
Attacks on a Lightweight Cipher Based on a
Multiple Recursive Generator

Lu Xiao and Gregory G. Rose

Qualcomm Incorporated
5775 Morehouse Dr, San Diego, CA 92122, USA

{lxiao, ggr}@qualcomm.com

March 18, 2009

Abstract

At IEEE GLOBECOM 2008, a lightweight cipher based on a Multiple Recursive
Generator (MRG) was proposed for use in resource limited environment such as sensor
nodes and RFID tags. This paper proposes two efficient attacks on this MRG cipher. A
distinguishing attack is firstly introduced to identify the use of an MRG cipher that has
a modulus suggested by its designers. It requires 218 words of ciphertext and the most
significant bit of each corresponding plaintext word. Then an efficient known plaintext
attack is proposed to construct the cipher’s current state and generate subkeys used
for all subsequent encryption. The known plaintext attack, when targeted at the MRG
ciphers optimized for efficiency, only requires 2k words of known plaintext and trivial
computation where k is the MRG order. Even the ciphers based on complicated and
inefficient MRGs can be attacked with low complexity, e.g., in the magnitude of 212

words of known plaintext for all MRG ciphers with order 47, regardless of which MRG
modulus is used. These two attacks indicate that the examined MRG cipher structure
is seriously flawed.

1 Introduction

A Multiple Recursive Generator (MRG) usually generates a sequence of numbers with a very
long period. A block cipher based on MRG was proposed at IEEE GLOBECOM 2008 [9],
which uses initial MRG seeds as cipher key and generates a sequence to be used for encrypting
32-bit plaintext each time. The cipher designers suggest the use of m = 231 − 1 as MRG
modulus and select a particular case with order k = 47 for performance analysis [9]. The
MRG cipher is claimed to be very useful and secure enough for resource limited environment
such as sensor nodes and RFID tags.

1

In cryptanalysis, a distinguishing attack aims to identify the use of a specific cipher.
Usually it examines the statistical patterns in plaintext and/or ciphertext in order to tell its
difference from a random mapping. Although not intending to discover a key, a successful
distinguishing attack indicates existence of security weakness in a cipher. The distinguish
attack in Section 3 works with 218 ciphertext words and the Most Significant Bits (MSBs)
of corresponding plaintext words. These ciphertext words do not have to be encrypted with
the same key or computed sequentially. In many applications, a plaintext word’s MSB is
much easier to obtain or guess than the whole 32 bit content. For example, if the plaintext
is English language text in ASCII, all the MSBs will be zero. The distinguishing attack will
still be applicable, with reduced efficiency, if there is any significant bias in these MSBs.

A known plaintext attack assumes that attackers can collect certain amount of plaintext
and its corresponding ciphertext encrypted using an unknown key. This attack typically
aims to deduce the cipher key with less complexity than a brute force attack. For example,
linear cryptanalysis in [8] successfully breaks block cipher DES with 247 known plaintexts
while a brute force attack takes 256 key searches. Known plaintext can be obtained through
eavesdropping a communication channel and certain inferencing. For example, X.509 digital
certificates [1] are supposed to be public information and widely used in IKE [6] and TLS [3].
If a cipher is used by IKE or provides lower layer protection for TLS (e.g., data link layer
protection with EAP-TLS [11] as payload), the encrypted words corresponding to these
certificates can be collected. Our known plaintext attack on those efficient MRG ciphers
actually requires known plaintext less than a regular X.509 certificate.

In this paper, we firstly propose a distinguishing attack to reliably distinguish an MRG
cipher using modulus 231−1 [9] from encrypting with random sequence. It requires 218 words
of ciphertext and each corresponding plaintext word’s MSB. Then a known plaintext attack
is proposed on a generic MRG cipher, regardless of which modulus is used. When the MRG
is optimized for efficiency, the attack requires only 2k words of sequential plaintext and its
corresponding ciphertext, where k is the order of MRG used for this cipher (e.g., k = 47 in
the cipher illustrated in [9]). With 48k decryption operations, the encryption system’s state
can be restored, the key is recovered, and all subsequent ciphertext can be decrypted. By
comparison, a brute force attack needs 232k attempts to search k initial MRG seeds, 32 bits
each. The attack also works on MRG ciphers with maximum number of distinct coefficients.
Any MRG cipher with a practical order (k ≤ 47) can be attacked successfully, with usually
no more than 212 words of known plaintext and trivial computation.

2 Summary of the MRG Cipher

As Figure 1 illustrates, the MRG cipher has 4 steps for encryption as the following.

• Step 1: pseudorandom number generation. An MRG is used to generate a sequence
of numbers Xi = (α1Xi−1 + . . . + αkXi−k) mod m, (i ≥ k). The k different MRG
seeds X0, . . . , Xk−1 are used as cipher key and initialize the state of encryption system.

2

The MRG coefficients α1, . . . , αk, m are publicly known values. Note that the MRG is
simply a linear feedback shift register defined over the field GF (m).

• Step 2: key mixture. A 32-bit plaintext word is divided into 4 bytes. Each byte within
this word will be added with the corresponding byte in MRG output Xk. The addition
is defined as byte wise addition modulo 256. The result is denoted by C. The MRG
output Xi (i ≥ k) is called subkey in this paper to distinguish the cipher key seeded
to the MRG.

• Step 3: computation of a permutation Π from the MRG output Xk. Denote Xk =
Xk,0||Xk,1||Xk,2||Xk,3 and Π = π0||π1||π2||π3, where “ || ” denotes concatenation. π0 =
Xk,0 mod 4; πi = n mod 4, where n is the smallest integer bigger or equal to Xk,i

so that πi /∈ {π0, . . . , πi−1}. The permutation Π is dynamically computed for each
subsequent subkey Xi (i > k).

• Step 4: output permutation. The permutation Π is used to shuffle bytes within the
intermediate value C obtained from Step 2. Each i-th byte of the ciphertext C ′ comes
from the πi-th byte of the intermediate value C.

Step 3

Seeds:

X0, …, Xk-1

Publicly known

coefficients:

α1, …, αk, m

MRG

Pseudo-random number generation: XkStep 1

4 byte plaintext P

Key Xk
Block Cipher

C

πi (0≤i≤3)

Ciphertext C’

Step 2

Step 4 Compute Permutation П

Figure 1: MRG Based Cipher [9]

Although not clearly specified, the MRG designers suggest the use of modulus 231 − 1
for efficiency improvement in cipher description [9]1: because m = 231 − 1 and α1 = . . . =
αk < 232 are popular values for the modulo and parameter sizes, respectively, we make the
following restrictions: m < 232 and α1, . . . , αk < 232.

1The modulus is denoted by p, instead of m, in [9]. This paper uses p to denote probability or plaintext.

3

3 A Distinguishing Attack

When the MRG cipher uses a modulus of 31 bits (i.e., m = 231− 1) as suggested in [9], each
subkey Xi (= x30 . . . x0) also has 31 bits. The MSB of the intermediate value C (= c31 . . . c0)
is possible to change from plaintext P (= p31 . . . p0) only if there is a carry bit from its lower
bit position: c31 = p31 ⊕ carry-bit30. Although the permutation Π shuffles byte order of the
ciphertext C ′, MSB c31 must be transposed to a shuffled ciphertext byte’s MSB.

Denote Pc(i) as the probability that the i-th bit in a byte of C has a carry bit out. Since
ci = pi⊕xi⊕carry-biti−1, the i-th bit location has carry out when pi||xi||carry-biti−1=“011”,
“101” or when pi||xi=“11”. Thus,

Pc(i) =
1

2
Pc(i− 1) +

1

4
, . . . , Pc(0) =

1

4

⇒ Pc(i) =
1

2
− 1

2i+2
.

After byte-wise modulo addition, C’s MSB changes from p31 with probability Pc(6) =
1
2
− 1

256
. So c31 = p31 with probability 1− Pc(6) = 1

2
+ pb, where pb = 1

256
.

The attack is based on the probability bias pb of C’s MSB. Given a random sequence used
for encrypting plaintext in a perfect manner, the MSBs of a ciphertext word’s 4 bytes all
match the corresponding plaintext word’s MSB with probability 1/16. Encrypted using this
MRG cipher, a ciphertext word has its 4 bytes’ MSBs identical to the MSB of its plaintext
word, with probability (1/8) ∗ (1/2 + pb). The following theorem in [7] is used to estimate
the number of sufficient samples to distinguish the MRG cipher:

Theorem 1 (See detailed proof in [7]) Let M, N be distributions, and suppose the event e
happens in M with probability p and in N with probability p(1+q). Then for small p and q,
O(1/pq2) samples suffice to distinguish M from N with a constant probability of success.

In our case, the event e is that the 4 bytes in ciphertext have their MSBs match the MSB
of corresponding plaintext word. According to the above theorem:

p =
1

16
, p(1 + q) =

1

8
(
1

2
+ pb)

then

q =
1

128
,

1

pq2
= 218 .

Thus, a distinguishing attack works on the MRG with samples in the magnitude of 218.
Each sample needs the MSBs of a ciphertext word’s 4 bytes and the MSB of its plaintext
word. These ciphertext words do not have to be encrypted with the same key or computed
sequentially. A word’s MSB is often fixed when its content follows certain format (e.g.,
English language text in ASCII) or varies slightly (e.g., air pressure data collected by a
wireless sensor). Thus, it is not hard to collect enough ciphertext and MSBs of plaintext for
this attack.

4

We simulate this attack for 1000 times on 218. Denote Me and Ne as random variables
of event e in distributions using random source for encryption and using MRG cipher for
encryption, respectively. We use a cryptographic random number generator, CryptGenRan-
dom(.) provided by Microsoft CryptoAPI, to emulate a random source. With 218 samples,
the mean and standard deviation are 16382 and 121.68 for Me; 16515 and 124.95 for Ne.
These results are close to their theoretic values from binomial distribution with t samples:

E[Me] = tp = 218p = 16384, σ[Me] =
√

tp(1− p) = 123.94,

E[Ne] = tp(1 + q) = 16512, σ[Ne] =
√

tp(1 + q)(1− p(1 + q)) = 128.47.

Figure 2 illustrates the first 100 experimental tests with 218 samples. It has been sufficient
enough to tell the difference between Me and Ne.

16200

16400

16600

16800

17000

b
e

r
 o

f
O

c
c
u

r
r
e

n
c
e

s

15800

16000

16200

0 20 40 60 80 100

N
u

m
b

Encryption with MRG Cipher Encryption with Random Source

Figure 2: Distributions with 218 Samples

To make the difference more significant, we run the test with 222 samples. As illustrated
in Figure 3, with 16 times more samples, we can distinguish an MRG cipher with more
confidence.

4 A Known Plaintext Attack

The MRG cipher takes k seeds as its cipher key. An exhaustive key search requires 232k

attempts with at least k words of known plaintext and ciphertext.
An improved attack is to exhaustively search subkeys {Xi} sufficient to derive the current

MRG state, which requires 232k encryption (or decryption) operations and at least k words
of known plaintext and ciphertext. The attack can be accelerated by looking up a dictionary
indexed by 32-bit plaintext and its ciphertext. As a result, k table lookups are needed with
a dictionary containing 264 words. A chosen plaintext attack can reduce dictionary size to
232 words. However, as discussed later, these attacks may lead to multiple candidates for

5

262000

263000

264000

265000

266000

b
e

r
 o

f
O

c
c
u

r
r
e

n
c
e

s

260000

261000

262000

0 20 40 60 80 100

N
u

m
b

Encryption with MRG Cipher Encryption with Random Source

Figure 3: Distributions with 222 Samples

each subkey, corresponding to the same plaintext and ciphertext. It makes verification more
complicated when many MRG coefficients are nonzero.

This section illustrates an attack much more efficient than these generic attacks.

4.1 General Description

The cipher can be divided into two phases: (I) pseudorandom sequence generation using an
MRG; (II) encryption of each 32-bit word using one MRG output word Xi (i ≥ k) as subkey.
We start with subkey Xk guessing. When we have candidates for k+1 sequential subkeys, we
can use the following equation to remove wrong candidates through further subkey deducing.

Xi = (α1Xi−1 + . . . + αkXi−k) mod m, (i ≥ 2k)

Although the coefficients for multiplication are not specified clearly, performance analysis
in [9] indicates that any MRG with order larger than 47 is not practical (even k = 47 is
much larger than current secure designs). We first attack the cipher in phase (II) and allow
only a small number of candidates to survive from each subkey’s deducing. Then we analyze
the complexity to reduce spurious subkeys in phase (I) with different MRG coefficients.

4.2 Deducing Subkey Xk

The permutation Π, used in MRG cipher, shuffles the 4 bytes within the intermediate result
C to form the ciphertext C ′. Only 24 (i.e., 4!) permutations are possible for Π. In a
known plaintext attack, we can deduce 24 C candidates from the permutations, denoted as
Πs (0 ≤ s ≤ 23), and the given ciphertext C ′. Denote the C candidate derived from the
permutation Πs as Cs.

Since modulo addition is used for key mixture, we have each byte Cs
i = Pi+Xk,i mod 256,

where Cs
i and Pi denote the i-th bytes (0 ≤ i ≤ 3) in Cs and P , respectively. Thus, each Xk

6

candidate, denoted by XS
k , can be computed byte by byte:

XS
k,i = (Cs

i − Pi) mod 256, 0 ≤ i ≤ 3.

With 24 candidates of C, 24 candidates for Xk can be deduced2. As defined in [9], subkey
Xk determines the permutation Π for current block. Since each candidate Xs

k is deduced
without the knowledge of how its permutation is computed, deducing Xs

k and computing Πs

are independent in this attack unless Xs
k = Xk. As a result, each candidate other than the

right guess has a probability of 1/24 to match Πs assumed previously at the beginning of the
attack. Those candidates other than Xk are called spurious subkeys if they can survive from
permutation verification. In addition, because Xk comes from MRG modulo operation with
m, only those candidates less than m can survive. Then the expected number of spurious
subkeys, denoted as Esp, is computed through binomial distribution, Ysp ∼ B(t, p):

Esp = E[Ysp] = tp = (24− 1)(
1

24
· m

232
) =

23

24
· m

232
<

23

24
.

The right candidate Xk certainly matches its permutation. In total, the expected number
of Xs

k to survive permutation verification is:

Esv = Esp + 1 <
47

24
.

With each word of known plaintext and ciphertext, we reduce its subkey Xk candidates
from 232 to a variable up to 24, with expectation Esv.

The pseudo code in Figure 4 deduces subkey Xk after examining 24 possible permutations.
This procedure can be repeated for sequential words of known plaintext and ciphertext, to
deduce subkey candidates for Xi (i > k).

As the critical step of this attack, the process of subkey deducing has been implemented.
All coefficients for MRG are not clearly specified in [9]. Thus, we assume that MRG outputs
are as good as those from a cryptographic random number generator. In each subkey de-
ducing process, the plaintext word and subkey Xk are simulated with CryptGenRandom(.)
provided by Microsoft CryptoAPI.

We first assume that m is a prime close to 232 such that the condition (Xk <MRG-modulus)
cannot remove any spurious subkey. In total, there are 232m possible combinations of
plaintext and subkey. It is costly to exhaustively study their statistics of subkey deduc-
ing behaviors. As shown in Table 1, the statistical results become stable as 216 or more
plaintext/subkey combinations are generated randomly and tested. The mean of surviv-
ing candidate count is about 2.186 and the standard deviation is about 1.457 during the
232 subkey deducing tests. The real subkey can always be deduced. About 39.1% of per
word subkey deducing tests end up with a uniquely deduced subkey. The mean of surviving
candidate count is slightly larger than its theoretical value Esv (≈ 47/24). It is caused by
unevenly distributed mapping from Xk to the permutation Π. This small difference does not
noticeably affect the effectiveness of the attack.

2In this analysis, we ignore the possibility that the 24 candidates may not be unique, as some of the bytes
of the subkey might be equal.

7

BYTE pi [24][4] = {
{0, 1, 2, 3}, {0, 1, 3, 2}, {0, 2, 1, 3}, {0, 2, 3, 1},
{0, 3, 1, 2}, {0, 3, 2, 1}, {1, 0, 2, 3}, {1, 0, 3, 2},
{1, 2, 0, 3}, {1, 2, 3, 0}, {1, 3, 0, 2}, {1, 3, 2, 0},
{2, 0, 1, 3}, {2, 0, 3, 1}, {2, 1, 0, 3}, {2, 1, 3, 0},
{2, 3, 0, 1}, {2, 3, 1, 0}, {3, 0, 1, 2}, {3, 0, 2, 1},
{3, 1, 0, 2}, {3, 1, 2, 0}, {3, 2, 0, 1}, {3, 2, 1, 0} }

procedure MRG-Subkey-Deducing(BYTE pt [4], BYTE ct [4])
begin

BYTE Xk [4]
INTEGER i, j

for i← 0 to 23 do
begin

for j ← 0 to 3 do
begin

Xk[pi[i][j]] ← (ct[j]− pt[pi[i][j]]) mod 256
end
if (pi[i][0. . .3]=Π-Compute(Xk)) and (Xk<MRG-modulus)
/∗ Π-Compute(.) performs Step 3 in Section 2 ∗/
begin

output Xk as one surviving subkey candidate
end

end
end

Figure 4: Pseudo Code for Subkey Deducing

When modulus m = 231−1 (as suggested in [9]), the condition (Xk < MRG-modulus) can
invalidate about half of subkey candidates. Then the expected number of surviving subkeys
Esv = 23

24
· m
232 +1 ≈ 23

48
+1 = 71

48
. We apply this condition check to the previous tests, assuming

that m = 231 − 1. The mean of surviving subkey count decreases to 1.727 and the standard
deviation is 1.083 during the 232 subkey deducing tests. Thus, the attack removes spurious
subkeys more effectively, when targeted at those efficient MRGs with modulus m = 231 − 1.

4.3 Removing Spurious Subkeys

For each key between Xk and X2k−1 inclusively, we can remove spurious subkey combination
by verifying:

Xi+k = (α1Xi+k−1 + . . . + αkXi) mod m, (k ≤ i ≤ 2k − 1).

8

Table 1: Experimental Results of Subkey Deducing (when m ≈ 232)

of Distribution [t samples], denoted as D[t]
candidates 1st 2nd 1st 2nd
left for Xk D[47] D[47] D[94] D[94] D[28] D[216] D[224] D[232]

0 0 0 0 0 0 0 0 0
1 0.468 0.298 0.362 0.362 0.430 0.392 0.391 0.391
2 0.319 0.362 0.255 0.404 0.320 0.332 0.334 0.334
3 0.106 0.149 0.202 0.128 0.105 0.120 0.121 0.121
4 0.043 0.106 0.128 0.043 0.070 0.079 0.078 0.078
5 0.043 0.021 0.032 0.032 0.043 0.041 0.040 0.040
6 0 0.064 0.011 0.011 0.023 0.023 0.023 0.023
7 0.021 0 0 0 0.008 4.99E-3 5.11E-3 5.13E-3
8 0 0 0 0 0 3.20E-3 3.14E-3 3.18E-3
9 0 0 0 0 0 0 0 0
10 0 0 0.011 0.011 0 5.07E-3 5.46E-3 5.45E-3
11 0 0 0 0 0 0 0 0
12 0 0 0 0.011 0 2.44E-4 2.36E-4 2.33E-4
13 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0
16 0 0 0 0 0 0 2.26E-6 2.36E-6
17 0 0 0 0 0 0 0 0
18 0 0 0 0 0 0 1.55E-6 1.63E-6
19 0 0 0 0 0 0 0 0
20 0 0 0 0 0 0 6.56E-7 6.02E-7
21 0 0 0 0 0 0 0 0
22 0 0 0 0 0 0 0 0
23 0 0 0 0 0 0 0 0
24 0 0 0 0 0 0 4.17E-7 2.97E-7

Mean 1.957 2.383 2.319 2.181 2.078 2.188 2.186 2.186
Std. Dev. 1.288 1.392 1.453 1.682 1.329 1.455 1.457 1.457

A candidate for Xi+k is computed for each combination of existing subkey candidates for
Xi, . . . , Xi+k−1. Such a new candidate can survive subkey deducing, with probability close
to Esv/232 assuming m is close to 232. Thus, each combination containing spurious subkeys
can be easily invalidated if the number of all combinations are far less than 232/Esv. The
total number of these combinations can be estimated by (Esv)

n, where n is the number of
nonzero coefficients in α1, . . . , αk.

The value of n directly determines the efficiency of MRG, because n multiplications

9

normally are needed to generate one subkey (unless many coefficients are identical).

4.3.1 Attack on MRG Ciphers Optimized for Efficiency

The MRG cipher proposed in [9] may use an efficient MRG with 2 to 4 nonzero coefficients in
(α1, . . . , αk), as analyzed in [2]. For example, an MRG may consist of 2 nonzero coefficients
for multiplication:

Xi = (αtXi−t + αkXi−k) mod m, (i ≥ k, 1 ≤ t < k, αt �= 0, αk �= 0).

This type of MRG has better performance than those with more nonzero coefficients.
It is trivial to verify that (Esv)

2 << 232/Esv. For each subkey between Xk and X3k−1

inclusively, spurious subkeys can be removed by verifying:

Xi+k = (αtXi+k−t + αkXi) mod m, (k≤ i ≤2k−1, 1≤t<k, αt �=0, αk �=0).

Once subkeys Xk to X2k−1 are uniquely identified, we obtain sufficient information of MRG’s
current state. All subsequent subkeys can be easily derived from MRG computation.

Ciphers with those MRGs consisting of 3 or 4 nonzero coefficients for multiplication can
be attacked in a similar way because (Esv)

3, (Esv)
4 << 232/Esv.

4.3.2 Attack on Complicated MRG Ciphers

The most complicated MRGs are perhaps those having maximum number of distinct nonzero
values for all coefficients α1, . . . , αk. We assume that its m is close to 232. Such an MRG is
extremely inefficient but helpful to estimate the upper bound of the attack’s complexity for
all MRG ciphers.

Give k sequential subkeys to deduce, the number of events to uniquely identify a subkey is
a random variable Y in a binomial distribution: Y ∼ B(k, p), where p is the probability that
all 23 spurious subkey maps to wrong permutations. Thus, p = (23

24
· m

232)
23 ≈ (23

24
)23 ≈ 0.376.

Its experimental value through statistical test is 0.391, as shown in Table 1. Y is not less
than a threshold y with probability:

Pr(Y ≥ y) = 1−
y−1∑
i=0

(
k
i

)
pi(1− p)k−i .

The number of all candidates for tuple [Xi, . . . , Xi+k−1], where i ≥ k, can be estimated
by (Esv)

k−y. When (Esv)
k−y Esv

232 = 2−32(Esv)
k−y+1 is significantly small, all spurious keys can

be reliably removed. Table 2 shows the relation between Pr(Y ≥ y) and 2−32(Esv)
k−y+1

when k = 47 and Esv is adjusted to 2.186 (i.e., experimental mean in Table 1) from 47
24

. For
example, when y = 26, 2−32(Esv)

k−y+1 = 0.006908, indicating that spurious subkeys can be
reliably removed; Pr(Y ≥ y) = 0.01003, indicating the number of samples needed to uniquely
identify 26 subkeys among 47 sequential subkeys is in the magnitude of 1/Pr(Y ≥ y) = 99.7.
Thus, the required known plaintext is in the magnitude of k/Pr(Y ≥ y) = 4686 ≈ 212 words.

10

Table 2: Probabilities

y Pr(Y ≥ y) 2−32(Esv)
48−y

20 2.869E-01 7.538E-01
21 1.953E-01 3.448E-01
22 1.244E-01 1.577E-01
23 7.391E-02 7.216E-02
24 4.090E-02 3.301E-02
25 2.103E-02 1.510E-02
26 1.003E-02 6.908E-03
27 4.430E-03 3.160E-03
28 1.807E-03 1.446E-03
29 6.799E-04 6.613E-04
30 2.353E-04 3.025E-04
31 7.469E-05 1.384E-04
32 2.169E-05 6.331E-05

4.4 Summary of the Attack’s Complexity

4.4.1 Attack on MRG Ciphers Optimized for Efficiency

The attack requirements for the two phases are:

• Deducing subkeys: 2k sequential words of known plaintext and ciphertext are needed
to deduce all surviving subkey candidates for Xk, . . . , X3k−1. Deducing each subkey
needs to consider 24 candidates. In total, 24 ∗ 2k = 48k decryption operations are
needed without MRG computation.

• Removing spurious subkeys: (Esv)
3k subkey combinations need to be verified using

MRG computation.

Since (Esv)
3k < 48k, such an attack requires less than 48k decryption operations and 2k

words of sequential known plaintext and ciphertext.

4.4.2 Attack on Complicated MRG Ciphers

As described previously, we need to select a convenient y to trade off between complexity
and successful rate. When y satisfies the requirement (Esv)

k−y+1 << 232:

• Deducing subkeys: the length of known plaintext can be estimated using k/Pr(Y ≥ y).
Subkey deducing is required for these known plaintext words.

• Removing spurious subkeys: (Esv)
k−y subkey combinations need to be verified using

MRG.

11

For example, an MRG cipher with all 47 distinct nonzero coefficients can be successfully
attacked with about 212 known plaintext words when y = 26. The workload is about
(Esv)

k−y = 224 MRG operations plus k/Pr(Y ≥ y) = 212 encryptions. Similar attacks on
other MRG ciphers with order 47 have less complexity than this worst case.

5 Cipher Performance

Although called block cipher, the MRG cipher works more similarly to a word oriented
stream cipher. The MRG cipher is designed for use cases in a resource limited environment.
However, even an efficient MRG with two identical nonzero coefficients (thus extremely
insecure) takes one 32-bit multiplication and one modulo operation. These two operations
are not efficient in either hardware or software. The MRG takes k variables (e.g., 188 bytes
when k = 47) in memory.

By comparison, cipher RC4 only takes 258 bytes in memory for keystream generation.
Many word oriented stream ciphers (e.g., SNOW[4] and SOBER[5] families of ciphers) take
less memory, require no multiplication or modulus operations, and demonstrate good perfor-
mance over various platforms. For example, a software implementation of SNOW 2.0 only
takes 6.75 cycles/byte [10].

6 Conclusion

Our attacks work on the MRG cipher with manageably low space and time complexity.
Therefore, the cipher structure proposed in [9] is seriously flawed. It should not be used for
cryptographic applications even in resource restricted systems.

References

[1] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and W. Polk. RFC 5280:
Internet X.509 public key infrastructure certificate and certificate revocation list (CRL)
profile, May 2008. Available at www.ietf.org/rfc/rfc5280.txt.

[2] L. Y. Deng. Efficient and portable multiple recursive generators of large order. In ACM
Transactions on Modeling and Computer Simulation, volume 15, pages 1–13, 2008.

[3] T. Dierks and C. Allen. RFC 2246: The TLS protocol version 1, January 1999. Available
at www.ietf.org/rfc/rfc2246.txt.

[4] P. Ekdahl and T. Johansson. A new version of the stream cipher SNOW. In Proceed-
ings of Selected Areas in Cryptography - SAC 2002, volume 2595 of Lecture Notes in
Computer Science, pages 47–61. Springer-Verlag, 2001.

12

[5] P. Hawkes and G. G. Rose. Primitive specification for SOBER-128. 2003. Available at
eprint.iacr.org/2003/081.

[6] E. C. Kaufman. RFC 4306: Internet key exchange (IKEv2) protocol, 2005. Available
at www.ietf.org/rfc/rfc4306.txt.

[7] I. Mantin and A. Shamir. A practical attack on broadcast RC4. In Proceedings of Fast
Software Encryption - FSE 2001, volume 2355 of Lecture Notes in Computer Science,
pages 152–164. Springer-Verlag, 2001.

[8] M. Matsui. Linear cryptanalysis method for DES cipher. In Proceedings of Advances
in Cryptology - EUROCRYPT’93, volume 765 of Lecture Notes in Computer Science,
pages 386–397. Springer-Verlag, 1994.

[9] A. Olteanu, Y. Xiao, F. Hu, and B. Sun. A lightweight block cipher based on a multiple
recursive generator. In Proceedings of IEEE GLOBECOM 2008, December 2008.

[10] B. Preneel, B. V. Rompay, S. Örs, A. Biryukov, L. Granboulan, E. Dottax, M. Dichtl,
M. Schafheutle, P. Serf, S. Pyka, E. Biham, E. Barkan, Dunkelman, J. Stolin, M. Ciet,
J.-J. Quisquater, F. Sica, H. Raddum, and M. Parker. Performance of optimized im-
plementations of the NESSIE primitives. Technical report, NESSIE, February 2003.
Available at www.cosic.esat.kuleuven.be/nessie/deliverables/D21-v2.pdf.

[11] D. Simon, B. Aboba, and R. Hurst. RFC 5216: The EAP-TLS authentication protocol,
March 2008. Available at www.ietf.org/rfc/rfc5216.txt.

13

