100.6

10 2.10% 44.3 141.9

35

Table 7: Mean error rate ERT , computation cost t (in seconds) and the design size kT for ADSA and DDSA

with variable cbt for the 2-D synthetic case studies with Gaussian noise and budget NT = 2000. All other

hyperparameters are the same as in Table 1. Results are based on 20 macroreplications of each scheme.

ADSA DDSA

τ2 = 0.01

cbt ERT t kT ERT t kT

0.5 0.54% 204.2 25.4 0.21% 139.0 226

1 0.67% 125.3 23.4 0.23% 58.0 133

2.5 0.57% 62.8 23.9 0.20% 24.1 73

5 0.72% 37.2 23.1 0.20% 13.8 51

10 0.83% 22.2 22.4 0.25% 7.6 37

20 1.03% 11.9 21.3 0.39% 4.1 30

40 1.07% 6.5 20.8 2.04% 2.3 25

80 1.42% 3.8 20.5 1.21% 1.3 23

τ2 = 0.25

cbt ERT t kT ERT t kT

0.5 1.45% 211.9 29.6 1.20% 147.9 226

1 1.37% 125.7 26.3 1.21% 64.5 133

2.5 1.50% 66.3 23.9 1.26% 25.5 73

5 1.38% 38.7 23.3 1.19% 13.5 51

10 1.41% 22.5 22.8 1.32% 7.5 37

20 1.48% 12.8 22.2 1.43% 4.4 30

40 1.71% 6.8 21.7 1.55% 2.4 25

80 1.76% 3.7 21.0 1.76% 1.4 23

τ2 = 1

cbt ERT t kT ERT t kT

0.5 1.94% 358.8 256.0 1.70% 146.9 226

1 1.94% 172.0 134.0 1.80% 63.7 133

2.5 1.91% 76.0 69.0 1.89% 27.0 73

5 1.95% 42.8 45.9 1.90% 15.6 51

10 1.97% 24.2 33.2 1.99% 8.0 37

20 2.04% 13.3 27.3 2.26% 4.5 29

40 2.03% 7.0 24.2 2.71% 2.3 25

80 2.63% 4.0 22.3 3.13% 1.3 23

36

	1 Introduction
	2 Statistical Model
	3 Adaptive Designs
	3.1 Level Set Estimation
	3.2 Multi-Level Batching
	3.3 Ratchet Batching
	3.4 Adaptively Batched Stepwise Uncertainty Reduction

	4 Adaptive Design with Stepwise Allocation
	5 Results
	5.1 Synthetic Experiments and Computational Implementation Details
	5.1.1 Algorithm Tuning Parameters

	5.2 Algorithm Performance
	5.3 Comparing Designs

	6 Application to Optimal Stopping
	7 Conclusion
	A Allocation Rule
	B Pegging Algorithm for ADSA
	C GP with Student t-Noise
	D Tuning Parameters for ABSUR and ADSA

