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Summary
App quality impacts user experience and satisfaction. As a consequence, both app ratings and

user feedback reported in app reviews are directly influenced by the user-perceived app quality.

Through an empirical study involving 210,517 reviews related to 317 Android apps, in this paper,

we experiment with the combined usage of app rating and user reviews analysis (i) to investi-

gate the most important factors influencing the perceived app quality, (ii) focusing on the topics

discussed in user review that most relate with app rating. Besides, we investigate whether spe-

cific code quality metrics could be monitored to prevent the rising of negative user feedback (i.e.,

types of user review comments), connected with low ratings. Our study demonstrates that user

feedback reporting bugs are negatively correlated with the rating, while reviews reporting fea-

ture requests do not. Interestingly, depending on the app category, we observed that different

kinds of issues have rather different relationships with the rating and the user-perceived quality

of the app. In particular, we observe that for specific app categories (e.g., Communication) some

code quality factors have significant relationships with the raising of certain types of feedback,

which, in turn, are negatively connected with app ratings.
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1 INTRODUCTION

During the recent years, the Global App Economy (GAE)1 experienced an unprecedented growth, driven by the increasing usage of apps and by the
growing smartphone adoption around the globe 1. According to recent market researches, in few years from now, the GAE is expected to double
in size to $101 billion 2. Android, with about 75-80% of the worldwide smartphone market, represents not only the most popular world’s mobile
operating system but arguably the most popular operating system nowadays 3,1,2. In this context, the ease of distribution and the large number of
potential users available in the various app stores, has made the mobile development an attractive field for software engineers. However, this led
to an increasing competition between developers 4,5,6, making the GAE a “world where everybody competes with everybody – everybody is treated
equally in the app stores of the world” 7. Inevitably, some developers pay the price of this fierce competition: recent studies have shown that the
reality for most of them is far from being rewarding, with 60% of developers gaining less than $500/month 1,5.

In such a competitive market, user experience and satisfaction play a paramount role for the success of mobile applications 4,5,8. As a conse-
quence, mobile developers would certainly benefit from understanding which factors most impact user experience and satisfaction (thus, app
ratings) and how these factors are related to software quality 4,9.

Users mostly rely on star-ratings for choosing new apps to download 10. Indeed, mobile apps with higher ranks are more likely to be noticed
and downloaded by users 11. To rationalize the star-ratings, users typically complement them by providing app review comments and, especially in

1App economy consists of everybody who makes money and has a job thanks to mobile apps.
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low-rated reviews 12, significant amount of these comments include requirements-related information such as bugs or issues 13. Thus, it is crucial
to support developers in finding the key issues contained in app reviews that could be significantly related to star-ratings of a given app category,
as app developers can first focus on the types of user feedback that need to be addressed to avoid receiving lots of low ratings .

A recent research 14 demonstrated that each app category has a specific set of key topics (i.e., the topics appearing in app user reviews having
statistically significant relationships with star-ratings). However, it is still unclear what are the types of issues that are raised in app user reviews
having negative impact on the star-rating. To fill this gap, Noei et al. 15. proposed to map issue reports that are recorded in issue tracking systems to
user reviews, in order to prioritize the issue reports that are related to user reviews and observed that prioritizing such issue reports could positively
influence the star-rating. Nevertheless, there is vocabulary mismatch between user reviews and issues reported in issue trackers and mobile app
developers often rely exclusively on reviews for acknowledging the problems reported 16. To copewith these drawbacks, similarly to what observed
by Noei et al. 14, we conjecture that issues of the same types could have different relationships with rating, depending on the different kinds of
apps. As showed in the following examples, a specific kind of bugs (i.e., concerning app contents) could be more critical for users of apps belonging
to certain categories (e.g., Music & Audio) than others.

“The music pause is unbearable I love the web app. I stopped using other music players on PC and even paid for 1year of premium service. I simply cannot
stand this app. It always pauses music which ruins songs. It also starts even when Apollo is running so that two songs are playing at the same time for no
reason. No other app behaves this poorly on my S4 GE. I hate to say it but I uninstalled” (App: Subsonic Music Streamer, Rating: 1).

“Great app!! Doesn’t matter if it’s not working at 100% on my nexus 5 sometime the picture doesn’t save properly but perfection will come with time. If you
can update this project more often will be great!” (App: Focal, Rating: 5).

Thus, a user reviews prioritization mechanism based on the relationships that they exhibit with the star-rating might bring out the most critical
problems, allowing developers to promptly address them, and, consequently, limiting the effects on the app rating. As a matter of fact, timely
identifying the emerging issues of apps can avoid receiving massive low ratings and alleviate the losses of users 17.

Paper Contribution. The main goal of this paper is to investigate (i) the types of issues raised in user reviews that exhibit significant relationships
with star-rating, within the different app categories, as well as (ii) the code quality indicators that could be connected with the rising of such kinds
of issues. The purpose of the study is twofold. On the one hand, we want to provide developers with guidelines and a general approach to conduct
software maintenance activities (e.g., the priorities to assign to the different types of user feedback), with the aim of maximizing user satisfaction.
On the other hand, our investigation is aimed at identifying the source code quality indicators that developers should monitor, in order to prevent
the rising of critical issues (that, in turn, could degrade the user satisfaction). In particular, we investigate whether low quality characteristics of
code are related to the rising of certain types of user feedback and the extent to which this is related to a lower app rating. Through an empirical
study involving 210,517 reviews, 443 versions related to 317 Android apps, we focus our effort in analyzing more in depth the mutual connections
between code metrics, rating and the kinds of user feedback reported in user review. Hence, the main research questions investigated in this paper
are the following:

• RQ1: To what extent are specific kinds of user feedback connected with app rating? To answer this research question we conduct two
different analysis: At first, we investigate whether particular types of user feedback appear more frequently in reviews with high or low
ratings. Therefore, we analyze the correlation between particular types of user feedback and app ratings. Specifically, feedback expressed
by users in app reviews may directly reflect their satisfaction with the entire app or a specific feature 18. Indeed, problems stated by users
in reviews may often refer to specific aspects or topics of an app 8. However, problems or shortcomings related to specific aspects of an
app may exhibit a greater impact on the actual app rating (e.g., depending on the app category). Thus, as second analysis, in this research
question, we quantitatively observe the kinds of feedback raised by users in reviews which may be connected with their decision to rate the
app with a lower (or higher) number of stars (i.e., app rating). In particular, to address this aspect, we measure the percentages of problems
or requests reported by users about a specific aspect of an app (e.g., UI, app pricing, resource consuming, etc.). We focus on this kind of
feedback since critical bugs and requests reported by users are crucial for developers aiming at maximizing user satisfaction 19.

• RQ2: Are there code quality indicators correlated with the rising of critical issues? This research question is aimed at studying the code
quality aspects/characteristics that developers should carefully monitor to prevent the rising of critical issues. Hence, we wonder whether
poor code quality is associated with the growing of specific types of user feedback that are connected with app rating. Pragmatically
speaking, we are interested in investigating the existing relationships between code quality indicators and the types of user feedback that
are related to app rating (see Section 3.1.2). To answer this research question we correlate 22 code quality indicators (detailed in Section
3.1.2) with the occurrences of specific types of user feedback, to investigate whether lower (or higher) values of specific code quality
indicators co-occur with the raising of certain types of feedback. Such indicators are divided into 4 categories: Dimensional, Complexity,
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Object-oriented and Android-orientedmetrics. Specifically, since mobile apps are written through Object-Oriented languages, we select some
of the classic metrics used to measure object oriented design quality 20. However, there are some peculiarities that differentiate mobile apps
from traditional software products, e.g., the limited computational resources, the strong usage of network and the localization services 21.
In order to fill this gap, we expand our analysis considering also Android-specific code metrics.

To provide additional insights onto the success and evolution of mobile applications, we specialize the analysis of all research questions by
grouping the apps of our dataset according to the Play Store’s categories.

Paper Structure. The remainder of this paper is organized as follows. Section 2 summarizes background information and presents the related
literature, underlining the particular contribution of our work. Section 3 describes the collected metrics and the approach we rely on to answer our
research questions. Section 4 presents the obtained results along with a discussion about our findings. The threats that could influence the study
are presented in Section 5. Section 6 concludes the paper highlighting future research directions.

2 RELATEDWORK

Previous research investigated the relationship between the rating and a particular characteristic (or feature) of mobile applications 22,10,23,24,5, this
because mobile apps with higher rating ranks are more likely to be noticed and downloaded by users 11. While the research community widely
investigated this topic, no prior work experimented the combined usage of app rating and user reviews analysis (i) to investigate the most important
factors influencing the perceived app quality, (ii) focusing on the topics discussed in user review that most affect mobile app rating and software
quality. Thus, we discuss the most close related work to our investigation, to clarify the context of our work.

Corral et al. 22 investigated the relationship between code quality and market success, expressed in average rating and in the number of down-
loads. They showed how the code quality, in terms of complexity, cohesion, coupling, and size, plays a marginal role on themarket success. Guerrouj
et al. 25 studied the impact of app churn on the app rating observing that high app churn leads to lower user ratings. Furthermore, Tian et al. 5 inves-
tigated the most influential factors of high-rated apps. They considered also metrics about user requirements and marketing effort. The authors
demonstrated that marketing effort, app size and the target SDK version are the prominent factors in recognizing successful (high-rated) apps. In
the current literature, researchers also explored (i) the correlation between the number of ad libraries and rating 26, (ii) relationships between the
app description, the number of downloads and average user rating, in the context of BlackBerry ecosystem 27, and (iii) the influence of app ratings
and price on the amount of user feedback 28. Compared to these work, we complement the analysis merely based on the rating, by more in-depth
investigating the content of user reviews (i.e., what do users discuss about) and how different topics occur in both low and high-rated reviews.
Moreover, we introduce Android-oriented metrics that might have a more direct impact on the user experience and app success.

In recent years, researchers also demonstrated that, together with app rating users typically complement it by providing app review comments
and, especially in low-rated reviews 12, significant amounts of these comments include requirements-related information such as bugs or issues 13.
This highlight the importance of supporting developers in finding the key issues contained in app reviews that could be significantly related to
star-ratings of a given app category, which is the main goal of this work. A close work to our is the one by Noei et al. 14, which demonstrated that
each app category has a specific set of key topics (i.e., the topics appearing in app user reviews having statistically significant relationships with
star-ratings). In a different work, Noei et al. 15 proposed to map issue reports that are recorded in issue tracking systems to user reviews, in order
to prioritize the issue reports that are related to user reviews, as they can positively influence the star-rating. Our work builds on the the idea
that there is vocabulary mismatch between user reviews and issues reported in issue trackers and mobile app developers often rely exclusively
on reviews for acknowledging the problems reported 16. To cope with these drawbacks, similarly to what observed by Noei et al. 14, we conjecture
that issues of the same types could have different relationships with rating, depending on the different kinds of apps. In particular, we argue that
users of different apps may express different judgments, based on the specific nature of the app. Thus, our work was also conducted by observing
potential variation on the results/findings, specializing the analysis for the different app store’s categories.

Finally, recent research efforts have been devoted to investigating the reliability of app ratingwhen used as a proxy to represent user satisfaction.
For example, Luiz et al. 29 proposed a framework performing sentiment analysis on a set of relevant features extracted from user reviews. Despite
the star rating was considered to be a good metric for user satisfaction, their results suggest that sentiment analysis might be more accurate in
capturing the sentiment transmitted by the users. Hu et al. 30 studied the consistency of reviews and star ratings for hybrid Android and iOS apps
discovering that they are not consistent across different app markets.
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TABLE 1 Intention Categories Definition

Category Description Example
Information
Giving (IG)

Sentences that inform other users or developers
about some aspect of the app.

Great app launcher Perfect for users of Alfred orQuick-
silver.

Information
Seeking (IS)

Sentences describing attempts to obtain informa-
tion or help from other users or developers.

Can anyone pls tell me the full procedure to connect
this?

Feature
Request (FR)

Sentences expressing ideas, suggestions or needs
for enhancing the app.

Would love to see both an Add button & a Sync button
at the top of the main page.

Problem
Discovery (FR)

Sentences reporting unexpected behavior or
issues.

Whenever I touch the Downloads option the program
crashes and just does not let me use it

Other Sentences not belonging to any of the previous
categories. Deserves every star.

3 DESIGN

In this section, for each research question, we first depict the methodology used for answering it, and then discuss the data collection and the
approach used for processing it.

3.1 Research method
In this section we describe the metrics and the approaches we rely on in order to answer the aforementioned research questions.

3.1.1 RQ1 - To what extent are specific kinds of user feedback connected with app rating?
In the following, we discuss the motivation driving the first research question, in addition to the metrics and the approach we rely on in order to
answer it.

Motivation
Ratings have been used for long time as a main metric to measure user satisfaction. However, rating is merely a score from 1 to 5 that by design
lacks of qualitative information. User reviews represent the gold mine from where such a qualitative information can be derived. This first research
question is driven by the idea that user reviews analysis and app rating might be used in a complementary way to understand the kinds of issues
that are more critical from the user’s perspective. Therefore, here we aim at investigating which kinds of user feedback are present in the reviews
in case of low or high rating. Moreover, we are interested in understanding whether issues concerning different topics discussed in the reviews
relate with the rating itself.

User-oriented Metrics
To investigate the relationships existing between specific kinds of feedback and the app rating, we rely on the User ReviewModel (URM) proposed
by Di Sorbo et al.which allows analyzing sentences in user review comments from a software maintenance and evolution perspective 8. The URM
framework firstly splits the reviews into atomic sentences. Then, each sentence is automatically labeled with a combination of one of the intention
categories (detailed in Table 1) and one (or more) of the topics (detailed in Table 2).

In particular, given a specific apki we compute P(I,T) as the proportion of sentences S(I,T), belonging to the particular intention class, I, and
treating the specific topic, T, with respect to the total amount of the collected reviews, SALL, related to apki. In particular:

P(I,T ) =
S(I,T )

SALL

Thus, P(I,T) measures the percentage of sentences having a specific intention-topic pair assigned. We also compute P(I,all) as the percentage of
sentences S(I,all) falling in a specific intention category, I, and dealing with any of the topics detailed in Table 2.

P(I,all) =
S(I,all)

SALL
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TABLE 2 Topic Definitions

Cluster Description Example

App sentences related to the entire app, e.g., generic
crash reports, ratings, or general feedback

Most useful stable straightforward password manage-
ment app out there.

GUI sentences related to the Graphical User Interface or
the look and feel of the app

The interface isn’t exactly friendly but you can figure it
out with some trial and error.

Contents sentences related to the content of the app I’m so glad there are songs for the church included.

Pricing sentences related to app pricing You could however pay $2.00 to play on up to 13 by
13 which was pretty reasonable.

Feature or
Functionality

sentences related to specific features or function-
ality of the app

I feel so angry with this new setting of Google search
box HATED IT.

Improvement sentences related to explicit enhancement requests It would be even better with a blue light filter in the
night mode.

Updates/ Ver-
sions

sentences related to specific versions or the update
process of the app weak this version suffers from heavy lags.

Resources sentences dealing with device resources such as
battery consumption, storage, etc.

As an example overnight it drained 30% of the battery
simply being resident in memory.

Security sentences related to the security of the app or to
personal data privacy

Considering privacy concerns and permissions I’m
uninstalling.

Download sentences containing feedback about the app
download

Cannot get it installed; continuously says "download-
ing” but doesn’t.

Model sentences reporting feedback about specific
devices or OS versions

Perfect under Android 4.4 but the effect doesn’t per-
sist in 5.0.

Company sentences containing feedback related to the com-
pany/team which develops the app

Big thanks to the development team behind this awe-
some emulator.

Other sentences not treating any of the previous topics Nothing to worry about.

It is worth to notice that in this paper we focus our analysis on user reviews belonging to the Problem Discovery (PD) and Feature Requests (FR)
intention category, since they are the most occurring complaints in low rated apps 31, thus, they are the more relevant for software evolution 8.
Such two-level classification model allows us to determine, for instance, whether in a review the user has the intention to highlight a problem (e.g.,
by identifying the review comment as a Problem Discovery) with an aspect related to the application user interface (e.g., by categorizing the same
comment as GUI related). An example of review discussing a problem with GUI is illustrated below.

“...My two complaints are that (at least on my phone) the screen is super small and won’t enlarge easily also navigating between the words is a pain...” -
App: Shortyz Crosswords, Rating: 4.

Despite several other approaches have been developed with the aim to classify user reviews content 32,18,33,34,35, we rely on URM since it is able
to perform a finer-grained categorization at the sentence level. From such model, we employ 2 distinct intentions and 13 distinct topics. Therefore,
considering every possible combination amongst them, plus the two values of P(I, all) we end up with 28 different P(I,T) values for each apki.

Approach
The goal of this research question is to analyze kinds of feedback raised by users when they decide to rate an app with a lower (or higher) amount
of stars. In particular, we are first interested in investigating the differences between (i) the kinds of feedback provided by users who rated an
app with a high number of stars (i.e., 4-5 stars), and (ii) the types of feedback appearing in reviews with a lower number of stars (i.e., 1-2 stars).
For this purpose, we investigate the combinations of intention and topic which occur in both low and high rated reviews. For each app category,
Ci, we consider the collection of reviews Ri related to all the apks belonging to Ci. We then split Ri in two different groups: (i) Ri,low , containing
the reviews in Ri with 1 or 2 stars assigned, and (ii) Ri,high, encompassing the reviews in Ri with 4 or 5 stars assigned. Afterwards we compute
the aforementioned P(I,T) values for both Ri,low and Ri,high analyzing the similarities and differences occurring in the distributions of each metric
within the two groups of reviews. The analysis is carried out for the overall dataset (i.e., by considering all the apps together, All), as well as for the
different Play Store categories present in our data collection.
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Finally, to better understand the connection between topics discussed and rating, we proceed further with a second analysis. We rely on
Spearman’s Rank coefficient to compute the correlations between the aforementioned user-oriented metrics (i.e., the specific pair of intention and
topics) and the average rating.

Since the store rating (i.e.,, the rating that is displayed in the app’s page of the Google Play) is very resilient to changes occurring in version-to-
version ratings 36, it is worth to notice that the average rating was not statically gathered from the Play Store but it has been tailored relying on the
reviews extracted. Thus, for each apk (i.e., for each app version), we compute the average rating as the mean of star-rating values related to the
reviews mined for such apk.

Spearman’s rank is an index (ρ) to calculate the correlation between two non-parametric variables: the closer is ρ to ±1, the stronger it is the
relationship 37. In our case, if a specific P(I,T) value tends to increase when the rating does the same, the Spearman correlation ρ coefficient is
positive, while in the opposite case it is negative. We interpret the strength of the correlation as very weak for 0.00 < |ρ| < 0.19, weak for
0.20 < |ρ| < 0.39, moderate for 0.40 < |ρ| < 0.59, strong for 0.60 < |ρ| < 0.79 and very strong for |ρ| > 0.8. Since some correlations could be
altogether casual, we only reported the most significative ones (p-value≤ 0.05) along with the marginally significative ones (0.05 < p-value≤ 0.10,
marked with the symbol * in all the figures).

3.1.2 RQ2 - Are there code quality indicators correlated with the rising of critical issues?
As done for the RQ1, we present the motivations for the second research question. Thus, we describe the metrics and the employed approach.

Motivation
The main goal of the second research question is to investigate whether different code quality aspects/characteristics — that can be observed
through code metrics — can be monitored in order to prevent the raising of issues that are correlated with the rating, and, thus, can be critical from
the users’ perspective. In other words, we want to establish whether some code quality indicators are connected with a larger presence of certain
types of issues, that in turn exhibit negative relationships with the rating. Thus, timely interventions on such code aspects might limit the growing
of users’ complaints related to critical issues, and consequently the effects on app rating.

Code quality Metrics
To asses and measure the code quality of an Android application, given an apki available in our dataset we compute 22 code quality indicators,
divided into 4 categories: Dimensional, Complexity, Object-oriented and Android-oriented metrics. Most of these indicators have been previously
investigated in recent work 5. However, as already reported, we also investigate Android-oriented metrics, since they model factors which might
have a direct influence on the user experience of Android applications 38,39,40,41,42. In the following we describe the meaning and the rationale of
each metric. In our replication package we further include a description of the collection process2.

Dimensional Metrics (described in Table 3) provide a quantitative measure of the app sizes in terms of code size and modularity. Apps with
larger dimensional metrics might contain more features and better functionalities leading to higher ratings and better users’ experience. However,
apps with larger code size might have an higher probability to contain bugs 5,43, leading to lower ratings, negative users’ experience and an higher
number of complains or negative comments in user reviews.

TABLE 3 Description of the dimensional metrics

Metrics Description

Number of Byte- code Instructions (NBI) It counts the total number of smali byte-code instructions, ignoring comment lines and blank lines
(i.e., NCLOC)

Number of Classes (NOC) It computes the number of classes within the app package

Number of Methods (NOM) It estimates the amount of methods within the app package

Instructions per Method (IPM) Is computed by the proportion between the total number of instructions (i.e., NBI) and the total
number of methods (i.e., NOM)

2https://github.com/sealuzh/user-satisfaction/wiki/Code-Quality-Metrics

https://github.com/sealuzh/user-satisfaction/wiki/Code-Quality-Metrics
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TABLE 4 Description of the complexity metrics

Metrics Description

Cyclomatic Complexity (CC) This is a complexity metric introduced by Thomas McCabe. This metric measures the number of
linearly independent paths contained in the control flow of the program

Weighted Methods per Class (WMC) This is a complexity metric introduced by Chidamber and Kemerer. The WMC metric is the sum of
the complexities of all class methods

TABLE 5 Description of the Object-Oriented metrics

Metrics Description

Number of Children (NOCH) It indicates the number of immediate subclasses subordinated to a class in the class hierarchy.
Greater is the number of children, greater is the reuse, but if a class has a large number of children,
it may require more testing of the methods in that class

Depth of Inheritance Tree (DIT) It indicates the depth (i.e., the length of the maximal path from the node representing the class
to the root of the tree) of the class in the inheritance tree. Deeper trees constitute greater design
complexity, since more methods and classes are involved

Lack of Cohesion in Methods (LCOM) It indicates the level of cohesion between methods and attributes of a class

Coupling Between Objects (CBO) It indicates the dependency degree of a class by another one

Percent Public Instance Variables (PPIV) It indicates the ratio of variables introduced by a public modifier

Access to Public Data (APD) This metric counts the number of accesses to public or protected attributes of each class

ComplexityMetrics (described in Table 4) andObject-OrientedMetrics (described in Table 5 can be used to estimate the apps code complexity,
cohesion and coupling. We rely on two different complexity metrics, i.e., cyclomatic complexity (CC) and weighted method per class (WMC). Since
mobile apps are implementedwith object-oriented programming languageswe can assess their code quality by using themetrics suite byChidamber
and Kemerer 20. Similarly to dimensional factors, apps with high complexity metrics or high code modularity might contain more complex features
and better functionalities leading to higher ratings and better user experience. However, also in this case, apps with higher code complexity or low
code modularity might have a higher probability to contain bugs 44,45, leading to lower ratings and negative users’ experience. Example of metrics
that fall in such a category are number of children (NOCH) and depth of inheritance tree (DIT).

Android-Oriented Metrics (described in Table 6) are aimed at assessing aspects influencing the users’ experience, such as the management
of resources or the handling of possible error conditions. Some of the factors that may influence the users’ experience in Android applications
are related to (i) the incorrect use of specific methods that may cause crashes 38, (ii) the high resources consumption 46,47,48,49, and (iii) the poor
responsiveness 50,51.

Approach
Given an app category Ci for which we observed meaningful correlations between specific kinds of user feedback (i.e., P(I,T) values) and app
rating (i.e., the one concerning problem discovery intention category, as emerged from Section 4.1.1), we observe whether some of those kinds
of feedback influencing the app rating also exhibit meaningful correlations with any of the code quality metrics collected. In order to perform this
task, we rely on Spearman’s Rank coefficient ρ to calculate the correlations between the P(I,T) values and the collected code quality indicators.
Closer is ρ to ±1, stronger is the relationship between (i) the particular aspect of the code structural quality (i.e., complexity, coupling, cohesion,
etc.) encompassed by the metric and (ii) the frequency of certain kinds of feedback 37.

3.2 Data Extraction and Processing
In this subsection, we report the methodology adopted to (i) collect our dataset, and (ii) extract the metrics (described in Sections 3.1.1 and 3.1.2)
employed for carrying out our study. In particular, in order to collect and extract the data, we applied the same approach and methodology used
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TABLE 6 Description of the Android-Oriented metrics

Metrics Description

Bad Smell Method Calls (BSMC) Kechagia and Spinellis individuated 10 Android methods throwing exceptions that can cause app
crashes. These methods have to be invoked in a try- catch block

WakeLocks with no timeout (WKL) A WakeLock allows to keep the device in an active state, avoiding the switch- off of the display.
On a WakeLock object the following methods could be invoked: (i) the acquire()method to keep
active the display, and (ii) the release() method to allow the display switch-off

Number of Location Listeners (LOCL) Through the class LocationListener an Android application can keep track of the user’s position.
However this functionality reduces the battery power

Number of GPS Uses (GPS) Location-aware applications can use GPS to acquire the user location. Although GPS is more
accurate, it quickly consumes battery power

XML Parsers (XML) In Android applications, event-based parsers have to be preferred because this kind of parsers can
save the battery power

Network Timeouts (NTO) Network timeouts are mechanisms which allow app developers to set time limits for establishing a
TCP connection. Without setting a timeout can produce ANR messages

Networking (NET) In Android applications all the networking operations could introduce latency and consequently
cause an Application Not Responding(ANR) message

File I/O (I/O) I/O operations could cause ANR messages, since even simple disk operations could exhibit
significant and unexpected latencies

SQLite (SQL) The database accesses can generate substantial amount of expensive write operations to the flash
storage, with obvious latency implications

Bitmaps (BMAP) Processing of large bitmaps could be computationally expensive and produce ANR messages

in previous work 52. As shown in Figure 1, such approach comprises two major steps: data collection and analysis. In the following, we detail each
of these steps.

For facilitating the replication of our work, we make available a replication package3 including (i) the datasets, (ii) the tool adopted for extracting
the data, (iii) the raw data and results of our study.

3.2.1 Data Collection Phase
Gathering App Metadata. To evaluate user satisfaction before and after releasing a new app version (as recommended by Li et al. 53), we mined
subsequent releases of a given app. Specifically, we first developed a web crawler able to mine from the entire F-Droid4 repository several meta-
data (e.g. package name, available versions, the release date of each version) along with the correspondent apk for each available version of F-Droid
apps. We then discarded the apps (i) not yet available on the Google Play Store, or (ii) whose latest version was released before 2014, with the
assumption that apps not updated for such a long time are no longer maintained.
Gathering User Reviews. With the purpose of gathering the reviews related to the collected apps, we built a scraper tool able to automatically
download them from the Google Play Store. Such a tool was entirely written in Java, relying on Phantom JS5 and Selenium6. Furthermore, it uses
MongoDB as database for the reviews storage. The mining process of our tool can be summarized as follows:

1. the tool reads from an input file the list of the crawled apps, each one identified by the unique package name that is showed in the
corresponding Google Play link;

3https://github.com/sealuzh/user-satisfaction
4https://f-droid.org/
5http://phantomjs.org/
6http://www.seleniumhq.org/

https://github.com/sealuzh/user-satisfaction
https://f-droid.org/
http://phantomjs.org/
http://www.seleniumhq.org/
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FIGURE 1 Data Collection Approach

2. it queries the existing crawled reviews database, looking for the posting date of the chronologically last mined one for the interested app;
if there are no reviews for that specific package name, a default date (i.e., 31 December 2013) is considered;

3. it uses the Phantom JS browser, manipulated through Selenium, to navigate the app’s Play Store page, order the available reviews from the
newest to the oldest and scraping them from the HTML.

We defined two different stopping criteria for the reviews extraction for a given app: (i) the posting date of the last mined review is older than
the latest review already stored in the DB, (ii) a total of 2,000 reviews have been extracted. We had to set this last limit in order to avoid the page
overload and the consequential crash. We deployed the crawling tool on a server setting up a cronjob that automatically repeats the process 4
times a week.

For each review, we were able to store (i) the package name of the corresponding app, (ii) the review text, (iii) the rating, expressed in the number
of stars, provided by the user while posting the review, and (iv) the posting date. Relying on this last information (i.e., posting date) we assign each
review to one of the available app versions as described below. Given two consecutive version of a given app, Vi and Vi+1, we assigned to the
version Vi all the reviews whose posting date occurs after the release date of Vi and before the one of Vi+1. We are aware that this assumption
may produce for some of the reviews an assignment to a wrong version of the app. However, Pagano and Maalej 13 empirically demonstrated that
user feedback is mostly triggered by new releases. This means that users provide most feedback in the first few days after downloading the latest
version of an app. As a consequence of this assignment, we discarded all the reviews that were too old to be matched with any of the available
versions. Furthermore, in order to ensure a meaningful set of reviews, for each app version, we discarded from the collected data all the versions
having less than 30 reviews assigned. Through this process, we collected 104,975 reviews related to 350 versions of 243 apps.

Despite such a remarkable amount of data, we observed that some particular app categories (e.g., Lifestyle or Travel & Local) were poorly repre-
sented (less than 15 apps) in our initial dataset. Therefore, we decided to manually select fromGoogle Play Store a set of popular apps (all appearing
in the top 100 popular apps of Google Play) for populating these categories. We used a tool able to download the needed apks from the Google
marketplace7. Afterwards, we crawled the user reviews related to these new apps. It is worth to notice that we used the same filtering criteria
discussed above (i.e., at least 30 reviews for each version). At the end of this new extraction process, a total of 210,517 reviews for 443 versions
related to 317 apps have been collected. In particular, 100 apps in our dataset (about 1/3 of the overall dataset) present at least 2 different ver-
sions and each of these versions has at least 30 user reviews assigned. The final dataset encompasses at least 15 different apks for 15 distinct Play
Store categories.

7https://github.com/liato/android-market-api-py

https://github.com/liato/android-market-api-py
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3.2.2 Analysis Phase
In this phase, we computed the user-oriented (described in Section 3.1.1) and the code quality (described in Section 3.1.2) metrics for each version
of the mined apps. In the following, we briefly explain how we performed the two tasks.

User-oriented metrics computation. All the collected reviews have been labeled using automated classifiers based on machine learning and
text-analysis approaches 54,55, that, in previous work, exhibited an accuracy above 80%. To this aim, we first split each review into a set of atomic
sentences. Afterwards, we performed a two-dimension classification using as a conceptual framework the URM taxonomy proposed by Di Sorbo
et al. 8. In particular, to each resulting sentence has been assigned:

• an intention category (detailed in Table 1), by using the ARDOC 54 tool. which is able to automatically detect intentions in app reviews with
high accuracy, and

• one (or more) topics (detailed in Table 2), by using the classifier module proposed by the SURF summarizer tool 55, which leverages keywords
and n-grams for automatically detecting the topics discussed in app reviews.

Code quality metrics computation. In order to compute the set of code-quality factors we developed several Python scripts. We rely on such
quality factors to answer our second research question. In detail, we first disassembled the apks of all the mined versions with at least 30 reviews
assigned, with the aim of obtaining a set of human readable Dalvik bytecode .smali files from the binary Dalvik bytecode format .dex ones. To
accomplish this task we used apktool8, a tool for reverse engineering that allows to decompile and recompile Android applications. The .smali

files were the targets of our measurements. Thus, for every application version in our dataset, we parsed these files with Python scripts in order
to automatically compute the 22 code quality metrics.

4 RESULTS

In this section, we report the results of our investigation, discussing the main findings for each research question.

4.1 RQ1: To what extent are specific kinds of user feedback connected with app rating?
In this research question we analyze the types of comments reported in user reviews along with the associated rating. We believe that the combi-
nation of star rating and user review analysis can provide useful information for helping developers prioritize the maintenance and evolution tasks.
More specifically, we analyze the comments reported in user reviews which may be connected with the decision to rate the app with a lower (or
higher) number of stars, with the aim of more in depth understanding mobile users expectations and behaviors.

We apply two different analysis, as detailed in Section 3: a first one observes the distribution of the various kind of user feedback in respectively
low and high rated reviews; a second analysis correlates —on both the aggregate and the single categories— the user feedback metrics with the
app rating.

4.1.1 User-oriented metrics distributions
In Table 7 we report the most significant values of the user oriented metrics (i.e., P(PD,all), P(FR,all), P(FR,Feature/functionality), P(FR,Feature/functionality))
obtained for both the reviews with low rating (Rlow) and the reviews with high rating (Rhigh). Specifically, such values are shown for the overall
dataset (i.e., by considering all the apps together, All), as well as for the different Play Store categories (on the rows). It is worth noticing that Table
7 only reports the values obtained for the most recurring user oriented metrics. For complete results, please refer to our replication package9.

In general, when looking at the whole app dataset (i.e., All), we observe a high percentage (40.2%) of sentences classified as Problem Discovery
(PD) contained in reviews with low rating (i.e., 1-2 stars). On the contrary, we find that in reviews with high rating (i.e., 4-5 stars) only the 6.2% of
sentences are recognized as PD. Vice versa, the percentage of Feature Requests (FR) discovered in reviews with low rating is very similar (i.e., around
6%) to the one observed in comments with high rating. Specifically, results show that problem discoveries dealing with the Feature/Functionality
(PD+Feature/Functionality) topic are the most frequent (i.e., 34%) complaints contained in reviews with low rating, while requests or problems deal-
ing with a specific functionality (FR+Feature/Functionality and PD+Feature/Functionality) are the user-oriented metrics with the highest percentages
(i.e., 5.5% and 5.1%, respectively) found in reviews with high rating.

8http://ibotpeaches.github.io/Apktool/
9https://github.com/sealuzh/user-satisfaction/blob/master/rqs/topic.md

http://ibotpeaches.github.io/Apktool/
https://github.com/sealuzh/user-satisfaction/blob/master/rqs/topic.md
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TABLE 7 Percentages of user-oriented metrics in reviews with low and high rating

Category
PD FR PD+Feature FR+Feature

Rlow Rhigh Rlow Rhigh Rlow Rhigh Rlow Rhigh

Books & Reference 0.397 0.063 0.067 0.090 0.342 0.052 0.058 0.082

Communication 0.499 0.088 0.067 0.071 0.424 0.073 0.060 0.065

Education 0.173 0.027 0.064 0.036 0.138 0.019 0.055 0.031

Entertainment 0.321 0.046 0.057 0.023 0.273 0.036 0.051 0.020

Finance 0.411 0.034 0.087 0.046 0.324 0.028 0.080 0.043

Games 0.409 0.118 0.062 0.084 0.331 0.093 0.054 0.075

Lifestyle 0.409 0.050 0.054 0.031 0.348 0.040 0.048 0.026

Music & Audio 0.513 0.138 0.124 0.167 0.447 0.119 0.113 0.160

Personalization 0.526 0.119 0.076 0.140 0.457 0.105 0.073 0.130

Photography 0.271 0.044 0.051 0.043 0.222 0.036 0.047 0.040

Productivity 0.494 0.081 0.108 0.140 0.434 0.069 0.094 0.130

Social 0.474 0.062 0.058 0.043 0.398 0.050 0.055 0.036

Tools 0.417 0.067 0.072 0.076 0.361 0.057 0.066 0.070

Travel & Local 0.274 0.027 0.060 0.026 0.218 0.022 0.052 0.024

Video Players & Editors 0.463 0.072 0.037 0.077 0.413 0.059 0.034 0.071

All 0.402 0.062 0.063 0.060 0.340 0.051 0.057 0.055

Considering the results achieved by the different app categories, we can notice that bug descriptions (PD) exhibit a massive presence in reviews
with low rating. Contrariwise, we have a higher presence of feature requests (FR) within reviews with high rating than reviews with low scores, for
8 out of 15 analyzed categories (i.e., Books & Reference, Communication, Games, Music & Audio, Personalization, Productivity, Tools and Video Players
& Editors). Moreover, for all the analyzed categories, PD+Feature/Functionality is the most frequent user-oriented metrics observed in reviews with
low rating.

Looking at feature requests (FR) raised in reviews with high rating, we can notice that these types of reviews may be useful for collecting ideas
and suggestions in order to make changes that can lead to higher user rating, for example:

“The only reason I’m not giving it a full five stars is that I wish it gave me the option to share a good book with friends by being able to send information
about the book to my friends via some form of media” - App: Smashwords Access, Rating: 4.

‘I would give 5 stars if there was a way to move emails from the delete folder back into the inbox folder” - App: K-9 Mail, Rating: 4.

This confirms our conjecture that combining app rating and user review analysis can be very useful for mobile developers to stay ahead of
their competitors and respond to the needs of their users 5,33,8,6. In Table 8 we report some examples of requests of features (i.e., FR) stated in
reviews with high and low ratings for the app GPS Logger for Android. Feature requests raised in reviews with high rating (i.e., 4-5 stars) appear
more specific and less vague than feature requests stated in reviews with low rating (i.e., 1-2 stars). As a matter of fact, some of the suggestions
contained in reviews with high rating have been (i) effectively considered for implementation (e.g., send the location automatically via sms10), (ii)
actually implemented (e.g., POST method when logging via URL11), or (iii) enabled through workarounds (e.g., SSH upload12).

10https://github.com/mendhak/gpslogger/issues/526
11https://github.com/mendhak/gpslogger/pull/574
12https://github.com/mendhak/gpslogger/issues/523

https://github.com/mendhak/gpslogger/issues/526
https://github.com/mendhak/gpslogger/pull/574
https://github.com/mendhak/gpslogger/issues/523


12 Di Sorbo et al. Investigating the Criticality of User Reported Issues through their Relations with App Rating

TABLE 8 Examples of feature requests raised in reviews with low and high rating for the app GPS Logger for Android

Low-Rated Reviews High-Rated Reviews

Loaded it at the hotel and it worked thinking it would
work great on the road left for our tour when out of
the country and needed it and did not work because
it keep looking for an internet connection

Good job Would be nice to have also acceleration

What I think should be changed is that when logging
it started it should not start until GPS gets a lock.

So there should be an option to sent the location
automatically via sms to a predefined mobile number
at predefined time intervals.

Unless you have it turned up crazy high (uploading
every minute) you will miss data

Would have been better if the path could be seen live
on a map.

The settings warn against setting the log filename to a
frequent interval but event with the defaults you will
miss 1 hour of stats every day.

Great app I would really like to be able to autosend
co-ords via sms preferably with customizable text

I need to export them to a PC and cannot. Perfect gps weird sharing Maybe it’a android lacking
the right activities but this can’t use the same apps
you get for ""sharing""

It would be nice if the app could reactivate
when it turns back on again?

Please add an option to turn off notifications

Ui need to be improved

And could you add SSH upload?

will be good to have POST method when logging via
URL

Wish it wold stack data in memory when call is on and
later push data on network

4.1.2 User-oriented metrics and relationships with app rating
Our analysis is aimed at identifying the key user review feedback that exhibits significant relationships with rating (a proxy of the success of apps)
for the different app categories. Specifically, to study the mutual connections between specific kinds of user feedback and star rating, from a more
rigorous statistical perspective, we (i) compute the correlations between the defined user-orientedmetrics (see Section 3.1.1) and app rating, and (ii)
illustrate, through heat-map representations, the obtained results. Interestingly, our previous results demonstrated that FR-related metrics exhibit
similar distributions both in reviews with high rating and in reviews with low rating. Thus, we decided to conduct further analysis by exclusively
focusing on PD-related metrics, as we argue that reviews of these types may exhibit stronger relationships with app rating.

Figure 2 shows the correlations occurring between the percentage of problem discoveries (PD), along with the percentages obtained for each PD-
topic pair, and the average rating. In Figure 2, we annotate only the cells (i.e., each cell represents the relation between a given metric and the rating)
with at least a moderate strength (i.e. |ρ| ≥ 0.39) and a significant or marginally significant (i.e., marked with the * symbol) p-value. The outcomes
are presented for both the entire dataset of apps (i.e., the All column) and each app category. As illustrated in Figure 2, percentages of PD-topic
pairs frequently (i.e., in many app categories) report a statistically significant relationship with app rating.

When looking at the whole app dataset (i.e., All), we have a moderate negative correlation between the average rating and the percentage of
reviews that claim a problem discovery (i.e., the PD row). Specifically, results show that problem discoveries dealing with the App and Feature/Func-
tionality topics may widely affect in a negative way the app rating — confirming the finding we observe in Section 4.1.1. This means that developers
of all kinds of apps should care of comments reporting App and Feature/Functionality related problems, since a quick resolution of them can lead
to an improvement of overall user satisfaction and a higher app rating. However, by specializing the analysis trough the different app categories,
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FIGURE 2 Correlations between Problem Discovery’s topics and rating

we can notice that the correlations between different kinds of feedback and the average rating significantly differ among the various Play Store’s
categories.

Almost all the categories (except for Education, and Photography) report meaningfully correlations between the PD factor and the rating (i.e., 8
out of 15 categories present strong or very strong negative correlations). More in-depth, problem discoveries dealing with the Feature/Functionality
topic (PD+Feature/Functionality) exhibit strong negative correlations with average rating for apps belonging to several categories (i.e., 2 very strong
and 5 strong negative correlations). Moreover, noticeably ρ values can also be observed (i) between the pair PD + App and the average rating (i.e.,
6 moderate, 2 strong and 1 very strong negative correlations), and (ii) between the PD + GUI pair and the rating for the Social, Lifestyle, Productivity,
Communication, Games, Travel & Local, Photography and Books & Reference categories (i.e., 8 moderate negative correlations, but only 3 of them are
fully significant from a statistical point of view). Furthermore, for some categories (i.e., Social, Finance, Lifestyle, Games, Music & Audio, Entertainment
and Travel & Local) the users are particularly sensitive about the Contents topic. Indeed, for these categories, the PD + Contents factor moderately
binds with the rating in a negative way, but for only 3 of them the correlations are fully significant. As a practical example, according to our
results, developers of apps belonging to the Communication category should pose particular attention on issues dealing with the App, GUI and
Feature/Functionality topics. For instance, for the apps Fon for Members and Yaaic we observe a higher presence of bugs dealing with the App and
Feature/Functionality topics. Indeed, these apps exhibit values for the metrics P(PD,App) (0.12 and 0.14, respectively), and P(PD,Feature/Functionality)

(0.41 and 0.39, respectively) that are higher than the median values (i.e., 0.07 for P(PD,App) and 0.21 for P(PD,Feature/Functionality)) computed on the
same metrics and considering all the apps of the Communication category present in our dataset. Interestingly, the average rating values of both
apps (i.e., 2.12 and 3.04, respectively) are strongly lower than the median average rating (3.82) obtained by apps in our dataset belonging to the
Communication category, suggesting a lower level of user satisfaction. Looking deeper at the reviews with low rating related to Fon for Members
and Yaaic apps that are marked as Problem Discovery and discussing the App and Feature/Functionality topics, as shown in Table 9, we can notice
that while the users of the Fon for Members app mostly complain about login and purchase functionalities, the users of the Yaaic app recurrently
complain about the IRC commands and SSL identification functionalities.

These results suggest that it is of primary importance to ensure the correct behavior of the apps’ existing functionalities. As a consequence,
developers should first look at (and timely address) the kinds of bugs exhibiting stronger relationships with star rating, in order to acquire new users
without losing market slices.

In conclusion, from this analysis we can observe that users experiencing functional bugs are more likely to rate the whole app with a lower
score, while users requiring features implementation/enhancement present less predictable behaviors in assigning star rating: they can express a
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TABLE 9 Examples of problems discussed in reviews with low rating for the apps Fon for Members and Yaaic

Fon for Members Yaaic

Unable to login with my FON enabled Mweb account. basic IRC commands don’t even work!

Unable to login with Netia account. Appending #netia
doesn’t help.

Crashes using /list.

The login does not work.. Can’t even /list on many servers.

Cannot log in. Username and password invalid. Channels bug /part /close or close button does not work.

Cant log in to use credit.. Missing some key things: SSL identification doesn’t work.

Hmm It gives an option to purchase credit but this fea-
ture doesn’t work.

Other users are saying this is an SSL bugwhich is possible
(all my servers use SSL).

I can’t purchase credits If I attempt to try and purchase
credits to use the FON networks my options are disabled
and I can’t use play store or pay pal.

I’m not sure if this is just an issue with SSL servers only
as I only use the app for one server.

high level of satisfaction with the app (4 & 5 stars) and, in the same time, stimulate its evolution by asking developers for enhancements that could
satisfy their needs.

In order to verify whether apps with more than one release could affect our results, we also conducted the analysis by considering only the
latest version (available in our dataset) of each of the 317 apps. Such analysis produced similar results to the ones obtained when considering all the
available versions. This suggests that problems or requests dealing with specific topics have different relations with app rating and these relations
are mainly influenced by the app categories. Moreover, for specific app categories, some types of comments positively/negatively correlate with
the rating, even though they do not cover a high percentage in reviews with high/low ratings.

RQ1 summary. Comments belonging to the Problem Discovery category are strongly connected with the rating of almost all apps. However,
the relations between the different kinds of issues and the app rating significantly differ among the various Play Store’s categories. Conse-
quently, developers should timely address the kinds of bugs exhibiting stronger relationships with app rating, in order to acquire new users
without losing market slices. On the contrary, feature-request metrics are rarely connected with the rating

4.2 RQ2: Are there code quality indicators correlated with the rising of critical issues?
With this research question, our aim is to complement the analysis performed in RQ1. Since in RQ1 we found that app rating degradation might
be related with the rising of some user-oriented metrics (e.g., PD), the goal of RQ2 is to better understand whether code quality indicators (i.e., that
developers can directly monitor) exhibiting meaningful relationships with these user-oriented metrics could be identified in order to prevent such
growth.

In order to perform this analysis, we correlate the code quality indicators (see Section 3.1.2) and the user-oriented metrics (detailed in Section
3.1.1). We use the Spearman’s Rank coefficient and interpret it as described in Section 3.1.1.

The first immediate result we can observe is that, when looking at the overall dataset —i.e., all the apps together— there is not even a singular
correlation that is statistically significant (p ≤ 0.05). Therefore, we can conclude that, in general, the frequency of user reviews reporting a Problem
Discovery is not correlated with code quality aspects. This result highlights that users are not able to directly perceive the internal quality of the
applications they are using and therefore the content of their comments does not vary accordingly. This is a result aligned with previous findings
from the literature 22.

Similarly to the analysis carried out for RQ1, we deepen our investigation by analyzing each Google Play Store category separately, looking
for cases in which the specific nature of the apps could lead to peculiar results. In particular, we specify the analysis to the categories reporting
meaningful correlations between user feedback (i.e., PD-oriented metrics) and app rating (see Section 4.1). For the sake of space, we report all the
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corresponding heat-maps in our online appendix13, limiting this section to the discussion of most interesting results. Again, we are not able to find
any strong pattern in our correlations; however, it is worth to describe some interesting arose results. For instance, in the Communication category,
we observe amoderate negative correlation between the NTO (Network Timeouts) metric and the percentage of PD, specifically with the PD regard-
ing the Feature/Functionality topic. This means that for this specific category, when the amount of Network Timeouts decreases, the frequency of
reviews reporting Problem Discoveries about the Feature/Functionality topic increases. Moreover, for the apps of the same category (i.e., Communi-
cation), as reported in Section 4.1, when the percentage of reviews of the PD+Feature/Functionality pair is higher the average rating decreases. This
result could be due to the specific characteristics exhibited by apps in this category. Indeed, the Communication category encompasses messaging,
chat and call management apps which make a strong use of networking capabilities. Consequently, developers of apps belonging to the Communi-
cation category should pose particular attention on network timeouts management, as an inadequate amount of network timeouts could degrade
the user experience (e.g., the app is always in fetching mode with consequences on the power consumption) and lead to a lower app rating. An
example of review related to an app of the Communication category and complaining about this particular aspect is illustrated below.

“..But few things needs to be fixed: timeout when fetching emails sometimes it keeps fetching” - App: K-9 Mail, Rating: 2.

Another interesting result is observed for the category Music & Audio. Here, high values of NTO (Network Timeouts) and NET (Networking) co-
occur (exhibiting moderate ρ values) with a higher percentage of reviews belonging to the PD category and treating the App topic. Again, we argue
that this could be related to the key features that applications in this category provide. Indeed, apps in thr category Music & Audio usually get and
reproduce contents in streaming. An adequate use of networking operations and timeouts in applications belonging to theMusic & Audio category
could lead to a higher user satisfaction, since a higher frequency of reviews of the PD+App type might negatively affect the rating (moderate
negative correlation, as showed in Section 4.1). Below, some examples of user reviews complaining about the apps belonging to theMusic & Audio
category are reported.

“Uses 30-35% of my battery even if I don’t open the app at all.” - App: Subsonic Music Streamer, Rating: 2.

“... occasional connection problems are sometimes tedious to resolve...” - App: DSub for Subsonic, Rating: 3.

“... I often find that in the middle of paging through music the connection to the server is lost and I have to reconnect and start from the beginning again.
After 4 or 5 times it can get pretty frustrating... ” - App: Squeezer, Rating: 3.

Thus, it is convenient that developers of apps belonging to the Music & Audio category carefully monitor the NTO and NET metrics, as fluctua-
tions in these metrics, could lead to higher numbers of user complaints, and, consequently, fluctuations in app rating. It is also worth highlighting
how users’ perception about timeouts is different for apps belonging to Communication and Music & Audio categories. Indeed, while for the Com-
munication category an insufficient amount of timeouts may degrade the user satisfaction, for the apps in the Music & Audio category excessive
amounts of timeouts could lead to a lower app rating. As a matter of fact, in Communication apps, timeouts are very relevant for users and an inef-
fective use of timeouts could have negative effects on user experience, as they (i) could have impact on power consumption14, (ii) make it appear
that the app has frozen15, or (iii) may cause synchronization problems16. On the other hand, in apps belonging to the Music & Audio category,
timeouts could cause problem in downloading data17, and thus timeouts should be appropriately managed18 .

This suggests that also code quality standards should vary according to app categories, in order to more precisely reflect user expectations.
Our results demonstrate that an investigation merely based on the app rating can be fruitfully enriched by a context-based analysis (i.e., taking

into account the specific category of the app) in order to better understand user needs and expectations . In particular, our investigation demon-
strated that for apps belonging to specific categories some software quality indicators are connected with the raising of certain types of issues,
that in turn exhibit negative relationships with app rating. Thus, such code metrics should be carefully monitored by developers with the aim of
preventing the raising of such kinds of issues.

RQ2 Summary. In specific app categories inadequate values of someAndroid-relatedmetricsmight lead to higher amounts of user complaints,
and, consequently, to a lower app rating. Thus, developers of apps belonging to these categories could monitor these metrics to prevent
the raising of such kinds of issues.

13https://github.com/sealuzh/user-satisfaction/blob/master/rqs/cat.md
14https://github.com/k9mail/k-9/issues/1066
15https://github.com/k9mail/k-9/issues/2652
16https://github.com/k9mail/k-9/issues/1267
17https://github.com/clementine-player/Android-Remote/issues/13
18https://github.com/segler-alex/RadioDroid/commit/0222904
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https://github.com/k9mail/k-9/issues/2652
https://github.com/k9mail/k-9/issues/1267
https://github.com/clementine-player/Android-Remote/issues/13
https://github.com/segler-alex/RadioDroid/commit/0222904
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5 THREATS TO VALIDITY

This section discusses the main threats that could influence our study.

5.1 Threats to Internal Validity
Threats to internal validity concern any confounding factor that could influence our results. It is worth to notice that this is only an observational
study. We rely on the quantitative and qualitative information collected to answer the various research questions and try to provide plausible
explanations for the obtained results. However, relationships between specific changes occurred on code quality metrics, rating (i.e., the main proxy
used in literature to measure the success) of apps, and higher amounts of specific types of user feedback in reviews, could be due to several other
internal (e.g., changes in the app features and usability) and/or external (e.g., availability of alternative similar apps) factors, which have not been
considered in our study. This could represent a threat to internal validity. To mitigate this issue and verify the reliability of obtained results, we plan
in the future to consider a wider set of internal/external factors that could influence user decisions to rate an app with lower or higher amounts of
stars.

A further threat to internal validity could involve the criterion we used for assigning reviews to the different versions of an app. In particular, we
rely on the publication date of the user review for assigning it to one of the app releases. This criterion may generate wrong assignments. However,
user feedback is mostly triggered by new releases and users give most feedback in the first few days after a new version of the app is released 13.

Another threat may concern the way we classify reviews. Specifically, we use automated classifiers in order to assign each review to an intention
and one or more topics categories. This could lead to misclassifications that might affect our results. In particular, the intention classifier we used
demonstrated to achieve an accuracy above the 80%when used in a real scenario 54, while the topics classifier achieved an accuracy of about 75% 8.
It is worth to point out that, in order to mitigate the effects related to information bias, we filtered out (i) apks having less than 30 reviews, and (ii)
app categories encompassing less than 15 different apks. While the former criterion is aimed at augmenting the variability of topics discussed in
user reviews related to a specific apk, the latter has the purpose of avoiding to polarize the analysis around too specific apps.

5.2 Threats to External Validity
Threats to external validity are related to the generalizability of our findings. The work by Martin et al. 56 highlights that mobile data are susceptible
to the app sampling problem. This means that results only based on a subset of apps may be affect by potential sampling bias. Thus, our results
may not be generalized to all apps on the Android platform. A potential limitation of our study could also be represented by the fact that each apk
has a different number of related comments (i.e., there are several apps that are less popular than others). However, to mitigate these issues, our
dataset is composed by a representative number of app belonging to the most relevant Play Store categories and each considered apk (i.e., version)
in our study has at least 30 reviews assigned.

Another problem affecting our research is that we analyzed only free apps. However, it is not the purpose of this paper establishing if our
observations are still valid for paid apps.

As reported by Martin et al. 56, in the Google Play store the full set of reviews is available only for apps with fewer than 481 reviews under each
star rating (2,400 total). This could be a threat to external validity, due to the fact that we only considered the reviews that the scraping tool was
able to retrieve. Nevertheless, to avoid missing a high number of reviews, we set a cronjob which repeated the reviews mining process 4 times a
week (see Section 3.2). Furthermore, for each apk (i.e.,, each app version), all the user-oriented metrics, as well as the average rating value used in
our analysis are computed relying exclusively on the reviews we were able to gather for such apk (as stated in Sections 3.1.1 and 3.1.2).

6 CONCLUSIONS

In recent years, researchers proposed approaches based on app rating to measure user satisfaction, thus, correlating app rating with specific
software evolution and quality indicators. This paper reports an empirical study aimed at investigating which types of feedback are directly related
to the app rating. More specifically, we conducted an empirical study involving 210,517 reviews, 443 versions related to 317 Android apps, and
investigated whether (i) specific types of user feedback are associated with reviews with high/low rates; and (ii) specific kind of code quality
indicators correlate with the increase of user reviews mainly reporting bugs. While in general users do not directly perceive the internal quality of
applications they use, our results show that some code metrics exhibit meaningful correlation with the rating, and this strictly depends on the type
of the considered apps.
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Findings and practical implications for researchers and developers. In the following we summarize our main findings and the practical
implications relevant for developers and the research community:

• On the impact of bugs and feature requests on the app rating. User comments belonging to the Problem Discovery category are negatively
connected with the rating of almost all apps, which implies that users experiencing bugs are more likely to rate the app with a lower score.
Surprisingly, no noticeable relationships between the reviews asking for new features — or feature enhancement — and the app rating are
observed. For those reasons, future strategies, aimed at achieving a higher user satisfaction, should first prioritize user feedback concerning
bug fixing activities, while giving lower priorities to other software evolution activities.

• App category matters. Depending on the app category, different kinds of user feedback exhibit stronger/weaker relationships with the
app rating. Indeed, as observed in Section 4.1.2, for specific app categories (e.g., Communication), a lower user satisfaction is strongly
connected with different kinds of user feedback (e.g., PD+App and PD+Feature/Functionality), and, in this context, the analysis of such user
feedback types allows to identify the specific mulfunctions that are recurrently experienced by users (e.g., the login and purchase features),
and that lead to lower ratings. As consequence, better prioritization strategies should consider the app category as a criterion to design
rewarding/penalizing mechanisms able to rank the most relevant user feedback types that exhibit the stronger relationships with the app
rating. More in general, future research on the evolution of mobile apps should focus on leveraging both app rating and user reviews analysis
to conceive automated approaches able to identify the specific issues that developers should pose particular attention on, depending on
the category of the app.

• On the relevance of code quality on user feedback and app rating. We observed that types of issues co-occuring with lower app rating
are connected with specific code quality indicators (e.g., NTO). Interestingly, the strength of this relationships strictly depends on the app
category. This suggests that the development and evolution of apps of specific categories should integrate mechanisms that monitor the
source code quality indicators associated with the raising of critical issues.

• Code quality perception implications.User perception of code quality varies depending on the app (categories) they are using. As a concrete
example, an higher amount of timeouts is perceived (i) more positively by users of the Communication category, and (ii) more negatively
by users of the Music & Audio category. This suggests, for future research on mobile apps evolution, that code quality standards should be
adapted considering the different app categories, in order to more precisely reflect user expectations.

From a practical perspective, we can envision two different development scenarios where our results could be adopted:

• User issue criticality for developer-centric appmarketplaces. App marketplaces do not provide information about the general quality levels
of the available apps 57. Software quality strongly depends on the ability to collect feedback from end-users efficiently and dynamically 58.
To support app developers in performing more informed software maintenance and evolution activities, we argue that app marketplaces
can provide mechanisms aimed at fostering the perceived quality of the apps hosted. As proposed in our work, such mechanisms could
leverage text- and data-mining techniques for profitably linking the feedback types, the user ratings, and the code quality metrics, over each
app category. In a similar context, to plan and prioritize the changes to apply, the developers of an app could easily retrieve the specific
feedback types that exhibit the stronger relations with user-perceived quality (according to the app category) and explore the recurrent
topics in such reviews (as exemplified in Section 4.1.2).

• Criticality-driven issue prioritization in RE sessions. Requirements prioritization is an important activity of the requirement engineering (RE)
process 59. In RE sessions, developers are tasked to determine and prioritize the requirements of the software system, trying to integrate end-
users needs 58. Our results can be used to support collaborative decision-making processes in requirements prioritization 60. In particular,
information about the criticality of user-reported issues can provide a better picture of the specific needs of the users of a particular app
category, This information can be exploited during the requirements elicitation and prioritization phases for ensuring a higher perceived
quality from the early stages of software development.

Potential future work. Our study demonstrates that exploiting the huge amount of knowledge that can be collected through user reviews
allows to enrich the typical analysis merely based on app score with a context-based one. Thus, combining user rating with user review analysis
might be very useful to determine which kind of feedback address at first in order to maximize user satisfaction (i.e., the associated rating 61) as
well as the source code factors to keep under control to avoid a degradation in such a satisfaction. Tools and techniques can be built on top of
our results to help developers to monitor those factors and achieve higher success for their apps. As future work, we also plan to use the data
available for different version of the apps in our dataset, to more in-depth investigate, from a more evolutionary perspective, if best practices can
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be identified in order to suggest the specific actions that developers should undertake to obtain variations in ratings. Moreover, previous research
demonstrated that information sources different from app stores (e.g., Twitter) provide relevant feedback for app developers 62,63. In the future,
we aim at investigating the extent to which the feedback gathered from these information sources can be used to more precisely estimate the
criticality of specific issues. We believe that this work might help to develop tools able to (i) guide developers distilling both the user feedback and
quality indicators that are related to the app rating and success, and, consequently, (ii) help developers assigning the right priorities to the different
software maintenance and evolution activities.
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