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ABSTRACT

In this paper, we investigate a category of public key encryption schemes that supports plaintext equality test and user-
specified authorization. With this new primitive, two users, who possess their own public/private key pairs, can issue
token(s) to a proxy to authorize it to perform plaintext equality test from their ciphertexts. We provide a formal formulation
for this primitive and present a construction with provable security in our security model. To mitigate the risks against the
semi-trusted proxies, we enhance the proposed cryptosystem by integrating the concept of computational client puzzles. As
a showcase, we construct a secure personal health record application on the basis of this primitive. Copyright © 2012 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

With the rapid advances in information technology,
especially cloud computing, organizations and individuals
have begun to transfer their data storage and processing
from within their own organizational perimeters to those
of third-party service providers (SPs). For example, quite
a number of Internet-based personal health record (PHR)
systems [1], such as Google Health [2] and Microsoft
HealthVault [3], have been proposed so far. As a result
of the transit, the outsourcers can successfully reduce
their operating costs although providing better services.
However, the downside is that, as many security critics
have already pointed out, for example, in [4], there are
potential privacy risks for the outsourced data.

To tackle the privacy concerns, researchers have
intensively worked on cryptographic encryption techniques
that support operations on encrypted data. In this paper,
we are interested in a category of public key encryption
(PKE) schemes, which supports plaintext equality test
from ciphertexts generated under different public keys.
We use the term public key encryption supporting plaintext
equality test (PKEET) to refer to this category of PKE, and
an informal description is given below.
Copyrig
Given a PKE scheme (KeyGen,Enc,Dec),
suppose that two users possess their public/
private key pairs (PK,SK) and (PK′,SK′),
ht © 2012 John Wiley & Sons, Ltd.
respectively. If this PKE scheme belongs
to the category of PKEET, then any entity
can perform the following test: Given
Enc(M,PK) and Enc(M′,PK′) for any
M and M′, test whether M =M′ without
knowing M or M′.
1.1. Previous result

The concept of PKEET was proposed by Yang et al. [5].
Their formulation allows any entity to perform equality
test; hence, it lacks an authorization mechanism for
users to specify who can perform a plaintext equality test.
Inherently, it leads to the following security vulnerability.
Given a ciphertext Enc(M,PK), any entity can determine
whether M=M′ for any M′ in the message space (note that
this is implied by the equality test functionality). Consider-
ing the fact that ciphertexts are public information, it
means that, given a ciphertext, any entity can discover a
considerable amount of information about the plaintext.
In many potential application scenarios, such as the PHR
systems described in Section 5, the users may only want
the privileged (or semi-trusted) parties such as a hospital
to perform the equality test so that other un-privileged
parties can learn nothing about their plaintexts. Clearly, a
secure PKEET cryptosystem under the formulation in [5]
may not suffice in these application scenarios.
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Recently, Tang proposed the concept of PKEET with
a fine-grained authorization mechanism [6]. In this primi-
tive, two users must come together to generate a token
that allows a proxy to compare their ciphertexts. While
offering users with tight control over who can compare
their ciphertexts, this may be a burden in some situations.
Suppose that a user wants a proxy to compare his cipher-
etxts with those of his n classmates, then the user needs
to generate a token with each of his classmates. In addition,
the proxy needs to store n tokens for ciphertext compari-
son. In this case, it makes sense to have a PKEET with a
simple or coarse-grained authorization mechanism. This
motivates the new primitive all-or-nothing (AoN)-PKEET,
which will be proposed in this paper.

1.2. Contribution

We propose a new primitive AoN-PKEET, which intro-
duces an authorization mechanism for users to specify
who can perform a plaintext equality test from their
ciphertexts. With an AoN-PKEET cryptosystem, every
user can independently run the authorization algorithm
(the Aut algorithm in our formulation in Section 2) to issue
his token to some semi-trusted proxies. If a proxy receives
the tokens from both Alice and Bob, then it is able to
perform a plaintext equality test from their ciphertexts;
otherwise, it cannot do so. We use the term all-or-nothing
because once a user, say Alice, has issued her token to
a proxy, then this proxy is potentially able to perform
equality test between Alice’s ciphertexts and the ciphertexts
of any other user, say Bob. The only prerequisite is that the
proxy also obtains Bob’s token, yet whether Bob will issue
his token to the proxy is out of the control of Alice.

In the threat model of AoN-PKEET, we consider
two types of adversaries whose main goal is to reveal
information about the encrypted data (i.e., violating the
confidentiality).

(1) Type-I adversary represents semi-trusted proxies,
who have access to both ciphertexts and users’
tokens. With respect to such an adversary, we define
the notion of one-wayness under a chosen cipher-
text attack (OW-CCA).

(2) Type-II adversary represents all malicious entities,
which only have access to users’ ciphertexts. With
respect to such an adversary, we define the notion
of indistinguishability under a chosen ciphertext at-
tack (IND-CCA).

We propose an AoN-PKEET cryptosystem, which
achieves the OW-CCA security against a Type-I adversary
and the IND-CCA security against a Type-II adversary.
Both security properties are proven on the basis of the
computational Diffie–Hellman (CDH) assumption in the
>random oracle model. To mitigate the potential risks
against a Type-I adversary, we enhance the proposed
cryptosystem by integrating the concept of computational
client puzzles [7].
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With AoN-PKEET, we construct a secure PHR applica-
tion, in which patients can encrypt their PHRs and
outsource the ciphertexts to a third-party SP. The SP is
only required to be semi-trusted and cannot recover the
plaintext PHRs, but it can still recommend patients to each
other on the basis of the encrypted PHRs. We note that a
secure PKEET cryptosystem formulated in [5] cannot
achieve the same level of security. Similarly, AoN-PKEET
can also be used in building secure outsourced database
applications, which have been outlined by Yang et al. [5]
for PKEET. In such applications, AoN-PKEET will also
provide a higher level of security guarantees than PKEET.

1.3. Organization

The rest of the paper is organized as follows. In Section 2,
we formulate the concept of AoN-PKEET. In Section 3,
we provide a construction of AoN-PKEET and prove
its security. In Section 4, we provide an enhanced AoN-
PKEET cryptosystem based on computational client
puzzles. In Section 5, we construct a secure PHR applica-
tion based on AoN-PKEET. In Section 6, we briefly review
the related work. In Section 7, we conclude the paper.
2. FORMULATION OF AoN-PKEET

An AoN-PKEET cryptosystem consists of the algorithms
(KeyGen,Enc,Dec), which are similar to those of standard
PKE, as well as two new algorithms (Aut,Com). The
algorithms are defined as follows.

• KeyGen kð Þ: This algorithm takes a security parameter
k as input and outputs a public/private key pair (PK,
SK). Let M denote the message space.

• Enc(M,PK): This algorithm takes a message M2M
and the public key PK as input and outputs a cipher-
text C.

• Dec(C, SK): This algorithm takes a ciphertext C and
the private key SK as input and outputs the plaintext
M or an error message ⊥.

Let all the potential users be denoted as Ui (i≥ 1), who
adopt the aforementioned PKE scheme. For any i, suppose
that Ui’s key pair is denoted as (PKi, SKi). It is required that
all users use the same message space M.The Aut and Com
algorithms are defined as follows.

• Aut(SKi): This algorithm takes the private key SKi as
input and outputs a token Ti.

• Com(Ci,Cj, Ti, Tj): This algorithm takes two cipher-
texts Ci,Cj, and two tokens Ti, Tj, as input, and
outputs 1 if Mi=Mj or 0 otherwise. Note that Ci,Cj

are two ciphertexts encrypted under PKi and PKj

respectively and that Ti, Tj are the tokens from Ui

and Uj, respectively. As a special case, if the proxy
wants to perform equality test between Ui’s cipher-
texts, it only needs Ti to run Com.
ity Comm. Networks 2012; 5:1351–1362 © 2012 John Wiley & Sons, Ltd.
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In the algorithm definitions, besides the explicitly
specified parameters, other public parameters could also
be specified and be implicitly part of the input. We omit
those parameters for the simplicity of description.

Similar to the study of PKE schemes [8], an AoN-PKEET
cryptosystem should be sound (or correct). Informally,
this property means that the algorithms Dec and Com
work properly with valid inputs. Formally, it is defined
as follows.

Definition 1. An AoN-PKEET cryptosystem achieves
(unconditional) soundness if the following two equalities
hold for any i, j≥ 1, and M,M′2M. Let PKi; SKið Þ ¼
KeyGen kð Þ and PKj; SKj

� � ¼ KeyGen kð Þ.

(1) Dec(Enc(M,PKi), SKi) =M and Dec(Enc(M′,PKj),
SKj) =M′.

(2) Com(Enc(M,PKi), Enc(M′,PKj), Aut(SKi), Aut
(SKj)) is equal to 1 if M=M′ and 0 otherwise.

Besides the soundness property, we will define the
security model and security properties for an AoN-PKEET
cryptosystem in the following subsections.

Throughout the paper, we use “||” to denote the
concatenation operator and use x2 RX to denote that x is
chosen from X uniformly at random.

2.1. The threat model

To facilitate our formal discussions, we make the follow-
ing assumptions. All users honestly generate their public/
private key pairs. Every token is sent to the proxy securely
without being eavesdropped on by an outsider. Every
proxy can serve multiple users to perform equality test.
For any honest user Ut, where t≥ 1, he semi-trusts the
proxies chosen by himself in the following sense.

(1) The proxies will faithfully follow the protocol
specifications in performing plaintext equality tests.

(2) When considering message security, the proxies
may behave maliciously. For example, in order
to gain more information about Enc(M,PKt), the
proxies may send a string R to Ut to get the
decryption result (this corresponds to the query to
Figure 1. An illustratio

Security Comm. Networks 2012; 5:1351–1362 © 2012 John Wiley & Sons, Ltd
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the decryption oracle in the security formulation
shown in Figure 2).

(3) Clearly, the proxies have more power than any
other third-party adversary because they have
access toUt’s token. We assume that the proxies will
not collude with others to disclose Ut’s information.
This is a natural assumption because in practice a
user may trust one entity more than another one.
As a result, it leads us to consider two types of
adversaries in our formulation, as detailed below.

With respect to an AoN-PKEET cryptosystem, for any
honest user Ut, where t≥ 1, we consider two types of
adversaries, namely Type-I and Type-II adversaries as
illustrated in Figure 1.

(1) Type-I adversary represents the semi-trusted
proxies to which Ut has assigned his token. In addi-
tion, this type of adversary has access to the cipher-
texts of all users. Referring to Figure 1, Proxy I and
Proxy L are Type-I adversary.

(2) Type-II adversary represents all possibly malicious
entities in the system from the perspective of Ut.
In contrast to Type-I adversary, this type of adver-
sary only has access to the ciphertexts of all users.
Referring to Figure 1, such an adversary represents
Ui(i≥ 1, i 6¼ t), the untrusted proxies and any other
outsider.
2.2. OW-CCA security against a Type-I
adversary

As to the power of a Type-I adversary, it receives Ut’s
token and may also obtain some information about Ut’s
plaintexts (i.e., has access to Ut’s decryption oracle). In
the context of AoN-PKEET, in the presence of a Type-I
adversary, standard indistinguishability notions, such
as IND-CCA and indistinguishability under a chosen
plaintext attack (IND-CPA) [8], cannot be achieved
because of the desired plaintext equality test functionality.
Therefore, we define the notion of OW-CCA.

As shown in Figure 2, the definition follows the
conventional way, namely through an attack game between
n of AoN-PKEET.
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an adversary and a challenger, which simulates the activi-
ties of the honest user Ut.

Definition 2. An AoN-PKEET cryptosystem achieves
OW-CCA security against a Type-I adversary, if, for any
t≥ 1, any polynomial-time adversary has only a negligible
advantage in the attack game shown in Figure 2, where the
advantage is defined to be Pr[Mt =Mt].
2.3. IND-CCA security against a Type-II
adversary

In the presence of a Type-II adversary, we define the
notion of standard IND-CCA security. This definition is
essentially identical to a standard one for PKE schemes.
For clarity, we rephrase it in Figure 3.

Compared with the OW-CCA definition against a Type-
I adversary, the main difference here is that a Type-II
adversary is not allowed to query the Aut oracle, namely
without any access to Ut’s token.

Definition 3. An AoN-PKEET cryptosystem achieves
IND-CCA security against a Type-II adversary, if, for
any t≥ 1, any polynomial-time adversary has only a
negligible advantage in the attack game shown in Figure 3,
where the advantage is defined to be Pr b′ ¼ b

� �� 1
2

�� ��.

We have defined the CCA security against Type-I and
Type-II adversaries. In both cases, it is straightforward
to define the CPA security by simply disallowing the
adversary’s access to the Dec oracle in the attack games.
We omit the detailed definitions in this paper.
Figure 2. The gam
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2.4. Offline message recovery attack

Note that because a Type-I adversary has access to Ut’s
token Tt, then given a ciphertext Enc(M,PKt), it can
test whether M′=M holds for any M′ by checking the
following equality:

Com Enc M;PKtð Þ;Enc M′;PKt

� �
;Tt;Tt

� � ¼ 1

Therefore, in the extreme situation when the actual
message space M′ is polynomial size or the min-entropy
of the message distribution is much lower than the security
parameter, for AoN-PKEET, a Type-I adversary (or semi-
trusted proxies) is capable of mounting an offline message
recovery attack by checking every M′2M′. For example,
let the message space be the names of all diseases that
we know in the medical domain (as shown in the PHR
application in Section 5), then it falls into the extreme
situation.

This type of attack is unavoidable because of the
desired plaintext equality test functionality, similar to the
offline keyword guessing attack in the case of PKE with
keyword search (PEKS; or searchable encryption) [9,10].
However, compared with PKEET formulated in [5], where
any entity can mount the attack, our formulation achieves
a significant security improvement because a Type-II
adversary is unable to mount the attack. We further
note that although an offline message recovery attack is
theoretically unavoidable in the presence of a Type-I
adversary, but, depending on the specific cryptosystem, a
certain countermeasure can be employed to mitigate such
an attack. In Section 4, we propose a countermeasure based
e for OW-CCA.

ity Comm. Networks 2012; 5:1351–1362 © 2012 John Wiley & Sons, Ltd.
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on computational client puzzles [7] to secure the AoN-
PKEET cryptosystem proposed in the next section.
3. THE PROPOSED AoN-PKEET
CRYPTOSYSTEM

Note that an AoN-PKEET cryptosystem needs to achieve
two functionalities: one is to enable a user to decrypt
the ciphertext generated under his public key and the other
is to enable a proxy to perform equality test on two
ciphertexts. An immediate attempt of design is to combine
a standard PKE scheme (KeyGen,Enc,Dec) with a deter-
ministic one-way function, such as a hash function H. Let
user Ui have two key pairs (PKi, SKi) and PK ′

i; SK ′
i

� �
;

set the ciphertext for a message M to be

C ¼ Enc M;PKið Þ;Enc H Mð Þ;PK ′
i

� �

To assign his token to a proxy, Ui sends SK ′
i to the

proxy. However, this attempt does not achieve OW-CCA
against a Type-I adversary under Definition 2 even if the
standard PKE scheme is IND-CCA secure because an
attacker can manipulate a ciphertext without being noticed
by the decryptor. To obtain the message in C, the attack is
simply to query

Enc M;PKið Þ;Enc H M′
� �

;PK ′
i

� �

where M′ is a message chosen by the attacker. Such an
attack may be mitigated by asking the user to check
whether H(M′) =H(M) in the decryption, but this will
leak the information whether M=M′, which means that
IND-CCA security still will not be achieved.
Security Comm. Networks 2012; 5:1351–1362 © 2012 John Wiley & Sons, Ltd
DOI: 10.1002/sec
In this section, we propose an AoN-PKEET cryptosys-
tem, which inherits the basic idea of the aforementioned
attempt and is not only more efficient but also secure in
our security model.
3.1. The proposed AoN-PKEET
cryptosystem

Let G be a multiplicative group of prime order p, g be a
generator of G, k be a security parameter, and H1,H2,H3

be three cryptographic hash functions

H1 : 0; 1f g� ! 0; 1f gmþd;H2 : 0; 1f g� ! Zp;H3 : 0; 1f g�
! 0; 1f gk

where m is a polynomial in k , {0, 1}m is the message
space, and d is the bit length of p. The values of
k;G; g; p;m;H1;H2;H3ð Þ serve as the global parameters
for the AoN-PKEET cryptosystem. In practice, these
parameters could be publicly standardized.

The intuition behind our construction is that, when
encrypting a message, the encryption algorithm encrypts
both the message and a checksum of this message, where
the checksum is computed with a one-way function from
the message. When a user wants to assign her token, he
or she discloses part of his private key to a proxy so that
the latter can recover the checksum but not the message.
In the following, we first define the algorithms (KeyGen,
Enc,Dec).

• KeyGen kð Þ : This algorithm outputs a private key
SK = (x, y), where x; y2RZp , and the corresponding
public key PK= (gx, gy).
1355.



Table I. Computational complexity comparison.

Encryption Decryption Equality test

AoN-PKEET 4 Exp 2 Exp 2 Exp
PKEET 2 Exp 3 Exp 2 Pairing
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• Enc(M,PK): This algorithm outputs a ciphertext
C = (C(1),C(2),C(3),C(4),C(5)), where

u; v2RZp;C 1ð Þ ¼ gu;C 2ð Þ ¼ gv;C 3ð Þ ¼ H1 guxð Þ�M‖u
C 4ð Þ ¼ gH2 gvyð ÞþM ;C 5ð Þ ¼ H3 C 1ð Þ‖C 2ð Þ‖C 3ð Þ‖C 4ð Þ‖M‖u

� �

• Dec(C, SK): This algorithm first computes M′‖u
′=C(3)�H1((C

(1))x), and then check the following

(1) gu
′ ¼ C 1ð Þ

(2) H3 C 1ð Þ‖C 2ð Þ‖C 3ð Þ‖C 4ð Þ‖M‖u′
� �

¼ C 5ð Þ

If all checks pass, output M′; otherwise, output an error
message ⊥.

Suppose that every user Ui, for i≥ 1, adopts the
aforementioned PKE scheme. To facilitate our description,
we use the index i for all the variables in defining Ui’s
data. For example, Ui’s key pair is denoted as (PKi, SKi),
where SKi = (xi, yi) and PKi ¼ gxi ; gyið Þ, and Ui’s ciphertext

Ci ¼ C 1ð Þ
i ;C 2ð Þ

i ;C 3ð Þ
i ;C 4ð Þ

i ;C 5ð Þ
i

� �
is written in the following

forms.

C 1ð Þ
i ¼ gui ;C 2ð Þ

i ¼ gvi ;C 3ð Þ
i ¼ H1 guixið Þ�Mi‖ui

C 4ð Þ
i ¼ gH2 gviyið ÞþMi ;C 5ð Þ

i ¼ H3 C 1ð Þ
i ‖C 2ð Þ

i ‖C 3ð Þ
i ‖C 4ð Þ

i ‖Mi‖ui
� �

Suppose that Ui wants a proxy to perform equality test
on his ciphertexts; then, he or she runs the following Aut
algorithm to generate the token Ti for the proxy.

• Aut(SKi): This algorithm returns a token Ti= yi.

Suppose that a proxy has received the tokens Ti and Tj,
then it can run the following Com algorithm to perform
equality test on the ciphetexts Ci and Cj, which are
encrypted under PKi and PKj, respectively.

• Com(Ci,Cj, Ti, Tj): This algorithm outputs 1 if

C 4ð Þ
i �g�H2 C 2ð Þ

ið ÞTi
� �

¼ C 4ð Þ
j �g�H2 C 2ð Þ

jð ÞTj
� �

or 0 otherwise.

It is straightforward to verify that the soundness
property is achieved, namely the Dec and Com work
properly. We skip the details here.

We now briefly compare the efficiency with that of the
PKEET cryptosystem [5]. A ciphertext of the proposed
AoN-PKEET cryptosystem contains five elements, which
is larger than that of the PKEET cryptosystem in which
case the ciphertext contains three elements. A detailed
computational complexity comparison is shown in Table I.
1356 Secur
Note that Exp denotes an exponentiation, which is much
less cheaper than a Pairing operation.

3.2. Security analysis

Following the work by Bellare and Rogaway [11], we
use random oracle to model hash functions in our security
analysis. A function P kð Þ : Z ! R is said to be negligible
with respect to k if, for every polynomial f(k), there exists
an integer Nf such that P kð Þ < 1

f kð Þ for all k≥Nf. The

security of the proposed AoN-PKEET cryptosystem relies
on the CDH assumption, defined as follows.

Definition 4. Let G be a multiplicative group of
prime order p, g be a generator of G, and k be a security
parameter. The CDH assumption holds if, given ga and gb

where a; b2RZp , any polynomial-time adversary can
compute gab with a negligible probability with respect to k.

Next, we prove two theorems with respect to the
OW-CCA and IND-CCA security properties of the pro-
posed AoN-PKEET cryptosystem.

Theorem 1. The proposed AoN-PKEET cryptosystem is
OW-CCA secure against a Type-I adversary on the basis of
the CDH assumption in G in the random oracle model.

Proof sketch. Suppose that an adversary has the advantage
e, the attack game shown in Figure 2. The security proof is
performed through a sequence of games [12].

Game0: In this game, the challenger faithfully simulates
the protocol execution and answers the oracle queries
from the adversary, and all hash functions are treated
as random oracles. Let e0 ¼ Pr M′

t ¼ Mt

� �
. Clearly,

e0 = e holds.

Game1: In this game, the challenger performs identically
to that in Game0 except that it aborts the game if any
of the random oracles returns the same output with
two different inputs (referred to as the event Ent1).
Clearly, Pr[Ent1] is negligible if the hash functions
are modeled as random oracles. Let e1 =Pr[Mt =Mt].
From the Difference Lemma in [12], we have
|e1� e0|≤Pr[Ent1].

Game2: In this game, the challenger performs identically
to that in Game1 except that the following event Ent2
occurs. If the adversary queries the decryption
ity Comm. Networks 2012; 5:1351–1362 © 2012 John Wiley & Sons, Ltd.
DOI: 10.1002/sec
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oracle Dec with C= (C(1),C(2),C(3),C(4),C(5)), the
challenger returns ⊥ if there is not an input
C(1)‖C(2)‖C(3)‖C(4)‖M‖u to H3 such that the oracle
returns C(5). Clearly, Pr[Ent2] is negligible if the
hash functions are modeled as random oracles. Let
e2 =Pr[Mt =Mt] in this game. From the Difference
Lemma in [12], we have |e2� e1|≤Pr[Ent2].

Game3: In this game, the challenger performs identically
to that in Game2 except that, if the adversary
queries Dec with C= (C(1),C(2),C(3),C(4),C(5)), the
challenger does the following. Check the queries to
the oracle H3 to see whether there is an input
C(1)‖C(2)‖C(3)‖C(4)‖M′‖u′ satisfying

H3 C 1ð Þ‖C 2ð Þ‖C 3ð Þ‖C 4ð Þ‖M′‖u′
� � ¼ C 5ð Þ; gu

′ ¼ C 1ð Þ

M
00
‖u

00 ¼ H1 gu
′xt

� �
�C 3ð Þ;M

00 ¼ M′ u
00 ¼ u′

If so, return M′; otherwise return ⊥. This game is in
fact identical to Game2. Let e3 =Pr[Mt =Mt] in this
game, then e3 = e2.

Game4: In this game, the challenger performs identically
to that in Game3 except that the challenge C�

t is
generated as follows.

C 1ð Þ
t ¼ gut ;C 2ð Þ

t ¼ gvt ; d2R 0; 1f gmþd;C 3ð Þ
t ¼ d

C 4ð Þ
t ¼ gH2 gvt ytð ÞþMt ;C 5ð Þ

t ¼ H3 C 1ð Þ
t ‖C 2ð Þ

t ‖C 3ð Þ
t ‖C 4ð Þ

t ‖Mt‖ut
� �

This game is identical to Game3 unless the event Ent3
occurs, namely gutxt is queried to the random oracle H1.
Note that the private key xt is never used to answer the
adversary’s queries. Therefore, Pr[Ent3] is negligible on
the basis of the CDH assumption in G. Let e4 ¼
Pr M′

t ¼ Mt

� �
in this game. The rationale is quite straight-

forward. Suppose that the Pr[Ent3] is non-negligible
then the challenger can solve the CDH problem with
the probability Pr[Ent3]: given a CDH challenge (ga, gb),
the challenger sets gxt and gut to be ga and gb, respectively,
and then randomly chooses an input to the random oracle
H1 as a guess for gab. From the Difference Lemma in
[12], we have |e4� e3|≤Pr[Ent3].

Because H3 is modeled as a random oracle, it is clear
that e4 is negligible if the discrete log computation is
infeasible, which is certainly true on the basis of the
CDH assumption. From the aforementioned analysis, we
have that e≤Pr[Ent1] +Pr[Ent2] +Pr[Ent3] + e4, which is
negligible on the basis of the CDH assumption in the
random oracle model. The theorem now follows.

Theorem 2. The proposed AoN-PKEET cryptosystem is
IND-CCA secure against a Type-II adversary based on the
CDH assumption in G in the random oracle model.

Proof sketch. Suppose that an adversary has the advantage
e, the attack game shown in Figure 3. The security proof is
performed through a sequence of games [12].
Security Comm. Networks 2012; 5:1351–1362 © 2012 John Wiley & Sons, Ltd
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Game0: In this game, the challenger faithfully simulates
the protocol execution and answers the oracle queries
from the adversary, and all hash functions are treated
as random oracles. Let e0 =Pr[b′= b]. Clearly,
e0 � 1

2

�� �� ¼ e holds.

Game1: In this game, the challenger performs identically
to that in Game0 except that it aborts the game if any
of the random oracles returns the same output with
two different inputs (referred to as the event Ent1).
Clearly, Pr[Ent1] is negligible if the hash functions
are modeled as random oracles. Let e1 =Pr[b′= b].
From the Difference Lemma in [12], we have
|e1� e0|≤Pr[Ent1].

Game2: In this game, the challenger performs identically
to that in Game1 except that the following event Ent2
occurs. If the adversary queries the decryption
oracle Dec with C= (C(1),C(2),C(3),C(4),C(5)),
the challenger returns ⊥ if there is not an input
C(1)||C(2)||C(3)||C(4)||M||u to H3 such that the oracle
returns C(5). Clearly, Pr[Ent2] is negligible if the
hash functions are modeled as random oracles. Let
e2 =Pr[b′= b] in this game. From the Difference
Lemma in [12], we have |e2� e1|≤Pr[Ent2].

Game3: In this game, the challenger performs identically
to that in Game2 except that, if the adversary
queries Dec with C= (C(1),C(2),C(3),C(4),C(5)), the
challenger does the following. Check the queries
to the oracle H3 to see whether there is an input
C(1)||C(2)||C(3)||C(4)||M′||u′ satisfying
.

H3 C 1ð Þ‖C 2ð Þ‖C 3ð Þ‖C 4ð Þ‖M′‖u′
� � ¼ C 5ð Þ; gu

′ ¼ C 1ð Þ

M
00
‖u

00 ¼ H1 gu
′xt

� �
�C 3ð Þ;M

00 ¼ M′ u
00 ¼ u′

If so, return M′; otherwise, return ⊥. This game is in
fact identical to Game2. Let e3 =Pr[b′= b] in this
game, then e3 = e2.

Game4: In this game, the challenger performs identically
to that in Game3 except that the challenge C�

t is
generated as follows.

C 1ð Þ
t ¼ gut ;C 2ð Þ

t ¼ gvt ; d2R 0; 1f gmþd;C 3ð Þ
t ¼ d

Γ2RG;C
4ð Þ
t ¼ Γ;C 5ð Þ

t ¼ H3 C 1ð Þ
t ‖C 2ð Þ

t ‖C 3ð Þ
t ‖C 4ð Þ

t ‖Mt‖ut
� �

This game is identical to Game3 unless the event Ent3

occurs, namely gutxt is queried to the random oracle H1 or
gvtyt is queried to the random oracle H2. Note that the
private keys xt, yt, are never used to answer the adversary’s
queries. Therefore, Pr[Ent3] is negligible on the basis of
the CDH assumption in G. Let e4 ¼ Pr M′

t ¼ Mt

� �
in this

game. The rationale is the same as that in the analysis of
Game4 in proving Theorem 1. From the Difference Lemma
in [12], we have |e4� e3|≤Pr[Ent3].
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Because H3 is modeled as a random oracle, it is clear
that e4 � 1

2

�� �� is negligible. From the aforementioned analy-
sis, we have that |e0� e4|≤Pr[Ent1] +Pr[Ent2] +Pr[Ent3],
which is negligible in the random oracle model on the basis
of the CDH assumption in G. Note that e ¼ e0 � 1

2

�� �� and
e4 � 1

2

�� �� is negligible, then e is negligible. The theorem
now follows.
4. AN ENHANCED AoN-PKEET
CRYPTOSYSTEM

In this section, we propose an enhanced AoN-PKEET
cryptosystem based on the computational client puzzle
scheme proposed in [7] to mitigate the offline message
recovery attack, which is discussed in Section 2.4.

4.1. Offline message recovery attack

In Section 2.4, we have shown a generic offline message
recovery attack against any AoN-PKEET cryptosystem.
Referring to the AoN-PKEET cryptosystem proposed in
Section 3.1, from a ciphertext Enc(M,PKt), a Type-I
adversary with the token Tt can obtain g

M. As a result, a more
efficient approach to mount the attack is to pre-compute

gM
′
M′ 2 M′
�� 	n

, then the attack is simply a table lookup.

It is worth noting that only a Type-I adversary is
capable of mounting an offline message recovery attack.
Compared with PKEET formulated in [5], where any
adversary can mount the attack, AoN-PKEET (and the
proposed AoN-PKEET cryptosystem) achieves a signifi-
cant security improvement.

4.2. The enhanced AoN-PKEET
cryptosystem

As shown in the previous subsection, a Type-I adversary
(or a semi-trusted proxy) can mount the attack in a brute-
force manner, namely try all the possible messages until
finding a match. In theory, this type of attack is unavoid-
able because of the desired equality test functionality. With
these facts, to mitigate the attack, a natural direction is to
make the attack computationally expensive so that it will
become computationally impossible for the adversary to
mount the attack. To achieve the purpose, we make use
of the computational client puzzle schemes [7,13], which
enable a prover to prove to a verifier that a certain amount
of computing resources has been dedicated to solve a
puzzle. The intuition is that the adversary is forced to solve
a puzzle before being able to test a possible message.

In the enhanced cryptosystem, we choose the Rivest–
Shamir–Wagner scheme in [7] because it is proven secure
and is deterministic and immune to parallel attacks [14].
These properties guarantee that a Type-I adversary cannot
accelerate the attack by employing multiple computers
to work in parallel. As in the original cryptosystem
1358 Secur
proposed in Section 3, the enhanced cryptosystem requires
the same global parameters k;G; g; p;m;H1;H2;H3ð Þ .
In addition, Q � T, a puzzle hardness parameter L (detailed
below), and a hash function UH : 0; 1f g� ! Z�

Q�T are
also published, where Q, T, are two large primes. These
additional parameters are required by the computational
client puzzle scheme [7]. Note that the generation of Q �T
could be bootstrapped by a party trusted by all users in
the system, and threshold techniques (e.g., [15]) can be
used to improve the security. Nevertheless, this trust
assumption is not required for achieving the OW-CCA
and IND-CCA security properties.

The algorithm KeyGen is identical to that in the original
scheme, while the algorithms Enc and Dec are redefined as
follows.

• Enc(M,PK): This algorithm outputs a ciphertext
C= (C(1),C(2),C(3),C(4),C(5)), where

u; v2RZp;C 1ð Þ ¼ gu;C 2ð Þ ¼ gv;C 3ð Þ ¼ H1 guxð Þ�Mu

C 4ð Þ ¼ H2 gvyð Þ þ H2 UH Mð Þð Þ2LmodQ�T
� �� �

modp

C 5ð Þ ¼ H3 C 1ð Þ‖C 2ð Þ‖C 3ð Þ‖C 4ð Þ‖M‖u
� �

• Dec(C, SK): This algorithm first computesM′‖u′=C(3)

�H1((C
(1))x) and then checks the following:

(1) gu
′ ¼ C 1ð Þ

(2) H3 C 1ð Þ‖C 2ð Þ‖C 3ð Þ‖C 4ð Þ‖M′‖u′
� �

¼ C 5ð Þ

If all checks pass, output M′; otherwise, output an error
message ⊥.

Compared with the original encryption and decryption
algorithms, the main difference lies in computing C(4),
where the encryptor needs to perform L multiplications in

computing UH Mð Þð Þ2LmodQ�T to form C(4). Let every user
Ui, for i≥ 1, adopt the aforementioned PKE scheme and
Ui’s key pair be denoted as (PKi, SKi). The algorithms
Aut is identical to that in the original cryptosystem, but
the Com algorithm is defined as follows.

• Com(Ci,Cj, Ti, Tj): This algorithm outputs 1 if

C 4ð Þ
i � H2ð C 2ð Þ

i

� �TiÞ � C 4ð Þ
j �

H2ð C 2ð Þ
j

� �TjÞ mod pð Þ or 0 otherwise.

Note that the enhancement does not incur any more
work for the comparison algorithm compared with the
original scheme.

As to this enhanced cryptosystem, the OW-CCA
and IND-CCA properties still hold, and their security
proofs are exactly the same as in Theorems 1 and 2. If
a proxy is given Ut’s ciphertext Enc(M,PKt) and token

Tt (i.e., yt), then it can obtain H2 UH Mð Þð Þ2Lmod Q�T
� �

.
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To test any M′, the most efficient approach for the proxy is

to compute UH M′
� �� �2L

mod Q�T and perform a compari-
son. Because every test will cost L multiplications, then,
by setting an appropriate L, the offline message recovery
attack will be made computationally very expensive. Sup-
pose that the size of the actual message space is not very
small; this approach will deter the attack to some extent.

It is worth noting that, in this enhanced cryptosystem,
the encryptor needs to perform L multiplications to
mask the message in the encryption. This may be a
computational bottleneck for some application scenarios.
How to overcome this drawback while still mitigating the
attack is an interesting future work.
5. A SECURE INTERNET-BASED PHR
APPLICATION

In this section, we first present an overview of existing
Internet-based PHR systems and point out the security
risks. Then, with AoN-PKEET, we propose a secure Internet-
based PHR application, which allows patients to encrypt
their data yet can still enjoy some sort of recommendation
services.

5.1. Overview of Internet-based PHR
systems

A PHR is typically a collection of health data maintained
by an individual, referred to as a patient. Recently, Internet-
based PHR systems have received much attention; some
examples include Google Health [2] and Microsoft Health-
Vault [3]. Internet-based PHR systems typically help
patients store their PHRs and allow the information to be
accessed and edited via a Web browser or some APIs, and
they may also help patients find kindred spirits (i.e., build
social networks) and share their information. Figure 4
shows a general picture of an Internet-based PHR system.

Considering a patient, say Alice, her PHR data can
come from many sources. For example, she can get
prescription results from her doctor, treatments from a
hospital, test results from a laboratory, and monitoring
results from home-based sensors. In many systems, such
as Google Health and Microsoft HealthVault, a lot of
Alice’s PHR data may be directly sent to Alice’s account,
whereas the rest will be input by Alice herself.

In most existing Internet-based PHR systems, patients
will be provided privacy controls. However, there are a
number of concerns that stop patients from sharing
their data. One concern is that the system providers, say
Microsoft or Google, are always able to fully access the
data. Although there will be some privacy agreement,
patients may still worry about that these providers may
abuse their data. The other concern is that, even if the
SPs behave honestly, their databases may be compromised,
in which case all data may be leaked. Because PHRs are
sensitive information to individuals, information leakage
Security Comm. Networks 2012; 5:1351–1362 © 2012 John Wiley & Sons, Ltd
DOI: 10.1002/sec
may cause undesirable consequences, such as being
discriminated by the potential employer because of a
disease.
5.2. The proposed application

With an AoN-PKEET cryptosystem, a PHR application
can be built as follows. Alice generates a key pair (PKa,
SKa) and publishes PKa. When an entity, say a hospital
or a laboratory, wants to contribute Alice’s PHR data into
the PHR system, it encrypts the data using PKa and sends
the ciphertext to Alice’s account in the system. When Alice
wants to match her PHR data with that of others, she can
choose a semi-trusted entity as a proxy and assign her
token. Later on, if other users also choose the same proxy,
then PHR data matching can be performed through
running the Com algorithm. The security of this applica-
tion lies in the fact that patients’ PHR data is always
encrypted with their own public keys. Even if the storage
of the PHR system is compromised, no information will
be leaked. With respect to the semi-trusted proxies, in
some extreme cases as discussed in Section 2.4, they may
be able to obtain some side information about patients’
PHR data from mounting an offline message recovery
attack. But, when a cryptosystem such as that in Section 4
is used, the risk of offline message recovery attack
can be reduced. It is worth noting that the aforemen-
tioned proposal serves as an example on how to use
AoN-PKEET. In practice, it may be augmented with other
security mechanisms to obtain a more secure PHR
application.

As mentioned before, PHR data may be contributed by
many different sources. We note that this may cause a
problem in practice: data from different sources may have
different forms or may have been truncated. If this
happens, the proposed solution of using AoN-PKEET
to compare messages in an exact manner may not be
desirable. To overcome this problem, we propose two
methods, which can be employed in parallel.

• One is to standardize data representations in the system
and make sure that all data contributors represent
data in the same form.

• The other is to use an AoN-PKEET cryptosystem,
which supports fuzzy comparisons. In fact, the
proposed AoN-PKEET scheme in Section 3 supports
certain types of fuzzy comparisons. Recall that the
comparison algorithm is defined as follows:

• Com(Ci,Cj, Ti, Tj): This algorithm outputs 1 if X =Y
or 0 otherwise, where

X ¼ C 4ð Þ
i �g�H2 C 2ð Þ

ið ÞTi
� �

;Y ¼ C 4ð Þ
j �g�H2 C 2ð Þ

jð ÞTj
� �

• Note that Ci is an encryption of Mi and Cj is an en-
cryption of Mj.
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In the aforementioned algorithm, we have X ¼ gMi and
Y ¼ gMj . Hence, for any integer h, the proxy can test
whether Mi=Mj+ h by evaluating whether X= Y � gh. As a
result, the proxy can perform certain types of fuzzy com-
parisons in a brute-force manner. For example, if
the messages are treated as integers, the proxy can test
whether the Euclidean distance betweenMi andMj, namely
|Mi�Mj|, is below a threshold. For the proposed solution,
this kind of fuzzy comparison support may suffice.

We note that, with the proposed AoN-PKEET scheme,
it may not be easy to perform other types of fuzzy
comparisons (e.g., Hamming distance between messages).
We leave it as a future work to further investigate fuzzy
comparisons with AoN-PKEET.
6. OTHER RELATED WORK

In the literature, there have been enormous research efforts
to investigate encryption techniques that support operations
on encrypted data. Next, we provide a brief review on some
related work to ours.

The concept of PKEET has a close nature to that
of PKE with keyword search (PEKS) [16] and PKE with
registered keyword search (PERKS) [10]. With PEKS or
PERKS scheme, a user can enable a server to perform
equality test between the keywords embedding in a tag
and a ciphertext, and the user enforces her authorization
by issuing a token to the server. The difference is that,
instead of keywords, PKEET is concerned with the
equality test of plaintexts that are encrypted under different
public keys. Another related concept is order preserving
encryption (OPE) scheme, which is a primitive firstly
proposed by Agrawal et al. [17] and then further investi-
gated by Boldyreva et al. [18]. With an OPE scheme, the
order of ciphertexts always remains the same as that of
1360 Secur
the corresponding plaintexts. Therefore, given a set of
ciphertexts, any entity can directly compare the plaintexts.
The order-preserving property of an OPE scheme holds
only for the ciphertexts generated under the same public
key, which differs from the purpose of PKEET.

The concept of PKEET also shares some similarity with
that of proxy re-encryption (PRE) [19,20]. With a PRE
cryptosystem, a delegator Alice can issue a re-encryption
key to a proxy so that the proxy can convert ciphertexts
encrypted under Alice’s public key into ciphertexts that
can be decrypted by a delegatee Bob. During the re-
encryption process, the proxy will learn nothing about
the involved plaintexts. Yet, another related concept is
homomorphic encryption, which is first proposed by Rivest
et al. [21] and investigated by many others [22–24]. With a
homomorphic encryption scheme, given two ciphertexts,
any entity can compute a new ciphertext, which is an
encryption of the addition/multiplication/XOR/⋯ of
the plaintexts in the given ciphertext, depending on the
homomorphic property. It worth noting that, for both PRE
and homomorphic encryption, the proxy and any third
party are not allowed to learn any information about the
involved plaintexts. This property also differs from the
purpose of PKEET, in which the proxy learns the equality
status of the encrypted plaintexts.

7. CONCLUSION

In this paper, we have proposed a formulation and a con-
struction for AoN-PKEET, namely PKE schemes that sup-
port plaintext equality test and user-specified authorization.
Compared with PKEET formulated in [5], AoN-PKEET
introduces a simple authorization mechanism for users to
specify who can perform plaintext equality test from their
ciphertexts. We believe that AoN-PKEET will be an im-
portant building block in designing privacy protection
ity Comm. Networks 2012; 5:1351–1362 © 2012 John Wiley & Sons, Ltd.
DOI: 10.1002/sec
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solutions (e.g., secure PHR applications) supporting opera-
tions on encrypted data. There are many interesting future
works, including the following.

• In the security model for AoN-PKEET, we do not
consider the consistency property of the encryption.
Take the proposed scheme as an example; there is
no way for the proxy to check whether C= (C(1),C(2),
C(3),C(4),C(5)) is a valid ciphertext or not, where

u; v2RZp;C 1ð Þ ¼ gu;C 2ð Þ ¼ gv;C 3ð Þ ¼ H1 guxð Þ�M‖u
C 4ð Þ ¼ gH2 gvyð ÞþM′

;C 5ð Þ ¼ H3 C 1ð Þ‖C 2ð Þ‖C 3ð Þ‖C 4ð Þ‖M‖u
� �

Clearly, given thatM 6¼M′, then C is not a valid ciphertext.
We notice that this issue exists for the PKEET scheme
proposed by Yang et al. [5] and the primitive in [6]. In
addition, we notice that similar issue exists for the existing
hybrid primitive of PEKS and PKE schemes (e.g. [25])
where the encrypted keywords and messages may not
be consistent with each other.Though, the lack of this
consistency will not affect the confidentiality of the data
for AoN-PKEET, it may become a problem in some
applications. For instance, a malicious message sender
can generate an inconsistent encryption as shown before,
and then, the proxy will generate wrong comparison
results. We foresee two directions to solve this problem.
One is to formalize a consistency property in the security
model of AoN-PKEET and propose new schemes with
such a property. The other one is, for the application that
requires this property, to investigate auxiliary countermea-
sures to be used together with AoN-PKEET. For example,
one possible countermeasure could be to record the
connection between the message sender and the messages
that he or she has generated. If an inconsistent encryption
is detected, then the message sender can be punished.
We leave further investigation of the issue to be a future
research work.

• In Section 5.2, we have noted that the proposed AoN-
PKEET scheme may support certain types of fuzzy
comparisons but may not support other types of fuzzy
comparisons (e.g., Hamming distance between mes-
sages). Here, we also note that fuzzy comparisons
cannot be achieved by the enhanced AoN-PKEET
scheme described in Section 4 because the messages
are hashed in C 4ð Þ

i and C 4ð Þ
j . We leave it as a future

work to further investigate AoN-PKEET schemes
that support different types of fuzzy comparisons.
Moreover, for such schemes, it would be interesting
to investigate countermeasures against offline message
recovery attacks against a Type-I adversary.
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