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Abstract—Software traceability plays a critical role in software maintenance and evolution. We conducted a 
systematic mapping study with six research questions to understand the benefits, costs, and challenges of using 
traceability in maintenance and evolution. We systematically selected, analyzed, and synthesized 63 studies 
published between January 2000 and May 2020, and the results show that: traceability supports 11 maintenance and 
evolution activities, among which change management is the most frequently supported activity; strong empirical 
evidence from industry is needed to validate the impact of traceability on maintenance and evolution; easing the 
process of change management is the main benefit of deploying traceability practices; establishing and maintaining 
traceability links is the main cost of deploying traceability practices; 13 approaches and 32 tools that support 
traceability in maintenance and evolution were identified; improving the quality of traceability links, the 
performance of using traceability approaches and tools are the main traceability challenges in maintenance and 
evolution. The findings of this study provide a comprehensive understanding of deploying traceability practices in 
software maintenance and evolution phase, and can be used by researchers for future directions and practitioners 
for making informed decisions while using traceability in maintenance and evolution. 

Index Terms—Traceability, Software Maintenance and Evolution, Systematic Mapping Study. 

1 INTRODUCTION 

Software traceability refers to the ability that traces various types of artefacts (e.g., requirements 
specifications, architecture documents, test models, source code) and establishes the links between them 
during the software development process. Software traceability is recognized as an important factor to 
support various software development activities [37], and software maintenance and evolution is known to 
incur significant cost and slow down the speed of software implementation [1]. 

A large number of studies show that traceability plays a significant role in software maintenance and 
evolution. The traces between various software artefacts (e.g., requirements, design, and code) can facilitate 
software maintenance and evolution [3][4][5]. For example, a recent mapping study conducted by 
Charalampidou et al. [45] revealed that using traceability can benefit quality attributes related to 
maintainability, such as modifiability, analyzability, and testability. The experimental study conducted by 
Mäder and Egyed [3] shows that the subjects supported with traceability performed faster on a given 
maintenance task and created more correct solutions to the task. Such observations from the literature 
indicate that traceability can not only save the effort of maintenance activities (e.g., change management), 
but can also improve the quality of software maintenance as the traces between various artefacts can help 
developers better understand the system during software maintenance [3]. 

Deploying traceability in software maintenance and evolution phase could increase the overall cost of 
development. It is a challenging and time-consuming job to develop traces [12]. Moreover, as the system 
evolves, it can be even more difficult to precisely maintain the traces [13]. In safety-critical systems, 
traceability often delays the development activities by adding additional overhead to the maintenance phase 
[10]. Consequently, a majority of the software development organizations hesitate to adopt the traceability 
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practices as the impact (e.g., costs and benefits) of traceability on software maintenance and evolution phase 
is not clear. The uncertain cost-benefit ratio of traceability is still a critical issue for practitioners who are 
struggling to understand the significance of traceability [31]. Therefore, it is important to systematically 
investigate the impact of traceability on maintenance and evolution (e.g., the costs and benefits of using 
traceability), which could provide a roadmap to both researchers and practitioners for exploring and 
employing traceability practices in software maintenance and evolution. 

Systematic Mapping Study (SMS) is a type of secondary study that provides a systematic overview of a 
particular research topic, by analyzing the available primary studies and answering the questions on a broad 
topic [18][19]. Previously, various secondary studies (see Section 7) were conducted in the area of software 
traceability (e.g., requirement traceability [3] and architecture traceability [20]), but as revealed by the SMS 
on software traceability [45], there is lack of an in-depth exploration of the primary studies that provide 
empirical evidence on the relation between traceability and software maintenance and evolution. To fill this 
gap, we conducted an SMS to explore the existing primary studies that present the existing approaches, 
tools, and empirical evidence about the association between traceability and software maintenance and 
evolution [18]. Similar to systematic mapping study, Systematic Literature Review (SLR) is an approach 
to conduct secondary studies by identifying, evaluating, and interpreting all available primary studies 
relevant to a particular topic [18]. We selected the SMS approach because the impact of traceability on 
software maintenance and evolution is a broad topic which covers various aspects. However, we stressed 
upon in this SMS the empirical evidence of the primary studies about the traceability impact on 
maintenance and evolution activities, costs and benefits of deploying traceability practices approaches and 
tools that support the use of traceability during the maintenance and evolution phase, and challenges of 
deploying traceability practices. 

The rest of this paper is organized as follow. Section 2 presents the definition and explanation of software 
traceability, maintenance and evolution activities. Section 3 defines the mapping study process including 
the research questions and the execution process of this mapping study. Section 4 provides the results to 
the research questions. Section 5 further discusses the study results. Section 6 presents the threats to validity. 
Section 7 compares the related secondary studies with this study, and Section 8 concludes this mapping 
study. 

2 RESEARCH CONTEXT 

Before describing the mapping study process, we provide the definitions and explanations of two key 
concepts, i.e., “software traceability” and “software maintenance and evolution”. The given definitions will 
clarify the scope and domain of the study. 

2.1 Software Traceability 
In the IEEE standard glossary of software engineering terminology [2], software traceability is defined 

as “the degree to which a relationship can be established between two or more products of the development 
process”, which is a critical internal quality attribute of software systems. Software traceability also refers 
to the ability to create the links between various types of software artefacts [37]. In general, traceability can 
be categorized into vertical and horizontal traceability, depending on whether traceability links associate 
artefacts at the same level of abstraction (i.e., horizontal traceability, for example, traceability between 
requirements) or artefacts at different levels of abstraction (i.e., vertical traceability, for example, 
traceability from requirements to design) [38]. Traceability among various software artefacts (e.g., 
requirements, design, and code) can support many activities in the development of software systems. More 
specifically, software traceability can ease the analysis process of changes in software maintenance, 
evolution, and reuse and testing of software components [37]. In recent years, studies have been conducted 
in various contexts of software traceability, such as traceability approaches [39], traceability deployment 
and maintenance of traceability links [40][41]. 

2.2 Software Maintenance and Evolution 
Software maintenance and evolution is a critical software development phase. The IEEE Standard 1219 

[26] define software maintenance as “the modification of a software product after delivery to correct faults, 
to improve performance or other attributes, or to adapt the product to a modified environment”. Software 
maintenance focuses on fixing bugs to prevent software failing and preserve the intended functionalities 
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[30]. The term software evolution lacks a standard definition and is often used as a substitute for software 
maintenance [1][30]. In this study, we do not distinguish maintenance and evolution strictly and use both 
to refer to the update or modification in software systems. Software maintenance and evolution are 
recognized as expensive activities due to their significant impact on cost and time [1]. Both are inevitable 
activities as most of the software systems are likely to be changed and improved during development 
process or after release. 

3 MAPPING STUDY PROCESS 

3.1 Research Questions 

The goal of this mapping study defined using the Goal-Question-Metric (GQM) approach [11] is: to 
analyze the impact of traceability on maintenance and evolution for the purpose of exploration and 
analysis with respect to the activities, empirical evidence, traceability approaches, tools, benefits, costs, 
and challenges from the point of view of researchers and practitioners in the context of software 
development. The reasons that we considered these aspects are that activities are the basic unit of software 
maintenance and evolution, traceability approaches and tools provide the ways of using traceability, and 
benefits, costs, and challenges are representations of the impact of traceability. 

Six Research Questions (RQs) as shown in TABLE I were developed to achieve the study goal. The 
results and analysis of the given RQs can be directly associated with the goal of the study: maintenance 
and evolution activities supported by traceability (RQ1), empirical evidence that supports the use of 
traceability in maintenance and evolution activities (RQ2), the benefits, costs, and challenges of using 
traceability in maintenance and evolution activities (RQ3, RQ4, RQ6), and the approaches and tools that 
support traceability in maintenance and evolution activities (RQ5). 

TABLE I.  RESEARCH QUESTIONS AND THEIR RATIONALE 

Research Question Rationale 
RQ1: What software maintenance and 
evolution activities can be supported by 
traceability? 

Traceability can support various software maintenance and evolution 
activities. The answer of this RQ reveals how traceability can facilitate the 
maintenance and evolution phase. 

RQ2: How much evidence has been 
reported to support the use of traceability in 
software maintenance and evolution 
activities? 

To gain an understanding of the validity and assess the quality of the primary 
studies, this RQ investigates the evidence level in each study concerning the 
impact of traceability on maintenance and evolution activities. 

RQ3: What would be the benefits of using 
traceability practices during the software 
maintenance and evolution phase? 

Traceability brings various benefits while deploying its practices during the 
software maintenance and evolution phase. The answer of this RQ could assist 
practitioners to make better decisions and improve the process of using the 
traceability practices. 

RQ4: What would be the costs of using 
traceability practices during the software 
maintenance and evolution phase? 

The answer of this RQ will provide an overview of costs concerning 
traceability, which can help practitioners properly manage the traceability 
budget and make cost-effective decisions. 

RQ5: What approaches and tools have been 
used to support traceability during the 
software maintenance and evolution phase? 

The answer of this RQ can provide practitioners with an overview of the 
readily available approaches and tools that they can use to employ the 
traceability practices in maintenance and evolution. 

RQ6: What are the challenges of using 
traceability in the maintenance and 
evolution of software systems? 

Using traceability in software maintenance and evolution has many challenges. 
The answer of this RQ will provide researchers with promising directions to 
be tackled for deploying the traceability practices. 

3.2 Mapping Study Execution 

We followed the guidelines proposed by Kitchenham and Charters [19] to conduct this SMS, which 
consists of five phases, i.e., study search, study selection, snowballing, data extraction, and data synthesis. 
These five phases are detailed below. 

3.2.1 Study Search 

Petersen et al. [19] identified three study search methods used in the existing SMSs and SLRs. We only 
used the two complementary search approaches in this SMS, i.e., automatic database search and 
snowballing [9]. The reason that we did not employ manual search is that traceability as a common topic 
in software engineering can be published in diverse venues. Automatic database search is used to retrieve 
the relevant studies from the electronic databases using search strings; snowballing is used to collect those 



4 
 

relevant studies that are missed during the automatic search process. The details of using the two search 
approaches in this SMS are provided in the following sections. 

a) Search Scope 

The search scope of this study includes the selected databases and timeframe for retrieving the relevant 
studies. The following describes how these two elements are determined. 

Timeframe: We only considered the primary studies published from January 2000 to May 2020. The 
starting year is justified by considering the roadmap paper of software maintenance and evolution that was 
published in 2000 and formulated the promising research directions in this regard in the last 20 years [1]. 
The end date is the time when we started this SMS, i.e., May 2020. 

Electronic databases: We finally selected seven core Electronic Databases (EDs) (see TABLE II) 
based on the guideline provided by Chen et al. [8]. Google Scholar was not included in this study, as it 
would produce a significant number of irrelevant studies and overlap with the studies returned from other 
databases. Note that the search terms were only matched with paper titles and abstracts in the databases 
ED1, ED3, ED5, and ED6 due to the search limitation of these databases. 

TABLE II.  ELECTRONIC DATABASES FOR THE AUTOMATIC SEARCH 

No. Electronic database Search terms used in 
ED1 ACM Digital Library Paper title, abstract 
ED2 IEEE Xplore Paper title, keywords, abstract 
ED3 Springer Link Paper title, abstract 
ED4 Science Direct Paper title, keywords, abstract 
ED5 Wiley InterScience Paper title, abstract 
ED6 EI Compendex Paper title, abstract 
ED7 ISI Web of Science Paper title, keywords, abstract 

b) Search Strategy 

a. The search strategy influences the effort required to conduct the search process and the completeness 
of search. In this SMS, we used two most frequently applied methods for developing the search terms 
[19]. We initially defined the search terms based on the research topics and research questions (i.e., 
traceability and software maintenance and evolution) in the existing relevant studies (in Section 7). 
Moreover, PICO (Population, Intervention, Comparison, Outcomes) criteria [18] were used to develop 
the search terms. The population in this study is software maintenance and evolution, and the 
intervention refers to traceability. Only P and I were considered to develop the search terms, because 
traceability approaches are not compared with other approaches and the outcomes of using traceability 
are not limited in this SMS. We included various search terms that are highly relevant to traceability, 
maintenance and evolution. The word “software” was used to limit the scope of the search process and 
decrease the number of irrelevant studies (noise). 

b. The selected electronic databases were explored for pilot search using the combinations of different 
search terms. Two search strings were used in this pilot, i.e., (“maintain” AND “trace”) and 
((“maintainability” OR “maintaining”) AND “trace”). We noticed that the search engines of the 
selected databases perform differently using the search terms, e.g., using the term “maintain” in IEEE 
Explore did not return the studies that were searched using the term “maintainability” or 
“maintaining”. The similar situation also happened while the terms “trace” and “traces” were 
executed. Therefore, we included all these terms in the final construction of search strings to avoid 
missing potentially relevant studies. Note that we did not include specific terms of maintenance and 
evolution activities (e.g., “bug fix” and “refactoring”) in the search query due to two reasons: part of 
the goal of this SMS is to identify the potential maintenance and evolution activities that can be 
supported by using traceability (i.e., RQ1), therefore we cannot have a relatively comprehensive list 
of those activities before conducting this SMS; and including the specific maintenance and evolution 
activity terms in the search query may lead to the situation that the search results are biased to those 
activities. 
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Both Boolean “OR” and “AND” operators were used to concatenate the terms for population and 
intervention. For example, if the search engine supports logical OR and AND operators, the search query 
could be composed as follow: 

(trace OR traces OR tracing OR traceability) AND (maintain OR maintaining OR maintenance OR 
maintainability OR evolve OR evolving OR evolution OR evolvability) AND (software) 

3.2.2 Study Selection 

This section describes the inclusion/exclusion criteria for study selection as well as the details of the 
selection in three rounds. 

Selection Criteria: The inclusion and exclusion criteria were developed by following the guidelines in 
[19] to refine the selection process of the identified studies (see TABLE III). The selection of a primary 
study was based on the title, abstract, and full text against the inclusion and exclusion criteria. Moreover, 
we recorded the key terms that lead to the inclusion/exclusion of a specific study, and those terms were 
further used for discussion during the consensus meetings and reassessment process. 

TABLE III.  INCLUSION AND EXCLUSION CRITERIA 

No. Inclusion criteria 
I1 A paper that focuses on using traceability practices in software 

maintenance and evolution 
I2 A paper that is peer-reviewed and available in full text 
No. Exclusion criteria 
E1 If two papers publish the same work in different venues (e.g., 

conference and journal), the study with limited details is 
excluded. 

E2 Grey literature (i.e., technical report, work in progress) is 
excluded. 

E3 A paper not written in English is excluded. 
E4 A paper that is duplicated with an included paper. 

Selection Process: The search strategy defined in Section 3.2.1 was used to identify the relevant 
primary studies. The returned number of studies in each round is provided in Section 4.1.1. The selection 
process includes the following three core rounds: 

a. First round of selection. The first author reviewed the titles of the studies retrieved from the digital 
databases using the selection criteria discussed in Section 3.2.2. Those studies were retained for the 
second round for which the first author had not made any decision. 

b. Second round of selection. Both the first and second authors independently conducted a pilot 
selection by reading the abstracts of randomly selected 50 articles retained during the first round. The 
selected studies were put forward for discussion during the consensus meetings in order to resolve the 
disagreements between the first and second authors. Then, they selected papers independently by 
reading the abstracts of the remaining studies from the first round. Those studies are kept for the final 
round which were hard to decide based on their abstracts. 

c. Final round of selection. The first and second authors independently conducted a pilot selection with 
randomly selected 20 articles retained during the second round. Any disagreements were discussed 
and resolved among all the authors by holding consensus meetings. Then, the first two authors 
conducted a full-length reading of the remaining papers. For uncertain papers, their final decisions 
were made based on the discussion of all the authors. 

3.2.3 Snowballing 

The snowballing approach was used to get those relevant studies that were possibly missed during the 
automatic database search. We adopted backward snowballing [9] in this SMS, which is also used in many 
other SMSs, such as [19]. Snowballing is an iterative process, where we checked the references lists of 
the studies selected from the final round of automatic database search (in Section 3.2.2), then the newly 
selected papers of the last iteration were checked in the subsequent iterations. The iterative process was 
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completed when there were no newly selected papers. Each iteration followed the three rounds of selection 
process described in Section 3.2.2, i.e., based on the title, abstract, and full content. The papers selected 
during the snowballing process were included in the final list of the selected studies. 

3.2.4 Data Extraction 

Fifteen data items have been defined to be extracted from the primary studies in order to provide 
demographic information and answer the Research Questions (RQs) (see TABLE IV). The eight data 
items (D1-D8) are used to extract the demographic details of the primary studies and the remaining data 
items (D9-D15) are used to answer the six RQs. Both D9 and D11 are used to answer RQ3, which focuses 
on investigating the benefits (D11) brought by using traceability practices in various maintenance and 
evolution activities (D9). 

The description of the data items and their relevant RQs are presented in TABLE IV. Interpersonal 
biases and misunderstanding regarding the data items were minimized by conducting pilot data extraction, 
which was followed by both the first and second authors. They randomly selected 10 primary studies and 
extracted the data according to the data items in TABLE IV. In the formal data extraction, the first two 
authors extracted the data from the remaining studies independently, which was then merged by the first 
two authors and further reviewed by the third and fourth authors. The conflicts, disagreements, and 
uncertainties in the data extraction process were resolved during the regular consensus building 
discussions during which all the authors provided their feedback and suggestions. The outputs of the data 
extraction process were formally recorded on separate Excel spreadsheets for further analysis and 
synthesis. 

TABLE IV.  DATA ITEMS EXTRACTED FROM THE PRIMARY STUDIES WITH THE RELEVANT RQS 

# Data item name Description Relevant 
RQ 

D1 Index Paper ID  Overview  

D2 Title Paper title  Overview  

D3 Author list Name of all the authors Overview 

D4 Year Year of publication Overview  

D5  Venue Name of the venue where the study is published  Overview 

D6  Publication type Journal, conference, workshop, or book chapter Overview 

D7  Author type Researcher, practitioner or both Overview 

D8 Research type The research type of paper Overview 

D9 Maintenance and 
evolution activities 

Maintenance and evolution activities that can be supported by traceability RQ1, 
RQ3 

D10 Evidence level The evidence level of the impact of traceability on software maintenance 
and evolution activities 

RQ2 

D11 Benefits The benefits that stakeholders can get from using traceability in the 
maintenance and evolution phase 

RQ3 

D12 Cost The costs of using traceability in the maintenance and evolution of software 
systems 

RQ4 

D13 Tools The tools used for deploying the traceability practices in the maintenance 
and evolution phase 

RQ5 

D14 Approaches The specific approaches/methods used to manage traceability in the 
maintenance and evolution of software systems 

RQ5 

D15 Challenges Challenges of using traceability in software maintenance and evolution RQ6 

3.2.5 Data Synthesis 

The data extracted in the previous step was synthesized to answer the six RQs (see TABLE IV), and 
the data synthesis process was conducted by following the same procedure as employed in the data 
extraction process. The systematic map of the extracted data is provided in Section 4.1.2. 

Descriptive statistics and two coding steps of Grounded Theory (i.e., open and selective coding) were 
used to analyze the extracted data for answering the RQs. Specifically, descriptive analysis was adopted 
to answer RQ1 (maintenance and evolution activities), RQ2 (evidence level), and RQ5 (tools and 
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approaches); open and selective coding of Grounded Theory were employed to answer RQ1 (maintenance 
and evolution activities), RQ3 (benefits), RQ4 (costs), and RQ6 (challenges). 

We extracted the data item (D10) to answer RQ2, which collects the evidence level that traceability 
impacts the software maintenance and evolution activities. The evidence level can be used as an indicator 
of the quality and credibility of the selected studies. We adopted the following six evidence levels 
proposed in [44]: 

Level 0. No evidence. 

Level 1. Evidence obtained from demonstration or working out with toy examples. 

Level 2. Evidence obtained from expert opinions or observations (e.g., survey or interview). 

Level 3. Evidence obtained from academic studies (e.g., controlled lab experiments). 

Level 4. Evidence obtained from industrial studies (e.g., causal case studies in an industrial setting). 

Level 5. Evidence obtained from industrial practice (e.g., the solution adopted by practitioners). 

Finally, the data items D11, D12, and D15 were used to extract the data for answering RQ3, RQ4, and 
RQ6, respectively. The extracted data was analyzed using open and selective coding of Grounded Theory, 
which is a well-known research method used to generate theories from qualitative data [14]. Classical 
Grounded Theory consists of three coding steps, i.e., open coding, selective coding, and theoretical coding 
[15]. We did not consider the theoretical coding step because this study was not aimed at developing a 
specific theory. 

Open coding generates codes for incidents that can be further classified into concepts and categories. 
The extracted textual data was broken up and classified into various categories. In this phase, the codes 
for certain data items could be generated (e.g., D9: maintenance and evolution activities in TABLE IV). 
Selective coding identifies the core categories that explain the greatest variation in the data and around 
which the emerging theory is built around [14]. This phase was used to identify core categories that present 
the key concerns of researchers (e.g., six types of benefits that stakeholders can get using traceability in 
software maintenance and evolution). Moreover, constant comparison method [14] was used during the 
coding process to iteratively compare similarities and differences of the emerging codes and categories 
with the existing coding results until no more concepts and categories were generated. 

4 STUDY RESULTS 

4.1 Overview 

In Section 4.1.1, the study search results, the selection results in each selection round, and the findings 
of the backward snowballing are presented. Section 4.1.2 highlights the distribution of the selected studies. 

4.1.1 Search and Selection Results 

Fig. 1 shows the number of studies in our study search, each round of study selection, and the 
snowballing. 31,496 papers in total were returned by the automatic search using the search terms defined 
in Section 3.2.1. We shortlisted 2,057 papers after the first round selection (i.e., by title). The second round 
search (i.e., by abstract) returned 292 studies that were further refined in the final round (i.e., by full text), 
where 58 primary studies were finally selected. 

Moreover, two cycles of backward snowballing were conducted to explore the articles that were missed 
during the search process of digital databases. In each cycle, the articles were evaluated based on the title, 
abstract, and full text. The two cycles of backward snowballing search returned 2,366 references of the 58 
studies that were finalized during the databases search. The selected 2,366 references were further assessed 
based on the title (shortlisted 272 articles), abstract (shortlisted 63 articles) and full text (shortlisted 5 
articles) (see Fig. 1). A total of 63 primary studies were finally considered for this SMS, where 58 studies 
were included during the digital database search and 5 studies were finalized using the backward 
snowballing search approach. The details of the selected 63 primary studies are provided in Appendix A; 
[Sx] is used as the identifier of each primary study. 



8 
 

4.1.2 Studies Distribution 

The details of the selected studies are provided in this section; the details include studies classification 
over publication years (D4), publication venues (D5), publication types (D6), author types (D7), 
maintenance and evolution activities (D9), and research types (D8). 

Fig. 2 shows the yearly distribution of the selected studies published from 2000 to 2020. It should be 
noted that this SMS did not find any primary studies published in the first five months of 2020 (see Fig. 
2) as the search was carried out during May 2020. 

The details about the publication venues, types and percentage of occurrence are provided in Appendix 
B. The selected 63 primaries studies are scattered across 50 different publication venues. One-third of the 
venues (17 out of 50) are relevant to software traceability, maintenance or evolution, because their names 
contain the terms “traceability”, “maintenance”, “evolution” or the terms related to maintenance and 
evolution activities as described in Section 4.2.1. The results also show that all the venues published less 
than 5 primary studies. A majority (96.2%, 47 out of 52) of the venues published only one or two studies. 
These findings demonstrate that this research topic has attracted widespread concern in diverse fields in the 
software engineering community. 

 
Fig. 1. Results of study search and selection. 
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Fig. 2. Yearly distribution of the selected studies. 

Furthermore, as shown in Fig. 3(a), the 50 venues cover 4 types of publications i.e., journal, conference, 
workshop, and book chapter. Most of the selected papers are published in journals (50.8%, 32 out 63) and 
conferences (28.6%, 18 out 63), however, only one paper is published as a book chapter. In addition, 19.0% 
(12 out of 63) primary studies are published in workshop proceedings. 

Fig. 3(b) highlights the distribution of the author types (i.e., researchers, practitioners, or both) of the 
selected papers. Most of the papers (95%, 60 out of 63) are authored by researchers. Only 5% (3 out of 
63) of the papers were based on the collaboration between researchers and practitioners. More 
interestingly, we do not find any paper solely authored by practitioners. The reported findings reveal that 
less attention has been received to the topic of traceability, software maintenance and evolution in industry 
as compared to academia. 

  
(a) Publications types (b) Author types 

Fig. 3. Publication and author types based on the distribution of the reviewed papers. 

Fig. 4 presents the classification of the selected papers based on the maintenance and evolution 
activities (D9), research types (D8), and time period. The details of maintenance and evolution activities 
are reported in Section 4.2.1. 

For research types, we adopted the classification scheme proposed by Wieringa et al. [35], who 
classified Requirements Engineering (RE) papers into six categories: 

Evaluation research: In such type of research studies, the software engineering techniques, methods, 
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Validation research: The properties of a proposed solution are investigated in a laboratory setting using 
research methods, such as mathematical analysis and laboratory experimentation. 

Solution proposal: A solution technique is proposed and its relevance is discussed without a full-scale 
validation. 

Conceptual proposal (or Philosophical paper): A new way of looking at the existing things is developed 
in the form of a taxonomy or conceptual framework. 

Opinion paper: Personal opinion on a special matter is discussed without relying on the related work 
and research methodologies. 

Experience report: A list of lessons learned by authors from personal experience are discussed. 

It is worth noting that this classification scheme is applicable to the papers not only in Requirements 
Engineering but also in Software Engineering [19][36]. A decision table given in [19] is used to classify 
the selected secondary studies across the research types [35]. There is much confusion about the distinction 
between validation and evaluation research. The criterion for evaluating research papers (i.e., evaluation 
research or validation research) is not whether the solutions validated or evaluated are novel. The criterion 
is whether the solutions are implemented or evaluated in practice. For example, empirical studies that 
employ research methods (e.g., case study, experiment, or survey) with students are classified as validation 
research (e.g., [S53][S56]), while empirical studies conducted with practitioners using the same research 
methods are classified as evaluation research (e.g., [S50][S51]). Conceptual frameworks that are proposed 
without any validation and evaluation are classified as conceptual proposal (e.g., [S60]). Note that one 
study can span more than one research type (see Fig. 4). For example, the research reported in [S22] is 
considered as both opinion paper and solution proposal because the authors proposed a new solution and 
concluded with their opinion. 

Bubbles in the left part of Fig. 4 represent the selected studies published in the context of maintenance 
and evolution activities with respect to the publication year. Similarly, the bubbles in the right part of Fig. 
4 show the selected studies on certain research types and focusing on specific maintenance and evolution 
activities. The numbers shown inside the bubble represent the identification numbers of the selected 
studies (Appendix A). Fig. 4 shows that most of the studies are solution proposal (66.7%, 42 out of 63). 
Validation research is conducted in 15 (23.8%) of the selected studies; 23.8% of the papers report 
evaluation of solutions (i.e., techniques or approaches). Opinion papers and conceptual proposals 
contribute 6.3% (4 out of 63) and 4.8% (3 out of 63), respectively. We could not identify any paper as 
experience report study. These results indicate that only a few solutions had been used and evaluated in 
practice. 
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Fig. 4. Bubble chart over maintenance and evolution activities, research type, and time period. 
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4.2 Results of RQs 
4.2.1 Maintenance and evolution activities supported by traceability (RQ1) 

Lientz and Swanson categorized maintenance activities into four groups: adaptive (i.e., adapting change 
in software environment), perfective (i.e., updating software system with new user requirements), 
corrective (i.e., fixing errors), and preventive (i.e., preventing problems in the future) [1][28]. IEEE glossary 
considers the above-given classification as a standard for software maintenance [29]. Open coding and 
selective coding were used to analyze the extracted data item (D9) and identify the maintenance and 
evolution activities from the primary studies. For example, we generated the code “Change impact analysis” 
by using open coding from this sentence in [S2] “We would like to explore requirements traceability for 
change impact analysis from which we should be able to capture the impacts of a proposed change”. The 
generated codes were further constantly compared until no new code was identified for the maintenance 
and evolution activities. Finally, eleven maintenance and evolution activities that can be supported by 
software traceability were collected, as shown in the vertical line of Fig. 4. These activities were further 
classified by using selective coding across the four categories i.e., adaptive activities (change management), 
perfective activities (reverse engineering, software comprehension, and continuous integration), corrective 
activities: (bug fixes), and preventive activities (i.e., software testing, refactoring, compliance verification, 
software reuse, vulnerability detection, and architectural preservation). Fig. 4 further provides the details 
of the selected studies with respect to the 11 maintenance and evolution activities, six research types, and 
the time period. The frequency of occurrence of the 11 maintenance and evolution activities is shown in 
Fig. 5. Note that one study may contain more than one maintenance and evolution activities. Therefore, the 
total number of studies in Fig. 5 is larger than 63. 

Change management plays an important role in software maintenance and evolution, since changes in 
software artefacts (e.g., requirements, design documents, and code dependencies) are the primary causes 
of software evolution [30]. The traceability of changes can support the change management process, 
including identifying, analyzing, evaluating, planning, implementing, and verifying the change requests 
[S47]. 71.4% of the primary studies (45 out of 63) mentioned that traceability can support change 
management. We further classified the change management activity into eight sub-activities (see TABLE 
V) based on the change management framework proposed in [46]. Most of the studies (84.4%, 38 out of 
45) used traceability to support change impact analysis, which is a process of analyzing the consequence 
or ripple effects of the proposed changes [16]. For example, requirements traceability in [S12] was used 
to assess the impact of the prospective changes to a system. A software traceability approach [S2] was 
developed to support change impact analysis of object-oriented software systems. The reported approach 
is designed to contribute to the integration of both top-down (e.g., from requirements to low-level 
components) and bottom-up (e.g., from a method to its impacted test cases) impacts of system artefacts. 
9.5% of the studies (6 out of 63) used traceability to identify and trace a new feature request. One study 
[S55] integrated requirements traceability in an Integrated Development Environment (IDE) to identify 
new requirements and enable their tracing to source code. Moreover, 6.3% of the studies (4 out of 63) 
mentioned the utilization of traceability in propagation, implementation, and regression testing of changes. 
For instance, a study [S21] proposed an approach and a prototype of model-based selective regression 
testing to support the identification of the effect of model modifications, where traceability relationships 
between model elements and test cases are used for test generation. The use of traceability in change effort 
estimation [S50], test effort estimation [S54], and change verification [S47] were analyzed in one study, 
respectively. Another study [S50] reports an industrial case study with the key question: how the 
requirements traceability can be applied to software maintenance and evolution activities such as change 
effort estimation for features extensions? 

Compliance verification is reported as the second most common (23.8%, 15 out of 63) activity supported 
by traceability in maintenance and evolution. The asynchronous changes in software artefacts can lead to 
inconsistency between artefacts in the software evolution process. A well-defined traceability in 
heterogeneous artefacts is important for synchronization and consistency management among software 
artefacts with occurring changes in software maintenance [34]. A study [S56] presents 1.x-line mapping to 
support architecture-implementation traceability in a single system development and in product line 
development, which supports the mapping and consistency between product line architecture and code. 
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Software comprehension is considered as a significant maintenance and evolution activity [17] to swiftly 
understand a software system and effectively implement the requested changes. However, the total cost of 
software comprehension is much higher and normally it consumes half of the maintenance budget [47]. 
The results in Fig. 5 illustrate that 20.6% (13 out of 63) of the studies mentioned that traceability could be 
used to manage the software comprehension activities. Sametinger and Riebisch [S17] proposed an 
approach that supports evolving software systems and program comprehension by providing explicit 
information about dependencies and references to solution principles. Consequently, traceability can 
minimize the maintenance and evolution cost by reducing the program comprehension cost [S22]. Besides 
program comprehension, traceability could also be used to understand the meaning of program entities [S26] 
and the impact of the required changes on a system [S5]. 

Software reuse means adopting the existing software artefacts or knowledge, including code fragments, 
architectural components, patterns, and decisions to develop a new system [30]. Traceability could assist 
the software reuse process by minimizing the chance of selecting incorrect artefacts or missing the most 
suitable ones. Ultimately, it will decrease the total cost of the software maintenance process. It is also 
evident from the results given in Fig. 5 that 9.5% of the studies (6 out of 63) claimed traceability as a 
supportive tool for software reuse. Linsbauer et al. [S46] proposed an approach using traceability 
information between features and implemented artefacts to automate the reuse process of existing artefacts 
during the maintenance and evolution of product portfolios. 

Bug fixing is a cost and time-consuming activity used to correct errors, flaws, or faults in a software 
system that produce unexpected results during the software maintenance process [48]. The result reveals 
that 9.5% of the studies (6 out of 63) reported traceability as an effective tool to find and fix bugs. The 
results of an industrial survey [S3] show that traceability links via TraceLink are effective in fixing incorrect 
behaviors and bugs. The results of a controlled experiment with 71 subjects in [S13] show that traceability 
has a significant effect on the performance of subjects when conducting maintenance tasks, including bug 
fixing. An approach to recover feature traceability was proposed in [S22] to reduce the effort of program 
comprehension and bug correction. TraceScore approach was proposed in [S51] to recover the traceability 
links between new bug reports, the source code, and its comments, which improves the process of defective 
source code files localization. 

Architectural preservation is an activity to maintain the architectural qualities and prevent architectural 
erosion during the software evolution and maintenance process [49]. As shown in Fig. 5, 6.3% of the studies 
(4 out of 63) highlight that traceability supports the activities involved in the process of architectural 
preservation. Mirakhorli and Cleland-Huang [S45] presented Tactic Traceability Information Models 
(tTIMs) which provides a reusable infrastructure of traceability links between architectural tactics and 
implemented code. The use of tTIMs can assist to preserve the critical architectural qualities during the 
software maintenance and evolution phase. 

Refactoring is an activity that aims at restructuring a software system to achieve the internal attributes, 
without changing its external behaviour [50]. In this SMS, we identified 3 primary studies that reported the 
use of traceability in the refactoring process. Reichmann and Müller-Glaser [S61] presented an Eclipse 
extension Morpheus, to develop fine granular traceability links between artefacts (e.g., source code, 
requirements, defects, and test cases), which supports the source code refactoring process. 

Moreover, the use of traceability in software testing, vulnerability detection, continuous integration, and 
reverse engineering have been discussed in one study, respectively. For example, an Information Retrieval 
(IR)-based approach was used to dynamically generate multi-bidirectional links between testing documents 
and code to support software testing documentation [S20]. Yu et al. [S43] proposed a traceability technique 
based on a change resilience refactoring language to detect security vulnerability. 
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Fig. 5. Number of the reviewed studies across maintenance and evolution activities. 

TABLE V.  CHANGE MANAGEMENT SUB ACTIVITIES AND NUMBER OF RELATED STUDIES 

Sub activity Studies No. of studies % 

Change request [S3][S13][S27][S47][S55][S63] 6 9.5 

Change effort estimation [S50] 1 0.2 

Change impact analysis [S1][S2][S5][S6][S7][S8][S9][S10][S11][S12][S14][S15][S16][S18] 
[S19][S21][S25][S27][S28][S29][S30][S32][S34][S35][S36][S37] 
[S38][S39][S47][S49][S50][S52][S53][S58][S59][S60][S62][S63] 

38 60.3 

Change propagation [S33][S46][S47][S60] 4 6.3 

Test effort estimation [S54] 1 0.2 

Regression testing in 
change 

[S21][S29][S41][S54] 4 6.3 

Change implementation [S3][S5][S50][S58] 4 6.3 

Change verification [S47] 1 0.2 

4.2.2 Evidence level concerning the impact of traceability on maintenance and evolution activities (RQ2) 
The data item D10 in TABLE IV is used to answer RQ2. The evidence level determines to what extent 

a specific study could be considered reliable. There are six evidence levels (as described in Section 3.2.5) 
and a higher evidence level means it is more likely that a study’s claim is reliable. 

Fig. 6 shows the distribution of selected studies across the six levels of evidence. We can see that toy 
example and demonstration (Level 1, 57%, 36 out of 63) is the most common approach used to evaluate 
traceability impact on maintenance and evolution activities. In most of these studies, the authors first 
introduced the details of the proposed traceability approaches or tools to support maintenance and evolution 
activities, and then applied these approaches and tools in some cases to show their applications. For 
example, [S10] proposed a traceability approach and a prototype i.e., Hybrid Coverage Analysis Tool 
(HYCAT). The proposed tool was further evaluated using a case study and experimentation. 

Ten selected studies (16%) conducted industrial studies (e.g., industrial case studies) to validate the 
approaches of using traceability for maintenance and evolution activities (Level 4). Two studies ([S8] and 
[S25], 3%) applied the proposed traceability techniques (i.e., industrial practice) in industrial domains 
(Level 5). Three studies ([S18][S22][S27], 5%) reported expert insights and observations to illustrate how 
traceability can support maintenance and evolution activities (Level 2). It is worth noting that [S3] used 
both expert opinion and industrial survey to provide concrete evidence that traceability links are effective 
to manage the maintenance activities. In this case, we chose the higher one (i.e., industrial study) as the 
evidence level. Ten articles (16%) have conducted academic studies (e.g., academic controlled experiments) 
to evaluate the association between traceability, software maintenance and evolution process (Level 3). 
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Additionally, two studies ([S33] and [S46], 3%) did not provide any evidence to assess the dependencies 
between traceability and software maintenance (Level 0). However, these two studies mentioned without 
conclusive evidence that traceability is an effective tool for software maintenance and evolution. 

 
Fig. 6. Distribution of the reviewed studies across evidence levels. 

4.2.3 Benefits obtained using traceability in software maintenance and evolution (RQ3) 
The primary studies reported the benefits of using traceability for the maintenance and evolution of 

software systems. The identified benefits are classified into eight core categories (see TABLE VI) 
according to the coding steps for data synthesis as described in Section 3.2.5. 

“B1: Saving time and effort”. Software maintenance is a costly and effort consuming phase during the 
software development cycle. Tripathy and Naik [30] argued that 60-80% of the entire software development 
budget is consumed during the maintenance phase [30]. However, 15.9% (10 out of 63) of the selected 
studies reported that the deployment of traceability practices during the software maintenance and evolution 
phase could minimize the total cost, effort, and time. For example, a controlled experiment conducted by 
Mäder and Egyed [S13] revealed that the practitioners supported with traceability paid less time and effort 
to perform the maintenance and evolution activities. Their performance rate was 24% fast as compared to 
those who had not used the traceability practices. 

“B2: Easing the process of change management”. Traceability is considered an efficient tool for change 
management activities. It can improve the process of change impact analysis and assist managing the new 
change requests. 60.3% (38 out of 63) of the selected studies have positively described the effectiveness of 
traceability for analyzing the impact of the requested changes. For example, Ibrahim et al. [S2] proposed a 
requirements traceability approach that integrates requirements into low-level components, and this 
approach can assist developers in analyzing the impact of changes in object-oriented software systems. 

“B3: Verifying the compliance of software systems”. Traceability could be used to keep the compatibility 
and compliance between various artefacts during change implementation process. Tang et al. [S44] 
validated the given benefit by using traceability to co-evolve requirements specifications and architecture 
design. 

“B4: Preventing architecture erosion” refers to the benefits associated with improving architecture 
quality and preventing architecture erosion. Mirakhorli et al. [S4] proposed an approach that can improve 
architecture attributes by deploying the traceability practices. Moreover, Javed and Zdun [S37] mentioned 
that the use of traceability can enhance the quality of architectural evolution analysis. 

“B5: Easing system comprehension”. Traceability plays an important role in system comprehension by 
visualizing and locating the dependencies between artefacts. Sametinger and Riebisch [S17] presented a 
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supporting methodology for program comprehension by providing explicit information about the 
dependencies and references between patterns, aspects, and traces. 

“B6: Easing reuse of artefacts or knowledge” refers to the benefits that can be achieved by using 
traceability for reuse process in maintenance and evolution. For example, the experimental results in [S37] 
revealed that traceability can minimize the chance of reusing irrelevant components, which enhances the 
architecture-centric reuse process of software systems. 

“B7: Correcting issues in software” means that traceability can assist developers in locating the artefacts 
with smells, vulnerabilities, or bugs. Jurjens and Mylopoulos [S43] found that integrating traceability 
practices with a UML analysis tool can effectively find vulnerabilities in software systems. 

“B8: Others” contains the benefits that are relevant to using traceability for improving software 
testability, reengineering process, and continuous integration. 

TABLE VI.  THE BENEFITS THAT STAKEHOLDERS CAN GET FROM TRACEABILITY 

ID Benefit type Subtype Description Studies 
B1 Saving time and 

effort 
 The time and effort required to perform 

maintenance and evolution activities can be 
reduced using traceability practices. 

[S3][S13][S14][S15][S19] 
[S22][S32][S36][S43][S55] 

B2 Easing the 
process of 
change 
management 

Improving 
change 
analysis 
impact 

Traceability between artefacts can assist the 
practitioners in measuring the impact of the 
implemented changes. 

[S1][S2][S5][S6][S7][S8][S9] 
[S10][S11][S12][S14][S15] 
[S16][S18][S19][S21][S25] 
[S27][S28][S29][S30][S32] 
[S34][S35][S36][S37][S38] 
[S39][S47][S49][S50][S52] 
[S53][S58][S59][S60][S62] 
[S63] 

Identifying 
new feature 
requests 

Traceability used to identify the emerging 
changes and measure their impact on the 
concerned artefacts. 

[S3][S13][S27][S47][S55] 
[S63] 

Facilitating 
change 
propagation 

Traceability between artefacts can help 
developers and maintainers to facilitate the 
change propagation between the artefacts. 

[S33][S46][S47][S60] 

Implementing 
accurate 
changes 

Traceability can assure the accuracy of the 
requested and implemented changes. 

[S3][S5][S50][S58] 

Easing the test 
of changes 

Traceability between artefacts can reduce the 
amount of source code for test cases. 

[S21][S29][S41][S54] 

Others Estimating the effort, as well as validating and 
verifying the implemented changes. 

[S47][S50][S54] 

B3 Verifying the 
compliance of 
software 
systems 

 Traceability keeps the documents up-to-date, 
consistent, and compatible with the relevant 
artefacts during the software evolution process. 

[S1][S18][S23][S24][S35] 
[S40][S43][S44][S47][S48] 
[S49][S53][S56][S57][S60] 

B4 Preventing 
architecture 
erosion 

Preserving 
architectural 
qualities 

Traceability helps to maintain the architectural 
qualities during the maintenance and evolution 
phase. 

[S1][S4][S8][S45] 

Architectural 
consistency 

Traceability helps developers to check whether 
an implementation is carried out correctly 
according to a given architectural design. 

[S24][S43][S56][S57] 

B5 Easing system 
comprehension 

Visualizing 
software 
artefacts 

Traceability provides a project-level managerial 
visibility link between the system artefacts. 

[S17][S22][S23][S27][S30] 
[S34][S53] 

Locating 
software 
artefacts 

Traceability can help to locate the artefacts and 
their underlying knowledge that need to be 
maintained. 

[S1][S5][S11][S12][S26][S40] 

B6 Easing reuse of 
artefacts or 
knowledge 

 Traceability provides useful information about 
the relationships and dependencies between the 
system artefacts, which facilitates the reuse 
process of the artefacts and related knowledge. 

[S31][S37][S42][S43][S46] 
[S50] 
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B7 Correcting 
issues in 
software 
systems 

Locating the 
artefacts with 
bugs 

Traceability can spot the artefacts containing 
bugs and facilitate the fixing process of the 
identified bugs. 

[S3][S13][S22][S51][S55] 
[S58] 

Locating the 
artefacts with 
smells 

Identifying the artefacts containing smells and 
enabling refactoring activities. 

[S16][S43][S61] 

Locating the 
artefacts with 
security 
vulnerabilities 

Locating those artefacts which contain any 
vulnerabilities, and keeping the software system 
safe and secure. 

[S43] 

B8 Others  Traceability can improve software testability, 
reengineering process, and continuous 
integration. 

[S17][S20][S60] 

4.2.4 Costs of deploying traceability practices during software maintenance and evolution (RQ4) 
The cost types that need to be considered in the budget for implementing traceability practices were 

explored and extracted from the primary studies. TABLE VII shows that the identified costs are classified 
into four types. 

“C1: Effort for establishing and maintaining traceability links”. Employing traceability practices in the 
software maintenance and evolution phase is labor-intensive and time-consuming. We notice that 30.2% 
(22 out of 63) of the studies agree with the above statement and highlight that effort is needed to establish 
and maintain traceability links. For example, the ADVERT approach proposed in [S40] requires additional 
effort during system development for creating trace links between existing artefacts (e.g., architectural 
models). 

“C2: Effort for understanding traceability links”. The use of traceability involves the comprehension 
of traceability links between software artefacts, as well as domain knowledge for using traceability 
[S2][S6][S23]. For example, [S23] stated that maintainers spent effort on understanding different 
representations and links that exist among software artefacts and knowledge resources involved in software 
maintenance. 

“C3: Effort for application of traceability”. The effort is required from practitioners to integrate 
traceability practices with the maintenance and evolution tasks [S50][S58]. As complained by the 
participants in a survey [S50], too high costs are required to apply traceability in maintaining small- and 
medium-size projects. 

“C4: Effort for acquiring skills and experience about traceability”. An extra effort is also required to 
obtain the skills and knowledge for establishing and understanding traceability links as well as utilizing the 
traceability practices [S1][S2]. For example, [S1] mentioned that tracing architecture concerns to 
architecture tactics that address specific concerns requires significant effort to be an experienced architect 
with the domain knowledge. 

TABLE VII.  THE COSTS THAT STAKEHOLDERS NEED TO PAY FOR TRACEABILITY 

ID Cost type Description Studies 
C1 Effort for establishing 

and maintaining 
traceability links 

It is a labor-intensive, time-consuming, and error-
prone process to manually establish and maintain 
traceability links. 

[S1][S3][S4][S13][S14][S18][S20] 
[S23][S29][S30][S33][S34][S36] 
[S38][S40][S42][S44][S45][S51] 
[S56][S58][S59] 

C2 Effort for 
understanding 
traceability links 

Practitioners need to understand the 
interrelationships between software artefacts and the 
domain knowledge of using traceability for 
maintenance and evolution activities. 

[S2][S6][S23] 

C3 Effort for application 
of traceability 

Effort required to precisely develop the association 
between traceability, maintenance and evolution 
phases. 

[S50][S58] 

C4 Effort for acquiring 
skills and experience 
about traceability 

Additional skills, experience, understanding, and 
knowledge are acquired to utilize traceability 
practices correctly and effectively in maintenance 
and evolution activities. 

[S1][S2] 
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4.2.5 Approaches and tools that support the use of traceability in maintenance and evolution phase (RQ5) 
Open coding was used to analyze the extracted data items (D13 and D14) and identify the traceability 

approaches and tools from the primary studies. For example, we generated the code “Information Retrieval 
(IR)-based approach” by using open coding from this sentence in [S50] “The traceability method adopts 
an information retrieval technique for the semantic traceability and a DTDXML based technique to identify 
systematically all elements within and inter diagrams that are impacted by a requirement change”. The 
generated codes were further constantly compared until no new code was identified for the traceability 
approaches and tools. Finally, we identified 13 approaches and 32 tools from the selected studies that 
support traceability in software maintenance and evolution phase. These identified approaches and tools 
are listed in TABLE VIII and TABLE IX, respectively. 

a) Approaches that support the use of traceability in software maintenance and evolution 

TABLE VIII provides a list of the identified approaches, their descriptions, and the relevant 
maintenance and evolution activities supported by these approaches. We found that most of the reported 
approaches support specific maintenance and evolution activities presented in Section 4.2.1. The results 
show that change management is the most frequently supported activity by the identified traceability 
approaches (see TABLE VIII). Note that one study may propose more than one traceability approaches to 
support various maintenance and evolution activities. However, 19.0% (12 out of 63) of the selected 
studies do not discuss any traceability approach or technique that can be used to support the reported 
activities. Some of these 12 studies include industry surveys or controlled experiments, where the 
participants were invited to investigate the impact of traceability on maintenance and evolution activities. 
For instance, Mäder and Egyed [S13] conducted a controlled experiment with 71 practitioners to 
investigate the industrial effectiveness of requirements traceability. The results of the experiment show 
that traceability can save the effort and improve software maintenance quality. 

Information Retrieval (IR)-based approaches are the most frequently used technique to support 
traceability in software maintenance and evolution (27.0%, 17 out of 63). These approaches focus on the 
automation of retrieving traceability links from artefacts. IR based approaches are considered the most 
effective technique for change management activities. For example, [S49] proposed an IR based approach 
for structural and semantic traceability between UML models. The proposed approach analyzed and 
managed the impact of changes on software requirements and design developed using UML. Additionally, 
IR-based approaches can be used for compliance verification, software testing, comprehension, bug fixing, 
and software reuse. 

Feature Model (FM)-based approaches are ranked the second most commonly used technique (17.5%, 
11 out of 63) to support the maintenance and evolution activities. It generally supports six activities, and 
change management is the most mentioned one (8 out of 11). The other activities supported by feature 
model-based approaches include compliance verification, software comprehension, architectural 
preservation, bug fixing, and software reuse. Riebisch [S34] introduced a feature model as an intermediate 
element to map the sets of requirements to a specific feature and structure the association between 
requirements, design elements, and implementation components. The industrial evaluation of the proposed 
approach revealed that it could improve the comprehension of change impacts made by the developers. 

Scenario-based approaches are reported in eight studies that can enhance the application of traceability 
practices in six types of maintenance activities, and change management is the most discussed activity 
supported by scenario-based approaches. Two studies [S43][S44] described that the proposed approaches 
can also be used to facilitate compliance verification, refactoring, and bug fixing. Moreover, one study [S43] 
reported that the scenario-based approach can be used for software reuse and vulnerability detection, and 
provided a tool UMLsec to model functional and security requirements, which supports vulnerability 
analysis by reusing the existing test cases and integrating traceability in test cases and artefacts. 

Tactic and decision-based approaches were proposed in six studies to support four maintenance activities, 
i.e., software comprehension (3 out of 6), architectural preservation (3 out of 6), change management (3 
out of 6), and compliance verification (2 out of 6). These approaches were mainly used to understand the 
implemented architecture decisions or tactics, and trace changed decisions to tackle architectural problems. 
For example, [S4] proposed a decision-based approach using tactic Traceability Information Models 
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(tTIMs) to connect the tactic-related classes to a relevant set of design rationales, requirements, and other 
related artefacts, which supports architectural preservation during the software maintenance phase. 

Constraint-based approaches are regarded as efficient approaches by six primary studies, in which 3 
studies specifically considered these approaches an effective technique to manage the change management 
activities. Moreover, constraint-based approaches are further reported as a supportive technique for 
software comprehension [S5], refactoring [S6], and compliance verification [S24]. 

Machine Learning (ML)- [S4][S26], ontology- [S23][S44], and transformation-based [S41][S56] 
approaches are used to support maintenance and evolution activities including software comprehension and 
change management. Zheng et al. [S56] proposed 1.x-way mapping using an architecture change model 
with architecture-based code regeneration to map incremental architecture changes to source code, which 
supports the feature-architecture-code conformance, and the case study results show that 1.x-way was 
applicable to maintain architecture-implementation conformance during the evolution of a real software 
system. 

The primary studies also discussed five other approaches, i.e., goal-centric [S39], event-based ([S15], 
rule-based [S32], feedback-based [S12], and hypertext-based [S3] approaches. One study [S15] proposed 
a novel traceability approach based on the association between requirements and other artefacts using the 
publish-subscribe relationships for managing evolutionary changes. 

TABLE VIII.  THE APPROACHES THAT SUPPORT THE USE OF TRACEABILITY IN SOFTWARE MAINTENANCE AND EVOLUTION 

ID Approach Description Supported activities Studies 
Ap1 Information 

Retrieval (IR)-
based approach 

These approaches automatically 
generate traceability links from artefacts 
by similarity comparison between two 
types of artefacts with Latent Semantic 
Indexing, Vector Space Model, or 
Tribalistic Model. 

Change management [S6][S9][S14][S27] 
[S28][S29][S35][S36]
[S38][S49][S59][S62] 

Compliance verification [S35][S48][S49] 
Software comprehension [S22][S27] 
Bug fixing [S22][S51] 
Software testing [S20] 
Software reuse [S42] 

Ap2 Feature Model-
based approach 

These approaches use feature models to 
describe requirements and structure the 
variability of a product line with features 
as nodes and feature relations as edges. 

Change management [S8][S9][S18][S25] 
[S34][S46][S47][S52] 

Compliance verification [S18][S47][S56][S57] 
Software comprehension [S22][S34] 
Architectural 
preservation 

[S8] 

Bug fixing [S22] 
Software reuse [S46] 

Ap3 Scenario-based 
approach 

This approach uses the hypothesized 
trace information to automatically 
generate traceability links based on 
observing test scenarios. 

Change management [S2][S3][S21][S33] 
[S58] 

Compliance verification [S43][S44] 
Refactoring [S43][S61] 
Bug fixing [S3][S58] 
Software reuse [S43] 
Vulnerability detection [S43] 

Ap4 Tactic and 
decision-based 
approach 

These approaches provide traceability 
links by mapping artefacts to an 
implemented architectural tactic or 
decision. 

Software comprehension [S1][S11][S40] 
Architectural 
preservation 

[S1][S4][S45] 

Change management [S1][S6][S11] 
Compliance verification [S1][S40] 

Ap5 Constraint-based 
approach 

These approaches build the traceability 
links by using a set of constraints among 
different types of artefacts that must not 
be violated by any way. 

Change management [S5][S15][S16] 
Software comprehension [S5] 
Refactoring [S16] 
Compliance verification [S24] 

Ap6 Architectural 
preservation 

[S4] 



20 
 

Machine 
Learning-based 
approaches 

These approaches use machine learning 
techniques to train classifiers for 
detecting the tactic-related classes 

Software comprehension [S26] 

Ap7 Ontology-based 
approaches 

These approaches provide formal 
ontological representations for both 
source code and document artefacts to 
recover traceability links between the 
implementation and documentation at 
the semantic level. 

Compliance verification [S23][S44] 

Software comprehension [S23] 

Ap8 Transformation-
based approaches 

These approaches leverage model 
transformation techniques to generate 
artefacts (e.g., code and test) and the 
trace links between them. 

Change management [S41] 

Compliance verification [S56] 

Ap9 Goal-centric 
approaches 

These approaches allow the stakeholders 
to evaluate the impact of changing 
functional requirements on non-
functional requirements. 

Change management [S39] 

Ap10 Event-based 
approaches 

These approaches use publisher-
subscriber relationships between the 
artefacts based on the event notifications 
to update and maintain traceability 
relationships. 

Change management [S15] 

Ap11 Rule-based 
approaches 

These approaches can automatically 
generate traceability links using rules 
based on the attributes of the artefacts. 

Change management [S32] 

Ap12 Feedback-based 
approaches 

These approaches generate traceability 
links by integrating feedback into the 
implemented requirements to trace the 
system evolution. 

Change management 
Software comprehension 

[S12] 

Ap13 Hypertext-based 
approaches 

These approaches mainly create the 
traceability between requirements and 
source code using XML. 

Feature extension 
Change management 
Bug fixing 

[S3] 

b) Tools used to support the traceability practices in software maintenance and evolution 

Tools are essential to (semi-)automatically establish, discover, and maintain traceability links during 
the evolution of software systems. In this SMS, we explored the primary studies and collected the 
identified traceability tools. The details of the tools and the list of the supported activities are provided in 
TABLE IX. Note that one tool can be used to support more than one traceability approach and maintenance 
and evolution activities. Moreover, some studies may not provide any details about the tools (e.g., [S54]), 
on the other hand, some studies may report more than one tool (e.g., [S2]). We notice that 44.4% of the 
studies did not discuss any specific tools for supporting traceability. 

55.6% (35 out of 63) of the studies reported 32 tools that support the use of traceability in maintenance 
and evolution activities. Except for four tools (i.e., Text editor, D3TraceView, HYCAT, SAT-Analyzer) 
that are not explicitly mentioned in the studies to support traceability approaches, the rest of the identified 
tools support at least one traceability approach and maintenance and evolution activity. We notice that 6 
tools support three maintenance and evolution activities and 13 tools facilitate two activities. These results 
show that tools have been widely used to bridge the gap between traceability and software maintenance 
and evolution. The results in Fig. 7 illustrate that ten maintenance and evolution activities are supported by 
the identified tools: 60.0% (21 out of 35) of the tools are used to support change management activity; 
compliance verification activity is supported by 37.1% (13 out of 35) of the tools; and software 
comprehension receives 20.0% (7 out of 35) tools support. 

There are no tools for supporting the use of traceability in software testing activity. Moreover, the results 
in Fig. 8 demonstrate that 11 traceability approaches can be supported by using the identified tools. IR-
based and scenario-based approaches are the most common techniques that are supported by 25.7% (9 out 
of 35) and 20% (7 out of 35) of the tools, respectively. 
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Fig. 7. Number of tools supporting maintenance and evolution activities. 

 

 

Fig. 8. Number of tools supporting traceability approaches. 
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TABLE IX.  THE TOOLS THAT SUPPORT TRACEABILITY USED IN SOFTWARE MAINTENANCE AND EVOLUTION 

ID Tool Studies Traceability approach Maintenance and evolution activities 
T1 Eclipse plugin [S26][S39][S41][S55] ML-based approach; Transformation-based approach Bug fixing; Change management; Software comprehension 
T2 CQV-UML [S49][S59][S62] IR-based approach Change management; Compliance verification 
T3 IR-based tool [S14][S35] IR-based approach Change management; Compliance verification 
T4 CASE tool [S16][S48] Constraint-based approach; IR-based approach Change management; Compliance verification; Refactoring 
T5 xLineMapper [S56][S57] Transformation-based approach; FM-based approach Compliance verification 
T6 Code parser [S2][S23] Scenario-based approach; Ontology-based approach Change management; Compliance verification; Software 

comprehension 
T7 Ontology editor [S23] Ontology-based approach Compliance verification, Software comprehension 
T8 MbSRT2 [S21] Scenario-based approach Change management 
T9 Text editor [S13]  Bug fixing; Change management 
T10 Morpheus [S61] Scenario-based approach Refactoring 
T11 tTIM [S45] Tactic-based approach Architectural preservation 
T12 SE-Wiki [S44] Ontology-based approach; Scenario-based approach Compliance verification 
T13 CMU tool suite [S27] IR-based approach Change management; Software comprehension 
T14 Archface compiler [S24] Constraint-based approach Compliance verification 
T15 Integrate [S19] FM-based approach Change management 
T16 ANALYST [S6] Tactic-based approach; IR-based approach Change management 
T17 Catia [S2] Scenario-based approach Change management 
T18 xMapper [S56] FM-based approach; Transformation-based approach Compliance verification 
T19 D3TraceView [S53]  Change management; Compliance verification; Software 

comprehension 
T20 ART [S43] Scenario-based approach Vulnerability detection; Refactoring; Compliance verification; 

Software reuse 
T21 TIRT [S38] IR-based approach Change management 
T22 RETRO [S29] IR-based approach Change management 
T23 QuaTrace [S25] FM-based approach Change management 
T24 Javadoc extension [S17] Constraint-based approach Reverse engineering; Software comprehension 
T25 CAFÉ [S12] Feedback based approach Software comprehension 
T26 HYCAT [S10]  Change management 
T27 Evo-SPL [S9] IR-based approach; FM-based approach Change management 
T28 TraceLink [S3] Hypertext-based approach Change management; Bug fixing 
T29 EMFTrace [S32] Rule-based approach Change management 
T30 SAT-Analyzer [S60]  Change management; Compliance verification; Continuous 

integration 
T31 MRTA [S48] IR-based approach Compliance verification 
T32 CodeMentor [S2] Scenario-based approach Change management 
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4.2.6 Challenges of using traceability practices in software maintenance and evolution (RQ6) 
The reviewed studies clarified that there can be various challenges in implementing traceability practices 

in maintenance and evolution as shown in TABLE X, which are detailed below. 

“CH1: Quality of traceability links” is reported as a challenge in 22% (14 out of 63) of the studies. It is 
challenging to assure the quality of traceability practices because of certain factors, including unclear 
traceability, lack of traceability knowledge, and coarse granularity of traceability. For example, 
Charalampidou et al. [S55] argued that it was quite challenging to successfully deploy the traceability 
practices between system artefacts and develop a structured roadmap to link requirements to test cases, 
which makes it difficult to facilitate certain activities (e.g., fixing bug, adding features, and locating 
artefacts). 

“CH2: Performance of traceability approaches and tools”: The results highlight that 22% (14 out of 63) 
of the studies considered the performance assurance of the traceability tools and techniques as a serious 
challenge. The poor performance of the tools and techniques could be a disaster for implementing the 
traceability process. One study [S35] adopted an information retrieval approach to trace and update the 
requirements that are impacted during the change implementation process. However, this approach missed 
some relevant and impacted requirements, which leads to inconsistency in requirements specification. 

“CH3: Creation of traceability links” denotes the difficulties of establishing traceability links that 
support specific software maintenance and evolution activities. These challenges include how to 
automatically create trace links, extract the implicit links or dynamic links, and create links between system 
artefacts. One study [S56] proposed the 1.x-way mapping that semi-automatically built traceability from 
architecture changes to source code for maintaining the architecture-implementation conformance in both 
single system and product line development. However, the 1.x-way mapping cannot model or automatically 
enforce the relationships (e.g., mutual dependency) between product line features. 

“CH4: Predicting traceability cost and benefits”: It is hard to predict or evaluate the effort and cost of 
using traceability during the maintenance and evolution phase [31]. We present in Section 4.2.3 and Section 
4.2.4 respectively regarding the benefits and costs of using traceability in maintenance and evolution. One 
study [S6] proposed that a fine-grained level of traceability in software representation model improved the 
effectiveness of impact analysis, but also increased the effort of maintenance. This study concluded that a 
cost-benefit analysis is needed to measure the effectiveness of impact analysis. 

“CH5: Lack of tool support”: We list various tools in Section 4.2.5 that can support the use of traceability 
in software maintenance and evolution. However, it is still difficult to employ these tools in real-world 
environment because the traceability information needs to be exchanged and integrated across software 
projects [31]. It is evident from the results that only four studies ([S26][S39][S41][S55]) reported 
traceability tools as Eclipse plugins to support the use of traceability in maintenance and evolution activities. 
As mentioned in [S55], all the participants agreed that external traceability tools are difficult to be integrated 
into the development process and environments of developers (e.g., Git and Eclipse). 

TABLE X.  THE CHALLENGES OF USING TRACEABILITY IN SOFTWARE MAINTENANCE AND EVOLUTION 

ID Challenge Description Studies 
CH1 Quality of 

traceability links 
The performance of using traceability is mainly based on the 
quality of traceability links, which is critical to use traceability 
in maintenance and evolution activities. 

[S7][S15][S22][S24][S25] 
[S35][S36][S41][S42] 
[S51][S55][S59][S62] 
[S63] 

CH2 Performance of 
using traceability 
approaches and tools 

Inefficient use of traceability tools and techniques could 
negatively impact the benefits and costs of employing 
traceability in maintenance and evolution. 

[S2][S4][S9][S23][S27] 
[S28][S35][S36][S42] 
[S45][S48][S49][S59] 
[S62] 

CH3 Creation of 
traceability links 

It is challenging to build traceability between a large number 
of software artefacts involved in the maintenance and 
evolution phase. 

[S7][S14][S18][S24][S40] 
[S51][S55][S56][S57] 
[S59] 

CH4 Predicting the costs 
and benefits of using 
traceability 

It is hard to predict the effort and Return on Investment (ROI) 
of using traceability, and there is a need of dedicated metrics 
for measuring the benefits, cost, and effort. 

[S6][S7][S13][S45][S50] 
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CH5 Lack of tool support There is a lack of dedicated tools to use and integrate 
traceability approaches in specific maintenance and evolution 
activities in the development environment. 

[S7][S18][S55] 

5 DISCUSSION 

5.1 Analysis of Study Results 
Maintenance and evolution activities: We identified 11 maintenance and evolution activities that can 

be supported by using traceability (see Section 4.2.1). More specifically, 71.4% (45 out of 63) of the 
reviewed studies indicate that traceability can support change management activity in the maintenance and 
evolution phase. The selected studies mostly used traceability during change impact analysis. However, the 
result is not surprising as changes are always expected from the requirements gathering to the maintenance 
phase of the software development life cycle. Moreover, changes impact source code and other related 
artefacts e.g., requirements, design, and test cases, where traceability plays a key role to analyze and 
understand the significance of the changes [43]. 

Compliance verification is ranked as the second most common (23.8%, 15 out of 63) activity of the 
maintenance and evolution phase that can be improved using the traceability practices. The result further 
confirms that consistency between software artefacts can be enhanced using traceability. Moreover, 
software comprehension is the third most frequently reported maintenance and evolution activity supported 
by traceability (20.6%, 13 out of 63). The evolution of complex software systems requires an understanding 
of the changes and dependencies between key artefacts [24]. Traceability provides the dependencies 
between various artefacts that play a critical role in system understanding, e.g., program comprehension. 
Using traceability, developers can easily trace code to the original requirements which provides the 
rationale for implementation and trace code back to design and architecture which gets a high-level view 
of a system [42]. Furthermore, very few studies used traceability to support software testing, vulnerability 
detection, continuous integration, and reverse engineering. For example, [S61] highlights the lack of 
traceability management techniques in continuous integration due to the limitation that the current 
traceability approaches mainly address the requirements and design level artefacts without covering the 
artefacts in the later phases of software development life cycle (e.g., test reports and configuration files). 

Based on the results and analysis of the reviewed studies, we can conclude that traceability practices 
have a comprehensive and positive impact on software maintenance and evolution as 11 maintenance 
and evolution activities can be supported by using traceability practices. 

Evidence level: The results presented in Section 4.2.2 reveal that the majority (81.0%, 51 out of 63) of 
the studies have not evaluated the deployment of traceability practices in industrial settings (i.e., Level 4 
and Level 5). We noticed that 73.0% (46 out 63) of the studies used toy examples (Level 1) and lab 
experiments (Level 3) to validate the significance of traceability in the maintenance and evolution phase. 
Relatively less attention has been paid to using expert opinions or observation (Level 2) for evaluating the 
impact of traceability. Moreover, 12 studies (19.0%) provided the evidence from the industrial practices, 
where, only 2 studies reported the adoption of traceability and evaluated the effectiveness of traceability in 
industrial practices (Level 5), and the other 10 studies evaluated the traceability approaches with industrial 
studies (Level 4). One potential reason might be that it is difficult to measure the ROI for adopting 
traceability in daily maintenance activities [31]. The results regarding the evidence level are consistent with 
the results of the research type (see Fig. 4) as both results reveal that most of the studies only proposed 
traceability solutions without adopting or evaluating them in the industrial practices and studies. These 
results show that the strength of the evidence on the impact of traceability in maintenance and evolution 
is still not strong enough. 

Benefits and costs: We identified and reported the key benefits of using traceability for maintenance 
and evolution activities. The identified benefits are further classified across eight categories (see TABLE 
VI). The most frequently reported benefit of using traceability is saving time and effort when conducting 
the maintenance and evolution tasks. The other major benefit is easing the change management process. 
However, it is also required to allocate specific budget to employ the traceability practices. In this SMS, 
we identified four types of costs that are mandatory for deploying the traceability practices (see TABLE 
VII). The major cost involves establishing and maintaining the traceability links (34.9%, 22 out of 63 
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studies). The other three cost types are the effort for understanding of traceability links and application of 
traceability as well as acquiring required skills and knowledge about traceability. The results show that the 
majority of the costs is related to establishing and maintaining traceability links, and one potential reason 
is that establishing and maintaining traceability links is the prerequisite for understanding and applying the 
traceability links in maintenance and evolution activities. 

Approaches and tools: We identified 13 approaches and 32 tools that can be used to support the 
traceability practices (see TABLE VIII and TABLE IX). Most of the approaches can be used to support 
more than one specific maintenance and evolution activities. Change management is considered the most 
common activity supported by the traceability approaches and tools. Moreover, most of the identified tools 
can support at least one traceability approach and one specific maintenance and evolution activity. However, 
we notice that a majority of the approaches and tools were not frequently used in industrial settings (see the 
evidence levels of the studies in Section 4.2.2). Due to the lack of industrial evidence, the reported 
approaches and tools might not be effective when used in practice (for example, one of the identified 
challenges is CH2: Performance of traceability approaches and tools as presented in Section 4.2.6). The 
results clearly highlight the gap between industry and academia regarding the available approaches and 
tools that support traceability in software maintenance and evolution. 

Challenges: The selected studies were explored to identify the key challenges that can be the potential 
barriers to use traceability for maintenance and evolution activities. We identified five types of challenges 
(see TABLE X), in which three main challenges are related to the development of traceability links and 
the quality of and performance of using the links. Manual creation of trace links is costly; however 
automated trace recovery induces incorrect trace links. Automatically ensuring accurate and change-
resilient traceability [S43] is difficult because trace links have to be rediscovered when changes happen in 
related artefacts during software evolution. Moreover, it is still difficult to exactly determine the traceability 
ROI figures. The effectiveness of maintenance and evolution activities can be impacted by varying 
granularity of traceability models [S6]. The greater effort devoted to a finer grained model, the better 
accuracy of change impact analysis can be achieved. A cost-benefit analysis should be accomplished based 
on maintenance and evolution effectiveness and the effort required for deploying traceability practices. 

5.2 Implications for Researchers and Practitioners 

1) The results of RQ1 show that, although using traceability can support 11 maintenance and evolution 
activities, there is a lack of studies that discuss how using traceability can support software testing, 
vulnerability detection, continuous integration, and reverse engineering. Therefore, researchers can 
propose dedicated approaches or tools to support using traceability in these maintenance and evolution 
activities. 

2) The results of RQ2 show that most of the studies have provided the evidence using toy examples or 
academic studies. This finding indicates that the proposed solutions of using traceability in maintenance 
and evolution phase have been rarely evaluated in industrial settings, which indicates that there is a need 
of improving the real-world application and evaluation of traceability approaches and tools. For example, 
an industrial survey with the practitioners can be conducted to investigate the pros and cons of adopting 
traceability in maintenance and evolution. Therefore, industrial controlled experiments can be conducted 
to assess the effectiveness of the proposed traceability approaches in maintenance and evolution. Strong 
industrial evidence on this topic will motivate practitioners to employ traceability practices in maintenance 
and evolution activities. 

3) It is important to analyze the costs and benefits, which is a critical part of the impact, of using 
traceability in maintenance and evolution phase. The results of RQ3 show that the investment required to 
develop more effective traceability tools could be balanced with ROI, and the investment partially depends 
on the accuracy of the traceability links, i.e., a higher accuracy will need more cost and effort. It is also 
evident from the results that the balance between the cost and benefits of using traceability in various 
maintenance activities requires further industrial investigation. Therefore, the future studies shall propose 
methods to quantitatively measure the cost-benefit ratio of using traceability in these maintenance and 
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evolution activities. Practitioners and researchers are also encouraged to use empirical methods to evaluate 
the cost-benefit ratio of adopting the traceability practices in maintenance and evolution. 

4) The results of RQ4 show that traceability costs mainly involve employing the traceability practices 
in maintenance and evolution. Most of the organizations still hesitate to consider traceability in 
development because of the cost factor [S48]. Therefore, researchers can utilize the existing techniques 
from, e.g., machine learning and natural language processing, to automate the traceability practices and 
minimize the total cost and effort. 

5) The results of RQ5 show that 13 of the identified approaches can support the deployment of 
traceability practices in software maintenance and evolution phase. Most of the proposed approaches can 
be used to facilitate more than one maintenance and evolution activities. Therefore, we suggest that 
practitioners can choose suitable traceability approaches based on the activities to be supported as well as 
the aims and conditions of the projects. For example, software testing can be supported by Information 
Retrieval (IR)-based approach (see TABLE VIII), in that multi-bidirectional links between testing 
documents and code can be dynamically generated by using Latent Semantic Indexing (LSI) [S20]. 

6) The results of RQ5 show that 32 tools were identified that can be used to support traceability in 
maintenance and evolution activities. However, there is still lack of tools that can be used for certain 
traceability approaches (e.g., goal-centric and event-based approach) and maintenance and evolution 
activities (e.g., software testing and vulnerability detection). Therefore, we encourage researchers and 
practitioners to collaborate on developing such tools which can be used in practice. Furthermore, industrial 
studies are required to validate the effectiveness of these tools, which can help researcher and practitioners 
to select the most suitable tools. 

7) The identified traceability challenges provide a check-list that should be considered before using 
traceability in maintenance and evolution. The results of RQ6 show that more effective traceability 
approaches and tools should be proposed to ensure the quality of traceability links for maintenance and 
evolution activities. Accurate and change-resilient traceability [S43] is required to be integrated with 
maintenance and evolution activities (e.g., software testing and vulnerability detection). Therefore, there 
is a need of cost-benefit metrics to analyze the ROI of using traceability in maintenance and evolution 
activities. Furthermore, value-oriented or activity-oriented traceability approaches and tools can be 
developed to support specific maintenance and evolution activities. 

6 THREATS TO VALIDITY 

The threats to validity of this SMS are discussed by following the guidelines provided by Shull et al. 
[25] as well as the measures taken to alleviate the identified threats. 

Construct validity focuses on whether the theoretical constructs are interpreted and measured correctly. 
In this SMS, one potential threat to the construct validity is the correctness of the included primary studies. 
Inappropriate search terms and strategies may result in retrieving a large number of irrelevant studies and 
missing potentially relevant articles. To alleviate this threat, we conducted a pilot search to improve the 
appropriateness of the search terms. Another threat to construct validity is the interpersonal biases between 
the authors to decide whether a study should be retained or not during the study selection process. To 
alleviate this threat, a pilot selection process was firstly conducted to help all the authors to understand the 
selection criteria and manage the disagreements factors. Consensus was developed based on the pilot search 
results. Finally, the first and second authors conducted the formal studies selection process and the 
debatable papers were further discussed by all the authors to make the final decision about the search results. 

Internal validity focuses on the study design and particularly whether the results match the collected 
data. One potential threat to the internal validity of this study is the quality of the data extracted to answer 
the RQs. This threat was partially alleviated by conducting pilot data extraction with ten primary studies. 
The pilot data extraction results were discussed by all the authors to achieve an agreement. The formal data 
extraction and analysis were conducted by the first and second authors; the third and fourth authors 
reviewed the extracted data and the analyzed results. Disagreements were discussed and resolved among 
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all the authors. In addition, we adopted both descriptive and qualitative analysis methods (i.e., two coding 
steps of grounded theory) to analyze the results and mitigate this threat. 

External validity refers to the degree at which the findings of a study can be generalized. The results 
of this SMS provide an overview of the existing literature on using traceability in software maintenance 
and evolution. To ensure the completeness of the selected studies, we conducted the search process by 
including seven most popular digital databases that publish software engineering related studies [8]. 
Moreover, the snowballing technique was employed in study search to mitigate the possibility of missing 
relevant studies. 

Reliability refers to whether the findings of a study are reliable when replicated by other researchers. In 
this SMS, the search, selection, and data extraction and analysis were manually conducted by following the 
designed protocol. A potential threat to the reliability of the SMS is the interpersonal bias in data extraction 
and analysis. To alleviate this threat, we made the data extraction and analysis process explicit (see Section 
3.2.4 and Section 3.2.5), and also took measures (e.g., pilot data extraction and analysis) to mitigate the 
personal bias between the authors. 

7 RELATED SECONDARY STUDIES 

Several secondary studies (i.e., SMSs and SLRs) are published concerning software traceability. Javed 
and Zdun [20] conducted an SMS of the existing traceability approaches between software architecture and 
source code. They finally selected 11 primary studies for further analysis and discussions. A classification 
scheme was developed to distinguish various aspects of traceability between software architecture and 
source code. Their findings revealed that there is a need of strong empirical evidence for software 
architecture traceability approaches, and proper support with widely accepted tools for completeness and 
consistency checking as well as querying mechanisms and standards. 

Duarte et al. [32] proposed TraceBoK, a body of knowledge on requirements traceability by 
systematically reviewing 26 relevant studies to synthesize the existing approaches in requirements 
traceability. They further conducted an industrial survey with the experts to empirically evaluate the 
identified traceability approaches in TraceBoK. The survey results confirmed that TraceBoK met 
practitioners’ needs for managing requirements traceability. 

Nair et al. [33] conducted a review of traceability in the requirements engineering phase by including 
70 papers published in the Requirements Engineering (RE) conference in the last 20 years, and the results 
show that lack of knowledge and understanding about traceability is the most frequently quoted challenge. 
Both reviews [32][33] focused on the primary studies on requirements traceability. 

Borg et al. [21] conducted an SMS with 79 papers focusing on Information Retrieval (IR)-based trace 
recovery approaches and tools. They investigated the empirical evidences of the IR-based trace recovery 
with 132 empirical evaluations, e.g., experiments, case studies, and concluded that it is critical to improve 
the overall quality of the identified parameters of the IR-based trace recovery by conducting industrial case 
studies. 

Vale et al. [22] conducted an SMS on traceability in Software Product Lines (SPL) for synthesizing the 
available evidence, research challenges, and open issues for further research. The study provides a 
structured understanding of SPL traceability. The results indicate that there is a lack of evidence regarding 
the application of traceability methods in practice, and the complex nature of variability in SPL is the main 
challenge for SPL traceability activities. 

Similar to our work, Charalampidou et al. [45] conducted an SMS on 155 primary studies to analyse 
traceability approaches in software development in four aspects, i.e., the types of artefacts connected with 
traceability approaches, the goals of using traceability approaches, the quality attributes derived from using 
traceability approaches, and the research methods used for validating traceability approaches. Their 
findings highlight that the use of traceability approaches could mainly improve maintenance-related quality 
attributes, i.e., modifiability, correctness, instability, and understandability, while our work presents the 
impact of traceability on maintenance and evolution from various aspects, including the activities, empirical 
evidence, traceability approaches and tools, benefits, costs, and challenges. 
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An overview of the differences between the aforementioned secondary studies and our work is presented 
in TABLE XI. Several key aspects are differentiated as follows: 

Study objectives: The SMS [20] identified the existing traceability approaches and tools between 
architecture and source code, as well as the empirical evidence, benefits, and liability of these approaches. 
The SLR [32] evaluated the traceability approaches on software product traceability. The SLR [33] 
presented the traceability research focuses, maturity, challenges, and topic evolution at the RE conference. 
The SMS [21] analyzed Information Retrieval (IR)-based traceability recovery approaches. The SMS [45] 
explored the goals of existing software traceability approaches and their empirical evaluation methods. 
Different from these secondary studies, our SMS intends to analyze the impact of software traceability on 
software maintenance and evolution activities. 

Traceability types: The traceability types investigated in our SMS cover the traceability in software 
development, including architecture traceability [20], software product traceability [32], and requirements 
traceability [33]. However, two SMSs [21][45] also focused on software traceability, in which one SMS 
[21] exclusively explored IR-based approaches to software traceability and the other SMS [45] analyzed 
software traceability in empirical studies. In contrast, our SMS focuses on software traceability that impacts 
software maintenance and evolution activities. 

Research questions: The RQs of our SMS are different from the RQs investigated in other secondary 
studies. RQ1, RQ3, and RQ4 aim to explore respectively software maintenance and evolution activities, 
the benefits, and costs of using traceability in maintenance and evolution activities. To the best of our 
knowledge, no secondary studies addressed similar RQs as RQ1, RQ3, and RQ4. Although several studies 
investigated similar RQs related to RQ2 (empirical evidence [21][33][45]), RQ5 (approaches [20][32] and 
tools [20][33]), and RQ6 (challenges [33]). Our SMS specially explores the primary studies about software 
traceability in maintenance and evolution activities to answer these RQs. 

Study results: The results of our RQs are mostly different from the results of the related secondary 
studies (see TABLE XI). For example, our results present eleven software maintenance and evolution 
activities that can be supported by using traceability (RQ1) as well as eight types of benefits (RQ3) and 
four types of costs (RQ4) of using traceability during software maintenance and evolution phase. The 
results of the SMS [20] also reported that traceability approaches can benefit developers and maintainers 
for identifying change impacts and understanding the systems. These two types of benefits are a bit 
overlapped with two types of the identified benefits (i.e., B3 and B5 in TABLE VI) in our SMS. Moreover, 
several traceability approaches (see TABLE VIII) collected in our SMS are also reported in the SMS [20] 
on architecture traceability, the SLR [32] on software product traceability, and the SMS [21] on IR-based 
traceability, e.g., event-based approaches, rule-based approaches, goal-centric approaches, and IR-based 
approaches. None of the traceability tools reported in our SMS (see TABLE IX) have been presented as the 
traceability tools between software architecture and source code in the SMS [20] on architecture traceability. 
Several challenges (see TABLE X) identified in our SMS are also reported in other secondary studies. For 
example, CH1 is similar to the challenge of traceability knowledge understanding and traceability 
information representation presented in [33]; CH4 is similar to the challenge of reducing additional cost 
collected in [20][33]; and CH5 is similar to the challenge of needing advance tool support in industry 
identified in [33]. Similar to our results, the secondary studies [20][33] also suggested employing more 
advanced empirical methods (e.g., case study and survey) for evaluating software traceability approaches 
and tools. Although there are some overlaps with the related secondary studies in terms of the benefits, 
traceability approaches, and challenges, our SMS reports these aspects in the context of using software 
traceability in maintenance and evolution activities. For example, we present the mapping of traceability 
approaches and tools to various types of maintenance and evolution activities (see TABLE VIII and 
TABLE IX). 

TABLE XI.  COMPARISON OF RELATED SECONDARY STUDIES WITH OUR SMS 

Existing secondary 
studies 

Traceability type Time 
period 

No. of 
studies 

Queried databases Objective 
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Javed and Zdun [20] Traceability 
between 
architecture and 
source code 

1999 to 
2013 

11 ACM Digital Library Identifying the traceability 
approaches and tools between 
architecture and source code 

Duarte et al. [32] Software product 
traceability 

2007 to 
2014 

26 IEEE Xplore, ACM 
Digital Library, 
Spring Link, Science 
Direct 

Evaluating the traceability 
approaches focusing on software 
product traceability 

Nair et al. [33] Requirements 
traceability 

1993 to 
2012 

70 IEEE Xplore Evaluating how traceability 
research published at the RE 
conference has contributed to the 
requirements engineering area. 

Borg et al. [21] Software 
traceability 

1999 to 
2011 

79 IEEE Xplore, Web of 
Science, EI 
Compendex, ACM 
Digital Library, 
SciVerse Hub Beta, 
Google Scholar 

Analyzing Information Retrieval 
(IR)-based traceability recovery 
approaches with a focus on 
evaluation and strength of 
evidence. 

Charalampidou et 
al. [45] 

Software 
traceability 

Not 
defined 
to 2016 

155 ACM Digital Library, 
IEEE Xplore, 
Springer Link, 
Science Direct 

Exploring the goals of existing 
software traceability approaches 
and the methods used for 
empirical evaluation 

This SMS Software 
traceability 

2000 to 
2020 

63 ACM Digital Library, 
IEEE Xplore, 
Springer Link, 
Science Direct, Wiley 
InterScience, EI 
Compendex, ISI Web 
of Science 

Analyzing the impact of 
traceability on software 
maintenance and evolution 

8 CONCLUSIONS 

This work aims to investigate the impact of traceability on software maintenance and evolution. 
Systematic mapping study was employed to explore the available literature and finally 63 primary studies 
were included. The extracted data from the studies was used to answer the six RQs defined to achieve the 
goal of this SMS. The results show that 11 software maintenance and evolution activities can be supported 
by using traceability. Change management is the most frequently mentioned maintenance and evolution 
activity supported by the traceability practices. The results also reveal that there is a lack of industrial 
evidence to validate the impact of using traceability for maintenance and evolution activities. Moreover, 
the benefits and costs of using traceability during software maintenance and evolution phase have also 
been identified and classified across eight and four categories, respectively. 13 approaches and 32 tools 
were identified that support the use of traceability in software maintenance and evolution phase, while it 
is still a challenge to use these tools in industrial settings. Furthermore, it has also been determined that 
the quality of traceability links and the performance of using traceability approaches and tools are the two 
main challenges that hinder practitioners from employing the traceability practices in software 
maintenance and evolution activities. 

The results of this SMS provide meaningful implications for both researchers and practitioners in the 
software engineering community. Strong industrial evidence is needed to assess the effectiveness of the 
proposed traceability approaches in maintenance and evolution. In addition, more effective methods shall 
be proposed to quantitatively measure the cost-benefit ratio of using traceability in the maintenance and 
evolution activities. 
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APPENDIX B. DISTRIBUTION OF SELECTED STUDIES OVER PUBLICATION VENUES 
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(TEFSE) 

Workshop 2 3.2 
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24 IEEE International Conference on Information Reuse and Integration (IRI) Conference 1 1.6 
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27 International Working Conference on Requirements Engineering: Foundation for Software 
Quality (REFSQ) 

Conference 1 1.6 

28 Joint Meeting of the European Software Engineering Conference and the ACM SIGSOFT 
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50 Relating Software Requirements and Architectures Book 
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