
SECURITY AND COMMUNICATION NETWORKS
Security Comm. Networks 2016; 9:1119–1131

Published online 27 December 2015 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/sec.1404

RESEARCH ARTICLE

Tweakable parallel OFB mode of operation with
delayed thread synchronization
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ABSTRACT

Introduction of various cryptographic modes of operation is induced with noted imperfections of symmetric block algo-
rithms. Design of some cryptographic modes of operation has already been exploited as an idea for parallelization of certain
algorithms execution. To the best of our knowledge, there is no evidence in the available literature that output feedback
(OFB) mode, which is used in satellite communications, has ever been parallelized. In this paper, we consider the perfor-
mance of a convenient mode of operation, which performs tweakable parallel encryption using xor encrypt xor (XEX) and
xor encrypt (XE) constructions in OFB like mode. We make use of an idea similar to the XTS-AES in order to create two
parallel tweakable block ciphers. The first of them is designed using XEX construction, while the second is based on XE
construction. Each cipher uses two threads to produce corresponding keystreams. Keystreams are first merged with each
other and then used in modified tweakable parallel OFB mode of operation. As a proof of the concept, we have imple-
mented a Java application in which these parallel solutions are applied to collect empirical data. The results obtained show
that under certain conditions tweakable parallel OFB modes using XEX and XE constructions can achieve performance
accelerations up to 10% and to 20%, respectively. Copyright © 2015 John Wiley & Sons, Ltd
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1. INTRODUCTION

In this paper, we examine the performance of the proposed
parallel mode of operation, which utilizes tweakable paral-
lel encryption using XEX and XE constructions in output
feedback (OFB) like mode. New design is based on the
fact that in OFB mode of operation block cipher decryption
operation is not needed and that OFB mode is very similar
to a stream cipher [1]. In realization of its design, we use
construction similar to XTS-AES tweakable block cipher
[2] and combine it with OFB mode of operation. Finally,
we differentiate design of two new modes of operation
by using XEX and XE constructions [3]. Regarding the
known literature, there is no available study that considers
the acceleration of the standard OFB mode performance.

We look into the possibility of improving performance
of OFB mode by utilizing two parallel threads. Each thread
employs advanced encryption standard (AES) algorithm
in tweakable OFB mode of operation to create keystream

of bytes. Further on, these two keystreams are combined
with plaintext to produce the ciphertext and vice versa.
It is necessary to ensure that both threads are completed
with data processing in order to merge both keystreams
with plaintext (ciphertext) and to resume its execution after
that. If threads are synchronized after encryption of each
block, it will adversely affect their performance. However,
if we postpone thread synchronizatiofn, algorithm will
gain acceleration.

It is easy to implement AES algorithm in tweakable
XEX and XE parallel OFB modes of operation with post-
poned thread synchronization in order to collect empirical
data. The results of measurements show that under cer-
tain conditions tweakable parallel OFB mode using XEX
construction can achieve performance accelerations of up
to 10%, while XE construction can attain performance
accelerations of up to 20%.

The remainder of the paper is organized as follows.
In Section 2, the necessary background is introduced
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including definitions of OFB mode of operation, XEX and
XE constructions as well as XTS-AES mode of operation.
Further on, Section 3 describes the principal idea of the
algorithm, which is designed to demonstrate the concept
of parallelization. Our proposed tweakable parallel OFB
mode of operation using XEX and XE constructions is
introduced in Section 4. The performance of the proposed
mode is evaluated in Section 5, and the conclusion comes
with Section 6 of the paper. Figures and tables are shown
in Appendices A and B.

2. BACKGROUND AND RELATED
WORK

Nowadays, there are two major mechanisms that sym-
metric key algorithms [1,4] use as a method for data
encryption. Algorithm can be applied to blocks of data
or on individual bits in a stream. Block ciphers repeat-
edly take input blocks and then have it encrypted with
a provided key. Thanks to its great speed and efficiency;
symmetric key ciphers are used in applications where large
data quantity is to be encrypted.

Two identical blocks of plaintext that are encrypted
with the same key will produce two identical blocks of
ciphertext. This imperfection of block algorithms has led to
emergence of numerous cryptographic modes of operation
[4–7]. Even though there are five basic [4,8] or traditional
[1] modes of operation, Phillipe Rogaway [5] describes as
many as 17 modes of operation. As stated in [9], stream
ciphers apply rather simple encryption transformation that
depends on the used keystream.

A block cipher is a function, which maps n-bit plain-
text blocks to n-bit ciphertext blocks [9]. A tweakable
blockcipher is a block cipher with an additional input
called a tweak. The tweak is meant to provide variability
and not security [10]. The notion of tweakable blockci-
pher was formalized by Liskov et al. [11]. Rogaway [3]
proposed efficient ways to turn a blockcipher into a tweak-
able blockcipher by using XE and XEX constructions.
The IEEE ratified IEEE 1619 2007 standard [2] that spec-
ifies a tweakable narrow block cipher named XTS-AES
(XEX Tweakable Block Cipher with Ciphertext Steal-
ing). In its publication 800-38E [12], NIST approved the
XTS-AES mode of the AES algorithm for protecting the
confidentiality of data on storage devices.

Existence of various cryptographic modes of opera-
tion has already been exploited as a concept for par-
allelization of certain algorithms execution. According
to Lipmaa et al. [13], counter (CTR) mode of opera-
tion can be parallelized because blocks C1, C2,. . . , CN
can be calculated in advance and encrypted simultane-
ously. Expedite development of GPU (Graphic Processing
Unit) as well as environments such as NVidia CUDA
or OpenCL has led to different attempts to have AES
algorithm parallelized with CTR mode of operation. In
accordance with Tran et al. [14], the authors initially
enlarge block size in comparison with standard AES algo-
rithm and then use coarse grain design to parallelise

its execution. Di Biagio et al. [15] use fine grain design
and internal parallelism of each round. Roch and Jacquin
[16] modify already existing open source solution offered
by Can Berk Güder [17] in order to expedite the execution
through coarse grain implementation and CTR mode of
operation. Zola and De Bona [18] use CUDA architecture
and CTR mode of operation with WAES library. Accord-
ing to [18], WAES library is the first library that used
pre-computing or pre-processing [13] for increasing the
processing speed. Authors refer to this attribute of WAES
library as speculative encryption [18].

Apart from transforming block algorithm into a stream-
ing algorithm, CFB, OFB, and CTR modes of operation
have another common feature; both encryption and decryp-
tion operations do not require any inverse block cipher
calls [1]. That characteristic can also be exploited in the
parallelisation of some cryptographic algorithm through its
minor modifications.

As mentioned in [19–22], Java multithreaded applica-
tion execution depends on many factors (JIT compilation,
thread scheduling, garbage collection, number of running
processes, and thread synchronization). Chen, Chang, and
Hou [23] stress out three of the most important issues,
which affect multithreaded Java application performance.
At first, lock contentions could degrade the performance
and limit the scalability. At next point the authors empha-
size memory stall cycles, which are produced by L2 cache
misses and cache-to-cache transfers. The low performance
of memory systems could reduce profit that occurs because
of the use of multiple cores and threads. Tarvo and Reiss
[24] pointed out that synchronization operations and lim-
ited computational resources produce complex dependen-
cies between a multithreaded program and its performance.
Additionally, they stress out that the garbage collection
mechanism could be influential factor of performance
degradation. In their separate researches, Zhang et al.
[25] and Gu et al. [26] state that thread creation impairs
the performance.

2.1. Output feedback mode of operation

Output feedback mode with its ability to work like stream
cipher is the basis of the proposed parallel encryption
design. In this mode of operation, not a single part of open
text is ever taken as input data in an underlying algorithm.
Initialisation vector is consecutively encrypted in OFB
mode of operation in order to obtain a continuous stream of
random bytes. That is why this mode of operation is very
similar to streaming algorithms. A stream cipher algorithm
generates a stream of random bytes, which is then merged
with open text using xor operation thus forming cipher
text [1]. OFB mode of operation requires initialisation vec-
tor to be nonce, that is, unique in each execution for given
key [6].

Output feedback mode is a stream cipher. Thus, a
1-bit error in the ciphertext will produce a 1-bit error in
the plaintext. This characteristic makes the OFB mode
extremely valuable for satellite communications, where
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transmission channel is noisy [27–29]. To our best knowl-
edge, there are no published papers analyzing possibilities
of OFB mode parallelization. As pointed out in [6], OFB
mode of operation is recommended for use with any
approved block cipher, such as the AES algorithm.

In NIST Special Publication 800-38A, the output feed-
back mode of operation is defined as follows [6]:

Listing 1. Pseudo code for output feedback ciphering
and deciphering

OFB encryption
I1 = IV
Ij = Oj–1 For j = 2, : : : , n;
Oj = CiphK (Ij) For j = 1, : : : , n;
Cj = Pj ˚ Oj For j = 1, : : : , n – 1;
C*

n = P*
n ˚MSBU(On)

OFB decryption
I1 = IV
Ij = Oj–1 For j = 2, : : : , n;
Oj = CiphK (Ij) For j = 1, : : : , n;
Pj = Cj ˚ Oj For j = 1, : : : , n – 1;
P*

n = C*
n ˚MSBU(On)

Whereby:

- IV: initialization vector
- Ij: jth input block,

- Oj: jth output block,

- Pj: jth plain text block,

- Cj: jth cipher text block,

- P*
n: last plain text block; can be part of a block too,

- C*
n: last cipher text block, can be part of a block too,

- MSBM(X): most significant M bits of bitstream X,
- b: block lenght in bits.

In OFB mode of operation, the stream of output blocks
Oj is combined using xor operation with consecutive plain-
text blocks (Pj) in order to produce blocks of ciphertext
(Cj). Output blocks are also fed back partially or as the
whole to be used as input for underlying algorithm. If the
last block is a partial u-bit long block, most significant u-
bits of that block are used in xor operation while the rest of
(b-u) bits are disregarded [6].

In course of OFB decryption, the initialisation vector
is consecutively transformed through forward cipher func-
tion CiphK of underlying algorithm in order to generate a
stream of output blocks (Oj). The output blocks are then
xored with blocks of ciphertext to restore plaintext.

Output feedback mode of operation requires unique
initialisation vector for each message that has ever been
ciphered with a single key. If the same IV were used while
encrypting more than one message, confidentiality of these
messages would be compromised.

International Organization for Standardization (ISO)
standard specification [30] defines a version of output feed-

back mode that extends FIPS 81 [31] by an additional
parameter j. Only j left side bits of each block Yi are used
to mask plain text P in order to produce cipher text C.

Output feedback mode of operation as defined in [6] can
be shown as in Figure A1.

In both encryption and decryption with OFB mode, for-
ward cipher function of each block but the very first one
depends on the results of the previous round. It should be
noticed that forward cipher transformation is sufficient for
function of OFB mode of operation.

2.2. Xor encrypt xor, XE constructions, and
XTS-AES mode of operation

An important role in the proposed parallel encryption
design has XEX and XE constructions [3,11] as well as the
XTS-AES mode of operation [2].

Liskov, Rivest, and Wagner [11] defined the notion of
a tweakable blockcipher. Rogaway [3] formally defined
tweakable blockcipher as a map:

QE : KxTx {0, 1}n ! {0, 1}n (1)

where each

QEK
T (�) = QE(K, T , �) (2)

is a permutation and T is the set of tweaks.
Xor encrypt xor mode is proposed by Rogaway [3] and

instantiated by IEEE [2] and NIST [12] through XTS–AES
mode. XTS–AES mode uses a pair of keys for encryp-
tion. The first key is used to encrypt the sector address and
to generate tweak values, and the second key is used to
actually encrypt the data.

The XEX construction [3] is defined by

QE
Ni1Rik
K (M) = E(M ˚�)˚� (3)

where

� = ˛i1˛i2 , : : : ,˛ik N

and

N = EK (N)

According to [2], the XEX construction first computes
a mask value T using Equation (6):

T = Enc(K2, s)˝ ˛t (4)

where the multiplication is in GF(2n), (with n being block-
size of underlying algorithm), ˛ is a primitive element of
GF(2n), and s is the value of the 128-bit tweak.

Given plaintext P and ciphertext C, encryption and
decryption functions are produced by the following formu-
las [2]:

C = Enc(K1, P˚ T)˚ T

P = Dec(K1, C˚ T)˚ T
(5)
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In case of XTS-AES, logical sector address is used
as tweak, which is modifying encryption process. Spec-
ification for the XTS-AES tweakable block cipher
[2] introduces multiplication, which is defined by the
following procedure:

Input:
j is the power of ˛
byte array a0[k], k = 0, 1, : : : , 15;

Output: byte array aj[k], k = 0, 1, : : : , 15.

The output array is defined recursively by the following
formulas where i is iterated from 0 to j:

ai+1[0] (2(ai[0]mod128))˚ (135bai[15]/128c)

ai+1[k] (2(ai[k]mod128))˚ (bai[k – 1]/128c),

k = 1, : : : , 15.

(6)

3. THE BASIC IDEA

As implied in [1] and [6], for functioning of the CFB,
OFB, and CTR modes of operation, it is sufficient to imple-
ment forward cipher function. According to [9], mentioned
modes of operation create a stream cipher from any block
cipher. Generated keystream is xored with plaintext during
encryption to create ciphertext and vice versa [32]. The fact
that the described modes of operation need no decryption
function implies that a keystream generator or even a cryp-
tographic algorithm without decryption function could be
used as an underlying algorithm.

Advanced encryption standard algorithm can use key-
lengths of 128, 192, and 256 bits. In case of the 256-bit pro-
tection an initial 256-bit long key is extended to required
240 bytes. Plaintext or an initialization vector is copied into
a 4x4 byte matrix called State [33,34]. Then, State matrix
is mixed during the initial round with bytes of the extended
key. Thereafter, the buffer State is modified by SubBytes,
ShiftRows, MixColumns, and AddRoundKey transforma-
tions during 14 rounds [35]. In case of a 128-bit encryption,
mentioned transformations are used during 10 rounds.

Thanks to AES algorithms characteristics; as illus-
tration, it is possible to create a new algorithm that
implements only encryption function. Inputs for such an
algorithm are plain text buffers 16 bytes long and a 256-
bit key. This initial key is then divided into two parts
128-bit long. After that, plain text block is copied in two
State buffers, which are encrypted with 128-bit encryp-
tion by the corresponding key parts. The resulting cipher
text blocks are then merged using xor operation. If P1,
P2,. . . ,Pn are plaintext blocks, the following pseudo code
represents ciphering of the jth block:

Listing 2. Pseudo code of algorithm adjusted for
parallel encryption

K1128, K2128 = Split(K256)
O1j = Ciph(Pj, K1j,128)
O2j = Ciph(Pj, K2j,128)
Cj = O1j ˚ O2j

whereby Pj is the jth block of plaintext, Split is the function
that splits initial key, K1128, K2128are the keys obtained
by splitting initial 256-bit key, O1j, O2j are the jth output
blocks obtained by ciphering with K1 and K2 keys, and Cj

is the jth block of ciphertext.

This algorithm designed for demonstration requires a
256-bit key for its operation. The initial key is then divided
into two parts that are supplied to two encryption rou-
tines. Each plain text block is encrypted two times with
128-bit encryption. The obtained intermediate results are
merged with xor operation to form eventual result. Such an
algorithm that operates as key stream is well adjusted for
parallelization as its procedure can be implemented with
two parallel threads.

However, it is not possible to decrypt plaintext already
encrypted using this algorithm. That is why it can be
used as a key stream generator only. As mentioned pre-
viously, any block algorithm operates as a key stream
when used with CFB, OFB, and CTR modes of opera-
tion. Block algorithms with CFB, OFB, and CTR modes
of operation do not involve inverse block cipher function
as this function is provided through the mode construction
itself [1].

4. PARALLEL TWEAKABLE OFB
MODE OF OPERATION USING XEX
AND XE CONSTRUCTIONS

As pointed out, OFB mode of operation does not require
implementation of inverse transformation (InvCipher) of
an underlying block cipher algorithm. Thanks to this fea-
ture; it is possible to create a new algorithm that imple-
ments only encryption function. The number of rounds in
256 and 128 bit versions of AES algorithm is 14 and 10,
respectively. As shown, it is possible to create a new algo-
rithm by using two parallel encryption threads with 10
rounds each. In such design, 256-bit key is divided into
two 128-bit parts. To improve its resistance, tweak sim-
ilar to one that is shown in [2,3] is added to algorithm.
The created key streams can be used for parallelization of
its execution. The Listing (3) of pseudo code illustrates it
as follows:

Listing 3. Illustration of tweakable parallel OFB mode
with XEX construction

OFB parallel encryption
K1, K2 = Split(K256)
First thread
EIV 0 = Ciph(IV , K2)
F01 = EIV 0

T 01 = ˛1 ˝ EIV 0

I01 = T 01 ˚ F01
O01 = Ciph(I01, K1)
C01 = T 01 ˚ O01
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T 0i = ˛i ˝ T 0i–1 For i = 2, : : : , n;
F0i = C0i–1 For i = 2, : : : , n;
I0i = T 0i ˚ F0i For i = 2, : : : , n;
O0i = Ciph(I0i , K1) For i = 2, : : : , n;
C0i = T 0i ˚ O0i For i = 2, : : : , n;

Second thread
EIV 00 = Ciph(IV , K1)
F001 = EIV 00

T 001 = ˛1 ˝ EIV 00

I001 = T 001 ˚ F001
O001 = Ciph(I001 , K2)
C001 = T 001 ˚ O001

T 00i = ˛i ˝ T 00i–1 For i = 2, : : : , n;
F00i = C00i–1 For i = 2, : : : , n;
I00i = T 00i ˚ F00i For i = 2, : : : , n;
O00i = Ciph(I00i , K2) For i = 2, : : : , n;
C00i = T 00i ˚ O00i For i = 2, : : : , n;

Ci = Pi ˚ C0i ˚ C00i For i = 1, : : : , n – 1;

Final block
C*

N = P*
N ˚MSBU(C*0

N ˚ C*00
N )

OFB parallel decryption
K1, K2 = Split(K256)
First thread
EIV 0 = Ciph(IV , K2)
F01 = EIV 0

T 01 = ˛1 ˝ EIV 0

I01 = T 01 ˚ F01
O01 = Ciph(I01, K1)
C01 = T 01 ˚ O01

T 0i = ˛i ˝ T 0i–1 For i = 2, : : : , n;
F0i = C0i–1 For i = 2, : : : , n;
I0i = T 0i ˚ F0i For i = 2, : : : , n;
O0i = Ciph(I0i , K1) For i = 2, : : : , n;
C0i = T 0i ˚ O0i For i = 2, : : : , n;

Second thread
EIV 00 = Ciph(IV , K1)
F001 = EIV 00

T 001 = ˛1 ˝ EIV 00

I001 = T 001 ˚ F001
O001 = Ciph(I001 , K2)
C001 = T 001 ˚ O001

T 00i = ˛i ˝ T 00i–1 For i = 2, : : : , n;
F00i = C00i–1 For i = 2, : : : , n;
I00i = T 00i ˚ F00i For i = 2, : : : , n;
O00i = Ciph(I00i , K2) For i = 2, : : : , n;
C00i = T 00i ˚ O00i For i = 2, : : : , n;

Pi = Ci ˚ C0i ˚ C00i For i = 1, : : : , n – 1;

Final block
P*

N = C*
N ˚MSBU

�
C*0

N ˚ C*00
N

�

where IV is the initialization vector; Split is the function
that splits initial key; K1, K2 is the 128 bit long key parts
obtained with splitting initial key; T 0i , T 00i are the ith tweaks;
O0i, O00i are the intermediate results of parallel threads
ciphering; C0i , C00i are the intermediate results mixed with

tweak; F0i , F00i are the ith fed back blocks (inputs); I0i , I00i are

the ith inputs for encryption mixed with tweak; Pi is the ith

plaintext block; Ci is the ith block of ciphertext; P*
N is the

final plaintext block and can be a part of a block too; C*
N is

the final ciphertext block and can be a part of a block too;
and MSBM(X) is the most significant M bits of bit
stream X.

It could be possible to realize parallel OFB mode by
using algorithm shown in Listing (2), but such a mode
would be susceptible to meet-in-the-middle attack. To
strengthen the algorithm, an idea from XEX mode is used.
Proposed parallel mode uses a pair of 128-bit keys for
encryption with two threads. Every thread have primary
128-bit key, which is used for data encryption, and sec-
ondary 128-bit key, which is used to create tweak by
encrypting IV. In the first thread, the secondary key is
K2, which is used to create tweak, and the primary key
is K1, which is used for data encryption process. In the
second thread, the primary key is K2, and it is used for
data encryption while the secondary key K1 is used to
create tweak.

In the illustrated embodiment, unlike XTS-AES, IV is
used instead the logical sector address both to form a
tweak and for the functioning of the OFB mode of oper-
ation. As presented in Listing (3), in both threads IV is
encrypted by using the secondary key forming intermediate
results EIV’ and EIV". That intermediate results are then
repeatedly transformed by using XTS-AES multiplication.
Proposed solution uses the same method for multiplication
as the XTS-AES, but instead of using sector address it uses
encrypted IV (EIV’ and EIV") while sequentially increases
the value of j.

As illustrated in Listing (3) and Figure A2, both threads
are using procedure similar to XTS–AES and XEX proce-
dure. In both threads, the first input for main encryption
procedure is formed by xoring encrypted IV’s (F01 and
F001 ) with corresponding tweaks (T 01 and T 001 ) created by
shown multiplication procedure. All other inputs for main
encryption procedure are created by merging output from
encryption of previous block with corresponding tweaks
(T 0i and T 00i ).

Intermediate results (O0i and O00i ) from main encryption
procedures in both threads are formed by using corre-
sponding primary keys. In both threads, the final results of
the single block encryption are created by merging inter-
mediate results (O0i and O00i ) with corresponding tweaks
(T 0i and T 00i ).
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The proposed mode acts similar to XTS–AES mode
of operation—it support encryption of data buffers whose
lengths are not integral multiple of the AES block size
(128 bits). If final block has less then 128 bits, final partial
block is processed in conjunction with the previous one by
using ciphertext-stealing as described in [2].

Construction of the proposed algorithm is such that the
output blocks from both threads must be generated and
then xored with each other and with corresponding plain-
text block to produce cyphertext block. If the algorithm
was designed in such a way that threads are waiting each
other in order to merge intermediate results after each
block, according to [23] and [24], that would have a neg-
ative impact on performance. To avoid this, algorithm is
implemented in such a way that the merging step is per-
formed after treatment of a number of blocks. By using
the procedure earlier, the results obtained are up to 10%
faster in comparison with serial OFB mode of operation
with AES algorithm.

As Rogaway [3] as well as Liskov et al. [12] stated,
XEX construction has good security against chosen-
ciphertext attack, while for chosen-plaintext attack secu-
rity, one can omit the outer xor. Previously described
tweakable parallel OFB mode with XEX construction can
be easily transformed into cipher with XE construction, by
omitting outer XOR. By using XE construction and two
threads with 128-bit AES encryption, the results are up to
19% faster compared with serial 256-bit AES encryption
in OFB mode of operation. The Listing (4) of pseudo code
and Figure A3 illustrates tweakable parallel OFB mode of
operation with XE construction.

Listing 4. Illustration of tweakable parallel OFB mode
with XE construction

OFB parallel encryption
K1, K2 = Split(K256)

First thread
EIV 0 = Ciph(IV , K2)
F01 = EIV 0

T 01 = ˛1 ˝ EIV 0

I01 = T 01 ˚ F01
O01 = Ciph(I01, K1)
C01 = O01

T 0i = ˛i ˝ T 0i–1 For i = 2, : : : , n;
F0i = O0i–1 For i = 2, : : : , n;
I0i = T 0i ˚ F0i For i = 2, : : : , n;
O0i = Ciph(I0i , K1) For i = 2, : : : , n;
C0i = O0i

Second thread
EIV 00 = Ciph(IV , K1)
F001 = EIV 00

T 001 = ˛1 ˝ EIV 00

I001 = T 001 ˚ F001
O001 = Ciph(I001 , K2)
C001 = O001

T 00i = ˛i ˝ T 00i–1 For i = 2, : : : , n;
F00i = O00i–1 For i = 2, : : : , n;
I00i = T 00i ˚ F00i For i = 2, : : : , n;
O00i = Ciph(I00i , K2) For i = 2, : : : , n;
C00i = O00i

Ci = Pi ˚ C0i ˚ C"i For i = 1, : : : , n – 1;

Final block
C*

N = P*
N ˚MSBU(C*0

N ˚ C*"
N )

OFB parallel decryption
K1, K2 = Split(K256)

First thread
EIV 0 = Ciph(IV , K2)
F01 = EIV 0

T 01 = ˛1 ˝ EIV 0

I01 = T 01 ˚ F01
O01 = Ciph(I01, K1)
C01 = O01

T 0i = ˛i ˝ T 0i–1 For i = 2, : : : , n;
F0i = O0i–1 For i = 2, : : : , n;
I0i = T 0i ˚ F0i For i = 2, : : : , n;
O0i = Ciph(I0i , K1) For i = 2, : : : , n;
C0i = O0i

Second thread
EIV 00 = Ciph(IV , K1)
F001 = EIV 00

T 001 = ˛1 ˝ EIV 00

I001 = T 001 ˚ F001
O001 = Ciph(I001 , K2)
C001 = O001

T 00i = ˛i ˝ T 00i–1 For i = 2, : : : , n;
F00i = O00i–1 For i = 2, : : : , n;
I00i = T 00i ˚ F00i For i = 2, : : : , n;
O00i = Ciph(I00i , K2) For i = 2, : : : , n;
C00i = O00i

Pi = Ci ˚ C0i ˚ C00i For i = 1, : : : , n – 1;

Final block
P*

N = C*
N ˚MSBU(C*0

N ˚ C*00
N )

where IV is the initialization vector, Split is the func-
tion that splits initial key, K1, K2 are the 128-bit long
key parts obtained with splitting initial key; T 0i , T 00i are

the ith tweaks; O0i, O00i are the intermediate results of
parallel threads ciphering; C0i , C00i are the intermediate

results mixed with tweak; F0i , F00i are the ith fed back

blocks (inputs); I0i , I00i are the ith inputs for encryption

mixed with tweak; Pi is the ith plaintext block; Ci is the
ith block of ciphertext; P*

N is the final plaintext block and

can be a part of a block too; C*
N is the final ciphertext
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block and can be a part of a block too; and MSBM(X) is
the most significant M bits of bit stream X.

5. IMPLEMENTATION DETAILS
AND ANALYSIS

Listings (3) and (4) present a new modes of opera-
tion based on XTS–AES and OFB mode that uses two
parallel threads with 128-bit encryption each in order
to outperform execution of 256-bit AES algorithm in
OFB mode of operation. Both threads form their inputs
for encryption by merging 16 bytes of tweak with fed
back result of previous block encryption. As shown in
Listing (3) and Figure A3, intermediate ciphertexts in
both threads are generated by xoring corresponding AES
encryption result with corresponding tweak, thus forming
XEX construction.

For the operation of this algorithm, it is not necessary to
ensure that both threads have completed their execution in
order to continue processing of the next block. If a number
of plaintext blocks can be loaded in some input array, then
each individual thread may continue its execution inde-
pendently. As encryption of one block is completed, each
thread stores the result of its work in its own array, which
is designed for that purpose. In these arrays, it is possible
to store the same number of blocks as in the input array,
and their purpose is to keep the intermediate ciphertexts.
After keystream generation is completed, the input array is
merged with two output arrays produced by both threads to
eventually create ciphertext (plaintext). By designing the
implementation in this way, the moment of synchroniza-
tion is postponed, thus reducing the time spent for threads
waiting for each other.

A Java application was intentionally developed for
practical probe of the introduced concept potential. This
application implements a standard AES algorithm [33]
without AES-NI set of instructions. Implementation of
AES encryption routine with 256-bit key and 14 rounds
was used in serial OFB mode of operation using one
thread. For parallel OFB mode of operation with XTS-like
tweak, the same routine with 128-bit key and 10 rounds
is used in two threads. Threads involved in the tests were
designed, started, and stopped in the same way. In both
cases, time taken by encryption is measured without the
time spent in communication with hard disk and in class
initialization. Measured result includes the time taken for
threads creating, starting and executing, tweak creation,
and merging arrays by using xor operation and time spent
in AES encryption routine. In short, we measured elapsed
time from the start of the first thread until the last one
completed [36].

The measuring was carried out on two test platforms.
The first one was laptop with Core i7-4700MQ proces-
sor having four physical and eight logical cores with 4
GB DDR3-1600 RAM, with installed 64-bit Windows
8.1, Java(TM) SE Runtime Environment (build 1.8.0_25-
b18), and Java HotSpot(TM) 64-Bit Server VM (build

25.25-b02, mixed mode). In the rest of the text, this plat-
form will be referred to as i74700. The second one was
laptop with Core i7-2630QM processor having four phys-
ical and eight logical cores with 6 GB DDR3-1333 RAM,
with installed 64-bit Windows 7 Ultimate OS and same
Java engine. In the remaining text, the latter test platform
will be referred to as i72630.

The presented application is used to measure elapsed
time spent for encryption of 128 MB file. To explore
influence of thread creation and synchronization on per-
formance, encryption is performed by using input arrays
(input buffers) of different sizes.

In the implementation of the concept, we used a Java
cached thread pool mechanism (Executor class, newCached-
ThreadPool method) that executes several threads in par-
allel, and then waits on completion of all threads running.
Cached thread pool creates a number of threads required in
parallel execution, and the existing threads can be reused
in new tasks.

Georges, Eeckhout, and Buytaert [19,20] state that JVM
(Java virtual machine) is rather challenging to bench-
marking because Java performance is affected in various
complex ways by the application and its input, as well as
by the virtual machine (JIT optimizer, garbage collector,
thread scheduler, etc.). That is why we carried out all tests
by using the rigorous replay compilation [20] to measure
time needed for file encryption. The tests were conducted
using various length input arrays and one VM call for each
encryption cycle. This way, file was processed 10 times for
each input array size, and the final result is obtained by
using arithmetic mean.

The measuring on PC platform was carried out under
circumstances in which the number of running OS pro-
cesses was minimal. The achieved parallel execution
results were fluctuating with the change of the previously
mentioned input buffer size. The test results compar-
ing serial OFB mode, referred as 1x256 OFB in later
text, with parallel OFB mode of operation with XEX
tweak, referred as 2x128 XEX in later text, are shown in
Tables B1 and B2.

Depending on the input array size, the results obtained
in the tests on i74700 platform (Table B1) show that it
is possible to achieve acceleration up to 10.14%. How-
ever, the illustrated results show significant performance
degradation with further input array size reduction.

The measured times indicate that worse performance is
obtained whenever shorter input buffers are used. At the
end of each fragment processing, threads will potentially
have to wait each other in order to finish their execution.
If shorter input array is used, then same file must be pro-
cessed by using greater number of fragments, which leads
to performance penalties. In contrast, when using a longer
input array, the better results are achieved.

The results obtained on the second i72630 platform
(Table B2) do not show any improvements. Moreover,
the results of measurements on that test platform indicate
that there has been a significant performance degradation
varying from 2.15% to 23.04%.
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As pointed out in Section 2, degradation of multi-
threaded Java application performance could be generated
by lock contentions and low performance of memory sys-
tems. Additionally, the garbage collection mechanism and
thread creation could be important factors of performance
degradation.

The second test platform (i72630) had RAM slower
than the one built in the first platform (i74700). In order
to check impact of memory speed combined with addi-
tional XOR operation on algorithm performance, another
series of measurements is performed with slightly modi-
fied implementation with omitted outer XOR, as described
in Listing (4). The Tables B3 and B4 make compari-
son between the serial 1x128 OFB mode and parallel
tweakable OFB mode of operation with XE construction,
referred as 2x128 XE in later text.

In parallel 2x128 XEX OFB mode, both threads are
doing extra work compared with the serial OFB mode. The
first round in both threads consists of extra encryption of
one block, then an additional XTS multiplication, addi-
tional XOR operation on tweak first with 16 input bytes
and then additional XOR with the output 16 bytes. In every
round except the first, each tread performs an additional
XTS multiplication, additional XOR operation on tweak
with 16 input bytes and additional XOR operation with the
output 16 bytes. However, parallel 2x128 XEX OFB mode
improves performance under certain conditions while pro-
cessing simultaneously one data block for 10 rounds with
two threads, unlike serial 1x128 OFB mode that spends 14
rounds to encrypt each block.

As illustrated in Tables B3 and B4, by using XE
construction, a significant acceleration is achieved on
both test platforms. At the first test platform (i74700),
it is obtained maximum improvement of 19.35% com-
pared with a serial implementation. At the second test
platform (i72630), it is obtained improvement of nearly
12.98% compared with a serial OFB mode. When shortest
input array included in tests (8 KB) is used in com-
bination with XE construction, there still is degrada-
tion of performance but slightly smaller then in case of
XEX construction.

Cipher block chaining , CFB, and OFB are known as
feedback modes, while ECB and CTR are known as no
feedback modes [37]. Bearing in mind the constraints of
the proposed method(s), and our initial goal to improve
performance of the standard OFB mode, just for perfor-
mance comparision with fully parallelizable CTR mode,
experimental results of the parallelized CTR mode execu-
tion time are shown in the Tables B1, B2, B3, and B4. As
for the experiment, CTR mode is parallelized so that it uses
two threads to encrypt two plaintext fragments at the same
time. Thanks to this; the parallelized CTR mode attains
far better results than the proposed solutions. Having com-
pared the code-size, the proposed solution is 5 kB longer
then the parallelized CTR using two threads. The size of
a JAVA class file that implements the proposed modes is
54 kB, while the size of a JAVA class file implementing a
parallelized CTR solution is 49 kB.

One of the OFB mode characteristics is that the trans-
mission faults are not propagated. This property is very
useful for satellite communications where the transmis-
sion channels are very noisy. Hence, the advantage of
OFB over the CBC and CFB modes lies in fact that
any bit errors that might occur inside cipher data are not
propagated to affect the decryption of subsequent blocks
[27–29]. Because of that, bit flipping appears as a secu-
rity flaw of OFB mode on the one hand, and on the other
hand, it is an important mechanism of error correction in
satellite communications.

However, it is worth mentioning that there is no evi-
dence in the available literature that OFB mode has ever
been parallelized.

6. CONCLUSION

In this paper, we examine possibilities of achieving perfor-
mance improvement of the standard OFB mode by using
new parallel tweakable OFB modes of operation. The con-
ducted research exploits the fact that the design of some
cryptographic modes of operation is very alike stream
ciphers. OFB mode of operation produces a keystream
that is xored with plaintext in order to generate cipher-
text. Another feature of this mode of operation is that it
does not require existence of inverse blockcipher function
for its operation. These facts were used to design par-
allel tweakable OFB mode of operation in two variants.
In creation of these new modes, XEX and XE construc-
tions and XTS-AES multiplication are used. According
to this proposal, two threads working in parallel utilize
AES encryption in tweakable OFB mode of operation.
We use postponed thread synchronization to improve per-
formance of proposed modes. The results obtained show
that it is possible to achieve performance accelerations of
the standard OFB mode up to nearly 20% under different
test platforms.

The presented research, implementation, and experi-
mental results point out several facts concerning the possi-
bility of parallelisation of any symmetric block algorithm.
Performance is greatly depended on issues such as thread
creation, synchronization, and specific hardware features
like memory speed. As we have shown, by postponing
the moment of thread synchronization and by using the
faster main memory great accelerations can be achieved
in relation to the standard OFB mode, which is extremely
valuable for satellite communications, where transmission
channel is noisy.

Further, course of the research into parallelisation
involving AES algorithm in OFB mode of operation might
be directed toward AES-NI instruction set utilization.
Another direction of the research might be analysis of
some advanced programming techniques such as OpenMP
and Message Passing Interface possibilities of utiliza-
tion, or exploring advanced parallel hardware architectures
as field-programmable gate arrays, vector processors, or
application-specific integrated circuits.
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APPENDIX A: FIGURES

Figure A1. Output feedback mode of operation.

Figure A2. Tweakable parallel output feedback mode with xor encrypt xor construction.
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Figure A3. Tweakable parallel Output feedback mode with XE construction.

APPENDIX B: TABLES

Comparison: serial OFB encryption of 128 MB file versus tweakable XEX OFB, parallel tweakable XEX OFB
and parallel CTR ON I74700 platform.

Mode
Input array size (Bytes)

512000 64000 20000 16000 14000 12000 8000

1x 256 OFB (ms) 1653.2 2380 3093.6 3274.2 3421.83 3530 4441

2x 128 XEX (ms) 1552.6 2160.8 2972.8 3250.0 3408.2 3665.0 4715.2

spedup 1.065 1.101 1.041 1.007 1.004 0.963 0.942

% 6.48 10.14 4.06 0.74 0.40 –3.68 –5.82

1x 128 XEX (ms) 1290.6 1948.4 2603.9 2667.7 2846 3141.2 3804.3

1x 256 XEX (ms) 1611.1 2341.4 3047.5 3325.5 3472.5 3673.3 4747

2x 256 CTR (ms) 858.2 1274.2 1730.2 1919 2074.1 2183.6 2677.4

OFB, output feedback; XEX, xor Encrypt xor.

Comparison: serial OFB encryption of 128 MB file versus tweakable XEX OFB, parallel tweakable XEX OFB
and parallel CTR ON I72630 platform.

Mode
Input array size (Bytes)

512000 64000 20000 16000 14000 12000 8000

1x 256 OFB (ms) 4128.4 4715.8 5510.3 5726.8 5797 5835.5 6439.5

2x 128 XEX (ms) 4219.0 4895.0 6445.4 6794.0 7077.8 7275.0 8367.0

spedup 0.979 0.963 0.855 0.843 0.819 0.802 0.770

% –2.15 –3.66 –14.51 –15.71 –18.10 –19.79 –23.04

1x 128 XEX (ms) 3159.2 3741.4 4611.7 4811.9 4826.8 4980 5699.8

1x 256 XEX (ms) 4041.2 4749.9 5685 5908.2 5997.8 6193.8 6699

2x 256 CTR (ms) 967.2 1512.2 1976.5 2281.3 2397.8 2646.6 3360.6

OFB, output feedback; XEX, xor Encrypt xor.
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Comparison: serial OFB encryption of 128 MB file versus tweakable XE OFB, parallel tweakable XE OFB
and parallel CTR ON I74700 platform.

Mode
Input array size (Bytes)

512000 64000 20000 16000 14000 12000 8000

1x 256 OFB (ms) 1653.2 2380 3093.6 3274.2 3421.83 3530 4441
2x 128 XE (ms) 1458 1994.2 2850.8 3141.6 3347.2 3673.8 4667.8
spedup 1.134 1.193 1.085 1.042 1.022 0.961 0.951
% 13.39 19.35 8.52 4.22 2.23 –3.91 –4.86
1x 128 XE (ms) 1268.6 1951.8 2480.3 2778.7 2840.6 3068.7 3856.8
1x 256 XE (ms) 1872.1 2345.9 3083.6 3213.2 3440.4 3683.5 4678.6
2x 256 CTR (ms) 858.2 1274.2 1730.2 1919 2074.1 2183.6 2677.4

OFB, output feedback.

Comparison: serial OFB encryption of 128 MB file versus tweakable XE OFB, parallel tweakable XE OFB
and parallel CTR ON I72630 platform.

Mode
Input array size (Bytes)

512000 64000 20000 16000 14000 12000 8000

1x 256 OFB (ms) 4128.4 4715.8 5510.33 5726.8 5797 5835.5 6439.5
2x 128 XE (ms) 3654.2 4290 5632 5960.4 6198.8 6537.6 7520.4
spedup 1.130 1.099 0.978 0.961 0.935 0.893 0.856
% 12.98 9.93 –2.16 –3.92 –6.48 –10.74 –14.37
1x 128 XE 3107.6 3787.6 4745.2 4881.2 4958.3 5120.6 5672.4
1x 256 XE 4058.5 4771.8 5644.1 6033 6047.1 6115.5 6691
2x 256 CTR 967.2 1512.2 1976.5 2281.3 2397.8 2646.6 3360.6

OFB, output feedback.
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