Semantically Rich Application-Centric Security in Android

Machigar Ongtang, Stephen McLaughlin, William Enck and Patrick McDaniel
Department of Computer Science and Engineering
The Pennsylvania State University, University Park, PA 16802
Email: {ongtang,smclaugh,enck,mcdaniel} @ cse.psu.edu

Abstract—Smartphones are now ubiquitous. However, the
security requirements of these relatively new systems and the
applications they support are still being understood. As a
result, the security infrastructure available in current smart-
phone operating systems is largely underdeveloped. In this
paper, we consider the security requirements of smartphone
applications and augment the existing Android operating
system with a framework to meet them. We present Secure
Application INTeraction (Saint), a modified infrastructure
that governs install-time permission assignment and their
run-time use as dictated by application provider policy.
An in-depth description of the semantics of application
policy is presented. The architecture and technical detail
of Saint is given, and areas for extension, optimization,
and improvement explored. As we show through concrete
example, Saint provides necessary utility for applications to
assert and control the security decisions on the platform.

Keywords-mobile phone security; Android; application
interactions; mediation;

I. INTRODUCTION

Smartphones have spurred a renaissance in mobile
computing. The applications running on smartphones sup-
port vast new markets in communication, entertainment,
and commerce. Hardware, access, and software support-
ing such applications are now widely available and often
surprisingly inexpensive, e.g., Apple’s App Store [1],
Android’s Market [2], and BlackBerry App World [3].
As a result, smartphone systems have become pervasive.

Mobile phone applications are shifting from stand-
alone designs to a collaborative (service) model. In this
emerging environment, applications expose selected inter-
nal features to other applications, and use those provided
by others. In the latter case, applications simply search
and use appropriate providers of a service type at run-
time, rather than bind itself to specific implementations
during development. This allows a rich culture of “use
and extend” development that has led to an explosion
of innovative applications. This culture is possibly best
illustrated in the Android' operating system community.

The security model of the Android system (and that
of many other phone operating systems) is “system-
centric”’. Applications statically identify the permissions

This material is based upon work supported by the National Science
Foundation under Grant No. CNS-0721579 and CNS-0643907. Any
opinions, findings, and conclusions or recommendations expressed in
this material are those of the author(s) and do not necessarily reflect the
views of the National Science Foundation.

'http://www.android.com

that govern the rights to their data and interfaces at
installation time. However, the application/developer has
limited ability thereafter to govern to whom those rights
are given or how they are later exercised. In essence,
permissions are asserted as often vague suggestions on
what kinds of protections the application desires. The ap-
plication must take on faith that the operating system and
user make good choices about which applications to give
those permissions—which in many cases is impossible
because they do not have sufficient context to do so.

Consider a hypothetical PayPal service built on An-
droid. Applications such as browsers, email clients, soft-
ware marketplaces, music players, etc. use the PayPal
service to purchase goods. The PayPal service in this
case is an application that asserts permissions that must
be granted to the other applications that use its inter-
faces. What is a legitimate application? Only PayPal
the application (really PayPal the corporation) is in a
position to know the answer to that question. This is
more than simply a question of who is making the request
(which in many cases in Android is itself unknowable),
but also where, when, how, and under what conditions
the request is being made. Unfortunately, Android does
not provide any means for answering those questions or
enforcing a security policy based upon them. Simply put,
the Android system protects the phone from malicious
applications, but provides severely limited infrastructure
for applications to protect themselves. Based on extensive
development of Android applications, we observe three
essential application policies not available to applications
in the Android security framework:

1) Permission assignment policy - Applications have
limited ability to control to whom permissions for
accessing their interfaces are granted, e.g., white or
black-list applications.

2) Interface exposure policy - Android provides only
rudimentary facilities for applications to control
how their interfaces are used by other applications.

3) Interface use policy - Applications have limited
means of selecting, at run-time, which application’s
interfaces they use.

This paper introduces the Secure Application INTeraction
(Saint) framework that extends the existing Android secu-
rity architecture with policies that address these key appli-
cation requirements. In the Saint-enhanced infrastructure,

Payment Applications
Secure
Info. | Payment
Payment Trust
Info. _|Checkout

—
Payment M-Payer
Info.

Figure 1. The PersonalShopper application finds desired items at
the discretion of the user and interacts with vendors and payment
applications to purchase them.

Location-
based
Search App

Personal
Ledger

Internet

Personal
Shopper

Password
Vault

S
Encrypted
Account
Password

e e e e e emem—em————————q

applications provide installation-time policies that regu-
late the assignment of permissions that protect their inter-
faces. At run-time, access of or communication between
applications is subject to security policies asserted by both
the caller and callee applications. Saint policies go far
beyond the static permission checks currently available in
Android by restricting access based on run-time state, e.g.,
location, time, phone or network configuration, etc. We
define the Saint framework and discuss the complexities
of augmenting Android with extended policy enforcement
features, and develop mechanisms for detecting incompat-
ibilities and dependencies between applications. We begin
our discussion with a motivating example.

II. SMARTPHONE APPLICATION SECURITY

Figure 1 presents the fictitious PersonalShopper smart-
phone shopping application. PersonalShopper tracks the
items a user wishes to buy and interacts with payment
applications to purchase them. A user enters desired items
through the phone’s user interface (potentially by clicking
on items on a browser, media player, etc.), creating a
vender independent “shopping cart”. Users subsequently
acquire items in one of two ways. The user can direct
the application to “find” an item by clicking on it. In this
case the application will search known online vendors
or shopping search sites (e.g., Google Product Search) to
find the desired item. Where multiple vendors provide the
same item, the user selects their vendor choice through
a menu. The second means for finding a product is by
geography—a user moving through, for example, a mall
can be alerted to the presence of items available in a
physical store by a location-based search application. In
this case, she will be directed to the brick-and-mortar
vendor to obtain the item.

Regardless of how the item is found, PersonalShopper’s
second objective is to facilitate the purchase process
itself. In this case, it works with our example checkout
applications SecurePayer and TrustCheckout. Personal-
Shopper accesses checkout applications and acts as an
intermediary between the buyer and the merchants to
both improve the efficiency of shopping and to protect
customer privacy. The application and the services they

use will interact with password vaults to provide au-
thenticating credentials. Following their completion, the
transactions are recorded in a personal ledger application.

Consider a few (of many) security requirements this
application suggests:

1) PersonalShopper should only use trusted payment
services. In Figure 1, it may trust SecurePayer and
TrustCheckout, but does not trust other unknown
payment providers (e.g., the M-Payer provider).

2) PersonalShopper may only want to restrict the use
of the service to only trusted networks under safe
conditions. For example, it may wish to disable
searches while the phone is roaming or highly
exposed areas (e.g., airports) or while battery is low.

3) PersonalShopper may require certain versions of
service software be used. For example, the pass-
word vault application v. 1.1 may contain a bug that
leaks password information. Thus, the application
would require the password vault be v. 1.2 or higher.

4) PersonalShopper may wish to ensure transaction
information is not leaked by the phone’s ledger
application. Thus, the application wishes to only
use ledgers that don’t have access to the Internet.

5) Security requirements may be placed on Personal-
Shopper by the applications and services it uses. For
example, to preserve location privacy, the location-
based search application may only provide Person-
alShopper location information only where Person-
alShopper holds the permissions to access location
information itself, e.g., the phone’s GPS service.

None of these policies are supported by the current
Android security system. While some of these may be
partially emulated using combinations of complex ap-
plication code, code signing, and permission structures,
they are simply outside the scope of Android’s security
policy. As a consequence (and core to our extensive
experience building systems in Android), applications
must cobble together custom security features on top
of the rudimentary structures currently provided by the
Android system. Where possible at all, this process is ad
hoc, error prone, repetitive, and inexact.

What is needed is for Android to provide applications
a more semantically rich policy infrastructure. We begin
our investigation by outlining the Android system and
security mechanisms. Section IV examines a spectrum of
policies that are potentially needed to fulfill the applica-
tions’ security requirements, highlighting those cannot be
satisfied by the current Android. We then introduce goals,
design, and implementation of the Saint system.

III. ANDROID

Android is an mobile phone platform developed by the
Google-led Open Handset Alliance (OHA).? The platform

Zhttp://www.openhandsetalliance.com/

start/stop/bind
start all

Activity Activity

return callback

:

Activity

Read/Write
Query

Broadcas
Receiver

Content

Activity Provider

Activity

return

Figure 2.

Typical Android application component IPC

quickly became popular amongst the developer commu-
nity for its open source nature and adoption by telecom-
munications providers world-wide. While Android is
based on Linux, the middleware presented to application
developers hides traditional OS abstractions. The platform
itself focuses on applications, and much of the core phone
functionality is implemented as applications in the same
fashion used by third-party developers.

Android applications are primarily written in Java and
compiled into a custom byte-code (DEX). Each applica-
tion executes in a separate Dalvik virtual machine inter-
preter instance running as a unique user identity. From the
perspective of the underlying Linux system, applications
are ostensibly isolated. This design minimizes the effects
of a compromise, e.g., an exploited buffer overflow is
restricted to the application and its data [4].

All inter-application communication passes through
middleware’s binder IPC mechanism (our discussion as-
sumes all IPC is binder IPC). Binder provides base
functionality for application execution. Applications are
comprised of components. Components primarily interact
using the Intent messages. While Intent messages can
explicitly address a component in an application by name,
Intent versatility is more apparent for Intent messages
addressed with implicit action strings, for which the mid-
dleware automatically resolves how to handle the event,
potentially prompting the user. Recipient components
assert their desire to receive Intent messages by defining
Intent filters specifying one or more action strings.

There are four types of components used to construct
applications; each type has a specific purpose. Activity
components interface with the user via the touchscreen
and keypad. Typically, each displayed screen within an
application is a different Activity. Only one Activity is
active at a time, and processing is suspended for all
other activities, regardless of the application. Service
components provide background processing for use when
an application’s Activities leave focus. Services can also
export Remote Procedure Call (RPC) interfaces including
support for callbacks. Broadcast Receiver components
provide a generalized mechanism for asynchronous event
notifications. Traditionally, Broadcast Receivers receive
Intents implicitly addressed with action strings. Standard
event action strings include “boot completed” and “SMS
received.” Finally, Content Provider components are the
preferred method of sharing data between applications.

The Content Provider API implements an SQL-like inter-
face; however, the backend implementation is left to the
application developer. The API includes support to read
and write data streams, e.g., if Content Provider shares
files. Unlike the other component types, Content Providers
are not addressed via Intents, but rather a content Uniform
Resource Identifier (URI). It is the interaction between
application components for which we are concerned.
Figure 2 depicts common IPC between component types.

Android’s application-level security framework is based
on permission labels enforced in the middleware reference
monitor [5]. A permission label is simply a unique text
string that can be defined by both the OS and third party
developers. Android defines many base permission labels.
From an OS-centric perspective, applications are statically
assigned permission labels indicating the sensitive inter-
faces and resources accessible at run time; the permission
set cannot grow after installation. Application developers
specify a list of permission labels the application requires
in its package manifest; however, requested permissions
are not always granted.

Permission label definitions are distributed across the
framework and package manifest files. Each definition
specifies “protection level.” The protection level can be
“normal,” “dangerous,” “signature,” or “signature or sys-
tem.” Upon application installation, the protection level of
requested permissions is consulted. A permission with the
protection level of normal is always granted. A permission
with the protection level of dangerous is always granted
if the application is installed; however, the user must
confirm all requested dangerous permissions together. Fi-
nally, the signature protection level influences permission
granting without user input. Each application package is
signed by a developer key (as is the framework package
containing OS defined permission labels). A signature
protected permission is only granted if the application
requesting it is signed by the same developer key that
signed the package defining the permission label. Many
OS defined permissions use the signature protection level
to ensure only applications distributed by the OS vendor
are granted access. Finally, the “signature or system”
protection level operates the same as the signature level,
but additionally the permission is granted to applications
signed by key used for the system image.

The permission label policy model is also used to pro-
tect applications from each other. Most permission label
security policy is defined in an application’s package man-
ifest. As mentioned, the package manifest specifies the
permission labels corresponding to the application’s func-
tional requirements. The package manifest also specifies
a permission label to protect each application component
(e.g., Activity, Service, etc). Put simply, an application
may initiate IPC with a component in another (or the
same) application if it has been assigned the permission
label specified to restrict access to the target component.

Security Policy

(1.) Permission
Granting Policy
(Install-time)

(2.) Interaction Policy

(Run-time)

1
(1.3) Application

|
(2.3) Application

[| | 1
(1.1)Protection-level (1.2) Signature- (2.1) Permission- (2.2) Signature- (2.4) Context-based
based Policy based Policy configuration based Access based Policy configuration Policy
based Policy Control Policy based Policy

- Normal Set of signatures on Set of configuration Permission that Set of signatures Set of configuration || Phone's context:

- Dangerous the application - Other requested protects component on the opponent of the opponent Location, time,

- Signature - Default allow permissions VS those held by application - Held permissions Bluetooth state,

- Signature or - Default deny - Application version the accessing - Default allow - Application Version || connected devices,

system Define set of except - etc. application - Default deny - etc. data connection,

signatures Define set of data/call state,
T | except signatures battery, etc.

Figure 3.

Using this policy and permission protection levels, ap-
plication developers can specify how other applications
access its components. For a more complete description
of the Android application level security policy and it’s
subtleties, see Enck et al. [6].

The permission label-based security policy stems from
the nature of mobile phone development. Manually man-
aging access control policies of hundreds (thousands) of
potentially unknown applications is infeasible in many
regards. Hence, Android simplifies access control policy
specification by having developers define permission la-
bels to access their interfaces. The developer does not
need to know about all existing (and future) applications.
Instead, the permission label allows the developer to
indirectly influence security decisions. However, herein
lies the limitations of Android’s security framework.

IV. APPLICATION POLICIES

We explored a myriad of applications as a means of
understanding the appropriate set of policy expressibility.
An initial policy taxonomy is presented in Figure 3.

The permission-granting policy (1.) regulates permis-
sion assignment. In addition to controlling permission
granting using Android’s protection level-based policy
(1.1), an application A may require signature-based pol-
icy (1.2) to control how the permissions it declares are
granted based on the signature of the requesting applica-
tion B (A and B may be signed by different developer
keys). Instead, the policy grants (or denies) the permission
by default with an exception list that denies (grants) the
applications signed by the listed keys. An application may
also require configuration-based policy (1.3) to control
permission assignment based on the configuration pa-
rameters of the requesting application, e.g., the set of
requested permissions and application version.

The interaction policy (2.) regulates runtime interaction
between an application and its opponent. An application
A’s opponent is an application B that accesses A’s
resources or is the target of an action by A, depending on
the access control rule (i.e., B is A’s opponent for rules
defined by A, and A is B’s opponent for rules defined by
B). Android’s existing permission-based access control
policy (2.1) provides straightforward static policy protec-

Policy tree illustrating the example policies required by applications. The double-stroke boxes indicate support by the existing platform.

tion, as described in Section III. However, this policy is
coarse-grained and insufficient in many circumstances.
Applications may require signature-based policy (2.2)
to restrict the set of the opponent applications based
on their signatures. Similar to above, the default-allow
and default-deny modes are needed. With configuration-
based policy (2.3), the applications can define the de-
sirable configurations of the opponent applications; for
example, the minimum version and a set of permissions
that the opponent is allowed (or disallowed). Lastly, the
applications may wish to regulate the interactions based
on the transient state of the phone. The phone context-
based policy (2.4) governs runtime interactions based on
context such as location, time, Bluetooth connection and
connected devices, call state, data state, data connection
network, and battery level. Note that initially, policy types
2.2 and 2.3 may appear identical to 1.2 and 1.3; however,
the former types also place requirements on the target
application, which cannot be expressed with 1.2 and
1.3. However, 1.2 and 1.3 are desirable, because when
applicable, they have insignificant runtime overhead.

We now present two example application policies re-
lated to our motivating example, PersonalShopper, which
interacts with checkout applications, password vaults,
location-based search applications, and personal ledgers.

Install-time Policy Example: In our PersonalShop-
per example, the location-based search application
(com.abc.1lbs) wants to protect against an unautho-
rized leak of location information from its “Query-
ByLocation” service. Permission granting policy can
be applied when the PersonalShopper requests the
permission com.abc.perm.getloc used to protect
“QueryByLocation”. It needs application configuration-
based policy to specify that for the permission
com.abc.perm.getloc to be granted, the requester
must also have the “ACCESS_LOCATION” permission.

Run-time Policy Example: To ensure that the checkout
application used for payment is trusted, their signatures
must be checked. The PersonalShopper needs signature-
based policy to specify that when the source “Personal
Shopper” (com.ok.shopper) starts an Activity with
action “ACTION_PAY”, the policy ensures resolved ap-
plications are signed by keys in a given set.

policy aa)
file
_>[SAINT]

Installer

apk

App B
Applications
4

Android
Middleware

Application
Package

SAINT
AppPolicy
Provider

®

[Android's Permission Check]

Linux Kernel

Figure 4. Saint enforcement - Saint enhances the application installation
process (a-c) with additional permission granting policies and mediates
component IPC (1-5) to enforce interaction policies specified by both
the caller and callee applications.

V. SAINT PoLICY

This section overviews the Saint policy primitives used
to describe the install time policies and the interaction
policies. Saint policies are those in gray boxes in Figure 3.

A. Install-Time Policy Enforcement

Saint’s install-time policy regulates granting of appli-
cation defined permissions. More specifically, an applica-
tion declaring permission P defines the conditions under
which P is granted to other applications at install-time.
Conceptually, the an application requesting the permission
P can be installed only if the policy for acquiring P is sat-
isfied. Saint represents a substantial departure from exist-
ing Android permission assignment. The existing Android
model allows/disallows a permission assignment based on
application-independent rules, or where such rules pro-
vide insufficient guidance, user input. Conversely, Saint
allows applications to exert control over the assignment
of permissions it declares through explicit policy.

Depicted in Figure 4, install-time policies are enforced
by the Saint installer based on decisions made by the
AppPolicy provider, which maintains a database of all
the install and run-time policies. Upon installing an appli-
cation, the Saint-enhanced Android installer retrieves the
requested permissions from the manifest file (step a). For
each permission, it queries the AppPolicy provider (step
b). The AppPolicy provider consults its policy database,
and returns a decision based on matching rules (step c).
If the policy conditions hold, the installation proceeds,
otherwise it is aborted. Finally, on successful installation,
the new application’s install-time and runtime polices are
appended to the AppPolicy provider’s policy database.

As shown in Table I, Saint install-time policy consists
of a permission label, an owner, and a set of conditions.
The permission label identifies the permission to be
regulated. The owner is always the application declaring
the permission. The conditions are a collection of checks
on the properties of the application requesting for it. All
checks must be true for the installation to be allowed.
The condition can check the signatures on the application
package or other permissions the application requests,
i.e., the permissions it would possess if installed. The
condition check is implicitly affirmative in that it requires

the condition to be true, e.g., as the accepted developer
signatures or required set of permissions. Alternatively, it
can be negated e.g., as forbidden permissions. Only the
application declaring such permission is allowed to create
the policy for it. The install-time policy for requirement
(5) of our motivating example in Section II is provided
as policy (1) in Table I. Saint encodes it in XML as:

<permission-grant permission="com.abc.perm.getloc"
owner="com.abc.lbs">
<required-permissions>
<permission-label>
android.permission.ACCESS_FINE_LOCATION
</permission-label>
</required-permissions>
</permission-grant>

B. Run-Time Policy Enforcement

Saint’s runtime policy regulates the interaction of soft-
ware components within Android’s middleware frame-
work. Any such interaction involves a caller application
that sends the IPC and callee (B) application that receives
that IPC. The IPC is allowed to continue only if all poli-
cies supplied by both the caller and callee are satisfied.

Depicted in Figure 4, the Saint policy enforcement
works as follows. The caller application A initiates the
IPC through the middleware framework (step 1). The
IPC is intercepted by the Saint policy enforcement code
before any Android permission checks. Saint queries the
AppPolicy provider for policies that match the IPC (step
2). The AppPolicy provider identifies the appropriate
policies, checks that the policy conditions (application
state, phone configuration, etc.) satisfied, and returns the
result (step 3). If the conditions are not satisfied, the IPC
is blocked; otherwise, the IPC is directed to the existing
Android permission check enforcement software (step 4).
Android will then allow (step 5) or disallow the IPC to
continue based on traditional Android policy.

Saint enforces two types of runtime policies: 1) access
policies identify the caller’s security requirements on the
IPC, and 2) expose policies identify the callee’s security
requirements on the IPC. That is, access policies govern
the IPC an application initiates, and expose policies
govern the IPC an application receives. Note that the
target (for access) and source (for expose) are implicitly
interpreted as the application specifying the policy, and an
application cannot specify policy for other applications.

One can view Saint policy as being similar to a
network-level stateful firewall [7]°. Like a stateful fire-
wall, Saint identifies policy by its source and destination,
and checks conditions to determine if the IPC should
be allowed. In Saint, the source and destination are
applications, components, Intent (event) types, or some
combination thereof. Conditions are checks of the con-
figuration or current state of the phone. Note that unlike

3A stateful firewall maintains ordered policies of the type
{source address, destination address, flags}, where source
and destination are IP address/ports pairs, and the flags represents the
required state of the communication, e.g., whether a ongoing TCP
connection between the source and destination exists.

Table T
EXAMPLE INSTALL-TIME AND RUNTIME POLICIES.

Install-time policies: (permission-label) (owner) [!]Jcond; [[!]Jcond2] ... [[!]cond,,]

(1) (com.abc.perm.getloc) (com.abc.lbs) required-permission(ACCESS_FINE_LOCATION)
Permission com.abc.perm.getloc declared by com.abc. 1bs only be granted to applications with ACCESS_FINE_LOCATION permission

Run-time policies: (expose|access) (source app, type, action) (destination app, component) [!Jcond; [[!]cond2] ... [[!]condy]

(1) (access) (com.ok.shopper, START_ACT, ACTION_PAY) (any, any) sig:default-deny:except(3082019f3082 ...)

com. ok .shopper cannot start activity with ACTION_PAY action to any component in any applications unless they have signature 30820193082 ...
(2) (access) (com.ok.shopper, any, any) (com.secure.passwordvault, any) min-version(1.2)

com.ok.shopper can start any interaction with any action to any component in com. secure.passwordvault version 1.2 or higher
(3) (access) (com.ok.shopper, any, RECORD_EXPENSE) (any, any) forbid-permissions(INTERNET)
com. ok .shopper cannot start any interaction with action “RECORD_EXPENSE” to any component in any application with permission “INTERNET”

a firewall, all Saint policies that match an IPC must be
satisfied. Moreover, if no such policies exist, the IPC
is implicitly allowed. Thus, from a technical standpoint,
Saint is a “conjunctional default allow policy” rather than
“default deny first match policy” [8].

As shown in Table I, Saint runtime policy consists
of a type label, source application details, destination
application details, and a set of conditions. The expose/ac-
cess label identifies the policy type. Applications must
only govern their own IPC, therefore, the specifying
application must be the destination for access polices and
source for expose polices. The source identifies the caller
application and, if applicable, the Intent. The definition of
a destination callee of a policy is somewhat more flexible.

The destination can be an application, a component, an
Intent, or an application/Intent combination. We expand
the notion of destination to provide finer granularity
policy, as applications with many interfaces frequently
require per-interface policies. For example, the security
policy governing an “add an item to my shopping cart”
feature provided by one component may be very different
than the “authorize this transaction” component policy.

Runtime policy rules specifying multiple conditions
require all conditions to be true for the IPC to proceed.
Conditions can be any test that returns a Boolean value.
For example, test for permission configuration, roaming
state, or any other evaluation function the application
deems necessary. Conditions may also be negated, indi-
cating the IPC should only proceed when the condition
is not satisfied (e.g., to blacklist configurations). For
example, a reasonable policy might prevent the phone’s
web browser from accessing the address book or dialer.
Table I provides runtime policies in response to security
requirements (1), (3), and (4) of the example in Section II.
In Saint, runtime policy (1) is presented in XML as:

<interaction direction="access">

<source>
<application>com.ok.shopper</application>
<interaction-type name="START_ACTIVITY" />
<action>ACTION_PAY</action>

</source>

<destination><application>any</application></destination>

<condition>
<signatures type="default-deny">

<except-signature>3082019f ...

</signatures>

</condition>

</interaction>

</except-signature>

C. Administrative Policy

An administrative policy dictates how policy itself
can be changed [9]. Saint’s default administrative policy
attempts to retain the best qualities of mandatory access
control in Android: all application policies are fixed at
installation can only change through application update
(reinstallation). In Saint, the application update process
removes all the of relevant policies and inserts those
specified in the update. From a policy perspective, this is
semantically equivalent to uninstalling and installing an
application. We considered other administrative models
allowing the updater to modify, add, or delete policy.
However, the phone policy could unpredictably diverge
from that desired by the developer quickly where, for
example, update versions were skipped by the user.

There is a heated debate in smartphone operating sys-
tems community about whether to allow users to override
system/application policies. A purist school of thought
suggests that applications are providing MAC policies,
and therefore, nothing should be changed. This provides
the most stringent (and predictable) security, but poten-
tially can prevent otherwise legitimate operations from
occurring. The second school of thought says the user is
always right and every policy should be overrideable.

There is no one right answer to the override debate.
Hence, we introduce an infrastructure for overriding, but
leave it as an OS build option. If the SaintOverride
compile flag is set, Saint allows user override to applica-
tion policy. Additionally, Saint XML policy schema in-
cludes the Override flag for each policy rule defined by
the application. If the system SaintOverride system
flag and Override flags are true, the FrameworkPoli-
cyManager application (see Section VI) allows the user
to disable the rule though the interface. If disabled, this
rule is ignored during policies decisions. Note that we
considered allowing the user to arbitrarily modify the
policy (rather than simply disabling it), but this introduces
a number of complex security and usability concerns that
we defer to future work.

D. Operational Policy

Saint has the potential to hamper utility by restricting
access to interfaces. Detecting such incidents is essential
to be providing a useful service. Past security measures

that have prevented application behavior in an opaque
and ambiguous way have not fared well, e.g., Microsoft
Vista. This section defines policies that detect when Saint
renders an application inefficient, faulty, or inoperable.

Consider a simple logical formulation of the Saint
runtime policies. The conditions supported in the system
are denoted by the set C' = {c¢1,¢a,...,¢,}. C can be
further subdivided into two sets V and T', i.e., C = VUT.
V is the set of conditions which are invariant with respect
to the system state. Invariant conditions do not change
as a function of the normal operation of the phone. For
example, permission assignments, developer signatures,
and application version numbers are invariant. 7' is the set
of conditions which rely on transient system state, e.g.,
roaming state, battery power, access to a 3G interface.

Recall that IPC is governed by the access policy p,
of the caller and the expose policy p. of callee. A given
interaction will succeed only if the conditions of both
policies are satisfied. Logically speaking, each policy
consists of zero or more elements of C' or their negation.
At any given time, the system state of the phone S is a
truth assignment for Boolean variables for each element
of C. S is the set of all possible sets of S. Let V be
the subset of S relating to elements of V' (the invariant
conditions). The run-time IPC decision is therefore a
simple test of satisfaction of the conjunction of p, and
pe by S, ie., S = py Apet

This formulation allows us to reason about the satisfi-
ability of policy at install time. There are three possible
outcomes for the install-time analysis of future IPC:

V = po A pe (always satisfied)

3§ € 8| 8 = pa A pe (satisfiable)
AS € S | 8 = pa A pe (unsatisfiable)
where, “always satisfied” IPC will always be able to
proceed (because the invariant conditions never change),
“satisfiable” can occur under certain conditions (because
they depend on changing system state), and “unsatis-
fiable” will never be allowed to occur. This last case
occurs when either rule contains an unsatisfied invariant
condition, e.g., incorrect developer signature, or the two
rules conflict, e.g., where the expose/access rule contains
a condition c and the other contains its negation —c. Note
that because of the structure of the logical expressions,
this satisfiability test can be tested in polynomial time
(proof omitted for brevity).

We exploit this analysis to lean about the ability of an
application to function. Saint tests every access rule of an
application during its installation. Any rule that is unsatis-
fiable depicts an unusable interface, which may represent
a serious functional limitation, e.g., imagine a text mes-
sage application that cannot use the address book. Thus,
the framework warns the user if any access rule is un-

“4Interfaces unprotected Saint policies are in essence “empty” policies.
For the purposes of the logical analysis presented in this section, WLOG,
they can be modeled simply by the Boolean value TRUE.

satisfiable. Moreover, we add FeatureRequirement
enumerated value to the XML structure of each policy
rule. This value has three values; NONE, AVAILABLE,
and ALWAYS. The NONE has no effect. The frame-
work prevents the application from being installed if
AVAILABLE is declared and the rule is unsatisfiable or if
ALWAYS is declared and the rule is not always satisfied.

The operational policy allows the system to track and
manage dependencies between applications and inter-
faces. By checking the operational policies of all applica-
tions during installation, update and uninstallation, we can
detect when a change in an application will effect other
applications. The system can warn the user or simply
prevent the operation from moving forward if required
interfaces become non-functional or are removed.

VI. SAINT ARCHITECTURE

Saint was implemented as a modification to the An-
droid 1.5 OS. For each of the above install-time and
runtime policies, we inserted one or more enforcement
hooks into Android’s middleware layer. In this section,
we describe the relevant functionality in Android and the
modifications we made to enforce Saint policies.

A. Saint Installer

The Saint installer is a modified version of Android’s
application installer. The installer receives the path to
the downloaded Android package (.apk) and parses the
package using PackageParser and PackageManager.
During this step, we collect all package configurations
necessary for install-time policy evaluation, such as the
package’s signature, requested permissions, and applica-
tion version. The package’s declared permissions are also
acquired to verify this package’s application policy.

We implement Saint’s policy in a separate XML file
with name identical to the package name. We chose
to express the application policy in XML to match the
format of Android’s manifest file. Including the policy
into the manifest file requires changes to the Android
SDK and to the installer’s package parsing function. We
consider this extension as our future work.

Immediately after the package is parsed, the Saint
installer examines each requested permission against its
corresponding permission-granting policy queried from
the AppPolicy provider. If a conflict is found, the installer
rejects the installation.

After successful installation, the installer parses the
application’s policy file to an intermediate form. By con-
sidering the application’s declared permissions obtained
during the package parsing step, the installer ensures that
each policy entry is inserted into the AppPolicy provider
only if its permission label is declared by the application.

B. Saint Mediator

Saint’s runtime enforcement covers four critical com-
ponent interactions: starting new Activities, binding com-
ponents to Services, receiving broadcast Intents and ac-
cessing Content Providers. For each of these interactions,

we cover the limitations of the existing Android security
implementation and explain the necessary modifications
and authorization hooks needed to enforce Saint policies.

Starting Activities (4.A) — As users interact with activ-
ities, they often spawn new activities for GUI elements
such as menus and dialogs. In Android, a request to start a
new activity takes the form of an Intent sent to the Activity
Manager Service (AMS), a key Android component that
facilitates interactions between activities.

The AMS will then match one or more activities that

have registered for that Intent. In the event that a single
match is not found, i.e. there are multiple registered
activities, the list of all such activities is displayed to
the user who chooses the correct one, e.g. should a
photograph be sent to an email client or an album. When
the destination activity is known, the AMS will check
if the sending activity has the permission to start such
activity. If so, the activity is started. This possibility for
multiple activities to match an Intent represents one of the
limitations of the current Android security framework in
that the registered activity has no control what component
may call it beyond the permissions needed for its Intent.
The calling activity has no control over which target
activity is selected. To allow both the source as well as
the receiver activity to influence the decision to spawn the
receiver, we add a hook that restricts the set of candidate
activities to choose from as shown in Figure 5.
Saint Hook Placement: If a single activity matches the
Intent when it is resolved by the AMS, hook (1) checks
that the conditions for both the source and destination
activity before starting the destination activity as a match
for the Intent. If multiple activities are registered for the
Intent, it is passed to ResolverActivity for further
Intent resolution. For each of the matched activities, hook
(2) checks the source against each potential destination
before allowing it to be included in the list of user options.
Any destination activities not allowed by the current
policy are excluded from the list. The activity selected
by the user is the target activity for the Intent. There is
also a small probability that only one matched activity is
found. This match is checked by hook (3) whether it can
be the target. Then, the target activity is started through
the AMS. This time, the Intent is addressed to the specific
activity and will have only a single match. The final check
is performed by hook (1) to prevent TOCTTOC attack.

Receiving Intent Broadcasts (4.B) — A Broadcast
Receiver acts as a mailbox for the application. It listens
to Intent message broadcast by another component in
the same or different application for data exchange. To
specify the type of messages it is listening to, the Broad-
cast Receiver is attached with Intent-filter(s) that describe
Intent values to be matched including the action string.
Intent broadcasts are handled by the AMS, which attempts
to resolve the broadcast receiver components registered
for the Intent. A broadcast receiver may be registered for

receiving specific Intent(s) either statically at install-time
or dynamically during its execution. A static Broadcast
Receiver and its permanently associated Intent-filter(s) are
declared in the manifest and is always registered with
the system. In contrast, a dynamic Broadcast Receiver is
declared as a class in the code and is instantiated during
runtime. It can be registered and unregistered any time.
The Intent-filter(s) attached to the dynamic Broadcast
Receiver is also created at runtime, thus can be changed.
Saint Hook Placement: In order to enforce Saint’s access
policies for Intent broadcasts, several authorization hooks
were inserted into this process. Hook (4) is taken if the
broadcast receiver is selected by name. In this case, only
a single check is performed for the named receiver. If
the Intent contains an action string, it can be received
by potentially multiple broadcast receivers. In this case,
hooks (5) and (6) iterate over the lists of potential
receivers and perform a policy check for each one before
it is allowed to receive a message.

Accessing Content Providers (4.C) — In Android, ap-
plications access content providers by a URI. The Content
Resolver is responsible for mapping a URI to a specific
content provider and obtaining the IPC interface to the
content provider that performs the operations (e.g. query,
update, etc.). Android’s permission check is performed
by the content provider during the operation execution.
This check is inadequate to protect applications from a
potentially malicious content provider that has registered
under a particular URIL.

Saint Hook Placement: To extend the enforcement to
allow the source component to be protected as well, Saint
places authorization hook (7) at the Content Resolver. The
list of registered content providers is stored by the AMS
in form of Provider Record. Therefore, our modified AMS
provides the Provider Record that matches the authority
string to the Content Resolver. The record contains infor-
mation that allows application policy checking.

Binding Components to Services (4.D) — The last type
of interaction mediated by Saint is binding a component to
a service (allowing the component to access the service’s
APIs). A component binds to a service either by specify-
ing its name or an Intent containing an action string to
which that service has registered. Binding to services is
mediated by the AMS, which first resolves the service by
name or action string and then checks that the requesting
component has the necessary permissions to bind it.
Saint Hook Placement: We inserted a single mediation
point, (8), into the AMS to check Saint policy before the
Android permission check. Since access policies require
the source component name in the hook, we extracted the
source name from a field in the binding request. For the
other types of component interactions where the source
name was not available, we modified the execution path
up to the hook to propagate the name of the component
initiating the interaction.

Caw)

Start Activity Broadcast Intent
v Start Menu 5
Activity Activity Activity
Manager [« with Manager Service
Service Resolved
Target

Receiver

No

Resolver
Activity

Yes Send to
Name? Broadcast Receiver

Access Content Provider

Content Resolver

Provider

Content Provider

(C)

Activity
Manager
Service

Dynamic BR List
App

Static BR List Bind to Service

Key

v
Aciivity

(A) —

Start -
New Activity ©Author|zal|on Hook

Data Structure

C) Component Senvi to Service
ervice
Control Flow
(D)

Figure 5.

C. AppPolicy Provider

The policies for both the install-time and run-time
mediator are stored in the AppPolicy provider. We em-
bedded the AppPolicy provider inside the middleware
in a way similar to the phone’s address book, calendar,
and DRM provider are included in the platform. The
policy is stored in SQLite database, which is the default
database supported by Android. The database files for the
provider are located in the system directory, e.g., in the
/data/system/ directory.

More importantly, the AppPolicy provider is the policy
decision point. At install-time, the Saint Installer passes
the information about the package being installed to the
AppPolicy provider for the decision making using the
exposed verifyPermissionGrant APIL. The new
policy is inserted using insertApplicationPolicy
APIL. Both API interfaces are implemented as part of
Android’s Activity APIL At run-time, inside the mid-
dleware, the Saint mediator’s hooks consult the AppPolicy
provider for policy decision based on the information
about the source and the destination of the interaction.

To make the decision, the AppPolicy provider retrieves
all matched policies and collects all information needed to
evaluate the conditions. For interaction policy, it may need
to contact Package Manager and several system services
such as Location Service and Telephony Service, which
require the caller to run under an application environment;
thus cannot be accessed by the AppPolicy provider. To ad-
dress the problem, we added more functions to the AMS,
which runs under “android” application environment, to
obtain the information for the AppPolicy provider.

Note that it is essential to protect the API interfaces
for accessing the AppPolicy provider from malicious ap-
plications. If not protected, a malicious application could
simply insert bogus policies to block legitimate IPC or
delete others. The current AppPolicy provider checks the
identity of the application that makes the API call. If the
application is not the Saint installer, the request is denied.
We foresee that it may be desirable for future applications
of Saint to allow other applications to view policy (e.g.,
policy viewers, system diagnostics). The current system
will be modified to either white-list read, write, or delete

Saint authorization hook placement. The added hooks for each of the four types of component interaction are numbered (1)-(8).

for given applications or simply check to see they have
received some other system Saint policy permission.

D. FrameworkPolicyManager

As mentioned in Section V-C, FrameworkPolicyMan-
ager is implemented as an Android application to en-
able the user to override the policy if its override
flag and the system’s SaintOverride flag are true.
It updates the policies in AppPolicy provider using
updateApplicationPolicy API implemented in
Android’s Activity APIL To prevent malicious appli-
cations from updating the policies, the identity of the
application is checked to ensure that only the Frame-
workPolicyManager can update the AppPolicy provider.

E. Condition Extensibility

So far, we have covered a set of policy enforcement
mechanisms implemented by Saint. These policies are
made up of conditions based on application configuration
and phone state. Each condition requires code be run to
inspect some aspect of either an application’s context or
the device’s state. Currently, the AppPolicy provider is
limited to the static set of implemented conditions covered
in Section IV. Because we cannot predict the types of
conditions future smartphone apps may wish to check in
their security policies, Saint contains a generic mechanism
to perform custom condition checks implemented by
application developers. This mechanism works as follows.

At install time, an application’s package is checked
for one or more ConditionCheckImpl classes. These
classes are instantiated and registered by Saint at boot
time. The application includes conditions in its runtime
policy that are handled by its ConditionCheckImpl.
Any time a component from that application is either a
source or destination of one of Saint’s mediated com-
ponent interactions, the condition check method of its
ConditionCheckImpl class is called and the result is
composed with the results of the Saint enforced conditions
to make a policy decision. This method has the follow-
ing signature: boolean checkCondition (String
condition), where condition is a custom condition
string provided in the application’s runtime policy and the
return value is the result of the condition check.

VII. RELATED WORK

Much of the recent work in cell phone security has
centered around validating permission assignment at ap-
plication installation. For example, the Kirin [10] enforces
install policies that validate that the permissions requested
by applications are consistent with system policy. Kirin
does not consider run-time policies, and is limited to sim-
ple permission assignment. Conversely, the Application
Security Framework [11] offered by the Open Mobile Ter-
minal Platform (OMTP) recommends a certificate-based
mechanism to determine the application’s access rights
based on its origin. Symbian offers a stricter regimen
in the Symbian-signed program [12]. In this program
Symbian essentially vouches for applications, and pre-
vents unsigned applications from accessing “protected”
interfaces. The MIDP 2.0 security model regulates sensi-
tive permissions such as network access or file system
access based on protection domain defined by Mobile
Information Device Profile (MIDP) implementator (e.g.,
manufacturers and network providers) [13].

Systems for run-time policy are less developed. The
Linux Security Module (LSM) framework has been fre-
quently used to protect Linux phones. For example, the
trusted mobile phone reference architecture [14] realized
the Trusted Mobile Phone specification using an iso-
lation technique developed for mobile phone platform.
Muthukumaran et al. [15] applied SELinux security poli-
cies to Openmoko to ensure the integrity of the phone
and trusted applications. In a related work, Rao et al. [16]
developed a mandatory access control (MAC) system for
smartphones which uses input from multiple stakehold-
ers to dynamically create the policies run-time permis-
sion assignment. The Windows Mobile .NET compact
framework uses security-by-contract [17] that binds each
application to a behavioral profile enforced at runtime.
This technique was further explored as a means for safely
executing potentially malicious code [18]. Techniques
such as system call interposition have also been explored
for Windows Mobile [19]. None of these systems allow
applications to place context-sensitive policies on both the
interfaces they use and those that use their interfaces.

VIII. CONCLUSION

In this paper we present the Saint framework. Saint
addresses the current limitations of Android security
through install-time permission granting policies and run-
time inter-application communication policies. We pro-
vide operational policies to expose the impact of security
policy on application functionality, and to mange depen-
dencies between interfaces. Driven by an analysis of many
applications, our investigations have provided an initial
taxonomy of relevant security contexts.

We are just at the beginning of this work. A most
pressing need now is the integration of more applications
and the policies they require into the system. We seek to

extend the Saint policies to protect the phone “system”
services and the cellular network, as well as integrate its
interfaces with widely used security infrastructures, e.g.,
PKIs, enterprise systems, etc. Through ongoing feature
enhancement and user study, we hope to transition Saint
from a research system to a viable framework for the
many millions of phones that will soon run Android.

REFERENCES

[1] Apple Inc., “Apple App Store,” http://www.apple.com/
iphone/appstore/, June 2009.

[2] Google Inc., “Android Market,” http://www.android.com/
market/, June 2009.

[3] Research In Motion Ltd., “Blackberry App World,” http:
/ma.blackberry.com/eng/services/appworld/, June 2009.

[4] Independent Security Evaluators, “Exploiting android,”
http://securityevaluators.com/content/case-studies/android/
index.jsp.

[5] J. P. Anderson, “Computer security technology planning
study, volume II,” Deputy for Command and Management
Systems, HQ Electronics Systems Division (AFSC), L. G.
Hanscom Field, Bedford, MA, Tech. Rep. ESD-TR-73-51,
October 1972.

[6] W. Enck, M. Ongtang, and P. McDaniel, “Understanding
Android Security,” IEEE Security & Privacy Magazine,
vol. 7, no. 1, pp. 50-57, January/February 2009.

[71 W. Cheswick, S. Bellovin, and A. Rubin, Firewalls and
Internet Security: Repelling the Wily Hacker, Second ed.
ACM Books / Addison-Wesley, 2003.

[8] P. McDaniel and A. Prakash, “Methods and Limitations
of Security Policy Reconciliation,” in IEEE Symposium on
Security & Privacy, May 2002, pp. 73-87.

[9] M. Bishop, Computer Security: Art and Science. Reading,
MA: Addison-Wesley, 2003.

[10] W. Enck, M. Ongtang, and P. McDaniel, “On Lightweight
Mobile Phone Application Certification,” in Proceedings
of ACM CCS, November 2009.

[11] Open Mobile Terminal Platform (OMTP), “OMTP Appli-
cation Security Framework V.2.2,” pp. 1-46, 2008.

[12] Symbian Ltd., “Symbian Signed,” https://www.
symbiansigned.com, August 2008.

[13] Nokia Forum, “Midp 2.0: Tutorial on signed midlets v.1.1,”
July 2005.

[14] X. Zhang, O. Aciicmez, and J.-P. Seifert, “A Trusted
Mobile Phone Reference Architecture via Secure Kernel,”
in Proceedings of the ACM Workshop on Scalable Trusted
Computing, November 2007, pp. 7-14.

[15] D. Muthukumaran, A. Sawani, J. Schiffman, B. M. Jung,
and T. Jaeger, “Measuring Integrity on Mobile Phone
Systems,” in Proceedings of ACM SACMAT, June 2008.

[16] V. Rao and T. Jaeger, “Dynamic Mandatory Access Con-
trol for Multiple Stakeholders,” in Proceedings of ACM
SACMAT, June 2009.

[17] S3MS, “Security of Software and Services for Mobile
Systems,” http://www.s3ms.org/index.jsp.

[18] L. Desmet, W. Joosen, F. Massacci, K. Naliuka, P. Philip-
paerts, F. Piessens, and D. Vanoverberghe, “A flexible
security architecture to support third-party applications on
mobile devices,” in Proceedings of ACM Workshop on
Computer Security Architecture, 2007, pp. 19-28.

[19] M. Becher and R. Hund, “Kernel-level Interception and
Applications on Windows Mobile Devices,” Reihe Infor-
matik, Tech. Rep. TR-2008-003, 2008.

