
Received: Added at production Revised: Added at production Accepted: Added at production

DOI: xxx/xxxx

ARTICLE TYPE

A Model to Discipline Autonomy in Cyber-Physical
Systems-of-Systems and its Application

Mohamad Gharib*1 | Leandro Dias da Silva2 | Andrea Ceccarelli1

1Department of Mathematics and
Informatics, University of Florence,
Florence, Italy

2Computing Institute, Universidade
Federal de Alagoas, Alagoas, Brazil

Correspondence
*Mohamad Gharib, Email:
mohamad.gharib@unifi.it

Present Address
Department of Mathematics and
Informatics, University of Florence,
Viale Morgagni 65, Florence, Italy

Abstract

A Cyber-Physical System-of-Systems (CPSoS) can be defined as a System-of-Systems

(SoS), composed of a number of operable and autonomous Constituent Systems (CSs) that

are themselves Cyber-Physical Systems (CPSs). A main challenge in integrating CPSoS to

function as a single integrated system is the autonomy of its components, which may result

in conflicts due to the lack of coordination among its CPSs. In this paper, we advocate that

in order to facilitate the integration of CPSs within the overall context of their CPSoS,

we may need to adjust their level of autonomy in a way that enables them to coordinate

their activities to avoid any conflict among one another. Reducing such conflicts surely

contributes to the dependability of the CPSoS. In particular, we propose a novel model-

based approach for modeling and analyzing the autonomy levels of CPSs based on their

awareness concerning their operational environment as well as their capability to react in a

timely and safe manner while performing their activity. The model is further described in a

UML profile and applied to represent activities for autonomous driving scenarios. Using a

driving simulator, we implement such models on a target vehicle and we show the resulting

safety improvement, especially in terms of reduced collisions.

KEYWORDS:

Cyber-Physical Systems of Systems; Autonomy; Controllability; Conceptual Modeling;

Simulation

1 INTRODUCTION

A Systems of Systems (SoS) can be defined as an integration of a finite number of Constituent Systems (CSs) that are independent and operable,
and which have been networked together to achieve a specific higher goal 1,2. Therefore, ensuring that an SoS can function as a single integrated
system to support a common mission is a main goal for the SoS community 1,3. However, the integration of CSs is not a trivial task due to the
special characteristics that distinguish SoSs from other types of systems, and especially the autonomy of its components is a major cause of
concerns 2,3. This problem becomes even harder to be tackled when CSs are Cyber-Physical Systems (CPSs), where a CPS is a system consisting
of cyber components (e.g., computer systems), controlled components (e.g., physical objects) and possibly of social components (e.g., interacting
humans) 3, and the integration of CPSs into an SoS is called Cyber-Physical System-of-Systems (CPSoS).

In particular, the autonomy of CPSs may result in a lack of coordination among one another while pursing their own goals and/or the overall
goals of CPSoS. This may lead to unsafe situations, and potentially to disasters in the case of critical CPSoS 4. For instance, a self-driving car that
was in autonomous driving mode has hit and killed a woman that was walking outside of the crosswalk recently 5. Therefore, coordination among

0Abbreviations: SoS (Systemof Systems), CPS (Cyber-Physical System), CPSoS (Cyber-Physical Systemof Systems), RMU (RoadMarkingUnit), AI (Artificial
Intelligence).

2 Gharib et al

CPSs is a must to avoid such situations. To this end, CPSs that operate in the same environment need to be aware of one another in order to
coordinate their activities. More specifically, awareness is essential for any coordination since it is about understanding the activities, locations,
and situations of other CPSs, which provides the required knowledge for each CPS to safely perform its activities 6,7. In this context, awareness
is surely a key aspect that should be considered while analyzing the autonomy levels of CPSs. Considering the previous example, if the woman
and/or the self-driving car had been aware of one another such disaster could have been avoided.

However, a CPSmay not have the self-capability for acquiring the required knowledge about its operation environment; therefore, it may depend
on other CPSs for such knowledge. Thus, we differentiate between two cases: when the CPS has the self-capability to be aware of its operational
environment (e.g., aware by self), and when it needs to depend on other CPS for such awareness (e.g., aware by dependency). Consider for example
a system that supports drivers to avoid overtake-related accidents on undivided rural roads, where Road Marking Units (RMUs) cooperate to assist
the driver. The driver has the self-capability to be aware of its operational environment (road situation) if no obstacles limiting his visual capabilities
(e.g., heavy fog, a sharp curve). In the case of heavy fog or a sharp curve, a driver may need to depend on RMUs for such knowledge since he does
not have the self-capability for acquiring it. As the CPS may be dependent for such knowledge, we cannot say that the CPS is fully autonomous
for performing its activity, thus, its autonomy should be adjusted (e.g., limited, restricted).

On the other hand, having the required awareness about the operational environment may not be enough to guarantee that a CPS can safely
perform its activities. Considering the previous example, in cases of an imminent crash due to an overtake, the driver may not have the capability
to take the right decision in a timely manner. Therefore, the controllability of the CPS (driver) over the performance of the activity should be also
considered while analyzing its autonomy level. Controllability has been considered in several safety standards (e.g., Road vehicles - Functional safety
(ISO 26262) 8), and it is used to measures the ability to avoid a specified harm/damage through a timely reaction.

To this end, we advocate that in order to facilitate the integration of CPSs within the overall context of their CPSoS, we may need to adjust the
autonomy level of some CPSs in a way that enables them to safely perform their own activities without endangering any other CPS that is operating
in the same environment. This requires addressing the following three challenges: 1- Define the type of awareness that a CPS has (e.g., aware by
self or by dependency) concerning its operational environment; 2- Define the level of controllability that a CPS has concerning the activity it aims
to perform; and 3- Define the level of autonomy that each CPS should have while performing an activity, based on its type of awareness as well
as its level of controllability.

To tackle these challenges, we have previously proposed a model-based approach for modeling and analyzing the autonomy levels of CPSs 4.
The approach offers a conceptual model and a UML profile for modeling the autonomy levels of CPSs, and it also proposes constraints expressed
in Object Constraint Language (OCL) 9 for the verification of such models. In this paper, we initially build on 4 but we bring significant updates and
additional contributions. The most notable novel contributions are that i) we refine the conceptual model with an augmented categorization of
autonomy concepts, ii) we consequently adjust the UML profile and we re-design its application to a use case on autonomous driving, and ii) we
implement such use case in a simulator, namely the Carla simulator 44. The code we introduce in the simulator realizes the relations and concepts
as defined in the application of the UML profile. In fact, exploiting the simulator, we are able to represent a car whose control system implements
the relations and criteria of the UML profile to decide and adjust its autonomy level, depending on its awareness of the environment as well as
its level of controllability of its activities. We demonstrate that a timely reduction of the autonomy, in determined situations, improves the overall
safety, i.e., the number of collisions with other vehicles is decreased when the autonomy of vehicles is adjusted based on the proposed criteria.

The rest of this paper is organized as follows. Section 2 describes a motivating example we use to illustrate our work. We propose a conceptual
model for modeling and analyzing the autonomy level of CPSs in Section 3, and we present and discuss our model-based approach in Section 4.
Section 5 exercises the envisioned approach through simulations. Related work is presented in Section 6, and we conclude the paper and discuss
future work in Section 7.

2 GUIDING EXAMPLE: COOPERATIVE DRIVING ASSISTANCE SYSTEM

To contextualize our reasoning and guide the rest of the paper, we introduce a running example concerning an autonomous driving system. We
consider as CPSoS a town where cars (or vehicles, in general) and pedestrians are acting, each for their own goal. We define the goal for a car as
reaching a destination point B within the city.

A car, consisting of the mechanics of the car, the control system within the car and the driver, can be described as a CPS operated by a human,
and it is active within the town. The car interacts with other CPSs and humans to reach its specified goal: the overall CPSoS consists of a plurality of
cars and pedestrians cruising in an area. In other words, each individual car is an autonomous CPS that tries to achieve its given objective without
guidance from other systems 46.

Vehicles in a town and their interaction have been often used as a representative example of CPSoS. Consider for example, the coordination
of cars on a busy highway to realize a smooth flow of traffic and their exchange of information to achieve such a common goal. In addition to the

Gharib et al 3

direct communication by explicit signals among the drivers of the cars (e.g., the blinker or horn), information flow between cars is based on the
observation of the movement of the vehicles on the road (caused by the actions of other drivers) 47.

We define a scenario of a car moving from the starting pointA to the destination pointB in the city. We assume the possible support for driving
assistance from the infrastructure. In particular, we base our driving example on the works 13,14, and consequently the main components of our
CPSoS are identified as:

• Cars (with drivers). Each car is moving from a starting point to a destination point.

• Road Marking Units (RMUs) that are integrated into the road infrastructure, and they collect and disseminate information that assists drivers
to avoid accidents to the best possible extent. In our example, we assume that RMUs,when available, are distributing positions and directions
of the cars on selected lanes.

• Pedestrians, which contributes to the entourage of the CPSoS. Pedestrians are not CPSs and do not operate them, but still they are an
integral part of the resulting CPSoS.

We assume the existence of undivided roads, and of bad weather conditions that may lead to e.g., reduced visibility. This creates a challenging
scenario for safe driving, as several studies linked bad weather and ambient lighting conditions that influence the drivers’ visibility to the occurrence
of accidents 10,11,12, especially if matched with the presence of undivided roads 12.

The CPSs can communicate in this CPSoS exploiting two different types of communication channels:

• Direct channels, where information can be exchanged (sent and received) relying on dedicated channels e.g., wired orwireless communication
means. Two direct channels are identified: i) RMUs-to-RMUs, or Infrastructure-to-Infrastructure (I2I): allows RMUs to communicate with
one another, and ii) RMUs-to-Vehicle, or Infrastructure-to-Vehicle (I2V): allows RMUs to communicate with vehicles.

• Indirect channels, where information can be acquired by sensing/observing the real world (domain) 15. Two indirect channels are identified:
i) Vehicle-to-Vehicle (V2V): allows vehicles/drivers to collect (acquire) information about other vehicles e.g., location, direction. (this is done
for example through sensors as cameras, radar, as well as directly by the driver); and ii) Vehicle-to-RMUs (V2I): allows RMUs to collect
information about close-by vehicles.

Figure 1 shows the system in terms of its main components allowing also to discuss their direct and indirect communication channels. A driver in
such setting is subject to different scenarios. He might be driving alone, with limited risks of collisions with other participants of the CPSoS (Figure

FIGURE 1 Scenarios for assisted driving: a) empty road: direct and indirect interactions with other systems and risks of collisions are low or absent;
b) and c) with traffic, direct or indirect interactions with other system are present and there are credible risks of collisions; d) a frontal collision
(direct interaction between the two systems involved).

4 Gharib et al

1a). Alternatively, He might be in presence of other participants; this requires a higher level of attention and potentially attention warnings. The risk
of collision is credible, depending on the intentions of the driver, e.g., he should not risk lane change in Figure 1b, he should reduce speed in Figure
1c). Also in some cases, collisions are unavoidable (Figure 1d). In these last three scenarios, information from RMUs may be used to support the
driver and providing driving assistance, i.e., ultimately resulting in a control of the driver (and the vehicle) actions and a reduction of its autonomy.

Assisted driving in a town is a good example, where the autonomy of CPSs might need to be adjusted based on their capability of performing a
safe operation, i.e., based on their type of awareness as well as their level of controllability.

3 A CONCEPTUAL MODEL FOR MODELING AND ANALYZING THE AUTONOMY LEVELS FOR
CYBER-PHYSICAL SYSTEMS-OF-SYSTEMS

A conceptual model should include a set of fundamental constructs that represent the main concepts of the domain along with the relationships
among them. Therefore, themain purpose of our conceptualmodel is to capture (model and analyze) the autonomy levels for CPSoS. Inwhat follows,
first we present the general concepts of the model, followed by the concepts, relations and attributes specialized for analyzing the autonomy levels.

The meta-model of the proposed conceptual model is depicted in Figure 2. In such Figure, we can identify a CPSoS that integrates CPSs. For
example, the traffic system in a city can be seen as a CPSoS that integrates several CPSs such as RMUs, vehicles, pedestrians. Moreover, a CPS can
perform activities while pursing its own objectives or the objectives of the overall CPSoS. An activity is performed in an operational environment,
which we call Sphere of Action (SoA) that is a part of the domain, where activities can be performed 15. A SoA can be described by information. For
example, a driver may perform a turn (activity) at a crossing (SoA).

In what follows, we present concepts, relations and attributes for analyzing the autonomy levels of CPSs. Several researchers have argued
that autonomy is not an all-or-nothing affair 16,17,18. For instance, the notion of adjustable autonomy have been discussed in 18, and adaptable
autonomy has been presented in 16. Moreover, several works suggest analyzing autonomy level based on several aspects of the system such as
the level of its intelligence 19, its motivations and behavior 20, or as in 18 based on four dimensions, namely: responsibility, commitment, authority
and independence. Although no general agreement has been reached on which of these aspects should be considered while analyzing autonomy,
there is general agreement that autonomy is surely influenced by the awareness of the system concerning its environment 21,22,17.

In this context, we define the relation awareness of between a CPS and the SoA, where it exists and operates, and it is characterized by a
type attribute. Following 21, the type attribute can be: 1- aware by self, a CPS has the self-capability to be aware of its SoA, e.g., a CPS is socially
independent, or 2- aware by dependency, a CPS needs to depend on other CPS to be aware of its SoA, e.g., a CPS is socially dependent. Note that
a CPS must be aware of its SoA to operate in it, that is why we only consider the type of its awareness not whether it is aware or not of its SoA.

To analyze aware by self, we define the acquire relation between a CPS and information that describes a SoA. In other words, a CPS is aware by
self of its SoA, if it is capable of acquiring information that describes the SoA by itself. For instance, a driver is said to be aware by self of the road
situation, if he has the self-capability for acquiring information describing the road situation.

To analyze aware by dependency, we define information provision concept that captures the provide/receive relations between twoCPSs concerning
a specific information. In this case, a CPS is aware by dependency of its SoA since information that describes the SoA has been provided to it by another
CPS. For example, a driver is aware by dependency of the road situation, when he depends on a RMU to provide him with such information.

On the other hand, to capture controllability of a CPS over the performance of its activity, we rely on the controllability relation between a CPS
and the activity it aims to perform. Such relation is characterized by one attribute, namely controllability level, that can be:

(1) Controllable, when the CPS can detect and avoid any obstacle that might prevent it from safely performing its activity in a timely manner;

(2) Might be controllable, when the CPSmight not be able to detect and avoid all obstacles that might prevent it from safely performing its activity
in a timely manner;

(3) Uncontrollable, when the CPS cannot detect and/or avoid all obstacles that might prevent it from safely performing its activity in a timely
manner.

For example, making a turn at a crossing during daylight where no obstacles are limiting the driver visibility is controllable by the driver. Instead,
making a turn at a crossing with/without the support of RMUs when the driver visibility is limited might be controllable since the driver might not
be able to detect and avoid all obstacles that might prevent him from safely performing this activity on time. However, cases such as an imminent
crash due to making turn at a crossing is usually uncontrollable by a driver, since he does not have the capability to avoid the crash on time.

For capturing the autonomy level of a CPS, we extend the perform relation between the CPS and Activity concepts with the autonomy level
attribute that can be: i) Full autonomy, ii) Partial autonomy, iii) Limited autonomy and iv) No autonomy. The autonomy level of a CPS can be analyzed
based on: i) its type of awareness (e.g., aware by self or dependency) concerning its SoA; and ii) its controllability level concerning the activity it aims
to perform e.g., controllable, might be controllable or uncontrollable. In details, autonomy levels are defined as follows:

Gharib et al 5

perform

ac
q
u
ir

e

integrates

Cyber-Physical

System-of-Systems

(CPSoSs)

InformationDomain
Information

Provision

Activity

re
c
ei

v
e
r

p
ro

v
id

e
r

performed in
Sphere of

Action (SoA)

describes concerning

awareness of

controllability

Full autonomy

Partial autonomy

Limited autonomy

Controllable

Controllability level

Aware by self

Aware by dependency

Awareness type

Might be controllable

Cyber-Physical

System (CPS)

Autonomy level

Uncontrollable

No autonomy

FIGURE 2 The meta-model of the proposed conceptual model

(1) Full autonomy: the CPS can have full autonomy for performing a specific activity in a specific SoA, if it is aware by self of the SoA, and the activity
is controllable with respect to its capability. For example, a driver can have full autonomy for performing an overtake, if he is aware by self of
the road situation (e.g., clear visual conditions), and he is also capable of detecting and avoiding any obstacle that might prevent it for safely
performing the overtake in a timely manner.

(2) Partial autonomy: the CPS should have partial autonomy for performing a specific activity in a specific SoA, if it is aware by dependency of its SoA,
and the activity is controllable with respect to its capabilities. For example, when the driver is aware by dependency, the safe performance
of turning at a crossing depends on information provided by other CPS, e.g., RMUs. Therefore, the driver cannot have full autonomy for
performing the turning. Partial autonomy imply that other CPSs need tomonitor and assist the CPS to safely perform its activity. In particular,
although the overtake is controllable with respect to the driver capabilities, it cannot be performed safely unless RMUs monitor the driver
along with other vehicles using the same SoA (e.g., sense their positions, directions, speed, etc.), and then assist the driver with information
that is considered essential for safely performing the overtake.

(3) Limited autonomy: the CPS should have limited autonomy for performing a specific activity in a specific SoA, if it is aware by self or aware
by dependency of its SoA, and the activity might be controllable with respect to its capabilities. For example, a driver should have a limited
autonomy for turning at a crossing, if he is aware by self/dependency of the road situation, but he might not be able to detect and avoid all
obstacles that might prevent him from safely turning at a crossing. In particular, Limited autonomy is considered to cover situations when
drivers might have poor judgment concerning the road situation that is why they might not be able to detect and avoid all obstacles on time.

(4) No autonomy: the CPS should have No autonomy for performing a specific activity in a specific SoA, if the CPS activity is uncontrollable with
respect to its capabilities. For example, a driver should have No autonomy for turning at a crossing, when the turning is uncontrollable by him
regardless if he is aware by self/ dependency, i.e., the driver might be prevented from turning. In such a situation, the driver is not believed to
be able to safely turning. That is why, he should have no autonomy for such activity, i.e., its autonomy should be adjusted toNo autonomy.No
autonomy implies that other CPSsmay interrupt and control1 the activity to be performed. For instance, several Advanced Driver Assistance
Systems (ADAS) have been developed to increase the driver’s safety by interrupting and controlling the activity to be performed 24,25.

Figure 3 summarizes the identification of the autonomy level based on controllability and awareness. Figure 4 describes the state transitions
envisioned for the autonomy model, as they emerge from the discussion above.

1Control can be defined as the capability to direct or influence the behavior of others 23, and it is constructed based on different kinds of power (e.g.,
legitimate, reward, expert, etc.), which is out of the scope of this paper

6 Gharib et al

Awareness type
Controllability level

Controllable Might be controllable Uncontrollable
Aware by self Full Autonomy Lim. Autonomy No Autonomy

Aware by dependency Par. Autonomy Lim. Autonomy No Autonomy

FIGURE 3 Determining autonomy level based on awareness type and
controllability level FIGURE 4 State machine describing the autonomy levels according to

the conceptual model proposed. Once no-autonomy is reached, an event
from the system is required to re-establish acceptable driving autonomy.
In our running example, this may be a maneuver or an acknowledgment
from the driver.

4 A MODEL-BASED APPROACH FOR MODELING AND ANALYZING THE AUTONOMY LEVELS FOR
CYBER-PHYSICAL SYSTEMS-OF-SYSTEMS

In what follows, we describe the modeling environment in our approach. First, we present the methodological process. Second, we describe the
UML profile that allows for modeling the autonomy levels. Then, we briefly discuss the reasoning support that can be used to verify such models.

4.1 Methodology

The process underlying our approach is shown in Figure 5. It aims to assist software engineers while modeling the autonomy levels for CPSs in the
overall context of CPSoS, and is composed of two main phases:

Model needs

refinement?

[yes]

Step 1. CPS

& activity

modeling

Step 2.

SoA

modeling

Step 3.

Awareness

modeling

Step 4.

Controllability

modeling

Step 5.

Autonomy

modeling

1. Modeling phase
Any violation

to design

properties?

[no]

[yes]

[no] 2. Analysis

phase

FIGURE 5 A process for modeling and analyzing the autonomy levels for CPSoS

(1)Modeling phase aims to model the autonomy levels for CPSs in the overall context of CPSoS, and it is composed of the following five steps:

1 CPS & activity modeling, in which we define and model the CPSoS in terms of its main CPSs along with the activities they aims to perform.

2 SoA modeling, in which we define and model the various SoAs, where each of the activities are performed, and we use performedIn relation to
describe the relation between them.

3 Awareness modeling, in which we define and model the awareness type of CPSs concerning the SoAs, where they aim to perform their activities.
This can be done by first modeling the relations between SoAs and information describing them (e.g., describe). Then, the relations between
CPSs and information describing such SoAs (e.g., acquire). Finally, if a CPS is not able to acquire information that describes a SoA in which it
performs an activity, we model the information provision between it and the CPS that is able to acquire such information.

4 Controllability modeling, in which we define and model the controllability level for each CPS concerning each activity they aim to perform.

Gharib et al 7

5 Autonomy modeling, in which we define and model the autonomy level for each CPS concerning each activity it aims to perform based on its
type of awareness and its controllability level.

(2) Analysis phase aims to verify the correctness and consistency of the model depending on a set of properties of the design.

4.2 Modeling Phase

We followed the guidelines proposed in 26 to formulate our UML profile in terms of its stereotypes and tagged values based on the previously
defined conceptual model. In what follows, we present our UML profile2 that is shown in Figure 6. Then, we describe how it can be applied to
model the cooperative driver overtaking assistance system.

<<profile >>

CPSoS-Autonomy

<< Stereotype>>

acquire

<< Metaclass >>

Class

FullAutonomy

PartialAutonomy

LimitedAutonomy

NoAutonomy

<<Enumeration >>

AutonomyLevel

Controllable

Might be controllable

Uncontrollable

<<Enumeration >>

ControllabilityLevel

AwareBySelf

AwareByDependency

<<Enumeration>>

AwarenessType

+ description : String [1]

+ performedBy: CS [1]

+ CPSAutonomyLevel: AutonomyLevel[1]

+ CPSAwarenessType: AwarenessType[1]

+ CPSControllabilityLevel : ControllabilityLevel [1]

<< Stereotype>>

Activity

+ info: Information [1]

<< Stereotype>>

performedIn

<< Metaclass >>

Dependency

<< Stereotype>>

infoProvision

+ description : String [1]

<< Stereotype >>

Information

+ description : String [1]

<< Stereotype>>

SoA

<< Stereotype>>

describe

<< Stereotype >>

CPS

<< Stereotype>>

CPSoS

FIGURE 6 UML Profile for modeling the autonomy levels for CPSoS

Several stereotypes have been specialized from the «Class» Metaclass to capture the main modeling concepts. For example, The «CPSoS»

stereotype has been developed based on theCPSoS concept, and it is an abstract stereotype, i.e., it cannot be used to instantiate instances.While the
«CPS» and «SoA» stereotypes have been developed based on the CPS and SoA concepts respectively, and each of them has a description property
to describe its main characteristics. Moreover, the «Information» stereotype has been developed based on the Information concept.

The «Activity» stereotype has been developed based on the Activity concept, and it has several properties: 1- description that is used to
describe the main characteristics of the activity; 2- performedBy that is used to identify the CPS, which is responsible for performing the activity;
3- CPSAutonomyLevel that describes the level of autonomy the performing CPS has; 4- CPSAwarenessType that describes the type of awareness the
performing CPS has; 5- CPSControllabilityLevel that describes the level of controllability the performing CPS has.

The last three properties can be described depending on the following three «Enumerations» respectively: 1- «AutonomyLevel» that can be
FullAutonomy, PartialAutonomy, LimitedAutonomy or NoAutonomy; 2- «AwarenessType» that can be AwareBySelf or AwareByDependency; and 3-
«ControllabilityLevel» that can be Controllable, MightbeControllable or Uncontrollable. Note that the autonomy level of a CPS for performing a
specific activity in a specific SoA is determined based on its awareness type as well as controllability level in accordance with Figure 3.

On the other hand, several stereotypes have been specialized from the «Dependency»Metaclass to capture the relations among the previously
mentioned stereotypes. «acquire» stereotype captures dependencies starting from «CPS» and pointing towards «Information». The «describe»
stereotype captures dependencies starting from «Information» and pointing towards «SoA». The «performedIn» stereotype captures dependen-
cies starting from «Activity» and pointing towards «SoA». Finally, «infoProvision» stereotype captures dependencies starting from a «CPS>

and pointing towards another «CPS», and it has one property that indicates «Information» to be provided.
In what follows, we describe how the UML Profile can be applied to model a realistic scenario of the cooperative driver overtaking assistance

system that is represented in Figure 7. Following our methodology, we start by identifying all CPSs along with their activities. We identify a driver

2The profile has been developed depending on Eclipse-Papyrus (https://www.eclipse.org/papyrus/), and it is available at https://bit.ly/2QHzDQu

https://www.eclipse.org/papyrus/
https://bit.ly/2QHzDQu

8 Gharib et al

<<CPS>>

description = a person

who drives a car

<< CPS>>

Driver

<<CPS>>

description = a system that

collects and disseminates

information that assists drivers to

avoid accidents

<<CPS>>

RMU

<<Activity>>

description = making a

might be controllable turn

at a crossing in clear visual

conditions

performedBy = driver

CPSAutonomyLevel =

limited autonomy

CPSAwarenessType =

aware by self

CPSControllabilityLevel

= might be controllable

<<Activity>>

Act_03

<<SoA>>

description = a partial

part of the road , where the

driver may not has the

sufficient visibility for

maintaining safe separation

from other vehicles while

making a turn at a crossing

<<SoA>>

SoA_02

<<performedIn>>

<<Information>>

<<Information>>

Info_01

<<Information>>

Info_02

<<describes>>

<<Information>>

<<Information>>

Info_05

<<InfoProvision>>

Info_02

<<acquire>>

<<Activity>>

description = making a

might be controllable turn

at a crossing in unclear

visual conditions

performedBy = driver

CPSAutonomyLevel =

limited autonomy

CPSAwarenessType =

aware by dependency

CPSControllabilityLevel

= might be controllable

<<Activity>>

Act_04

<<Activity>>

description = making a

controllable turn at a

crossing in clear visual

conditions

performedBy = driver

CPSAutonomyLevel =

full autonomy

CPSAwarenessType =

aware by self

CPSControllabilityLevel

= controllable

<<Activity>>

Act_01

<<SoA>>

description = a partial part

of the road, where the driver

is not capable of making a

safe turn at a crossing

regardless of whether he is

aware by self of dependency

of the road situation

<<SoA>>

SoA_05

<<SoA>>

description = a partial

part of the road , where the

driver has the sufficient

visibility for maintaining a

safe separation from other

vehicles while making a

turn at a crossing

<<SoA>>

SoA_01

<<performedIn>> <<performedIn>>

<<describes>><<describes>>

<<acquire>>
<<acquire>>

<<Activity>>

description = making a

controllable turn at a

crossing in unclear visual

conditions

performedBy = driver

CPSAutonomyLevel =

partial autonomy

CPSAwarenessType =

aware by dependency

CPSControllabilityLevel

= controllable

<<Activity>>

Act_02

<<performedIn>>

<<Activity>>

description = making an

uncontrollable turn at a

crossing

performedBy = driver

CPSAutonomyLevel = No

autonomy

CPSAwarenessType =

aware by dependency

CPSControllabilityLevel

= uncontrollable

<<Activity>>

Act_05

<<performedIn>>

<<Information>>

<<Information>>

Info_03

<<SoA>>

description = a partial

part of the road , where the

driver has sufficient

visibility , but he might not

be able to maintain safe

separation from other

vehicles while making a

turn at a crossing

<<SoA>>

SoA_03

<<describes>>

<<InfoProvision>>

Info_05

<<acquire>>

<<Information>>

<<Information>>

Info_04

<<SoA>>

description = a partial

part of the road , where the

driver may not has the

sufficient visibility and he

might not be able to

maintain a safe separation

from other vehicles while

making a turn at a crossing

<<SoA>>

SoA_04

<<describes>>

<<InfoProvision>>

Info_04

<<acquire>>

<<Information>>

FIGURE 7 Applying the UML profile for modeling the autonomy level for CPSoS

and only one RMU (to simplify the scenario), which have been represented as CPSs. The driver aims to perform five different types of making a turn
at a crossing (represented as activities). We believe they cover almost all types of such activity that can be performed by a driver at a crossing ,
namely: 1- making a controllable turn at a crossing in clear visual conditions (full autonomy); 2- making a controllable turn at a crossing in unclear
visual conditions (partial autonomy); 3- making a might be controllable turn at a crossing in clear visual conditions (limited autonomy); 4- making
a might be controllable turn at a crossing in unclear visual conditions (limited autonomy); and 5- making an uncontrollable turn at a crossing (No
autonomy). These activities are represented in Figure 7 as Act_01-05, along with a short description about each of them.

After modeling the CPSs along with their activities, we need to identify and model all SoAs, where each of these activities is performed (Step 2).
To this end, we have modeled: SoA_01-05 (shown in Figure 7), where Act_01-05 are performedIn respectively.

These SoAs can be defined as follows. SoA_01 describes a partial part of the road, where the driver has sufficient visibility for maintaining safe
separation from other vehicles while making a turn at a crossing. SoA_02 describes a partial part of the road, where the driver may not has sufficient
visibility for maintaining safe separation from other vehicles while making a turn at a crossing. SoA_03 describes a partial part of the road, where
the driver has sufficient visibility, but he might not be able to maintain safe separation from other vehicles while making a turn at a crossing. SoA_04
describes a partial part of the road, where the driver may not has sufficient visibility and he might not be able to maintain a safe separation from
other vehicles while making a turn at a crossing. Last, SoA_05 describes a partial part of the road, where the driver is not capable of making a safe
turn at a crossing regardless of whether he is aware by self of dependency of the road situation. Note that SoA_05 can be defined dynamically

Gharib et al 9

by the cooperative driver overtaking assistance system by analyzing the location, speed and direction of the vehicles. Then, the system can infer
whether an overtake is controllable or uncontrollable by the driver.

The third step is awareness modeling, in which we define and model the awareness type of CPS concerning each of its activities. First, we model
the relations between SoAs and information describing them. We modeled five information items, namely Info_01-05 that describe SoA_01-05

respectively. Then, we need to model the relations between CPSs and information describing the SoAs in which they perform their activities. The
driver acquires Info_01 and Info_03. In this context, the driver is aware by self of both SoA_01 and SoA_03. While the RMU acquires Info_02,
Info_04 and Info_05. Finally, we model the information provision among CPSs for information they need but they are not able to acquire. We have
three information provision relationships from the RMU towards the driver concerning Info_02, Info_04 and Info_05. Therefore, the driver is aware
by dependency of SoA_02, SoA_04 and SoA_05.

In the fourth step, we define and model the controllability levels for each CPS concerning each activity they aim to perform. Based on the
description of the activities along with their related SoAs, we conclude that Act_01 and Act_02 are controllable by the driver, Act_03 and Act_04

are might be controllable by the driver, while Act_05 is uncontrollable by the driver. In the fifth and final step, we define and model the autonomy
levels for each CPS concerning each activity it aims to perform based on its type of awareness and its controllability level in accordance with Figure
3. To this end, the driver have FullAutonomy concerning activity Act_01 (e.g., driver is aware by self and activity is controllable); PartialAutonomy
concerning activity Act_02 (e.g., driver is aware by dependency and activity is controllable); LimitedAutonomy concerning activity Act_03 (e.g., driver
is aware by self and activity might be controllable); LimitedAutonomy concerning activity Act_04 (e.g., driver is aware by dependency and activity might
be controllable); and NoAutonomy concerning activity Act_05 (e.g., driver is aware by dependency and activity is uncontrollable).

4.3 Analysis Phase

The analysis aims at verifying created models, which allows to not relying exclusively on the modeling capabilities of the profile to perform the
required analysis. In particular, we have defined a set of properties of the design (shown in Table 1) expressed as OCL constraints, which specify
logical constraints that can be used to verify the correctness and consistency of the model. More specifically, the model is correct and consistent
if all of these properties hold. In case any of them has been violated, the software engineer/designer will be notified and he needs to modify the
model accordingly to address such violation. Therefore, the process might be iterative until all the properties of the design hold.

5 IMPLEMENTATION AND EVALUATION THROUGH SIMULATIONS

We applied the conceptual model, the profile and its application discussed above to implement a case study in a driving simulator. The case study
was crafted to closely represent the running example used in this paper and to match the application of the UML profile in Figure 7. We mostly

TABLE 1 Properties of the design

Pro1. Dependencies with the stereotype «performedIn» can only have a class with a stereotype «Activity» as a source of the
dependency and a class with a stereotype «SoA» as a destination.

Pro2. Dependencies with the stereotype «describe» can only have a class with a stereotype «Information» as a source of the
dependency and a class with a stereotype «SoA» as a destination.

Pro3. Dependencies with the stereotype «acquire» can only have a class with a stereotype «CPS» as a source of the dependency
and a class with a stereotype «Information» as a destination.

Pro4. Dependencies with the stereotype «infoProvision» can only have classes with a stereotype «CPS» as a source and a
destination of the dependency.

Pro5. The source and destination of dependencies with the stereotype «infoProvision» can not be the same «CPS» stereotype.
Pro5. Dependencies with the stereotype «infoProvision» should define the «Information» stereotype that is subject to the

provision.
Pro6. Each class with a stereotype «Activity» should have at least one dependency with a stereotype «performedIn» pointing

towards a class with a stereotype «SoA».
Pro7. Each class with a stereotype «Information» should have at least one dependency with a stereotype «describe» pointing

towards a class with a stereotype «SoA».
Pro8. The CPS autonomy level of each class with a stereotype «Activity» should be determined in accordance with the Figure 3.

10 Gharib et al

realize this through coding an extension to the control system of an autonomous vehicle, in such a way that the code implements the described
activities and relations. This allowed us to exercise the proposed approach and measure its benefits, especially in terms of reduced collisions.

5.1 Realization of the running example

We select the Open Urban Driving Simulator Carla 44 (Car Learning to Act) to reproduce the example of Section 2. Carla has been implemented as
an open-source layer over the Unreal Engine 4 (UE4, 48) to support training, prototyping, and validation of autonomous driving models, including
both perception and control. Carla includes urban layouts, several vehicle models, buildings, pedestrians, street signs, etc. The simulation platform
supports flexible setup of sensor suites, and in particular we will exploit the RGB camera. Further, it provides to the user information on the various
vehicles as position, orientation, speed, acceleration, as well as detailed data on collisions. Weather and time of day can also be specified 44.

Representing our running example in Carla requires to simulate towns with pedestrians and vehicles, undivided lanes, and bad weather
conditions. As discussed in Section 2 these are the conditions that mostly lead to risky events.

Additionally, the implementation of RMUs is required; these can be simulated exploiting the carla.World API, which provides information on all
elements at each simulation step. By filtering such information, it is possible to simulate RMUs that are dispatching information on nearby vehicles
to a target car. We use Carla 0.9.6 and the towns Town01, Town02 which are two basic town layouts with all three-way junctions 44, 45.

The car includes all the logic that implements the autonomy model. This logic allows elaborating the information received from the RMUs and
enforce control on the vehicle, when needed. The logic of the autonomy model can be deactivated simply turning off information acquisition from
the RMUs. Such information processing, elaboration and control enforcement are realized as a control function of the car that is executed at each
simulation step as detailed in Section 5.2.

Finally, we represent our driver using a learned agent for autonomous driving. In other words, our driver is actually the AI (Artificial Intelligence)
component that is able to autonomously drive a car in Carla. Amongst the various autonomous driving agents that exist for Carla, we reuse the
one from 45 because i) the code is compliant with the Carla 0.9.6 release (released on July 2019), ii) it presents very good performances, and iii) it
includes suites for benchmarking, data retrieval and analysis.

The driving system in 45 has excellent results, with a very small number of collisions whose responsibility is actually attributable to erroneous
decision of the learned agent: in other words, the learned agent provided in 45 could be identified as an excellent driver. To prove the efficacy of
our approach, we need instead a distracted driver that makes mistakes. For this reason, we create a new learned agent from 45, such that erroneous
decisions are frequent. Our learned agent is obtained applying the training in 45 only for the privileged agent training and with values for training
that are significantly lower than those recommended in 45. It should be remarked that, to the extent of this paper, we are not interested in the
principles of AI and the insights of the AI solution selected, while we are just interested in finding an autonomous driving model for Carla that we
can exploit to represent a distracted driver.

5.2 Implementation of the autonomy model

The logic for the autonomy model is realized exploiting the information on orientation and distance of cars with respect to one target car. Such
realization has been devised after various attempts and preliminary runs to understand the behaviour of the simulator and the proper tuning of
model parameters. The logic that implements the autonomy model is structured in three phases, which guarantees that a CPS can safely perform
its own activities without endangering any other CPS that is operating in the same environment. These phases are executed iteratively at each
simulation step as follows:

1. information acquisition from RMUs and processing to capture the awareness type;

2. definition of the new autonomy state to capture controllability; based on the awareness type, the autonomy level is determined;

3. enforcement of control over the driver; considering the determined autonomy level of the driver, RMUs might interfere and control the vehicle.

We explore these three phases in details. In the first phase, the target car acquires information from the RMUs, selects the cars in front (i.e., the
cars the bad driver could collide with), and computes the relative distance and orientation with respect to such cars.

In the second phase, the current state from the autonomy model is decided, based on rules on distance and orientation of cars in front and the
capability of the driver to safely perform the activity. These rules and the consequent state changes are summarized in Figure 8, while Figure 9
presents a graphical and intuitive explanation of the rationale for such above-mentioned rules. In more details:

• The car starts in full autonomy and stays in this state as long as there are no risks of collision. The state full autonomy is entered again if
the risk of collision is irrelevant. In this state, the driver has full visibility of the situation with no risks nearby: he is aware by self and the
activity is controllable.

Gharib et al 11

• The state partial autonomy is entered if there are cars nearby, but the risk of a collision is minimal. One of the following conditions must hold
(and obviously, the conditions for the limited autonomy and no autonomy states described below are not satisfied): i) at least one car going
in the same direction is at a distance between 14 and 18 meters, or ii) at least one car going in opposing direction is at a distance between
10 and 12 meters and the relative angle is smaller than 60◦. In this state, the driver does not have an entire, clear visibility of the road, but
he is aware by dependency of any nearby car thanks to the RMUs, and there is enough room for reaction (his activity is controllable).

• The state limited autonomy is entered if there are cars nearby, and there is the significant risk of a collision. One of the following conditions
must hold (and obviously, the conditions for the no autonomy state described below are not satisfied) : i) a car going in the same direction is
at a distance smaller than 14meters, with relative angle smaller than 35◦, or ii) a car going in the opposite direction is at less than 10meters
and the relative angle is smaller than 60◦. In this state, there are cars nearby and limited overall visibility of the situation, but there is still
sufficient reaction time: the activity might be controllable.

• The state no autonomy is entered if there is an approaching collision. The following conditions must hold to enter this state: i) at least one
of the cars going in the same direction of the target car is at a distance smaller than 8 meters, with relative angle smaller than 35◦, or ii) at
least one of the cars going in the opposite direction is at a distance smaller than 4 meters and the relative angle is smaller than 45◦. In this
situation, the activity is uncontrollable by the driver; in practice, it is necessary to take immediate actions to avoid collisions and this cannot
be relied upon the driver any longer.

In the third phase, control actions are enforced over the driver, depending on the current state, as follows:

• Current state: FULL AUTONOMY. In this state, driver has full control over the car. The driver drives without restrictions, i.e., no enforced
control actions from other CPSs.

• Current state: PARTIAL AUTONOMY. In this state, activities are controllable by the driver but he is aware by dependency. Therefore, the
freedom of actions of the driver is partially reduced, to make sure that no dangerous situations arise. In our implementation, we assure that
throttle is less than a given threshold. This is applied by the following simple code:

i f con t ro l . t h r o t t l e >0 .8 :
con t ro l . t h r o t t l e =0.8

• Current state: LIMITED AUTONOMY. In this state, the actions might be controllable by the driver (and he is aware by self or dependency).
As a result, we further reduce the freedom of actions of the driver, to make sure that no dangerous situations arise. In our implementation,
we further reduce throttle. This is applied by the following simple code:

FIGURE 8 Conditions for state change that are implemented in the autonomy model for a target car. By X1 we represent distance of our target
car with respect to a car going in the same direction. Instead X2 is the relative angle from such car. By Y1 we represent distance of our target car
with respect to a car going in the opposite direction, while Y2 is the angle from such car.

12 Gharib et al

FIGURE 9 Graphical explanation of the values in Figure 8 and adopted in our implementation of the model.

i f con t ro l . t h r o t t l e >0 .7 :
con t ro l . t h r o t t l e =0.7

• Current state: NO AUTONOMY. In this state, we forcefully restrict any action from the driver, activating brakes. This is applied by the
following simple code:

con t ro l . t h r o t t l e =0.0
cont ro l . brake =1.0

Note that this kind of reduction should be analyzed at the light of the characteristics of the simulator and the driving model (which has non-
constant acceleration), where for example a car with max throttle bounded to 0.7 has the effect of proceeding at a low speed.

We observe that this approach does not protect against pedestrians and objects (e.g., poles, walls), as the RMUs are not informing the car about
them. However, they are still included in the simulations because they are essential elements of a city and consequently of the target CPSoS.

Finally, from a practical viewpoint, to implement this model we operatedwith the Carla APIs 50, and the files carla_utils.py and run_benchmark.py.
The augmented control from the state Partial, Limited and No Autonomy is implemented directly in the file run_benchmark.py. The steps are the
following. The output of the observation at a simulation step is achieved (i.e., the images from the camera, as well as the presence of other cars in
front: this is done at a rate of 10 Frame per Seconds), and then the control is decided by the autonomous driving of 45 according to our privileged
agent model model64.th 49 (this represent our bad driver). Then, the current autonomy level is computed, and the control is overwritten according
to the rules above. Finally, the control is applied on the vehicle.

5.3 Description of the Experiments

Weexercise the learned agent, when the autonomymodel is activated andwhen it is deactivated. The test plan is based on the corl2017 benchmark
from 44. In this benchmark, a selected car has to reach a destination positionB from a starting positionA in a given time. Re-using the nomenclature
from 44, the starting and destination positions are selected such that two test objectives are set:

• Straight road: Destination position B is located straight ahead of the starting point A.

• Turn road: Destination position B is one turn away from the starting position A.

In our test plan, reported in Table 2, each of the two test objective is exercised on the two towns Town01 and Town02 with two different weather
conditions (hard rain at noon, and hard rain at sunset) and varying number of vehicles and pedestrians. Various test suites are defined, each one

Gharib et al 13

consisting of 50 runs. Different runs have different starting and destination positions. We observe that the first eight test suites simulate towns
without cars: we expect in this case that the results with and without the autonomy model are very similar. Instead, the other test suites include
cars, and we expect a reduced number of collisions when the autonomy model is running.

TABLE 2 List of planned experiments.

Test Suite Objective Town vehicles pedestrians executed runs

ST01-00 Straight road Town01

0 0

50
TT01-00 Turn road Town01 50
ST02-00 Straight road Town02 50
TT02-00 Turn road Town02 50

ST01-01 Straightroad Town01

0 80

50
TT01-01 Turn road Town01 50
ST02-01 Straightroad Town02 50
TT02-01 Turn road Town02 50

ST01-02 Straight road Town01

80 0

50
TT01-02 Turn road Town01 50
ST02-02 Straight road Town02 50
TT02-02 Turn road Town02 50

ST01-03 Straight road Town01

30 0

50
TT01-03 Turn road Town01 50
ST02-03 Straight road Town02 50
TT02-03 Turn road Town02 50

ST01-04 Straight road Town01

50 0

50
TT01-04 Turn road Town01 50
ST02-04 Straightroad Town02 50
TT02-04 Turn road Town02 50

ST01-05 Straight road Town01

50 50

50
TT01-05 Turn road Town01 50
ST02-05 Straight road Town02 50
TT02-05 Turn road Town02 50

A run is concluded if either i) the destination position B is reached, or ii) the car collides (against other vehicles, pedestrians, or surroundings
as for example walls, street lightning poles, signposts), or iii) a timeout expires. The run is considered successful only if the destination position is
reached.

With respect to the corl2017 benchmark, we introduce the following modifications: i) the timeout is increased, and ii) the run is interrupted if our
target car has a collision. This is aligned to the objective of our paper, which privilege travelling without collisions rather than minimizing travel time.

5.4 Results

We present here results of the execution of the test suites in Table 2. Summarizing results, detailed log files, and videos of each individual run are
available at 49.

We start our discussion from Table 3, that describes the results of the test suites that do not include cars and consequently set the baseline
for our analysis. In these runs, the performances achieved with and without the autonomy model are very similar, as it is evident from Table 4
(consider the rows without vehicle). These differences are only due to the unavoidable randomness that is in the simulation environment itself, as
for example small differences in the timing behaviour of the simulator in different runs, and that in some cases can lead to different outcomes.

We use Table 4 also to start discussing on the test suites that include cars i.e., where the presence of the autonomy model should create
differences. The first observation is that, on average, the autonomymodel allows reducing the remaining distance to the destination pointB, but at

14 Gharib et al

TABLE 3 Results with the autonomy model in place for the test suites that do not include vehicles (50 runs per test suite) .

Test Suite Success Rate Successful runs Sum of remaining distance Simulated time Number of Timeouts
% to destination points (m) (seconds) collided runs

ST01-00 52 26 4180 14823 24 0
TT01-00 20 10 8628 112534 20 20
ST02-00 44 22 1533 10885 28 0
TT02-00 44 22 4434 56990 17 11
ST01-01 48 24 4223 13940 26 0
TT01-01 22 11 8849 87831 24 15
ST02-01 42 21 1625 10094 28 1
TT02-01 40 20 4335 31188 29 1

TABLE 4 Differences with and without the autonomy model, for test suites that do not include cars (listed in Table 3).

Average values for the individual run: without autonomy with autonomy

average remaining distance to destination point (meters)
without cars 94,5 m 95,2 m
with cars 100,0 m 89,7 m

average duration (seconds)
without cars 846 s 853 s
with cars 534 s 1202 s

the price of a significant increase in the duration of the run. This is in general intuitive, as the application of the autonomy model causes a reduction
in speed to favor safety over performance. Duration is increased by the autonomy model also because there are deadlock conditions, where cars
are unable to progress until the timeout of the run is reached. This happens for example if the target car enters the opposing lane, and stops in
front of an approaching car. The simulated cars do not have the logic to solve this situation, and remain still until timeout expires. This situation is
explained in Figure 10 and Figure 11, using frames extracted from the recorded videos, for a corresponding run of test suite ST02-05 executed
with and without autonomy.

FIGURE10Without the autonomymodel, the run terminateswith
a collision.

FIGURE11With the autonomymodel in place, there is no collision
but the cars will keep facing each other until timeout.

We now detail results for the suites that include cars. Complete results for the remaining test suites are reported in Table 5. It can be observed
that, using the autonomy model, the number of collisions is reduced by 31, 7% . This is also highlighted in Figure 12. The remaining collisions are
essentially collisions against walls, pedestrians, or when the vehicle is still but is bumped by other cars e.g., because it stops in the middle of a
crossing. Instead, as previously discussed, the number of timeouts is significantly increased. This is the main reason for the consequent increase
of the simulation time. Also, the autonomy model slightly increases the number of successful runs; as a consequence, this results in a reduction of
the remaining distance to the destination points.

To give a clear understanding of the behaviour of the simulations with and without the autonomy model, we show examples with the support
of frames extracted from the recorded videos. Figure 13 is a collision scenario without the autonomy model, while Figure 14 is a similar scenario
but with the autonomy model. Without the autonomy model, the distracted driver bumps the car in front. From left to right, the figures show that

Gharib et al 15

TABLE 5 Results for test suites that include cars.

without the autonomy model (50 runs per suite)

Suite Name Successful runs
Remaining Distance to
Destination point (meters)

Simulated Time (seconds) Collided runs timeouts

ST01-02 26 3831 15061 24 0
TT01-02 10 9428 40905 38 2
ST02-02 22 1698 9481 28 0
TT02-02 12 5268 22381 37 1
ST01-03 27 4245 21400 22 1
TT01-03 11 9269 80941 27 12
ST02-03 22 1608 9601 28 0
TT02-03 20 4906 29638 27 3
ST01-04 25 4445 12422 25 0
TT01-04 11 8830 57419 36 3
ST02-04 22 1657 10455 28 0
TT02-04 18 4798 30068 31 1
ST01-05 24 4171 15704 26 0
TT01-05 11 9370 41232 38 1
ST02-05 20 1634 10101 30 0
TT02-05 16 4859 20308 34 0

TOTAL 297 80 Km 118,7 Hours 479 24
with the autonomy model (50 runs per suite)

ST01-02 24 4385 41821 21 5
TT01-02 10 8898 128189 21 19
ST02-02 22 1528 36474 19 9
TT02-02 20 4665 93574 13 17
ST01-03 25 4444 28201 21 4
TT01-03 11 8967 119274 18 21
ST02-03 22 1520 22390 24 4
TT02-03 18 4757 65978 21 11
ST01-04 27 4114 23067 22 1
TT01-04 12 8658 116423 20 18
ST02-04 22 1533 39006 18 10
TT02-04 20 4440 74528 16 14
ST01-05 24 4520 23540 25 1
TT01-05 12 8389 94014 29 9
ST02-05 23 1480 45046 14 13
TT02-05 16 5030 58224 25 9

TOTAL 308 77 Km 280 Hours 327 165

the distracted driver is not reducing throttle and is not braking, until it ultimately collides with the car in front. Command FOLLOW in the figures
stands for Follow the lane and it is an input to the trained agent to implement the objective of the run on reproducible routes.

The four images of Figure 14 show the state transition amongst the different autonomy level, following the state machine of Figure 4. Throttle
is progressively reduced, independently on the decisions of the driver, and the car stops in time.

16 Gharib et al

FIGURE 12 Total collided runs per test suite with and without the autonomy model.

FIGURE 13 Sample bump scenario when the autonomy model is not enabled.

FIGURE 14 Using the autonomy model, the car stops in time.

Gharib et al 17

6 RELATED WORK

The autonomy literature is vast and covers a wide range of aspects, from autonomy in the biological systems to robotics. Here we restrict ourselves
to the aspects that are relevant to our work, specifically about robotic systems and adjustable autonomy in complex systems. Several authors are
dealing with autonomy in their works. For instance, some authors refer to the autonomy as the ability to operate without human intervention 27,28.
Other authors put emphasis on the ability of a system to change its behavior in response to unanticipated events during the operation 29,30. The
concept of adaptive autonomy is not new and has been introduced by various authors (e.g., 31,32,33). For example, Danks et al. 31 consider autonomy
as the ability to identify contexts in a changing environment and then select and execute appropriate functions in ways that conform to relevant
and potentially context-specific norms, constraints, or desiderata.

On the other hand, Castelfranchi 21 considers the autonomy concept as the relation between autonomy from physical context, like environment,
and autonomy from social context, i.e. from other agents. In our work, we have particular interest when the autonomy of CPSs can be adapted
according to certain changes in their operational environment as well as their dependencies on one another. In 33, autonomy has been defined in
terms of dependence theory, and several dimensions of autonomy have been discussed. Moreover, Falcone and Castelfranchi 34 propose to analyze
the adjustable autonomy both by considering the level of delegation allowed to the subsystem and the possibility of this subsystem to adjust itself
its own autonomy by expanding or restricting the received delegation level. Thus, one could distinguish between (i) performance or executive
autonomy, where the agent is not allowed to decide anything but the execution of the entire delegated plan; (ii) planning autonomy, where the
agent is allowed to plan by itself, to choose its own plan to obtain the goal delegated; (iii) goal autonomy (the agent is allowed to have/find goals).

Schumann et al. 32 present the first steps towards a dynamic regulation of autonomous decision taking in order to design adaptive decision
support systems that try to solve the conflict between local autonomy and global system performance. Ning Tan et al. 35 propose a framework
for robot-inclusive environments. The framework is based on the robot-inclusiveness concept, a taxonomy for robot-environment interaction,
and design criteria to develop robot-inclusive environments to support autonomous robots. Therefore, the autonomy level is related to robot-
inclusiveness level of the environment.

Collaborative autonomy between high-level behaviors and human operators have been proposed in 36. In this work, a framework called FlexBE
is used to provide autonomy of robots collaborating with human operators. More specifically, autonomy is realized as high-level control approach,
where a human operator is responsible to adjust the autonomy level of the robots. In addition, Michal A. Goodrich et al. 37 propose a system that
is designed to allow a robot to be situated in the environment and to initiate its own responses based on its perceptions. The authors propose five
levels of autonomy: fully autonomous, goal-based autonomy, waypoints and heuristics, intelligent teleoperation, and dormant.

Salado 38 address the implications of intended abandonment, when a CS can intentionally leave the SoS. He argues this is a natural consequence
of the inherent belonging and autonomy characteristics of CSs. Therefore, it is necessary to define and measure the operational effectiveness of
the SoS to deal with the risk of abandonment. Finally, Brooks 39 describes a layered control system for an intelligent autonomous mobile robot. In
his work, Brooks defines levels of competence for autonomous robots. For example, level 1 competence is to avoid contact with objects. Once
achieving level 1 competence it is possible to add level 2 competence on top of level 1, where the process goes on until the desired level of
competence is achieved, which is called subsumption architecture.

Liu et al. 40 present a review on variable autonomy of unmanned systems. They present a classification of variable autonomy systems based on
adjustable autonomy, adaptive autonomy, and mixed-initiative decision, when the decision-making is made by users, computer, and both user and
computer, respectively. They identify four main open problems in the field: system structure, perception model, user modeling, decision-making
method for autonomy level. Zhao et al. 41 proposed an adjustable autonomymethod for human-UAVs collaboration based on Fuzzy CognitiveMaps
(FCM) to adjust the four levels of autonomy. The adjustable autonomy is realized by the ALFUS framework to quantify the autonomy based on
three contextual metrics: mission complexity, environment complexity, and human interaction.

Horcas et al. 42 introduce a reconfigurable vehicle controller agent for autonomous vehicles based on context information, that in this work
is weather conditions. They use the two parameters time headway and acceleration to predict the behavior of the autonomous vehicles under
normal conditions, light rain, and heavy rain situations. Hoffmann et al. 43 argue that a combination of traditional control theory with learning
strategies, what they call computational embodiment and computational self-awareness, is needed to dynamically adapt goals and actions. This
can be achieved by automated abstracted observations at run-time and dynamic learning, for context-dependent adaptation.

Similarly with the works described above, we consider the dynamic regulation for the autonomy in CPSoS. Nevertheless, differently from the
existing solutions, we propose to define the level of autonomy for eachCPS not only based on either its type of awareness concerning its operational
environment or the level of controllability for the activity to be performed. In fact, we propose to define the autonomy level for CPS as a combination
of both of these attributes. Additionally, we have provided a model-based approach that can be used for modeling and analyzing the autonomy
levels for CPSs.

18 Gharib et al

7 CONCLUSIONS AND FUTURE WORK

In a Cyber-Physical System-of-Systems, the autonomy of individual Cyber-Physical Systems may result in a lack of coordination, while perusing
their own goal and the overall goals of the System-of-Systems. In this paper, we advocate that in order to facilitate the integration of Cyber-Physical
Systems within the overall context of their CPSoS, we may need to adjust their level of autonomy in a way that enables them to coordinate their
activities to avoid any conflict among one another.

To such extent, we formulate in this paper a conceptual model where the autonomy level is derived from the ability of the user to control its
action, and from its awareness on the environment. Moreover, we propose a model-based approach, supported by a UML profile, for modeling
and analyzing the autonomy level of Cyber-Physical Systems based on their type of awareness of their operational environment as well as their
controllability concerning the activities they aim to perform. In addition, we illustrated the application of the proposed approach with simulations
concerning driving in a town with other cars and pedestrians. Programming the simulator, we are able to represent a car whose control system
implements the relations and criteria as established in the UML profile to decide and adjust its autonomy level, depending on its awareness of
the environment as well as its level of controllability of its activities. Simulations show that the number of collisions is reduced when autonomy
concepts as presented in this paper are in place.

The guiding example used in this paper is from the automotive domain, but it was chosen carefully to include themain aspects of a Cyber-Physical
System-of-Systems with respect to the autonomy level of Cyber-Physical Systems based on awareness and controllability. In fact, the model and
the corresponding profile are formulated and build in general terms, and are not specific to the automotive domain. Therefore, the approach can
be applied to other Cyber-Physical Systems (e.g., rail transport systems, smart grid, Industry 4.0, etc.) as well, in all cases where the autonomy level
of some of their Cyber-Physical Systems might need to be adjusted to guarantee their safe performance while pursuing their activities.

For the future work, we are planning to extend the conceptual model by integrating the notion of governance within the CPSoS design, which
will allow us to define rules that can be used for clearly specifying who can adjust the autonomy of a CPS as well as how and when it can be
adjusted. In particular, we plan to incorporate the concepts of governance and control into the proposed model, where the first can be used as
a basis for specifying the later. Moreover, we intend to further investigate other aspects that might influence the autonomy levels of CPSs, and
extend our approach accordingly to cover the new extensions in the conceptual model. We also aim to better validate our approach by applying it
to several case studies from various domains (e.g., Industry 4.0).

ACKNOWLEDGMENT

This work has been partially supported by the project H2020-MSCA-RISE-2018 ADVANCE (Addressing Verification and Validation Challenges in
Future Cyber-Physical Systems).

References

1. M. Jamshidi, “System of systems engineering - new challenges for the 21st century,” Aerospace and Electronic Systems Magazine, IEEE, vol. 23,
no. 5, pp. 4–19, 2008.

2. M. W. Maier, “Architecting Principles for Systems-of-Systems,” INCOSE International Symposium, vol. 6, no. 1, pp. 565–573, jul 1996.

3. A. Bondavalli, S. Bouchenak, and H. Kopetz, Cyber-physical systems of systems : foundations – a conceptual model and some derivations: the
AMADEOS legacy. Springer, 2016.

4. M. Gharib, L. Da Silva, H. Kavalionak, and A. Ceccarelli, “A Model-Based Approach for Analyzing the Autonomy Levels for Cyber-Physical
Systems-of-Systems,” in Proceedings - 8th Latin-American Symposium on Dependable Computing, LADC. IEEE, 2018, pp. 135-144.

5. S. Levin and J. C. Wong, “Self-driving Uber kills Arizona woman in first fatal crash involving pedestrian | Technology | The Guardian,” p. 1,
2018. [Online]. Available: https://www.theguardian.com/technology/2018/mar/19/uber-self-driving-car-kills-woman-arizona-tempe

6. P. Dourish and V. Bellotti, “Awareness and Coordination in Shared Workspaces,” in Proc. Intl. Conf. on Computer-Supported Cooperative Work,
no. November. ACM, 1992, pp. 107–114.

7. T. A. Faculty, W. K. Edwards, and I. P. Fulfillment, “Coordination Infrastructure in Collaborative Systems,” Ph.D. dissertation, Citeseer, 1995.

8. ISO, “26262: Road vehicles-Functional safety,” International Standard ISO/FDIS, vol. 26262, 2011.

https://www.theguardian.com/technology/2018/mar/19/uber-self-driving-car-kills-woman-arizona-tempe

Gharib et al 19

9. OMG-OCL, “Object Constraint Language,” Tech. Rep. May, 2014. [Online]. Available: http://www.omg.org/spec/OCL/2.4/

10. T. F. Golob and W. W. Recker, “Relationships Among Urban Freeway Accidents, Traffic Flow, Weather, and Lighting Conditions,” Journal of
Transportation Engineering, vol. 129, no. 4, pp. 342–353, jul 2003.

11. B. Whiffen, P. Delannoy, and S. Siok, “Fog : Impact on Road Transportation and Mitigation Options,” National Highway Visibility Conference, pp.
1–12, 2004.

12. M. Abdel-Aty, A.-A. Ekram, and H. Huang, “A Study on Visibility Obstruction Related Crashes Due To Fog and Smoke,” 12th World Conference
for Transportation Research, pp. 1–17, 2010.

13. G. Hegeman, R. Van Der Horst, K. Brookhuis, and S. Hoogendoorn, “Functioning and acceptance of overtaking assistant design tested in driving
simulator experiment,” Transportation Research Record, vol. 2018, pp. 45–52, dec 2007.

14. W. Birk, E. Osipov, and J. Eliasson, “iRoad—Cooperative Road Infrastructure Systems for Driver Support,” World Congress and Exhibition on
Intelligent Transport Systems and Services, 2009.

15. M. Gharib, P. Lollini, and A. Bondavalli, “A conceptual model for analyzing information quality in System-of-Systems,” in 2017 12th System of
Systems Engineering Conference, SoSE 2017. IEEE, 2017, pp. 1–6.

16. S. Rogers, C.-N. Fiechter, and P. Langley, “An adaptive interactive agent for route advice,” in Proceedings of the third annual conference on
Autonomous Agents. ACM, 1999, pp. 198–205.

17. J. J. Odell, H. V. D. Parunak, M. Fleischer, and S. Brueckner, “Modeling agents and their environment,” in Agent-oriented software engineering
III. Springer, 2003, pp. 16–31.

18. C. E. Martin and K. S. Barber, “Multiple, simultaneous autonomy levels for agent-based systems,” in Proceedings of the fourth international
conference on control, automation, robotics, and vision. Citeseer, 1996, pp. 1318–1322.

19. V. R. Lesser, “Cooperative multiagent systems: A personal view of the state of the art,” Knowledge and Data Engineering, IEEE Transactions on,
vol. 11, no. 1, pp. 133–142, 1999.

20. M. Luck and M. D’Inverno, “A Formal Framework for Agency and Autonomy.” in ICMAS, vol. 95, 1995, pp. 254–260.

21. C. Castelfranchi, “Guarantees for autonomy in cognitive agent architecture,” in Intelligent agents. Springer, 1995, pp. 56–70.

22. , “Founding Agents’ Autonomy on Dependence Theory,” in The 14th European Conference on Artificial Intelligence (ECAI), vol. 1, 2000, pp.
353–357.

23. J. R. FRENCH, “A Formal Theory of Social Power,” Social Networks, vol. 63, no. 3, pp. 35–48, 1956.

24. M. Gharib, P. Lollini, A. Ceccarelli, and A. Bondavalli, “Dealing with Functional Safety Requirements for Automotive Systems: A Cyber-Physical-
Social Approach,” in The 12th International Conference on Critical Information Infrastructures Security (CRITIS). Lucca: Springer International
Publishing, 2017.

25. M. Gharib, P. Lollini, M. Botta, E. Amparore, S. Donatelli, and A. Bondavalli, “On the Safety of Automotive Systems Incorporating Machine
Learning based Components: A Position Paper,” in International Conference on Dependable Systems and Networks Workshop (DSN-W). IEEE.
2018.

26. B. Selic, “A Systematic Approach to Domain-Specific Language Design Using UML,” in Proceedings of the 10th IEEE International Symposium
on Object and Component-Oriented Real-Time Distributed Computing (ISORC’07). IEEE, may 2007, pp. 2–9.

27. M. Machin, J. Guiochet, H. Waeselynck, J.-p. Blanquart, M. Roy, and L. Masson, “SMOF: A Safety Monitoring Framework for Autonomous
Systems,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, no. 99, pp. 1–14, 2016.

28. J. M. Beer, A. D. Fisk, and W. A. Rogers, “Toward a Framework for Levels of Robot Autonomy in Human-Robot Interaction,” Journal of
Human-Robot Interaction, vol. 3, no. 2, p. 74, 2014.

29. D. P. Watson and D. H. Scheidt, “Autonomous systems,” Johns Hopkins APL technical digest, vol. 26, no. 368-376, p. 9, 2005.

http://www.omg.org/spec/OCL/2.4/

20 Gharib et al

30. S. Nahavandi, “Trusted Autonomy Between Humans and Robots: Toward Human-on-the-Loop in Robotics and Autonomous Systems,” IEEE
Systems, Man, and Cybernetics Magazine, pp. 10–17, 2017.

31. D. Danks and A. J. London, “Regulating autonomous systems: Beyond standards,” IEEE Intelligent Systems, vol. 32, no. 1, pp. 88–91, 2017.

32. R. Schumann, A. Lattner, and T. Zur, “Regulated Autonomy: A Case Study” Proceedings of the Conference Track “Intelligente Systeme zur
Entscheidungsunterstutzung” at the Multikonferenz Wirtschaftsinformatik (MKWI 2008), Munich, Germany, SCS Publishing House, pp. 83–98,
2008.

33. C. Castelfranchi, “Founding agent’s’ autonomy’on dependence theory,” in Proceedings of the 14th European Conference on Artificial Intelligence,
2000, pp. 353–357.

34. R. Falcone and C. Castelfranchi, “Levels of Delegation and Levels of Adoption as the basis for Adjustable Autonomy,” in Congress of the Italian
Association for Artificial Intelligence. Springer, 1999, pp. 273–284.

35. N. Tan, R. E. Mohan, and A. Watanabe, “Toward a framework for robot-inclusive environments,” Automation in Construction, vol. 69, pp.
68–78, 2016.

36. D. Conner, S. Kohlbrecher, P. Schillinger, A. Romay, A. Stumpf, S. Maniatopoulos, H. Kress-Gazit, and O. von Stryk, “Collaborative autonomy
between high-level behaviors and human operators for control of complex tasks with different humanoid robots,” Springer Tracts in Advanced
Robotics, vol. 121, 2018.

37. J. Crandall and M. Goodrich, “Experiments in adjustable autonomy,” IEEE International Conference on Systems, Man and Cybernetics. e-Systems
and e-Man for Cybernetics in Cyberspace (Cat.No.01CH37236), vol. 3, pp. 1624–1629, 2001.

38. A. Salado, “Abandonment: A natural consequence of autonomy and belonging in systems-of-systems,” in 2015 10th System of Systems
Engineering Conference, SoSE 2015, 2015, pp. 352–357.

39. R. A. Brooks, “A Robust Layered Control System for a Mobile Robot. AI Memo 864,” ieeexplore.ieee.org, 1985.

40. G. Liu, Q. Zou, J. Wu, H. Zhang and R. Zhang, “A Review on Variable Autonomy of Unmanned Systems,” 2018 Chinese Automation Congress
(CAC), Xi’an, China, 2018, pp. 2253-2258.

41. Z. Zhao, C. Wang, Y. Niu, L. Shen, Z. Ma and L. Wu, “Adjustable Autonomy for Human-UAVs Collaborative Searching Using Fuzzy Cognitive
Maps,” 2019 2nd China Symposium on Cognitive Computing and Hybrid Intelligence (CCHI),” Xi’an, China, 2019, pp. 230-234.

42. Horcas, JM, Monteil, J, Bouroche, M, Pinto, M, Fuentes, L, Clarke, S. “Context-dependent reconfiguration of autonomous vehicles in mixed
traffic.,” J Softw Evol Proc. 2018; 30:e1926.

43. H. Hoffmann, A. Jantsch and N. D. Dutt, “Embodied Self-Aware Computing Systems,” Proceedings of the IEEE. 2020.

44. Dosovitskiy, Alexey and Ros, German and Codevilla, Felipe and Lopez, Antonio and Koltun, Vladlen, “CARLA: An Open Urban Driving
Simulator”, Conference on Robot Learning, pp1–16, 2017.

45. Dian Chen and Brady Zhou and Vladlen Koltun and Philipp Krähenbühl, Learning by Cheating, Conference on Robot Learning (CoRL), 2019

46. Ceccarelli, Andrea and Bondavalli, Andrea and Froemel, Bernhard and Hoeftberger, Oliver and Kopetz, Hermann, “Basic Concepts on
Systems of Systems”, Cyber-Physical Systems of Systems: Foundations – A Conceptual Model and Some Derivations: The AMADEOS Legacy,
Bondavalli, Andrea and Bouchenak, Sara and Kopetz, Hermann (Eds.), Springer International Publishing, 2016, pp. 1–39

47. Kopetz, Hermann, et al. “Emergence in Cyber-Physical Systems-of-Systems (CPSoSs).” Cyber-Physical Systems of Systems. Springer, Cham,
2016. 73-96.

48. Unreal Engine, www.unrealengine.com

49. Logs and videos of the runs https://drive.google.com/open?id=1qmnB5SgBGWytGAWYoTeOfBcQW7o7Isnx

50. Carla 0.9.6 API https://carla.readthedocs.io/en/latest/python_api/

www.unrealengine.com
https://drive.google.com/open?id=1qmnB5SgBGWytGAWYoTeOfBcQW7o7Isnx
https://carla.readthedocs.io/en/latest/python_api/

	A Model to Discipline Autonomy in Cyber-Physical Systems-of-Systems and its Application
	Abstract
	Introduction
	Guiding Example: Cooperative Driving Assistance System
	A Conceptual model for Modeling and Analyzing the Autonomy Levels for Cyber-Physical Systems-of-Systems
	A Model-based Approach for Modeling and Analyzing the Autonomy Levels for Cyber-Physical Systems-of-Systems
	Methodology
	Modeling Phase
	Analysis Phase

	Implementation and evaluation through simulations
	Realization of the running example
	Implementation of the autonomy model
	Description of the Experiments
	Results

	Related work
	Conclusions and Future Work
	Acknowledgment
	References

