JOURNAL OF SOFTWARE MAINTENANCE AND EVOLUTION: RESEARCH AND PRACTICE
J. Softw. Maint. Evol.: Res. Pract. 2007; 19:77-131
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/smr.344

Survey

A survey and taxonomy of
approaches for mining software
repositories in the context of
software evolution

e

Huzefa Kagdi!, Michael L. Collard? and
Jonathan I. Maletic!-*

lDepartment of Computer Science, Kent State University, Kent OH, U.S.A.
2Department of Mathematics and Computer Science, Ashland University, Ashland OH, U.S.A.

SUMMARY

A comprehensive literature survey on approaches for mining software repositories (MSR) in the context
of software evolution is presented. In particular, this survey deals with those investigations that examine
multiple versions of software artifacts or other temporal information. A taxonomy is derived from the
analysis of this literature and presents the work via four dimensions: the type of software repositories
mined (what), the purpose (why), the adopted/invented methodology used (how), and the evaluation method
(quality). The taxonomy is demonstrated to be expressive (i.e., capable of representing a wide spectrum
of MSR investigations) and effective (i.e., facilitates similarities and comparisons of MSR investigations).
Lastly, a number of open research issues in MSR that require further investigation are identified. Copyright
© 2007 John Wiley & Sons, Ltd.

Received 23 August 2006; Revised 29 January 2007; Accepted 1 February 2007

KEY WORDS: software evolution; mining software repositories; multi-version analysis

1. INTRODUCTION

The term mining software repositories (MSR) has been coined to describe a broad class of
investigations into the examination of software repositories. Here software repositories refer to
artifacts that are produced and archived during software evolution. They include sources such as
the information stored in source code version-control systems (e.g., the Concurrent Versions System
(CVS)) requirements/bug-tracking systems (e.g., Bugzilla), and communication archives (e.g., e-mail).

*Correspondence to: Jonathan 1. Maletic, Department of Computer Science, Kent State University, Kent OH 44242-0001, U.S.A.
TE-mail: jmaletic@cs.kent.edu

""" FIWILEY
Copyright © 2007 John Wiley & Sons, Ltd. “ InterScience®

DISCOVER SOMETHING GREAT

78 H. KAGDI, M. L. COLLARD AND J. I. MALETIC

These repositories hold a wealth of information and provide a unique view of the actual evolutionary
path taken to realize a software system. Often these data exist for the entire duration of a project
and can represent thousands of versions with years of details about the development. These data
include such things as individual versions of the system, the changes, and metadata about the changes
(e.g., who made the change, why the change was made, when the change was done, etc.).

Software engineering researchers have devised and experimented with a wide spectrum of
approaches to extract pertinent information and uncover relationships and trends from repositories
in the context of software evolution. This activity is analogous (but not limited) to the field of data
mining and knowledge discovery, hence the term MSR. The premise of MSR is that empirical and
systematic investigations of repositories will shed new light on the process of software evolution and
the changes that occur over time by uncovering pertinent information, relationships, or trends about a
particular evolutionary characteristic of the system.

1.1. Scope

There is a wide range of research investigations that apply mining techniques to software.
Some examine just a single version of an artifact while others examine the entire version history of
a software system. Here we limit the scope of our survey to only those research investigations that
examine multiple snapshots of software artifacts (e.g., source code version from CVS, system release,
etc.) and/or other temporal information (e.g., effect on size and structure of a system, bug reports, etc.).
Our goal is to survey the literature that specifically investigates evolutionary changes of software
artifacts. In addition, our survey only covers works published before August 2006.

Research and approaches that primarily examine a single version or release of a software system are
excluded from this survey, as they typically do not directly address the issues of software evolution and
change. For example, we felt work that focused on analyzing a single version, and just happened to use
a data-mining technique for analysis, is not within the scope of this survey. This type of investigation
is research on analysis methods to support testing (or some other software engineering task). In other
words, this is not a survey of investigations applying data-mining techniques to software engineering
problems, but rather a survey of investigations that examine the changes and evolution of software and
use data mining and other similar techniques. In a very few cases, we have included work that presented
techniques that could readily be applied to multiple versions but was only applied to a single version.
These are included for completeness and typically represent important contributions to the study of
software repositories.

1.2. Background

Historically, there have been a number of efforts to examine long-term software-project data to better
understand software evolution. Lehman ez al. [1-6] reported various results on the changes in software
and nature of software evolution between 1969 and 2001 based on long-term studies of several IBM
products. The most notable results of these types of studies are the laws of software evolution [1,2,5],
metrics of software evolution [6], classification of programs [4], and a theory of software evolution [3].
Weiss and Basili [7] collected and analyzed software data (including changes) from multiple
software systems as they were developed. Eick et al. [8] observed the phenomenon of code decay

Copyright © 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2007; 19:77-131
DOI: 10.1002/smr

A SURVEY AND TAXONOMY OF APPROACHES FOR MINING SOFTWARE REPOSITORIES 79

(i.e., changes to a system become difficult in terms of cost, time, and quality over its lifetime) by
leveraging software repositories.

In the past, MSR investigations were almost always subjected on industrial systems. Consequently,
research efforts were limited to a select few software systems (and application domains) or hampered
by the lack of historical software data that were publicly available. Recently, there has been a rapid (and
important) paradigm shift with regards to the above situation, mostly attributed to the establishment and
wide prevalence of open-source software development. Arguably, the open-source paradigm has been
successful in producing numerous high-quality projects that continue to live and evolve.

Given the recent large influx of MSR investigations, it has now become imperative to show the
similarities and variations among these approaches in the context of software evolution. This is
important in order to appreciate the contributions of these MSR investigations with respect to which
purposes or aspects of software evolution they support. However, there is no common nomenclature in
terms of the reference model, classification, and/or process model to form a basis for describing the
overall MSR investigation in the context of software evolution.

1.3. Previous classifications in MSR

Little effort has been spent on comparing and contrasting MSR approaches. Apart from our own
initial survey [9], which examined six approaches, only two other brief surveys have been presented.
German et al. [10] described a framework that classifies three MSR tools with regards to support for
different types of user roles (e.g., maintainer, researcher), information sources accessed and utilized,
and infrastructure needed for integration, organization, and analysis of the collected data/information.
As such their work focused on comparing the usability and the underlying infrastructure of various
tools supporting MSR. In contrast, the survey presented here is targeted at describing MSR approaches
and the different reasons for mining. In the other work, Kim and Notkin [11] surveyed program
matching (i.e., differencing) techniques with regards to the supported granularity (e.g., line and
functions), program representation (source code, AST, and control-flow graphs), and underlying
comparison method (e.g., name similarity). Program matching was described as comparing the
elements between two versions (e.g., added, deleted, or renamed lines). They evaluated the surveyed
techniques with two synthetic change scenarios (combinations of add, move, split, and rename).
The goal was to provide assistance to researchers in choosing the appropriate differencing technique.
Our goal is much broader than comparing alternative techniques (tools) for a problem (i.e., program
differencing or change management). In addition, we are interested in the types of artifacts (not just
source code/programs), types of questions (for various purposes), and methodologies that researchers
have investigated in MSR.

In other, less related work, Buckley ef al. [12] presented a taxonomy of software changes from
a perspective of software-evolution tools. Their taxonomy consists of four dimensions: temporal
properties (e.g., compile-time), object of change (e.g., file and executable code), system properties
(e.g., system needs to be up), and degree of automation (e.g., partial and manual). Their taxonomic
descriptions were applied to the tools Refactoring Browser, CVS, and eLiza. Our interest is not just
limited to what software-change support is directly available from software-change management tools,
but how researchers are utilizing and extending this information for answering MSR questions.

Copyright © 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2007; 19:77-131
DOI: 10.1002/smr

80 H. KAGDI, M. L. COLLARD AND J. I. MALETIC

1.4. Organization

The work presented here has two main contributions. The first is a comprehensive survey of MSR
approaches, in the context of software evolution, and the second is a derived taxonomy of those
approaches. In the next section we present the dimensions of the survey, that is, the main characteristics
of the literature we survey. We consider approximately 80 approaches from papers presented in the
literature that meet this criterion. This describes how the survey is organized and sets the stage for the
resulting taxonomy. Following that, in Section 3 we present our layered taxonomy and its validation
(Section 3.2). Section 4 is an in-depth discussion of the published literature in MSR. All of these
surveyed approaches are presented with respect to our taxonomy. Section 5 provides a discussion on
identified open issues in the MSR research followed by our conclusions.

2. DIMENSIONS OF THE SURVEY

We conducted an initial literature survey [9] with the goal of defining a taxonomy of MSR approaches.
Here, we greatly extend that work and present a broader survey and analysis of a large number of MSR
investigations. Our search space of literature includes works from MSR-specific venues including the
ACM/IEEE Workshops on Mining Software Repositories that took place in 2004, 2005, and 2006 along
with a special issue of I[EEE Transactions on Software Engineering on MSR that appeared in July 2005.
However, MSR research has much older roots and broader interests than these recent specific venues.
A number of established venues in the software engineering and evolution community including the
ACM/IEEE International Conferences on Automated Software Engineering, Software Engineering,
and Software Maintenance regularly publish MSR types of investigations. As such our list provides a
wide spectrum of MSR research.

From a thorough examination of the literature surveyed we identified four dimensions in order to
objectively describe and compare the different approaches. These dimensions are used as sampling
criteria in the collection and analyses of the literature. The dimensions are as follows.

e The software repositories utilized: what information sources are used?

e The purpose of MSR: why mine or what to mine for?

e The methodology: how to achieve the purpose of mining from the selected software repositories?
e The evaluation of the undertaken approach: how to assess quality?

At this point we do not imply any specific explicit order, priority, or role to the four dimensions.
This can be attributed to the lack of a defined process model for MSR. Here, the order in which these
dimensions are presented may not depict the order of a typical MSR process. Let us now discuss these
dimensions in more detail.

2.1. Information sources

A fundamental question is what types of sources can be considered as software repositories? Recent
literature highlights source-control systems, defect-tracking systems, and archived communications as
the main data sources for MSR investigations. Source-control systems are primarily used for storing
and managing changes to source code artifacts, typically files, under evolution. Defect-tracking systems

Copyright © 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2007; 19:77-131
DOI: 10.1002/smr

A SURVEY AND TAXONOMY OF APPROACHES FOR MINING SOFTWARE REPOSITORIES 81

are used to manage the reporting and resolution of defects/bugs/faults and/or feature enhancements.
Archived communications such as e-mail store discussions between project participants, making them
sources for information including change rationales.

Clearly, these types of software repositories vary in their usage, information content, and storage
format. Furthermore, these repositories are managed and operated (for the most part) in isolation and
have no explicit direct relationship with each other. For example, no explicit information is typically
maintained between a particular ‘bug’ in the defect-tracking system and the corresponding source code
changes in the source-control repositories. A number of approaches have been proposed to integrate
the various software repositories into a common information source, typically as a relational database
[13—-18], and to access data from software repositories that are not directly available (e.g., Web page
scraping [19] of a defect-tracking system maintained by Bugzilla). These approaches are not included
in the survey since they only change how data are obtained, not the purpose, method, or evaluation of
the MSR approach. They may make the task of completing an MSR investigation easier, but they do
not change what investigations can be performed.

Nonetheless, these repositories have a common goal of supporting software evolution by managing
the lifecycle of a software change. We define a software change as an addition, deletion, or modification
of any software artifact (e.g., requirement specification, design documents, and test cases) such that it
alters, or requires amendment of, the original assumptions of the subject system. The typical realization
of a software change is a modification to the source code. We typically consider a new version to be
created when a source code change occurs. Therefore, the fundamental unit of software evolution is the
source code change. All other information is maintained to help understand, rationalize, and manage
source code changes.

In light of the primacy of source code change, we see three basic categories of information in a
software repository that can be mined:

o the software artifacts/versions;
o the differences between the artifacts/versions;
e the metadata about the software change.

Our survey will show that most of the source code repositories being examined are managed by
CVS (http://www.cvshome.org). In addition to storing differences across document versions, CVS
augments this with metadata such as commit comments, user-ids, timestamps, and other similar
information. This metadata describes, respectively, the why, who, and when context of a source code
change. CVS is completely ignorant of the underlying syntax and semantics of the source code.
The differences between source code documents are stored as physical entities (file and line numbers)
and not in terms of the entities inside a file, e.g., function or statement, that are more familiar to
a developer or MSR. Moreover, CVS suffers from other management limitations and irregularities.
It does not maintain the grouping of several changes in multiple files (deltas) as a single logical
change (transaction). Therefore, the original commit operations performed by developers are lost.
Also, CVS does not maintain explicit branch and merge points. To deal with these problems, a number
of variants of sliding and fixed window methods have been proposed to approximate CVS commits
and transactions from the deltas [15,20,21]. Also, various branch and merge point detection algorithms
have been described [15,22-24]. These issues are important and may have a potential impact on a
MSR investigation. However, the papers addressing these issues are excluded from the survey as they
are more suited for a discussion on software configuration research issues, rather than MSR research.

Copyright © 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2007; 19:77-131
DOI: 10.1002/smr

82 H. KAGDI, M. L. COLLARD AND J. I. MALETIC

More modern version-control systems such as Subversion (http://subversion.tigris.org) offer a step
forward on the above issues eliminating a number of major roadblocks in MSR research (and version-
control usage). For example, Subversion preserves the atomicity of commits, i.e., all files committed
together as a single change-set, and thus eliminates the change-set recovery effort (which is typically
done for a CVS repository in MSR).

Additional metadata regarding a source code change is available from other types of software
repositories. Bugzilla (http://www.bugzilla.org) is a defect/bug-tracking system that maintains the
history of the entire lifecycle of a bug (or a feature). Each bug is maintained in the form of a record,
termed a bug report. In addition to storing the description of a bug, it includes monitoring fields such as
when a bug was reported, assignment to a maintainer, priority, severity, and current state (open/closed).
Archived communications in the form of e-mail lists capture discussions between developers over the
lifetime of the project.

In summary, metadata forms a valuable source for deriving high-level semantic information in the
context of software change. It can be analyzed independently of the other data, or richly combined with
the source code and difference information.

2.2. Purpose

Researchers mine data and metadata in a software repository to extract pertinent information and/or
uncover relationships or trends about a particular evolutionary characteristic. For example, one may
be interested in the growth of a system, change relationship between source code entities, or reuse
of components. In order to qualitatively study a particular characteristic, and define the scope and
context of the mined information, the purpose is typically expressed as a set of questions. Therefore, the
purpose of mining reduces to what questions can be answered by MSR. We term these MSR questions.

Broadly speaking, there are two classes of MSR questions. The first is the market-basket* question
(MBQ) formulated as: if A occurs then what else occurs on a regular basis? The answer is a set of rules
or guidelines describing situations of trends or relationships. For example, if A occurs then B and C
happen X amount of the time.

The second type of MSR purpose relates to prevalence questions (PQ). Instances include metric and
boolean queries. For example, was a particular function added/deleted/modified? Or how many and
which of the functions are reused? The questions asked indicate the purpose of the mining approach.

2.3. Methodology

Given a software repository and purpose, a method must be adopted or devised to answer MSR
questions. A wide spectrum of approaches ranging from conventional software engineering methods
to established methods from other domains have been applied to MSR investigations.

Broadly, there are two basic strategies that can be taken. Each version may be extracted, properties
computed on each version separately, and then the individually computed properties compared.
This strategy corresponds to the indirect (or external) measurement and analysis of software evolution.

*The term market-basket analysis is widely used in describing data-mining problems. The famous example about the analysis of
grocery store data is that ‘people who bought diapers oftentimes bought beer’.

Copyright © 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2007; 19:77-131
DOI: 10.1002/smr

A SURVEY AND TAXONOMY OF APPROACHES FOR MINING SOFTWARE REPOSITORIES 83

For example, metrics for software complexity, defect density, or maintainability can be computed for
two versions of a system taken from CVS and the quality of the evolved system assessed. In this
approach the interest is in the changes of high-level or global properties of a software system under
evolution. We refer to this group of MSR investigations as interested in changes to properties.

The second perspective represents investigations that study the actual mechanisms or facts that
take a software system from one version to the next. Here the focus is on the specific differences
between versions. These types of approaches use the difference data supplied by CVS or other tools.
This strategy corresponds to the direct (or internal) measurement and analysis of software evolution.
We refer to this group of MSR investigations as interested in changes to artifacts. There can be a
significant level of variation with respect to the granularity and type of source code change. Types of
source code entities include physical, syntactic, documentary, etc. Likewise, one can examine changes
to a file, class, or function. These differences are reflected in how sophisticated the tools used in the
investigation are with respect to such things as programming-language knowledge.

Researchers utilize software repositories in multiple ways. The most straightforward is to directly
use the functionality of source code repositories (i.e., CVS commands) to get a particular version of
the code. The individual versions and corresponding metadata can then be used to answer the MSR
questions of interest using the adopted/invented methodology. Some researchers limit their study to
the metadata that are directly available from the repositories. This type of metadata are analyzed to
filter the differences and source code in a semantic manner. For example, the CVS comments and
the textual description of a related bug report in Bugzilla can be used to categorize the source code
changes as an attribute of corrective-maintenance activity. Going a step further, the data and metadata
directly available from CVS can be processed to facilitate fine-grained source code difference analysis.
This allows MSR questions to be addressed in a source code aware manner, i.e., in terms of syntax and
semantics of the programming languages.

2.4. Evaluation

The realm of open-source development gives us the luxury of publicly available software repositories
for many projects. SourceForge (http://www.sourceforge.net) is a well-known and widely used site
housing the software repositories of over 100000 projects. These projects vary in size, number of
contributors, application domain, and solution domain. Such a wide spectrum of repositories enables
researchers to conduct empirical studies to evaluate a MSR approach. However, with this luxury comes
the additional responsibility of selecting the appropriate project repository. This is important in order to
validate the hypotheses, interpret results, and draw conclusions to other systems or other points in the
project history in an unbiased way. In particular, the repositories of the open-source projects such as
KDE, GCC, Apache, Eclipse, jEdit, and ArgoUML have been studied in multiple MSR investigations.

All MSR approaches share a common goal of utilizing the history of software projects in order to
improve future evolution of the subject software system. Therefore, the quality of a MSR approach with
regards to improving software evolution must be evaluated. Once again, the history in the software
repositories can be used in empirical validation. A part of the history® is normally used to develop

SIn the rest of the discussion, we mean a portion of the history when we refer to the history of any project unless specified
otherwise.

Copyright © 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2007; 19:77-131
DOI: 10.1002/smr

84 H. KAGDI, M. L. COLLARD AND J. I. MALETIC

the models and a later part of history is then used for evaluation. Two assessment metrics, precision
(i.e., how much of the information found is relevant) and recall (i.e., how much of all of the relevant
information is found) borrowed from the information-retrieval community, are widely used to evaluate
MSR tools. Another approach to evaluation is to take an information-theoretic approach for evaluating
probabilistic models. This has been used by Askari and Holt [25] for predicting changes and bugs
in software files. A predictive model is evaluated by comparing the distribution of predicted values
(e.g., changes in files) with the true distribution (i.e., the actual observations). The closer the predictive
distribution of a model is to the true distribution, the more effective it is. Entropy measurements are
typically used as a metric of comparison.

In Section 4 we will see that there is little variation in the types of software repositories and
evaluation methods used in the investigations surveyed. However, there is wide variation in the
methodology and the purpose of the approaches. The next section presents a taxonomy of the literature
we surveyed.

3. A TAXONOMY OF MSR APPROACHES

The investigations described in the surveyed papers (Section 4) have a number of common
characteristics. They all are working on version-release histories, all work at some level of software
granularity (e.g., system, subsystem, file, class, and function), and most ask very similar types of (MSR)
questions. We also see that the MSR process is to extract pertinent information from repositories,
analyze this information, and derive conclusions within the context of software evolution.

3.1. A layered taxonomy

In order to see the similarity and differences across the various MSR investigations, we present a
layered taxonomy as shown in Figure 1. This taxonomy was developed by identifying the ubiquitous
traits found in all of the surveyed literature. Based on the discussion and analyses in Section 4 with
regards to the dimensions described in Section 2, we observed that the representation of any given
MSR approach can be generalized by a four-layer taxonomic description: software evolution (layer 1),
purpose (layer 2), representation (layer 3), and the information sources (layer 4). We now further
describe these layers.

Again, the goal of MSR is to learn more about software evolution and, as discussed in Section 2.3,
a given MSR investigation, implicitly or explicitly, is interested in the change characteristics of the
high-level properties of a software system, the more detailed change in the actual artifacts, or both.
Therefore, these elements are positioned in the top layer.

Researchers study the change aspects of properties and artifacts for a variety of purposes. In order
to facilitate a qualitative and objective investigation, the purpose(s) is transformed into a set of market-
basket type of MSR questions, prevalence type of MSR questions, or both. Layers 1 and 2 define the
overall context in which a particular MSR investigation is conducted, or an adopted/invented MSR
methodology is evaluated.

The MSR questions are answered by utilizing the three main information sources: software artifacts,
their differences, and metadata about these artifacts/differences. Most repositories provide direct access
to the information sources, namely the source code files, differences, and the differences metadata.

Copyright © 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2007; 19:77-131
DOI: 10.1002/smr

A SURVEY AND TAXONOMY OF APPROACHES FOR MINING SOFTWARE REPOSITORIES 85

Software Evolution

Software Software
Properties (SP) Changes (SC)
> <
Purpose
Market Basket Prevalence
(MBQ) (PQ)
> - <
Representation

Type &

Granularity

\ <
e

Information Sources

(Artifacts @fferenc% QﬂetaDatD
L

Figure 1. Four-layer taxonomy of MSR approaches.

However, information sources depicting high-level abstractions such as design models and architecture
models are typically not directly available in the software repositories. They may need to be reverse
engineered or computed to support the corresponding MSR questions. Therefore, layer 4 represents
the information sources that are readily available in the software repositories and those that need to be
made available to support the MSR investigation.

Layer 3 (representation) refers to the type (e.g., physical), granularity (e.g., system, files, classes),
and expression of the artifacts and their differences. As discussed in Section 2.1, source code reposito-
ries are typically limited to the physical-level representation of source code (i.e., file and line numbers).
As such, the answers to MSR questions can be further extended to more fine-grain representations of
artifacts and differences. Therefore, the representation of the information in the repositories can be
refined based on the syntax and semantics of the underlying programming language(s).

3.2. Validating the taxonomy

We now show that our taxonomy is expressive (i.e., ability to represent a wide spectrum of MSR
approaches) and effective (i.e., facilitates comparison of MSR approaches). We represent a number

Copyright © 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2007; 19:77-131
DOI: 10.1002/smr

86 H. KAGDI, M. L. COLLARD AND J. I. MALETIC

of MSR approaches that will be discussed in Section 4 with regards to our proposed taxonomy.
Tables I-IIT show the taxonomic description of the considered approaches. The tables are organized
by what the approach is studying.

Table I lists approaches studying artifacts, Table II lists approaches studying properties, and Table I11
lists those that study both. The first three columns represent the remaining three layers of the taxonomy
and the last three columns show the main dimensions used in the survey. We also included the specific
task that each approach addresses. This gives context to the general MSR question being asked.
For example, the specific task of detecting evolutionary couplings between source code entities can be
phrased in terms of a market-basket analysis type question: what are the source code entities that are
typically found together in commits? Our presentation is centered with respect to the various techniques
used and/or validated for evolutionary tasks in the context of MSR investigations.

The methodologies are ordered with conventional software engineering methods appearing first,
followed by those successfully adopted from other disciplines, and lastly novel experimentation.
Researchers have utilized each of these methodologies to perform a variety of tasks. This is clearly
evident from examining the first and last three columns of Tables I-III. Furthermore, on examining
the values of the considered cases, it is evident that MSR investigations do not enforce any rigid
hierarchy or constraint on the underlying approaches but are flexible. For example, it is not the case
that the approaches studying changes of properties only ask a particular type of MSR questions, utilize
only a fixed (sub)set of artifacts/repositories (e.g., Metadata-CVS), and only consider a certain level of
granularity (e.g., files). However, the taxonomy allows us to see the variations in the MSR approaches
with regards to the underlying methodology. For example, approaches using metadata analysis work
mostly at the physical-level granularity of artifacts in the software repositories, whereas the source code
differencing approaches work at the logical-level and fine-grain granularity of source code entities.
Clearly, the layered taxonomy is effective in drawing similarities and variations in the context of MSR.
From Tables I-III it is clear that all of the approaches have corresponding components in all four layers
of the taxonomy, thus showing the expressive quality of the taxonomy.

In Table IV we present the approaches alternatively organized by what evolutionary task they are
addressing or studying. We have grouped them into 10 relatively broad categories. For example, all
of the approaches that investigate ‘the classification of changes to a system’ appear under the ‘Change
classification/representation’ category. This table not only presents a task-oriented view of the surveyed
literature, but also a good picture of the breadth of the tasks addressed by MSR approaches and the
amount of research effort that has been put forth towards each. Furthermore, it also shows that some
approaches address multiple tasks. For example, Gorg and Weillgerber [78] detected refactorings and
also provided visualization for their comprehension, and Livshits and Zimmermann [35] mined call
patterns and also used them for detecting bugs. The following section now contains the details of the
literature survey from which our taxonomy is derived.

4. MSRS: A COMPREHENSIVE SURVEY

We now survey a large number of methodologies that have been invented or adopted for the purposes
of MSR. The section is organized by the adopted methodology (subsections) and the purpose of
MSR (subsubsections). The presentation of the subsections is ordered from the traditional software
engineering methodologies (e.g., source code static analysis) to the adopted techniques from other

Copyright © 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2007; 19:77-131
DOI: 10.1002/smr

87

A SURVEY AND TAXONOMY OF APPROACHES FOR MINING SOFTWARE REPOSITORIES

[6g—L€] suoneyal Sururea] pasiaradns
‘D J2 PeqRIIYS QOUBAS[I QOUBRUIUTRIA UuoT)BOYISSELD SAD—eIepRIN SoTIg OdIN
suornorpaid a3ueydo pue Surunu SAD—9pod
[9¢] w12 1pSey] s3urdnoo Areuonnjoaq uroped renuonbag 90IN0S ‘BIBPBIDIN s Od pue OGN
[c¢] uuewoWWIZ SAD—3p0Od
PUE SIYSAI] suroned a3esn-[[e) 90IN0S ‘BIEPRIA SPOYIIN OdIn
[€] ‘v 12 Suix uonorpaid a3uey) SAD—EIepeIOIN sd Od pue OdIN
(edA1-2Suey)D)
X300
suonorpaid o3ueyo pue SAD—ap0od So[qeLIBA
[eceST] v 12 uuewrowurz sSurdnod AreuonnjoAyq Sururr Joswe)] 90INOS ‘BlepeRIO]N ‘suonouny ‘sofl{ Od pue OGN
[z¢] 108aura(q pue soSueyo spoyjour SAD—apOd
Jy319q[IsSAY ueA Surnosoo Apuanbarg uornd)p AUO[D 90IN0S ‘BIEPRIIA soul| ‘SafI el 1
sisATeue
[1€] prefjoD SISA[eue ureI3-ouy 1oy pue SUrUAIIp SIUQWIAIEIS
pue ooy SUIOUAISHIp OTORIUAS 9p0od 201N0§ 9p0od 2010y o1dn Od
UoT)RIR[O9P
so3ueyd SIsAeue uorounj e
[o€] v 12 wiry] Q0BJIOJUT UOT)OUN] OTJBIS 9POO AOINOS §AD—Opod ddmosg jo syusuodwo) Od pue OGN
[67] uewoD eiepelow Jurkionb
pue o[puTH I0J WIST[EWIIO] SAD—®eIepRIR]N sjuewwod ‘SA[Y Od pue OGN
sogueyd
Jo sadAy JuaroyIp
[17] vewron JO sonsLIRIoRIRYD SAD—®EIepRIR]A sjuewwiod ‘so[{ Od pue OGN
sis[eue p]j1z8ng pue
[82] 1v 32 PIsIOmUS o3ueyo Surxy-sng SAD—EIepRION SOUI “SI[L] OdIN
pj128ng pue
[L2] v 32 39ydst] SAD—®IepeION so[y ‘spafold O pue OGN
suroned a3ueyo pjj1zéng pue
[¢T] w92 1oydsLy pue sSuridnoo [ed150] SAD—EIepRION SO Od Pue OGN
[9z°0z] 17 12 118D SISAJeUE BIEPEIdN SAD—EIepeION S3sSed ‘SA[Y Od Pue OdIN
yoeoxddy ysel, anbruyoay, $90IN0S uoneuasaldoy uonsenb YSIN
uoTjeULIOJu] :osodmg

*(Od) suonsanb aoudreaard
pue (OFIN) suonsanb jayseq-joxIew are suonsanb JYSIA Y.L, ‘s1oejnie o) sagueyd Apms jey) soyoeordde pakaains Jo josqns Y], ‘T [qeL

J. Softw. Maint. Evol.: Res. Pract. 2007; 19:77-131

Copyright © 2007 John Wiley & Sons, Ltd.

DOI: 10.1002/smr

H. KAGDI, M. L. COLLARD AND J. I. MALETIC

88

SJUAUWWO) 9POI 2IN0S

[0S] 7 12 Suix BIA SUOIEOIUNWIWIOD) SAD—2PO2 221n0S SIUSWWO)) Od
s1o)owrered
s3uriojoejar ‘spoyjow
[6¥] 10q1a3gTop) pue S100) jerdwoouy SAD—ap02 201N0§ ‘sasse[o sy Od pue OGN
[8+] yrroms3ur[joyg suroyed
pue SWeI[IA a3esn uonjoung SAD—ap02 201N0§ S[Te0 uoTouNJ Od
SIUQWIAIE)S
juowugIsse pue
K1oy1sodax [013UO0D ‘SIUAUWIIOD
9snar aIemijos Kreyorrdord—aopoo 901nos ‘s1ojowrered
[L¥] £qros [NJSS220NS 10J SI0J08] s[enuew—=elepeIdjy ‘sjreouonoung O pue OGN
sis[eue (oury “‘ory)
[9+°SH] yroms3urjoq Surxy onels 1X9)UOI—S[[BD
pue SWeI[IA pue Surpuy sSng 9pod 90INOS SAD—opPO)) 201N0S uoTnOuNJ ‘UoT)OUN,J Od
uonNqQIISIP 9IEMIJOS
[#+] v 12 S91q0Y © Jo uonnjoAq uonnqLISIP B JO SUOISIIA STy ‘sodeyoed Od
(saur
9p0J 20In0S SUISMOIq SAD—pod QUIBUD[1):)XIUOD
[z2] v 12 way) pue Suryoreas 90INOS ‘BIEPRISA —sout] ‘so[ly Od pue OGN
s10301paxd pue K1oy1sodax
[€] 1[nkopp pue puensQ SINEJ/SIOJAP 2IeM)JOS Kreyoradord—ejepeloN SoTTg Ogin
saIjeay/ssnq Sw)SAS (erRpRIOUW):)XIUOD
[zt] 1 12 Aysnpues uoomiaq sdiysuoneoy Sunjoen-3nq—ejepelo|N —s3ng OdIN
[1¥] euoyereg-zopzuon 9pOJ 22INOS [TeW-3 pue
pue so[qoy sennuapr 1adofareg ‘DI128Nng ‘SAD—eIePRISIA SIUQWITIOD ‘ST Ogin
juowdofoaap
9o1nos-uado
[nJssa00ns I0J SIsA[eue [Tew-9 pue
[ov] uewarq pue Suoiy-yuiq sosoylodAy Sunepifep BIBPEION ‘SAD ‘SIVND—BIBPRIIN o[y ‘wAIsks Od Pue OFIN
yoeorddy ysel, anbruyoay, $90IN0S UOHBWLIOJU] uonejuasardoy uonsonb JYSA
:osoding

(Od) suonsonb
Qouareadrd pue (OGIN) suonsanb jayseq-1oxrewr are suonsanb JYSIA Y.L, “senrodoid 03 saueyd Jurdpmnis sayorordde pakaAins Jo 1osqns ayJ, ‘[T 9[9BL

J. Softw. Maint. Evol.: Res. Pract. 2007; 19:77-131

Copyright © 2007 John Wiley & Sons, Ltd.

DOI: 10.1002/smr

89

A SURVEY AND TAXONOMY OF APPROACHES FOR MINING SOFTWARE REPOSITORIES

UuoTeIOqR[[0d
[99°69] "1 12 eIy 300foxd-1a3uT 9310J00IN0S—EIEPRISA spelory Od pue OGN
sis[eue
SuoTNQLIIUOD Jrom)au
[$9] nr] pue Sueny pue so[ol 1adojead([e100S SAD—EIepRIN SOLI030II(] Odin
Surures]
pasiaradns
[€9] v 12 1auy syodor Snq oFel], uoneoyIsSR[D p]j128ng—eIepeloIN syodar Sng OdIN
euowouayd
[29] ‘v 12 [oMUO)UY Surnooo A[uowrwo)) SAD—9POD) 20IN0S wasks Od pue OGN
QouR)SISSE [Tew-9 pue
[19°09] 1v 12 owueIgnD 1odofoaap moN ‘vIpIZSNng ‘SAH—eIepeIdN SJUAWINIOP ‘SAL] OdIN
Qouepind Aniqeaden juawanmbar
[6S] ‘v 12 sekeH uewny jo douetoduwy 10j A1oysodar Areyorrdoig 1X9] JUSWNO0(] OdIN
uorsuayardwod
wesdoxd
[8S] mopuon pue eqyO 10J spromAay 3deouo)) 9p0od 2010y So[qeLIBA Ogin
[BAQLIAI pjjzéng
[£S9G] o[n1a) pue eiojue)) uonorpaxd a3uey) uoTjeuLIOJu] pue $AD—eIepeIRA SouT[‘ST OdIN
spoyjour
sdiysuoneax uondp
[SST unpoN pue wry 119U} pue sauo[) uo) SAD—9p0Od 510§ A Od pue OdIN
s3uriojoejoI
[#6] “1v 12 103u1Z3Y pue s[ous aguey) SAD—EIepRIRIN sasseD) Od pue OdIN
[£6] 1Aowaq
pue oy31aqrassAy uep so[y SurSueyo-0) UOTIBZI[ENSIA SAD—eIepRIN SoTIg OdIN
SOLIJOW PO J1JL)S
Uo paseq $10)9)p
[S] v 12 sa1zusIN 199J9p JO uonepIfeA SAD—EIepeIoN woskg OdIN
soLow
[1€] v 12 1ddnpide) Arxordwod weIskg A1BM1JOS SAD—9POJ 2IN0S So[y ‘souiovan Od pue Q9N
yoroiddy JseL anbruyoay, S90INOS UONBWLIOJU] uonejuasarday] uonsanb YSIN
:asoding

(panunu0d) "1 S1qeL

J. Softw. Maint. Evol.: Res. Pract. 2007; 19:77-131

Copyright © 2007 John Wiley & Sons, Ltd.

DOI: 10.1002/smr

H. KAGDI, M. L. COLLARD AND J. I. MALETIC

90

o3ueyd
© JO 9sned 9y} uo paseq [eAQITAI K1oysodax
[LL] enOA pue SO0 SYIA JO UonedyIsseD) uoneunioju] Areoudoid—eyepeloy sorid Od pue OGN
sure3oid ‘sonpour
[9L] 1P 12 11D SAD—EIepeISN ‘swishsqng Od pue OdIN
so[npowt
[SL]>ed pue)joH SAD—9P0J 210G ‘swishsqng Od pue OdIN
sa3ueyod [BINOANIYOIE suonouny
[#.] Kexypon) pue ng, pue [eINIoNNS UOTJBZITBNSTA SAD—apPO2 20IN0S ‘so[y ‘somoyar Od pue OGN
sisATeue uI3Lo suonouny
[#.] Kaxypon pue nj, pue sagueyo jo sadA[, SAD—9P0O2 20IN0S ‘so[y ‘sauooan Od pue OGN
sagueyo
[¢,] uosunjy Jo 2d£y yuarogip soLw K1oy1sodax
pue BIOYIN Jo Kyxordwo) aremijos Arejordord—ejepeloN suonouny ‘wAsAS Od pue OGN
[¢L] noz pue Laxgpony SAD—2pOd
‘(1] 17 12 nnyureaN 90INOS ‘BIEPEIDIN suonouny o[y Od pue OGN
SIsA[eue
pue SUrouaIHIp SAD—opOd
[0L] ‘7v 12 ueARySRY SUTOUAIRIIP ONUBWIRS 9po9d 0IN0S 90IN0S ‘BIEPEIN SoINONIS [01NU0D) Od
suonorpaid SAD—opOd So[qeIIeA
[69] 310H pue uesseq 93ueyd J0J SONSLINOY 90IN0S ‘BIEPEIN ‘suonouny ‘Aiif Od pue OGN
[89¢/9] A1xag so3ueyd [[euwrs sis[eue K1oy1sodax
pue ueweyloysnIng JO sonsLIRloRIRYD elepeR]N Arejoudoid—eiepeloy sour] ‘so[y Od pue OGN
yoeorddy ysel, anbruyoay, S90INOS UOHBWLIOJU] uonejuasardoy uonsonb JYSA
:osoding

suorsonb jayseq-jaxIew a1e suonsanb JYSA oy L, “sentodoid pue syoejnie yjoq o3 saueyd Surkpnys sayoeoidde pakoains Jo 10sqns oy, ‘T[] 9[9EL

*(Od) suonsanb aoudreadrd pue (OGIN)

J. Softw. Maint. Evol.: Res. Pract. 2007; 19:77-131

Copyright © 2007 John Wiley & Sons, Ltd.

DOI: 10.1002/smr

A SURVEY AND TAXONOMY OF APPROACHES FOR MINING SOFTWARE REPOSITORIES 91

Table IV. The approaches surveyed and organized by the MSR tasks they address. The tasks are categorized
into related groups.

Evolutionary task category Approaches

Evolutionary couplings/patterns Bieman et al. [79], Canfora and Cerulo [56,57], Fischer
etal. [23,27], Gall et al. [20,26,76], Hassan and Holt [69], Kagdi
et al. [36], Shirabad et al. [37-39], Williams and
Hollingsworth [48], Zimmermann et al. [15,33], Ying et al. [34]

Change classification/representation ~ Antoniol et al. [62], German [80], Hindle and German [29], Holt
and Pak [75], Kim et al. [30], Mockus and Votta [77], Nikora and
Munson [73]

Change comprehension Beyer and Noack [81], Burch et al. [82], Chen et al. [22], Chen
et al. [83], Cubranic et al. [60,61], Gall et al. [76], Gorg and
Weiligerber [78], Hindle and German [29], Holt and Pak [75], Kim
et al. [84], Purushothaman and Perry [67,68], Claudio [85], Robles
et al. [44], Van Rysselberghe and Demeyer [53], Venolia [86]

Defect classification and analysis Anvik et al. [63], German [21], Livshits and Zimmermann [35],
Menzies et al. [52], Nagappan et al. [87], Ostrand and
Weyuker [43], Sandusky er al. [42], Sliwerski et al. [28], Williams
and Hollingsworth [45,46]

Source code differencing Maletic and Collard [31], Neamtiu et al. [71], Raghavan
et al. [70], Sager et al. [88]
Origin analysis and refactoring Dig et al. [89,90], Godfrey et al. [72,91], Gorg and

Weiligerber [49,78], Henkel and Diwan [92], Kimand Notkin [55],
Ratzinger et al. [54], Tu and Godfrey [74], Weil3gerber and
Diehl [93], Zou and Godfrey [24]

Software reuse Selby [47], Van Rysselberghe and Demeyer [32], Xie and Pei [94]

Development process and Dinh-Trong and Bieman [40], El-Ramly and Stroulia [95], Hayes

communication et al. [59], Huang and Liu [64], Mockus et al. [96], Ohba and
Gondow [58], Ohira et al. [65,66], Ying et al. [50]

Contribution analysis Koch and Schneider [97], Mockus et al. [96], Robles et al. [41,98]

Evolution metrics Capiluppi et al. [51], Godfrey et al. [72,91], Menzies et al. [52],

Nagappan et al. [87], Nikora and Munson [73], Tu and
Godfrey [74]

domains (e.g., data mining). Within each methodology, the individual MSR approaches are discussed
with regards to the investigated research questions or interests (i.e., the purpose). The evaluation of
a MSR investigation is discussed with regards to the subject software systems, the analyzed history,
assessment measures, and the results. In cases where multiple papers are available on a particular
MSR approach, the survey tends to bias towards the detail or exclusive discussion of the (most recent)
paper providing the most comprehensive information on the largest combination of the considered
dimensions. This organization gives perspective on the spectrum of techniques and the various purposes

Copyright © 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2007; 19:77-131
DOI: 10.1002/smr

92 H. KAGDI, M. L. COLLARD AND J. I. MALETIC

for which they are utilized. Furthermore, it helps to assess the quality of a particular technique in the
context of the purpose(s) from the results of the conducted evaluations.

4.1. Metadata analysis

A number of methodologies have been proposed for a variety of purposes that utilize the metadata
stored in software repositories. The metadata used ranges from what is typically found in the
open-source software repositories (e.g., CVS or Bugzilla) to what exists in the very sophisticated
(i.e., highly customized) configuration-management systems used in industry. Examining metadata
is a straightforward first choice as it is readily accessible (e.g., cvs log command or snapshots
of a bug database). In addition, considering only metadata avoids any issues with extracting facts
from, and processing, the actual source code and difference data (e.g., parsing non-compilable
and incomplete source code). Sophisticated software repositories, particularly those used in the
development of industrial products, can additionally form explicit links among the metadata (e.g., CVS
deltas corresponding to a particular bug). Therefore, MSR approaches based only on metadata have
been studied extensively for multiple purposes and arguably form the largest portion of the past and
current MSR efforts. In the rest of this section, we discuss many such approaches that have employed
lightweight methodologies to analyze metadata, such as regular expressions, heuristics, and common-
subsequence matching. Our discussion is organized with regards to the purpose.

4.1.1. Logical couplings and change patterns

In the work presented by Gall ef al. [20,26], common semantic (logical and hidden) dependencies
between classes due to addition or modification of a particular class were detected, based on the version
history of the source code. This work seeks answers to the following representative questions.

e Which classes change together?

e How many times was a particular class changed?

e How many class changes occurred in a subsystem (files in a particular directory)?
e How many class changes occurred across subsystems?

A sequence of release numbers for each changed class was recorded (e.g., class A = (1, 3,7, 9)).
The classes that changed in the same release were compared in order to identify common change
patterns based on the author name and time stamp from CVS annotations. Classes that changed
within the same time stamp (in a four minute window) and author name were inferred to have
dependencies.

This technique was applied on 28 releases of an industrial system written in Java with the cumulative
size of 500 KLOC. The authors reported that logical couplings were revealed with a ‘reasonable’ recall
when verified manually with the subsequent release. The authors suggested that logical coupling could
be strengthened by additional information such as the number of lines changed and the CVS comments.

The analysis was further extended to include metadata from other types of software repositories.
The contents of the CVS log files and bug reports from Bugzilla were integrated into a SQL
database [23]. These data were used to trace the origin and modifications of files in the evolution
of a system. A heuristic-based merge-point identification algorithm was presented for including the
evolution of files along the branches. Further, heuristics using regular expressions are used to map

Copyright © 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2007; 19:77-131
DOI: 10.1002/smr

A SURVEY AND TAXONOMY OF APPROACHES FOR MINING SOFTWARE REPOSITORIES 93

the CVS deltas (commit messages) to the bug reports in Bugzilla. A study was conducted on the
history of the Mozilla project as found on 14 December 2002. The project history consisted of
433833 modification reports (CVS deltas), out of which 23540 were identified as linked to bug
reports in Bugzilla. Overall, 158 491 references to bug reports were found (including the above 23 540
modification reports). Furthermore, the modification history of each file in the project was determined
on the scale of release numbers (CVS symbolic tags stored in the log of each file and extracted here
with regular-expression matching). A sequence of release numbers was listed for each file in which it is
modified including the one in which it was added. Moreover, the number of different categories of bug
reports (e.g., normal, blocker, etc.) was associated with each file. The system-level evolution of Mozilla
is reported. In total 56 releases were shown to have approximate linear growth per release. In the last
14 releases (i.e., last quarter between the releases 43 and 56), 50% of the files changed (half of which
were added). Also, logical couplings between files were determined based on the link of a file with the
bug reports in the Bugzilla and including all of the other files that also referenced the same bug reports.
In a reported example, a particular file linked with 33 bug reports was found to be logically coupled
with 456 other files.

The above technique was also used to identify change dependencies in the source code across
multiple products of a product family [27]. A case study was reported on the CVS repositories of
FreeBSD, NetBSD, and OpenBSD variants of BSD Unix where the number of common files between a
pair of these products ranged from about 3800 to 7000. In order to establish change dependencies,
the CVS log records of each project were analyzed to determine the presence of other projects
keywords (e.g., FreeBSD CVS log records were analyzed for keywords netbsd, openbsd, and linux).
The distribution of this information was studied from the period 1994-2004. The results indicate that
OpenBSD continues to be more decoupled from the rest of the projects.

4.1.2. Heuristics for change predictions

Hassan and Holt [69] used a variety of heuristics, such as developer-based, history-based,
call/use/define relation, and code-layout-based (file-based), to predict the entities that are candidates for
a change on account of a given entity being changed. CVS metadata were lexically analyzed to derive
the set of changed entities from the source code repositories. The following assumptions were used:
changes in one record are considered related; changes are symmetric; and the order of modification of
entities in a change-set is unimportant. The authors briefly stated that they have developed techniques to
map line-based changes to syntactic entities such as functions and variables, but it was not completely
clear the extent to which this is automated.

These heuristics were applied to five open-source projects written in C. General maintenance records
(e.g., copyright changes, pretty printing, etc.) and records that add new entities are discarded. The best
average precision and recall reported in [69] (specifically the author’s Table III) was 12% (file-based)
and 87% (history), respectively. The call/use/define heuristics gave a 2% and 42% value for precision
and recall, respectively, while the hybrid heuristics gave better values.

4.1.3. Bug-fixing change analysis

A combination of information in the CVS log file (change deltas) and Bugzilla was used to study
fix-inducing changes, i.e., new changes that were introduced to fix an earlier reported problem,

Copyright © 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2007; 19:77-131
DOI: 10.1002/smr

94 H. KAGDI, M. L. COLLARD AND J. I. MALETIC

by Sliwerski et al. [28]. The deltas in the CVS log file are grouped into transactions by using the
sliding-window approach. Regular-expression matching on the commit messages and text descriptions
in Bugzilla along with heuristics were used to determine the CVS deltas that are related to a change
that fixes a bug. Given such a change (fix), the modified lines were identified by using the cvs diff
command. The latest deltas that also affect the involved lines were found using the cvs annotate
command. These deltas were further analyzed by heuristics to filter out false positives. The remaining
‘true’ deltas were considered to be the changes that induced a given fix.

The main question investigated was which change properties (such as changes on a specific day
or by a certain group of developers) may lead to problems (i.e., more changes)? The approach was
validated on two open-source projects, Eclipse (78 954 transactions) and Mozilla (109 658 transactions)
as of January 2005. The average size of transactions which are fixes and lead to further fixes
was 3.82. Overall, the fix-inducing transactions were about three times larger than the non-fix inducing
transactions. A high risk of introducing fix-inducing changes was found on Saturdays and Fridays for
Eclipse and Mozilla, respectively.

4.1.4. Characteristics of different types of changes

German [80] examined software repositories (CVS) to study the evolution of the e-mail client Evolution
between 1998 and 2003. The CVS annotations were used to group subsequent changes into what is
termed a modification request (MR). The study was directed at characteristics such as the growth in the
size of the software, number of files and their type (e.g., source code and configurations) distribution,
number of (types of) MRs per month (e.g., MRs involving source code only), most changed files, most
active contributors, and contribution/changes in modules. In another study on the same system [21] the
focus was on studying different types of MRs. The following are a set of representative questions that
were examined.

e Do MRs adding new functionality differ from MRs fixing bugs?
e Are MRs different in different stages of evolution?
e Do files tend to be modified by the same developer?

The analysis of all of the MRs in the history of Evolution found that on average the MRs changing
source code (codeMRs) consisted of more files than the MRs consisting of bug fixes (bugMRs).
The MRs that consisted of only changes in the comments (commentMRs) on average consisted of
more files than any other type of MR. The number of functions added or deleted with bugMRs was less
overall than any other type of MR. The analysis of 3094 MRs from the year 2002 found 2261 codeMRs,
155 bugMRs, and 93 commentMRs. The months October 2002 and November 2002 were identified as
a maintenance (bug fixing) period and an improvement (new functionality) period, respectively, based
on a stable release of Evolution. The maintenance period had fewer MRs than the improvement period.
Not a single MR in the maintenance period included files from two different modules. Also, in the
improvement period MRs that included files from different modules were restricted to two specific
modules and three specific files. Most files were modified multiple times by the same developer.
There were a few cases where multiple developers modified a set of common files, however, those
files belong to the same module.

Copyright © 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2007; 19:77-131
DOI: 10.1002/smr

A SURVEY AND TAXONOMY OF APPROACHES FOR MINING SOFTWARE REPOSITORIES 95

4.1.5. Formalism for querying metadata

Metadata, such as those found in the CVS log files, were modeled using a graph representation by
Hindle and German [29]. A query language based on first-order and temporal logic, namely SCQOL,
was defined to facilitate questions on changes at a level expressed by the metadata. The approach was
demonstrated via three example queries expressing the following questions.

e Does an author exist whose only modifications were to files already modified by another author?

e What is the proportion of MRs containing a unique set of files that are never involved in any
other MR?

e Does an author exist whose changes are bounded within a single directory?

The above queries were evaluated on the five open-source systems Evolution, Gnumeric, OpenSSL,
Samba, and modperl. The CVS repositories contained between 300 to 4748 files, and between 1398
to 18 573 versions. The results were that three systems had an author whose only modifications were
to files already modified by another author, four systems had an author whose changes were bounded
within a single directory, and the proportion of MRs that contained a unique set of files that were never
involved in another MR was between 0.002 and 0.015.

4.1.6. Characteristics of small changes

The focus of a study presented by Purushothaman and Perry [67,68] was to understand the impact of
small changes, particularly one-line changes, with regards to faults, the relationship between different
types of changes (i.e., add, delete, and modify), the reason for the change (i.e., corrective, adaptive, and
perfective), and dependencies between changes. A change was considered to be a one-line change if
there was at least one modification to a single line, at least one line was replaced by a single line
(i.e., multiple lines deleted followed by an addition of a single line), a new statement was added
between existing lines, or a single line was deleted.
The research questions addressed are restated as follows.

How do small changes differ from other changes?

What is the relationship of the types and purposes of changes over time?

What is the relationship between the size of a change and its type and purpose?

What effect does the size, type, and purpose of a change have on the likelihood of producing a
fault?

These questions were evaluated by an empirical study on the first 15 years of the history of 5ESS,
a telephone-switching subsystem. This software was developed in a very well-defined development
environment including a sophisticated change-tracking system by a group of well-trained and qualified
developers. A change is tracked from a domain-level description (in the form of an initial modification
request (IMR), which is a textual description of a feature request) to a set of logical units (in the form
of a MR, which is a concise assignment to a single developer) to a set of physical units (i.e., files and
lines). Heuristics developed by Mockus and Votta [77] were used to classify each change as corrective,
perfective, adaptive, or inspection. The results of this study are summarized below.

Copyright © 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2007; 19:77-131
DOI: 10.1002/smr

96 H. KAGDI, M. L. COLLARD AND J. I. MALETIC

e Approximately 10% of changes were one-line changes.

e About 50% of changes involved at most 10 LOC, and about 95% of changes involved at most
50 LOC.

e The perfective category consisted of approximately 2.5% one-line additions and approximately

10% of other types of one-line changes.

Most changes were found to be adaptive and contained addition of code.

About 40% of changes introduced for fixing defects introduced at least one more defect.

Only 4% of the one-line changes caused a defect.

The chances of a one-line addition and modification causing a defect are approximately 2% and

5%, respectively.

The chance of a defect occurring for a change that involved more than 500 LOC is about 50%.

e It remained inconclusive whether deletions of less than 10 LOC cause a defect.

4.1.7. Searching and browsing source code

A Web-based, source code search tool, namely CVSSearch, built on top of the commands cvs log
and cvs diff and utilizing the text in the CVS commit messages was presented by Chen et al. [22].
A historical context for all of the lines in the latest version of a system was formed by associating each
line with all of the commit messages in a software repository. The tool accounts for the addition and
deletion of lines, and uses a string-alignment algorithm for more precise modifications than provided
by diff. A user query was specified in terms of keywords (e.g., login). The tool displays all of the files
that have lines matching at least one of the keywords with a link to the matched lines. Furthermore,
CVSSearch also executes the same query with grep and reports the matching files also with a link to
the matched lines.

The authors report the evaluation of the CVSSearch tool as applied to five KDE applications.
These applications approximately range between 24 KLOC and 49 KLOC and average between 10.8
and 38.3 revisions per file. Seventy-four students who were unfamiliar with the source code of the
considered applications were selected for the study. CVS comments performed better on 40%, grep
performed better on 32%, and both performed equally on 28% of the 703 tested queries. When deciding
whether CVS comments are better than grep or vice versa with p-values, overall CVS comments
did better than grep for all of the applications. However, the results were inconclusive for individual
applications.

4.1.8. Successful open-source development

The work by Dinh-Trong and Bieman [40] is an external validation of five of the seven hypotheses
pertaining to successful open-source software development given by Mockus et al. [96] from their
empirical studies on Apache (developed without major commercial support and managed by a
voluntary organization) and Mozilla (developed with major commercial support and managed by a
profit organization). This work is an extension of the authors’ prior empirical study on the nine-
year history of the FreeBSD project. The principle objective is to determine whether the hypotheses
developed in [96] represent general trends for successful open-source development. Here, only five
hypotheses are examined with two left out due to inapplicability to the FreeBSD project and a lack of
data for validation. Additional goals were to find the common characteristics of the processes used in

Copyright © 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2007; 19:77-131
DOI: 10.1002/smr

A SURVEY AND TAXONOMY OF APPROACHES FOR MINING SOFTWARE REPOSITORIES 97

successful open-source development and the quality of the resulting software. The research questions
of interest are directly stated below.

e What were the processes used to develop Apache and Mozilla?

e How many people wrote code for new functionality? How many people reported problems?
How many people repaired defects?

e Were these functions carried out by distinct groups of people, that is, did people primarily assume
a single role? Did large numbers of people participate somewhat equally in these activities, or
did a small number of people do most of the work?

e Where did the code contributors work in the code? Was strict code ownership enforced on a file
or module level?

e What is the defect density of Apache and Mozilla code?

e How long did it take to resolve problems? Were high-priority problems resolved faster than low-
priority problems? Has the resolution interval decreased over time?

The facts and data to answer the questions in the context of the open-source projects were collected
from e-mail archives (sent to freebsd-bugs@FreeBSD.ORG), a bug database (GNATS), and a CVS
repository (log file). Only problem reports (PRs) related to the source code correction (i.e., classified
as sw-bug in the GNATS database) that were present in both the stable and current branches were
considered. The authors developed tools to process the log records in the CVS repository to determine
the number of contributors, the number of changes committed by each contributor and the aggregate
number of changes, and the total number of lines added. The CVS deltas that contain the keyword PR
in the commit message were regarded as updates to fix problems whereas others were attributed to
new features. A distinction was made between source code files (.4 and .c) and other files (readme,
makefile). The name of the person who reported the PR to the e-mail list was extracted from a line
starting with the keyword ‘Originator’. Also, statistics such as the number of people who reported the
bugs and the number of bugs reported by each person were obtained. The same data from the four
commercial systems used by Mockus et al. [96] were also used in this study. The results of this study
show support for two hypotheses and suggest revision of the remaining three. The modified hypotheses
are directly stated below.

(H1) A core of 15 or fewer developers will control the code base and contribute most of the new
functionality. A group of 50 or fewer top developers at any one time will contribute 80% of the
new functionality. The group will represent less than 25% of the set of all developers.

(H2) As the number of developers needed to contribute 80% of open-source code increases, a more
well-defined mechanism must be used to coordinate project work.

(H3) Defect density in open-source code releases will be lower than commercial code that has only
been feature-tested. If an open-source system has a mechanism to separate unstable code from
stable code or ‘official’ releases, then the defect density of the stable code releases will be
equivalent to that of commercial code after release.

4.1.9. Developer identities

It has been observed [96-98] that source code contributions to open-source development follow a
Pareto distribution, i.e., a small number of participants (i.e., 20%) contribute a bulk of the project
(i.e., 80%). One explanation for this distribution is that the same developers, with possibly different

Copyright © 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2007; 19:77-131
DOI: 10.1002/smr

98 H. KAGDI, M. L. COLLARD AND J. I. MALETIC

identities, contribute to various repositories (e.g., user-id for CVS repository, developer’s name in
source code, e-mail address in the project mailing lists and bug-tracking system). Robles and Gonzilez-
Barahona [41] presented a methodology based on heuristics such as spatial locality (e.g., in source-
header comments, an e-mail address and a developer’s name occur together) on the identities
collected from various repositories (e.g., e-mail archives, CVS repositories, Bugzilla). The approach
was validated on the GNOME project. The examined data set consisted of 464 953 e-mail messages
from 36 399 distinct e-mail addresses, 123 739 bug reports from 41 835 reporters, 382271 comments
from 10257 posters, and approximately 2000000 CVS commits by 1067 committers. The results
indicate that these identities actually correspond to 34 648 unique persons. The authors further plan
to investigate gender and nationality distribution.

4.1.10. Relationships between bugs/features

An examination of the bug reports (BRs) from a bug-tracking system was discussed with regards to
various formal (i.e., explicitly represented and stored) and informal (i.e., derived from the content
and not explicitly stored) relationships between them by Sandusky et al. [42]. A bug-tracking system
typically contains a category field that explicitly stores the relationship (if any) of a BR with regards to
others. These relationships are a result of bug duplication and dependency. Duplications result from the
multiple reporting of the same bug. Dependencies arise in situations such as when a bug fix cannot be
performed until another bug is resolved, or a bug fix blocks the resolution of other bug fixes. Moreover,
BRs are linked by informal relationships that create semantic associations between them. Such relations
are typically derived from the description of, and/or comments posted for, a BR (e.g., texts such as ‘also
referto Y’ and ‘See the fix of Y . . . *). Taken as a whole, these relationships create bug-report networks
(BRNSs). Such networks help reduce duplication of effort in solving the same problem, support a bug fix
by pointing to other similar solutions, or help in the identification of critical bugs. However, almost all
of the relationships are still manually discovered and maintained. A random set of 385 bug reports was
selected from a population of approximately 182 000 BRs that were opened over a period of five years
in an unspecified open-source project. Almost 65% of them had either a formal or informal relationship
with at least one other BR. Duplications accounted for 43% and dependencies accounted for 19%, with
33% attributed to informal relationships.

4.1.11. Software defects/faults and predictors

Ostrand and Weyuker [43] used the data from a bug-tracking system to construct a fault-prediction
tool based on a statistical model (i.e., a negative binomial regression model). Metrics for a file such
as lines of code, age in versions, number of faults in a previous version, and source code language
were considered as independent variables. The identification of MRs that represents faults/defects
were performed by examining the roles of, or interviewing, the reporters. The MRs reported by testers
were considered as strong candidates for faults, whereas those reported by developers require further
inspection. The goal of this tool was to enable testers to obtain an ordered list of fault-prone files in the
next release. The testers can query the tool for a set of files based on the percentage of the project or
percentage of faults. For example, a list of the 20% of the files in the next release that are predicted to
have the most faults, or a minimum set of files that are predicted to contain at least 5% of the faults.
In one of the studies reported by the authors on a large AT&T project with 17 successive releases,

Copyright © 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2007; 19:77-131
DOI: 10.1002/smr

A SURVEY AND TAXONOMY OF APPROACHES FOR MINING SOFTWARE REPOSITORIES 99

the top 20% of the files predicted by the model were found to contain between 71% and 92% of the
actual faults with an average of 83%. A query for the minimal set of files containing at least 80% of
the faults produced less than 20% of the files in some releases.

4.1.12. Evolution of a software distribution

Robles et al. [44] studied the evolution of a software distribution. A software distribution refers
to several software applications/libraries (typically independently developed) that are distributed
as a single integrated system. Their interest was to study the characteristics of the number of
packages, lines of code, use of programming languages, and sizes of packages/files with regards
to the evolution (i.e., multiple versions) of a software distribution. Robles et al. work differs from
previous research that investigated only a single version of a software distribution. Five stable releases
of Debian (a Linux-based distribution) within seven-year duration between the 2.0 release and the
3.1 release were examined. The file Sources.gz (available in each release of Debian) consists of
information such as names, binaries/source files, version, and maintainers of the included packages
(i.e., applications/libraries) in a release. The tool SLOCCount (http://www.dwheeler.com/sloccount/)
was used to process this file and help compute the above measures. This study reported the following
observations.

e The overall size of Debian (of the order of millions of lines of code) approximately doubled
every two years.

e There are relatively fewer large packages (over 100 KLOC) than small packages (1 KLOC to
50 KLOC) in all of the releases.

e The large packages were shown to increase in subsequent releases. However, more small
packages were added.

e There was not a substantial difference in the mean package sizes across the releases (around
23 KLOC). The above two observations were given as one possible reason for this observation.

e About 15% of the packages remained unchanged since the release 2.0.

e The most used programming language in each release is C. However, the relative percentage of
C decreased in subsequent releases (from 76.7% in release 2.0 to 55.8%). The usage percentage
of the interpreted languages such as Python and Perl shows a sharp growth.

e The file sizes of programs written in the procedural and structural languages are larger than those
written in the object-oriented languages.

4.1.13. Completeness of ChangeLog files

Chen et al. [83] examined the viability of using the change information between two successive
releases typically recorded in a single file, namely ChangeLog, for research investigations. The specific
question of interest is whether ChangeLog records the complete set of source code changes performed.
The cross-referencing tool [xr is used to compute the source code differences between two versions.
These source code differences are then compared with the entries in the ChangeLog. Furthermore, each
change was manually categorized as a corrective, enhancement, code rearrangement, or a comment
change. The ChangeLog files in at least three releases of the open-source software GNUJSP, GCC-
g++, and Jikes were used to evaluate the research question. The changes excluded in the ChangeLog

Copyright © 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2007; 19:77-131
DOI: 10.1002/smr

100 H. KAGDI, M. L. COLLARD AND J. I. MALETIC

files ranged between 3.7% and 78% with an average of 22.2%. With regards to individual systems,
the analysis of four releases of GNUJSP showed (weighted averages) that 31.3% overall, 52.9%
corrective, 9.7% enhancement, 55.5% rearrangement, and 60% comment changes were not found in the
ChangeLog files. The analysis of three releases of GCC-g++ showed (weighted averages) that 10.8%
overall, 7.5% corrective, 7.4% enhancement, 0.0% rearrangement, and 44.4% comment changes were
not found in the ChangeLog files. The analysis of three releases of Jike showed (weighted averages)
that 24.5% overall, 15.3% corrective, 7.8% enhancement, 91.7% rearrangement, and 46.0% comment
changes were not found in the ChangeLog files. The authors note that incompleteness and inaccuracies
of ChangeLog should be carefully considered when using them as a basis for research investigations.

4.2. Static source code analysis

Source code is one of the most important artifacts available from source code repositories as its
evolution largely contributes to the overall software evolution. Generally, source code repositories
provide the capability to access source code at any stage (i.e., version) in the history of the software
evolution. This allows us to study software evolution not only from release-to-release but to examine
changes in individual versions.

A number of MSR approaches use static program analysis to extract facts and other information
from versions of a system. These approaches span across a wide range of available techniques for
parsing, processing, and extracting facts from source code. This information is used to compare the
different versions. In this section, we discuss how static analysis has been used in the context of MSR.
Again our discussion is organized with regards to the purpose of MSR.

4.2.1. Bug finding and fixing

In an approach presented by Williams and Hollingsworth [45,46], bug-fix information was
automatically mined from the source code repository to improve bug finding/fixing tools. The type of
bug considered was a function-return-value check. The existence of this type of bug in the considered
systems (Apache and Wine) was determined by manual inspection of the source code repository.
A custom tool for detecting function-return-value checks was developed based on a traditional
compiler-like parser. The tool combs through all of the changed files across versions and identifies
a list of functions that are considered to be function-return-value bug fixes. Such a bug is considered
fixed in the historical context if a conditional statement in a subsequent version that was not present in
the preceding version guards a further use of a return value.

The bug finding is based on both the historical context (data mined from the source code repository)
and contemporary context (current version). If a change involves a call to a function present in the list
of functions obtained from the history and the return value is used before being checked, it is flagged
as a warning (potential bug). Furthermore, if a return value check after a function call appears in more
than 50% of the instances in the current version, the other call sites without a return-value check are
flagged as warnings. The description of the warnings includes the physical attributes (file name, line
number) of the involved call sites. The warning candidates are presented in order from the most likely
to least likely and divided into two halves. The warnings derived from a historical context (also known
as history-aware ranking) are given a higher priority than those obtained by the contemporary
(also known as naive ranking) context alone.

Copyright © 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2007; 19:77-131
DOI: 10.1002/smr

A SURVEY AND TAXONOMY OF APPROACHES FOR MINING SOFTWARE REPOSITORIES 101

The proposed methodology was evaluated on two software projects: Apache and Wine.
The effectiveness of bug fixing and the ranking were the main assessment factors. The false-positives
rate in both of the cases was reported lower when historical context (Apache 0.61, Wine 0.65) was
considered versus the contemporary context alone (Apache 0.75, Wine 0.82). Also, the sets of warnings
found in both contexts were proper intersecting sets (i.e., there exists items reported by one and
not reported by the other). The evaluation of the ranking indicates there were instances of naive
ranking outperforming history-aware ranking in terms of precision. However, overall there was a better
precision for the history-aware ranking for the 50 top-ranked warnings. The effectiveness of the mined
information is also evident from the results of recall. Since most of the ‘true’ bugs are already identified
(with better precision) in the warnings presented in the upper half (history-aware ranking), the recall
for the warnings in the lower half (naive ranking) is also improved.

4.2.2. Factors for successful software reuse

The study presented by Selby [47] was an investigation of the factors that characterize successful
software reuse in large-scale systems. Both design and implementation factors characterizing
successful software reuse were examined by an empirical study on the repositories of 25 systems
written in Fortran ranging from 300 to 112000 LOC, developed by NASA in a highly reuse-based
environment (i.e., 32% reuse per project). The study was conducted and evaluated based on the goal—
question—metric (GQM) paradigm. The goals were set, questions were devised to fulfill each goal,
and metrics were defined to answer questions. The classification of the size of the project (i.e., small
and large) and the classification of the modules based on the type of reuse (without, slight, major,
and new) were based on the statistical analysis in a non-parametric ANOVA (analysis-of-variance)
model. The data were collected from forms manually entered by the developers (maintainers) and
static analysis of the source code repository, both collectively stored in a relational database.

The modules reused without, with slight, and with major revisions were found to be 17.1%, 10.3%,
and 4.6%, respectively. There was no substantial difference between the modules reused without and
slight revisions between small and large projects. Large projects had more modules reused with major
revisions than small projects. A higher amount of reuse lowered the development efforts. The number of
interfaces in modules decreased in the order of major revisions, slight revisions, and without revisions.
The module size decreased in the order of major revisions, new, slight revisions, and without revisions.
Overall, the module reused without revisions had better documentation. The faults per source line and
the fault-correction effort were the lowest in modules without revisions and the highest in modules
with major revisions, whereas the changes per source line and the change correction efforts showed the
opposite.

4.2.3. Function usage patterns

A method to automatically detect function usage patterns was presented by Williams and
Hollingsworth [48]. Specifically considered were the patterns called after (i.e., a function B is called
after function A) and conditionally called after (i.e., a function B is called after function A but is
guarded by a condition). Mining the source code repository identifies the instances of such usage
patterns. The goal was to find new instances in the current version. A C parser was used to identify
function calls. Instances were additionally categorized into groups, e.g., debug and string manipulation.
A pair of function calls found within a distance specified by the number of lines of code was considered

Copyright © 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2007; 19:77-131
DOI: 10.1002/smr

102 H. KAGDI, M. L. COLLARD AND J. I. MALETIC

to follow the function usage pattern. The tool was applied to the software repository of the Wine project.
Overall, about 50 million instances were reported with 2175 and 65 instances of patterns identified as
new at least 10 and 100 times, respectively. For the results by individual groups, we refer the readers
to [48, Tables 1 and 2].

4.2.4. Incomplete refactorings

A method for identifying incomplete refactorings including add/remove parameter and rename method
across super-classes, sub-classes, and sibling-classes for Java programs was described by Gorg and
Weillgerber [49]. Such incomplete refactorings may cause errors (change in behavior) that are typically
not captured by a compiler (e.g., a method is inherited rather than being overwritten). This approach
is capable of handling refactorings that take more than one version to complete due to the practice of
small incremental change.

The detection of the considered refactorings starts with the first modified version of a file in the
CVS repository. A lightweight parser was used to obtain all of the classes and methods from this file
and its immediate next version. On comparing the two versions, lists of added, deleted, and common
methods between these two versions were obtained. Further analysis of these lists resulted in the
identification of add/remove parameter and rename method refactorings between two versions of a
class. However, these results may be incomplete, requiring an examination of classes in the inheritance
hierarchy. Such classes were further analyzed to determine inconsistencies that are indicative of an
incomplete refactoring. For example, a rename method refactoring was applied to a base class, but not
to the corresponding method in the derived class. Note that this may change on further analyses of the
next versions, if the found inconsistency is resolved.

A preliminary case study on two open-source projects, jEdit and Tomcat, was described.
The approach reported five (two methods in sub-classes and three methods in sibling-classes) and seven
(three methods in sub-classes and four methods in sibling-classes) incomplete-refactoring candidates
for jEdit and Tomcat, respectively. Except for the two methods in the sub-classes with jEdit, none of
the methods were found to be completely refactored in the later versions.

4.2.5. Function-interface changes

A fine-grain analysis and classification of function-signature changes was presented by Kim et al. [30].
A fact-extraction tool developed by the authors was used to identify function signatures present in
all versions. The obtained function signatures were processed to determine the exact changes across
versions and classify them with the help of a semi-automatic tool also developed by the authors.
Three broad categories were defined based on the impact on the data flow between a called function
and a calling function, namely data-flow invariant, data-flow increasing, and data-flow decreasing.
These categories were further divided based on the exact changes in the function signature
(i.e., function name, parameters, and return type).

The fine-grain analysis and classification of function signatures was used to investigate the following
research questions.

How frequent are function-signature changes?

What are the commonly occurring types of function-signature changes?
What is the frequency distribution of each type?

Do function signatures have a common pattern of evolution?

Copyright © 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2007; 19:77-131
DOI: 10.1002/smr

A SURVEY AND TAXONOMY OF APPROACHES FOR MINING SOFTWARE REPOSITORIES 103

Eight open-source projects written in C (we refer the readers to [30, Table 1] for further details)
were analyzed with regards to the above questions. The distribution of the number of functions with
regards to their number of signature changes, varying from O to 16, was presented. The authors reported
that in case of the Subversion project, 77% of functions were never involved in a signature change,
and 95% of the functions involved in a signature change had fewer than three signature changes.
The most commonly occurring changes were parameter addition (52.13%), complex type changes
(30.5%), and parameter deletion (22.75%), whereas the least commonly occurring changes included
array/pointer and primitive-type changes. Furthermore, it was found that a function signature might
follow a particular sequence of changes in successive versions (e.g., a parameter addition followed by
a parameter deletion). A modified version of the longest common subsequence algorithm (LCS) was
used to detect commonly occurring change patterns in a function signature. The authors could foresee
the application of this in predicting future changes in a function signature.

4.2.6. Communication via source code comments

Ying et al. [50] presented an interesting use of mining the source code comments developed in
the Eclipse environment. The Eclipse environment supports a task-specific description in the source
code comments (e.g., ‘Mike, please fix this...”) via the task-tag mechanism (e.g., ‘TODO’ tag).
Such comments are termed task comments. The task comments form an additional source that captures
the communication about changes that are, or were planned to be, performed.

A study on the CVS repository of the proprietary AWB project written in Java as of 9 February 2005
was described. It consists of 2213 files that were found to contain 221 task comments (i.e., comments
with a string ‘TODO”). The task comments were analyzed for their content and their intended purpose.
It was found that they are used for point-to-point and group communication, pointers to change request
in the change/bug/defect-tracking system, bookmarks on past tasks that may need further work, current
and future tasks, location markers, and concern tags for marking distributed places in the code that need
a similar change. The content analysis showed that a task comment may include an author’s identity
and change-request identifiers that may be useful for MSR applications.

4.3. Source code differencing and analysis

Source code repositories contain differences between versions of source code (i.e., difference data).
As discussed in Section 2.1, these difference data are file and line based. To further extend MSR with
regards to changes, researchers have proposed methods to derive and express changes from source
code repositories in a more source code ‘aware’ manner (i.e., syntax and semantic). To help support
this view of MSR, information from source code or source code models is utilized. Here, we discuss
these MSR techniques in light of how changes are expressed and the MSR questions asked about the
changes. Our discussion is organized with regards to the purpose of MSR (i.e., level-two subsections),
which in this case is the different ways of expressing source code differences.

4.3.1. Semantic differencing

The tool Dex was presented by Raghavan e al. [70] for detecting syntactic and semantic changes
from a version history of C code. All of the changes in a patch were considered to be part of
a single higher-level change, e.g., bug fix. Each version was converted into an abstract semantic

Copyright © 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2007; 19:77-131
DOI: 10.1002/smr

104 H. KAGDI, M. L. COLLARD AND J. I. MALETIC

graph (ASG) representation. A top-down or bottom-up heuristics-based differencing algorithm was
applied to each pair of in-memory ASGs. The differencing algorithm produces an edit script describing
the nodes that are added, deleted, modified, or moved in order to achieve one ASG from another.
The edit scripts produced for each pair of ASGs were analyzed to answer questions from entity-
level changes such as how many functions and function calls are inserted, added, or modified, to
specific changes such as how many if statement conditions are changed. Dex supports 398 such
statistics. This technique was applied to version histories of GCC and Apache. Only bug-fix patches
were considered (deduced from the CVS metadata), 71 for GCC and 39 for Apache. The differencing
algorithm takes polynomial time to the number of nodes. Average times of 60 seconds and 5 minutes
per file were reported for Apache and GCC, respectively, on a 1.8 GHz Pentium IV Xeon 1 GB RAM
machine. The six frequently occurring bug-fix changes as a percentage of patches in which they appear
were reported. Dex reported that 378 out of 398 statistics were always computed correctly. An average
rate of 1.1 incorrect statistics per patch was reported.

In another approach Neamtiu ef al. [71] used a partial abstract syntax tree (AST) matching
algorithm for detecting semantic changes (i.e., additions, deletions, and modifications) between a pair
of versions of a C program. Here, global variables, types, and functions were the entities of interest.
The differencing was actually a two-step process: AST matching and change detection. The AST
matching algorithm takes ASTs of two functions and matches the type and name of all the local
and global variables within their bodies creating a bijection mapping between matched entities.
The matching algorithm terminates on detection of the first mismatch and therefore may fail to identify
the matching pairs in the remainder of the tree. Also, functions that are renamed are never matched
giving another source for missing matching pairs. As a result, some entities may be identified as
added/deleted instead of actually being renamed.

For detecting changes between a pair of files, if a function with the same name occurs in both files, it
is considered to be modified semantically only if there are changes in the body other than the renaming
pairs identified by the bijections. Functions with different names are identified as added/deleted.
Similarly, variable names and types are reported to be added, deleted, or renamed with an additional
requirement for a strict structural isomorphism check for type equality.

The primary focus was to support the dynamic software updating (DSU) technique (changing
software without halting its execution). The authors posed three questions for a primarily evaluation to
help achieve the above goal.

e Are functions and variables deleted frequently relative to the size of the program?
e Do function prototypes change frequently?
e Are changes to type definitions simple?

Three tools, Vsftp, Apache, and OpenSSH, were selected to investigate the above questions. For Vsftp
and Apache almost no functions were deleted and the size of the functions remained almost constant.
However, in OpenSSH functions were deleted at a steady rate. The function prototypes changed less
frequently in Visftp and Apache than in OpenSSH. Most type-definition changes involved only one or
two entities with the exception of OpenSSH where more than two entities were changed regularly.
This implies that Vsftp and Apache are more suitable for dynamic software updating while OpenSSH
involves a risk.

Copyright © 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2007; 19:77-131
DOI: 10.1002/smr

A SURVEY AND TAXONOMY OF APPROACHES FOR MINING SOFTWARE REPOSITORIES 105

4.3.2. Syntactic differencing for fine-grain analyses

Maletic and Collard [31] presented a syntactic-differencing approach called meta-differencing which
answers syntax-specific questions about differences. This is supported by first encoding the AST
information directly into the source code via an XML format, namely srcML, and then marking added,
deleted, or modified sections in an extended srcML format, namely sreDiff. The types and prevalence
of syntactic changes are then easily computed. Queries are performed as XPath expressions on the
srcDiff format supporting questions such as the following.

e Are new methods added to an existing class?
e Are there changes to pre-processor directives?
e Was the condition in an if-statement modified?

While no extensive MSR case study has been carried out using meta-differencing, it does support
the functionality necessary to address a range of these problems. In addition, the method is fairly
efficient and usable with run times for translation similar to that of compiling and computation of the
meta-difference around five times that of a textual diff.

4.3.3. Identification of refactorings in changes

Weillergerber and Diehl [93] presented a technique for identifying changes that are refactorings.
The line-based differences of files in a CVS commit were mapped to the differences in syntactic entities
(e.g., class and method names). The type of changes (e.g., add, delete, and modify) in the syntactic
entities were then analyzed to infer the refactorings move/rename class/interface, move field, move
method, rename method, hide/unhide method, and add/remove parameter. Three open-source systems
ArgoUML, jEdit, and Junit were used to examine whether refactorings caused less bugs than other
changes. A change was considered to introduce a bug if a BR was opened in a certain number of days
after that change. Metrics, including the number of changed entities, number of bugs per changed entity,
and the number of refactorings per changed entity, were used to indirectly correlate with the number of
bugs per refactoring. The number of versions considered for ArgoUML, jEdit, and Junit were 65593,
10726, and 1707, respectively. It was found that a high number of refactorings per day followed by
no increase in the number of bugs per day was prevalent in most periods of history, an indication that
refactorings are less bug prone. However, they also found instances where a high number of refactorings
per day was followed by an increase in the ratio of bugs to days.

Dig et al. [89] used a combination of syntactic and semantic analyses to uncover refactoring
changes that occur between two versions of a system. In this approach, syntactic analysis was first
performed via a lightweight AST to identify source code entities along with their fully qualified names.
Then an information retrieval technique, namely Shingles encoding, was used to identify pairs of
source code entities that are refactoring candidates (i.e., old version before refactoring and new version
after refactoring). The Shingles encoding technique basically finds pairs of source code entities with
similar textual contents. In order to further refine the candidate refactorings (i.e., reduce false positives),
calls from and to a source code entity with both before and after refactored versions were analyzed.
If they continue to have similar calls in both versions, a candidate refactoring is confirmed as a true
case. An Eclipse plugin was developed with strategies to detect seven types of refactorings including

Copyright © 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2007; 19:77-131
DOI: 10.1002/smr

106 H. KAGDI, M. L. COLLARD AND J. I. MALETIC

multiple types performed in a single change (e.g., both of the refactorings method rename and signature
change). Two major versions of three open-source software Eclipse.Ul, struts, and jHotDraw were
used for evaluation. Refactorings were identified with both precision and recall of over 85%. Results
of manual examination from previous results were used for validation. The end goal of this work
was to support automatic replaying of refactorings performed in a component to the clients of that
component. Henkel and Diwan [92] have a similar goal but record refactorings as they are performed
by a component/library developer in the Eclipse IDE. This method was realized as a plugin within the
Eclipse IDE.

4.3.4. Changes in micro patterns

Kim et al. [84] studied the changes in micro patterns. A micro pattern is a programming idiom for a
class in Java [99]. The interest was in analyzing changes with respect to the type of a micro pattern
of a class (e.g., from a Stateless to a RestrictedCreation type). Their further goal was to correlate
the changes in the micro patterns with the reported bugs. The CVS repositories of three open-source
projects ArgoUML (1262 versions), Columbia (1652 versions), and jEdit (1449 versions) were used.
The coverage of the different types of micro patterns seen in the considered latest versions of ArgoUML,
Columbia, and jEdit were 55%, 79%, and 81%, respectively. The changes in the type of a micro pattern
in ArgoUML, Columbia, and jEdit were 6%, 5%, and 4.1%, respectively, of the total micro-pattern
changes. The top 20 frequently changed micro patterns and top 20 bug-prone micro patterns were listed
for all three considered projects. There was almost no similarity in the observed micro patterns with
regards to both lists across the projects. Two different periods of jEdit were found to exhibit identical
bug-prone behavior with changes in micro patterns. The authors noted that the correlation between the
number of changes in the micro patterns and the introduction of bugs remains inconclusive.

4.3.5. Detecting similar Java classes

Sager et al. [88] identified similar classes in Java source code using three tree algorithms: bottom-
up maximum common subtree isomorphism, top-down maximum common subtree isomorphism, and
tree-edit distance. The ASTs were generated from two versions of the source code and then converted
to FAMIX [100] trees for language-independent representation. The two FAMIX trees corresponding
to the two versions of source code were compared with the tree algorithms. The approach was evaluated
on the Eclipse compare plugin (versions 3.0 and 3.1) using the tree-edit distance algorithm (proved to
be best of the three algorithms on the specially devised test cases). The similarity in the classes between
the version 3.0 and the version 3.1 were shown in the form of a heatmap, a two-dimensional plot with
a box used to show the similarity. For details we refer the reader to [88, Figure 6].

4.3.6. Studying API changes

Dig and Johnson [90] studied the API changes between two versions of a framework/library (referred
to here as a component). The interest was in the classification of the API changes as breaking and
non-breaking changes. An API change of a component was considered to be a breaking change if
its client application (i.e., an application using the API) fails to compile, link, or produces different
output behavior after that change is performed, and an API change of a component was considered

Copyright © 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2007; 19:77-131
DOI: 10.1002/smr

A SURVEY AND TAXONOMY OF APPROACHES FOR MINING SOFTWARE REPOSITORIES 107

as non-breaking if the client application continues to be backward compatible (i.e., changes are
local to a component). A combination of change logs, release notes, help documentation, developer
interviews, and manual examination of source code differences was used to identify and classify API
changes. Three open-source frameworks (Eclipse framework, struts, and jHotDraw), one open-source
library (log4j), and one proprietary framework (mortgage) written in Java were used to conduct the
investigation. Two versions of each system were considered. A total of 51, 136, 58, 38, and 11 API
changes were found to be breaking changes, respectively. Of the breaking changes, refactorings formed
84%, 90%, 94%, 97%, and 81% of the breaking changes, respectively. That is, a refactoring (behavior-
preserving property) was restricted to a framework/library. However, the impacted parts of its client
application (using the old API) were not changed accordingly.

4.4. Software metrics

Software metrics are used to quantitatively assess various aspects of software products, projects,
and processes. These aspects include size, effort, cost, functionality, quality, complexity, efficiency,
reliability, and maintainability of a software artifact, system, or the related process. In this section, we
discuss how metrics are used in the context of MSR.

4.4.1. Complexity of different changes

The work presented by Nikora and Munson [73] is an examination of sources of variations in the set
of software metrics used to measure a system under evolution. Twelve size and control-flow metrics
at the function level were used. Principal components analysis (PCA) was applied to identify three
distinct domains of variations. Each module in a particular build is represented by a fault index (FI)
value. Basically, FI is a weighted sum of the 12 metrics in proportion to the amount of unique variation
contributed by that complexity metric.

A case study on the Mission Data System (MDS) was described. MDS is a system developed by the
California Institute of Technology’s Jet Propulsion Laboratory (JPL) operated as a NASA laboratory.
The history of MDS consists of 1500 builds, 65000 versions, and more than 15000 functions.
The hypothesis here was that not all of the changes contribute equally to the overall complexity of
the system: changes to comments could be simple while others may have a substantial impact on the
structure of software modules. The goal was to verify this hypothesis and further investigate whether
structural metrics are suitable for predicating the number of faults introduced in the system and what
kinds of changes contribute more in inserting faults than others. The information regarding faults was
collected from the analysis of 1400 problem reports.

The results indicate that not all of the builds were equivalent. The control structure of the system
changes much more rapidly than others, and a substantial number of changes are attributed to it.
There is a fluctuation of change activities in all of the domains across the initial few builds. However,
the change activities stabilize after a particular build (i.e., build 247 here) when the control-structure
domain becomes the dominant factor. The control structure is most closely associated with the
cumulative-fault measure. The variation in the number of faults appears to increase directly with the
increase in the complexity of the system.

Copyright © 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2007; 19:77-131
DOI: 10.1002/smr

108 H. KAGDI, M. L. COLLARD AND J. I. MALETIC

4.4.2. Change-prone classes and change-couplings

In another approach by Bieman et al. [79], a metrics-based approach was presented for detecting
change-prone classes, i.e., classes that change frequently (likely to be changed again in the future),
and clusters of classes that frequently change together. The relationship between classes that change
frequently together is termed change-coupling. Visualization was used in understanding these clusters
of classes. The following research questions were investigated.

e Is it possible to identify and visualize the most change-prone collection of classes in an object-
oriented system?

e Is it possible to distinguish between local change-proneness (i.e., changes within a class) and
change-proneness due to change-couplings (i.e., changes across classes)?

e Is the change-proneness due to change-couplings limited to the relations between classes in the
logical design (including the use of design patterns) or does there exist other relations that are
not explicitly represented in the design?

e How can the change-prone information be visualized?

Class-level metrics such as number of attributes, total number of operations, depth of inheritance,
and number of descendants were used to distinguish between the characteristics of change-prone
and non-change-prone classes, and identify design relationships (e.g., generalization). The patterns
were detected by the inspection of source code, reverse-engineered UML class diagrams, and
documentation. Only intentional (i.e., well-documented) patterns were considered. Metrics for change-
proneness were defined to detect local change-proneness and change-couplings of change-proneness.
These metrics were computed from the logs of the version-control system. Box-plot outlier analysis
was used to produce thresholds for the metric values indicating change-proneness.

A case study was described on an industrial application written in C++. Two versions, identified
as A (first stable version) and B (latest version), were considered. Version A consists of 199 classes
and 24 KLOC. Version B consists of 227 classes with about 32 KLOC. There were 37 intermediate
versions and 191 ‘common’ classes (possibly modified) between versions A and B. These ‘common’
classes in version A were examined to predict the changes in version B. The local change-prone classes
were found to be 36 out of 191 classes, the co-change coupling pairs were found to be 29 out of 924
co-change pairs, and the sum of pair couplings were found to include 29 out of 191 classes. Overall,
17 classes were found as change-prone classes that meet the metrics thresholds.

The five out of 17 (i.e., 29%) change-prone classes were involved in one or the other design pattern.
The remaining 12 change-prone non-pattern classes form 7% of the non-pattern classes. The change-
prone classes and the change-coupling between them are visualized with an architecture diagram which
is very similar to a class diagram in terms of notation. The visualization revealed that there were
change-coupling relationships between classes that were not represented by any design relationships.
The class-level metrics revealed that change-prone classes are changed more frequently (on average
10 times more) and have more attributes and operations than non-change-prone classes. Not much
difference was observed in the remaining class-level metrics.

4.4.3. Types of changes and origin analysis

The tool Beagle (also discussed in Section 4.5) contains an analysis component for determining
whether entities were added or deleted from one version to the next, and was used to perform origin

Copyright © 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2007; 19:77-131
DOI: 10.1002/smr

A SURVEY AND TAXONOMY OF APPROACHES FOR MINING SOFTWARE REPOSITORIES 109

analysis by Tu and Godfrey [74]. Evolution metrics lines of code, S-complexity, cyclomatic complexity,
and number of function parameters, etc., were measured for each entity in a release (or version)
and stored in a vector of evolution metrics. The similarity between two entities in different versions
was represented by the Euclidian distance between their vectors. The similarity values were used
for origin analysis of a given entity, i.e., the lesser the distance, the greater the chances of an entity
in a current version originating from the other entity in a previous version. An algorithm based on
origin analysis and entity-name matching was used to identify the added and deleted entities between
versions. The authors termed this form of origin analysis Bertillonage analysis. Another origin-
analysis technique termed dependency analysis was also discussed. This technique was based on the
hypothesis that the clones introduced by moves and renames may continue to honor many of the
original relationships (e.g., calls, called-by, inherits, uses) exhibited in the previous version. A case
study was demonstrated on two versions of the parser subsystem of GCC, GCC 2.7.2.3, and EGCS 1.0
(which is derived from GCC 2.7.2.3), to show the application of the origin analysis and differencing
technique. The goal was to study the old architecture that continued to exist in EGCS 1.0.

4.4.4. System complexity

Capiluppi et al. [51] presented an approach studying the complexity of a software system.
The complexity was measured in terms of changes in the system size (i.e., number of files and
directories per release) and changes in the physical structure of files and directories (i.e., depth and
width of the tree structure). The objective of this work was to test hypotheses regarding the evolutionary
characteristics (i.e., functional size grows over releases, the structure changes in uniform patterns,
potential co-relationship between new developer arrival rate and code growth) of open-source systems.
A case study was described on the ARLA system, an implementation of the AFS distributed file
system. The latest release consists of 150 KLOC and overall 45 developers participated in this project.
The results showed that the number of files and folders grow linearly with a superimposed ripple and
their average sizes tend to stabilize over releases. The depth of the structure was approximately held
constant while the width followed a trend similar to that of number of folders. This indicates that ARLA
was a well-structured system right from its early inception in the software repository. It was also found
that on average new contributors (i.e., contributions limited to a single file) have a higher arrival rate
than the new authors (i.e., contribute multiple times and multiple files).

4.4.5. Validation of defect detectors

The metrics and defect data available from the NASA’s Metrics Data Program (MDP) (collected for
almost eight years in some cases) were utilized by Menzies et al. [52] to address the following concerns
that are typically raised by researchers regarding defect detectors based on the historical data.

e Lack of external validity: do the defect detectors built from the data of one project scale to others?

e Buy, not build: if general conclusions about defect detectors (across projects) can be made or are
available, why maintain project history anymore?

e Are static code measures such as Halstead/McCabe metrics ‘good enough’ for such a task?

The authors described their study on five NASA applications. Various data-mining tools LSR, M5,
J48, and ROCKY were used to automatically generate defect detectors. The results obtained from

Copyright © 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2007; 19:77-131
DOI: 10.1002/smr

110 H. KAGDI, M. L. COLLARD AND J. I. MALETIC

these data miners were compared using the DELPHI approach (i.e., human-experts view). Assessment
measures such as precision, recall, accuracy, and effort in terms of lines of code were used to study
the variations (mean and standard deviation) in the output produced by the detectors for each project.
It was found that these differences were very small. The results of a defect detector are improved at
different stages in the project lifecycle by using data from the local history. Furthermore, the authors
suggest the use of static-code metrics as secondary indicators.

4.4.6. Predicting post-release failures

Nagappan et al. [87] used a combination of software complexity metrics and post-release defect history
to build a predictor model for post-release failures in modules. The authors used five Microsoft products
to validate the following four hypotheses, which are paraphrased.

(H1) Higher complexity of a software entity statistically correlates to the number of defects reported
post release.

(H2) A subset of metrics that satisfy (H1) are applicable to all projects.

(H3) Post-release defects in new entities introduced in the same project can be predicted significantly
by a metric combination.

(H4) A metric combination derived in (H3) of a project can also predict entities that are likely to
exhibit failures in different projects.

Hypotheses (H1) and (H3) found support in their study. A set of complexity metrics that correlates
with post-release defects was found for each project (not the same set for all projects). A regression
model was built via PCA to predict post-release defects. Hypothesis (H2) was rejected. Hypothesis
(H4) was partially supported. Hypothesis (H4) was only supported for projects that have the same or
similar defect distribution. The authors advise caution in using of metrics in predicting post-release
defects without assessing their applicability to the subject project. They recommend using the metrics
that are validated with historical data.

4.5. Visualization

Information visualization is the use of computer-based, interactive visual representation of data to
amplify cognition. A number of efforts in software visualization have been taken to use information-
visualization techniques to support software maintenance and evolution. Software visualization
approaches are typically very task specific [101]. Here we examine a number of works specifically
focused on the task to visualize the information mined from software repositories. These approaches
rely heavily on the visual presentation of the information in assessing the mined data and as such we
group them together as a separate approach category.

4.5.1. Co-changing files

Van Rysselberghe and Demeyer [53] proposed a 2D visualization technique to recognize the change-
relevant information from the log data in the CVS software repository. Files are mapped to the x-axis
and time mapped to the y-axis. A change is represented by a ‘dot’, if a particular file has a change
recorded (i.e., involved in a CVS delta) at a given time. Here, the change-relevant information of

Copyright © 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2007; 19:77-131
DOI: 10.1002/smr

A SURVEY AND TAXONOMY OF APPROACHES FOR MINING SOFTWARE REPOSITORIES 111

interest was the visual patterns identifying unstable components (under almost continuous change),
coherent (co-changing) entities, design and architectural evolution (change in the relations between
co-updating entities), and fluctuations in team productivity (heavy changes/almost no changes in a
given period of time). A case study on the CVS version history of an open-source project, Tomcat,
was also described. The found visual patterns indicative of the above aspects were validated with the
available design documents and mail archives. The authors conclude that this visualization technique
was helpful in understanding the evolution of the system, and locating further information about
changes (e.g., developer communication regarding major design discussions).

Another visualization of the clusters of frequently occurring co-changes was presented by Beyer and
Noack in [81]. The co-changes derived from the log files of a version-control system were represented
as an undirected bipartite graph. This graph was termed a co-change graph. An undirected edge was
drawn from an artifact node to a transaction node if an artifact was involved in that transaction or vice
versa. An edge-repulsion LinLog energy model, which is an energy-based (or force-directed) graph
layout producing method, was used to layout the co-change graph. A formalism was presented on the
idea of having a small distance (i.e., short edges) between artifacts that participate together in a large
number of transactions and a large distance (i.e., long edges) between artifacts that participate together
in a relatively small number of transactions. The artifacts that are placed together in the layout give an
impression of a cluster. The approach was evaluated on the three systems CrocoPat 2.1, Rabbit 2.1, and
Blast 1.1 consisting of variety of documents (e.g., source code, build files). The details about the size
and the historical data used were presented in a table in [81]. These statistics were collected with the
help of a tool StatCvs. The tool cvs2cl extracted transactions from the CVS logs, and the tool CrocoPat
generated the co-change graphs at a file level. The layouts were automatically computed using the
Barnes—Hut algorithm and the edge-repulsion LinLog model. The clusters obtained in this layout were
compared with the authoritative decomposition (e.g., subsystems) of the system. Nodes (i.e., files)
belonging to the same subsystems were given the same color. In conclusion, most of the clusters in
the layout conformed with the authoritative decomposition such as subsystems. However, there were
instances where artifacts cannot be assigned to a unique subsystem, and there was no clear separation
of different subsystems.

4.5.2. Structural and architectural changes

The tool Beagle provides two simultaneous views referred to as structure diagrams and dependency
diagrams [74]. The structure diagram is a hierarchical (tree) view with software entities such as
subsystems (i.e., directories) and modules (i.e., files) mapped to the internal nodes, and functions
mapped to the leaves. Colors and saturations are used to encode difference information (e.g., additions
and deletions) and age of entities (e.g., a lighter shade indicates more recent changes). This view helps
in understanding the structural changes that occurred between two arbitrary releases.

The dependency diagram shows the architectural difference between two releases. The architecture
is defined as the above-mentioned software entities and the relationships (e.g., new call, new
reference, delete implemented by) between them. This diagram helps to visualize the architectural
difference at various (physical) levels of granularity (e.g., subsystems and files). The structure
diagram forms the navigation component for selecting an entity (e.g., subsystem) of interest and the
dependency diagram forms the detail component for examining the architectural differences within the
selected entity (i.e., the contained files and the relationships between them) across given releases.

Copyright © 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2007; 19:77-131
DOI: 10.1002/smr

112 H. KAGDI, M. L. COLLARD AND J. I. MALETIC

A case study describing the versions comparison and evolution visualization between GCC V2.0
and GCC V2.7.2 is described in [74]. For an instance of a view showing a structural diagram and
dependency diagram, we refer the reader to [74, Figure 5].

Holt and Pak [75] presented a visualization tool, namely GASE, for representing software structural
changes. The software system was represented as a 2D graph. The nodes represent the modules and
the edges represent the relationships such as calls or includes. Further drill-down of the nodes reveals
their sub-modules and the relationships between sub-modules. The tool incorporates fact extraction
to construct a 2D graph and difference analysis to identify changes. Colors were used to show the
differences in the nodes and edges between two versions of a software system. The tool was applied
on 11 versions of an industrial system with over four years of development history. The subject system
was written in C and each version consisted of about 80 KLOC. The observations indicated that the
tool was effective in identifying restructurings, consistent growth of the subject system, undocumented
and unknown structural dependencies, and the existence of a ‘software rule’ which states that the rate
of change is directly proportional to the structural depth, i.e. most changes occur within modules and
not at a subsystem level. All of these observations were verified with the developers of the subject
system.

Gall et al. [76] presented an interesting 3D visualization technique in order to simultaneously view
an attribute of the structure of a software system across multiple releases. The change information of
a program (and other properties such as size and complexity metrics) was represented by an attribute
that contains the value of the release number in which it last changed (i.e., added, modified, or deleted).
Different 3D shapes (e.g., spheres and cubes) are used to distinguish between nodes representing
system, subsystems, modules, and programs. Each release of a system is represented by a 2D tree
ordered by release numbers. This forms a 3D diagram with a tree (i.e., x- and y-axes) for each release
number (i.e., z-axis). A color spectrum (i.e., a customized rainbow scale) is used to choose (successive)
colors equal to the number of releases of a system. The nodes corresponding to programs, modules, and
subsystems, are displayed in the appropriate colors based on their release attributes. The technique was
demonstrated on 20 releases of an industrial system over a period of two years. The subsystem system
consisted of eight subsystems, 47-50 modules, and 1500-2300 programs. For further information on
the various views and observations reported on the subject system, we refer the reader to [76].

4.5.3. Change smells and refactorings

A graph visualization with nodes representing classes and edges representing logical couplings was
used to identify change smells by Ratzinger et al. [54]. The notion of change smells based on
the strength of logical couplings between entities is presented with an analogy to bad smells as
introduced by Fowler [102]. Change smells are considered as indicators of structural deficiencies that
are candidates for reengineering based on the change history. Refactorings based on two change smells,
namely man-in-the-middle and data containers, were discussed. Standard refactorings such as move
method and move field were suggested to alleviate the man-in-the-middle problem. Refactorings such
as move method and extract method were suggested to improve the code exhibiting data-container
smell. A case study was described on an industrial picture archiving and communication system (PACS)
with 500000 lines of Java code. The change history of 15 months in the CVS repository was used to
identify the man-in-the-middle smells with the help of the visualization. The suggested refactorings
were applied and the logical couplings were observed again after a period of another 15 months.

Copyright © 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2007; 19:77-131
DOI: 10.1002/smr

A SURVEY AND TAXONOMY OF APPROACHES FOR MINING SOFTWARE REPOSITORIES 113

The authors discussed one such case of an ImageFetcher class showing smells of man-in-the-middle.
It was observed that the logical coupling between ImageFetcher and other associated classes decreased
substantially at the end of the 15-month observation period.

The (end result of) refactorings that were detected with the technique described in [49] were
visualized in Gorg and Weillgerber [78]. The detection and visualization of structural refactorings
(move class, move method, pull up method, push down method) and local refactorings (hide
method, rename method, add/remove parameter) were demonstrated on the jEdit and Tomcat projects.
The visualization provides class-hierarchy and package-layout views. Different colors were used for
representing different kinds of refactorings. UML symbols were used for representing both classes and
the relationships (e.g., generalization). The relationship symbols are appropriately colored to indicate
their part in the corresponding structural refactorings.

4.5.4. Visualizing data mining rules

Burch et al. [82] discussed techniques to interactively visualize association and sequence rules mined
from software archives by using data-mining techniques. They further presented views that combine the
static structure of items (i.e., files) with the temporal order in a rule. Views such as pixel-map, parallel
coordinated view, rule matrix, and support graph were realized in the tool EPOSee. Examples of these
views were demonstrated on the Mozilla repository. Clusters and outliers of changed files identified in
these examples were discussed.

4.6. Clone-detection methods

Simply stated, source code entities with similar textual, structural, and/or semantic composition are
referred to as source code clones. A number of approaches exist in the software engineering literature
that address identification of both exact and near-miss clones. Simple approaches such as text-based
and token-based techniques have been applied with a reasonable degree of success. Other approaches
operate on source code abstractions such as ASTs and program dependency graphs (PDGs).
In this section, we discuss the application of clone-detection techniques in the context of MSR.
Our discussion is organized with regards to the purpose of MSR (i.e., level-two subsections).

4.6.1. Clones and their relationships

An approach based on the history of source code clones was presented by Kim and Notkin [55] to
assist in maintenance. A clone-detection tool, namely CCFinder (http://www.ccfinder.net), was used
to identify clone groups in each version of a program in the CVS repository. A cloning relationship
was assigned to the corresponding clone groups in the consecutive versions. The cloning relation was
assigned a singleton value based on the type of a change performed (e.g., add is assigned if at least one
element is inserted in a clone group).

The nodes (clone groups) and edges (cloning relationships) form a directed graph, termed clone
lineage. The code lineage is obtained on identification of all clone groups and the cloning relationships
between each consecutive versions. A set of clone lineages originating from a same clone group
is termed clone genealogy. Using the clone genealogy information, the following questions were
investigated.

Copyright © 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2007; 19:77-131
DOI: 10.1002/smr

114 H. KAGDI, M. L. COLLARD AND J. I. MALETIC

¢ How many source code clones impose a serious maintenance challenge?
o Is aggressive refactoring always the best solution for maintaining (i.e., eliminating) clones?

The investigation of these questions was carried out on two Java open-source projects, carol
(library to use different implementations of RMI) with 23 731 LOC as of October 2004 and dns-java
(DNS server) with 20752 LOC as of June 2004. The file versions that contain clones were analyzed,
i.e., 37 (out of 164) versions for carol and 27 (out of 39) versions for dns-java.

The number of clone genealogies found in carol and dns-java were 109 and 76, respectively.
The clone genealogies were further analyzed to determine the number of consistent clone genealogies
(i.e., all of the lineages in the genealogy are consistent). The number of consistent clone
genealogies found in carol and dns-java were 41 (38%) and 24 (32%), respectively. These results
indicate that clones were required to be or were maintained (and not eliminated) during the evolution
of the considered systems.

The clone lineages and clone genealogies were marked as ‘locally factorable’ or ‘locally
unfactorable’. For further information on ‘locally factorable’ and ‘locally unfactorable’, we refer
the reader to [103]. The investigation of the above questions was carried out on two Java open-
source projects, carol (library to use different implementations of RMI) and dns-java (DNS server).
The number of ‘locally unfactorable’ clone genealogies found in carol and dns-java were 70 (64%)
and 52 (68%), respectively. The examination of the clone genealogies that existed for more than 20
versions, 37 in carol and 11 in dns-java, revealed 19 in carol and 3 in dns-java were both consistently
maintained and ‘locally unfactorable’.

During further investigation on why the clones were maintained, it was found that out of the
53 dead genealogies (eliminated in the most current version) in carol, 42 were eliminated in less
than 10 versions. In the case of dns-java it was found to be 41 of the 59 genealogies. The authors’
hypothesis was that such a behavior exists due to the programmers’ preference for not committing to
a particular design abstraction when dealing with the volatile design decisions. The manual inspection
of the two systems found that about 25-48% of the clone lineages were actually diverged (possibly due
to refactorings) from their original place (group) to some other location (group). Therefore, they are
not completely eliminated.

4.6.2. Frequently occurring changes

The concept of frequently applied changes (FACs) was introduced by Van Rysselberghe and
Demeyer [32]. FACs were defined as changes occurring multiple times in the version history of
a system. All of the CVS deltas were examined (via cvs log command) and their corresponding
source code changes (via cvs diff command) were recorded in a text file. A clone-detection tool,
CCFinder, using parameterized token matching was applied to this text file to find similar pairs of
source code changes (i.e., clones). The CVS deltas corresponding to these clones were considered as
the FACs. This technique was evaluated on the three-year version history of an open-source system,
Tomcat. Both high and low threshold values of the number of matching tokens were experimented
with to detect FACs. High threshold values produced a small set of clones that were almost identical.
It was observed these FACs were typically caused by a ‘well-established’ solution at one place being
replicated at other locations (later eliminated by a function), moving code (considered deleted and then
added), and temporary addition of code that was later deleted. The authors suggested that such FACs

Copyright © 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2007; 19:77-131
DOI: 10.1002/smr

A SURVEY AND TAXONOMY OF APPROACHES FOR MINING SOFTWARE REPOSITORIES 115

are indicators of the reasons for code duplication, possible design improvements, and the situations
in which temporary solutions can be adopted. A more rigorous similarity comparison was employed
to declare clones as FACs. The changes were considered as FACs, if both the code before and after
the change were clones. The authors suggested such FACs may be used to identify recurring change
patterns and, in turn, identification of refactorings.

4.6.3. Code duplication and origin analysis

In another approach by Godfrey et al. [91], both parameterized and metrics-based string-comparison
techniques were used to study code duplication within the file-system component of the Linux operating
system. In addition, the clone-detection methods and the fact-extraction tool cppx were used to perform
origin analysis of the parser subsystem of GCC (EGCS variant, version 1.0). Entities are often moved
and renamed (with possibly some other changes) during the evolution of a system as a result of code
restructuring or redesign (e.g., refactoring). If such moves and renames are not identified, they are
reported as deletions and additions of the ‘same’ entity (possibly multiple times). Therefore, the ‘true’
origin of an entity is lost. The clone-detection technique is used to identify such moves and renames.
However, the downside is that the reported candidates may be ‘real’ artifacts of cloning. The authors’
hypothesis is that the clones introduced by moves and renames may continue to honor many of the
original relationships (e.g., calls, called-by, inherits, uses) exhibited in the previous version. The cppx
fact-extraction tool was used to facilitate such relationship analysis. No information is available on
how the approach was evaluated.

4.7. Frequent-pattern mining

The field of data mining provides a variety of techniques for discovering implicit knowledge from
a large dataset such as patterns, trends, and rules. In a very broad sense, data mining encompasses
information retrieval, statistical analysis and modeling, and machine learning. However, each is a
separate field having applications to MSR. Therefore, instead of covering all of these fields under
a common umbrella of data mining, we discuss each on its own. Frequent-pattern mining is one
such data-mining approach that has been used in MSR. Itemset mining and sequential-pattern mining
have been applied to uncover software entities that frequently co-change, i.e., frequent patterns.
Itemset mining precludes ordering information, whereas sequential-pattern mining includes ordering
information, of changed entities forming a pattern. We now discuss such mining techniques that utilize
the metadata, source code data, and difference data found in the software repositories.

4.7.1. Evolutionary couplings and change predictions

Zimmermann et al. [15] aimed to identify co-occurring changes in a software system. The purpose
was to find, when a particular source code entity (e.g., function with name A) is modified, what other
entities are also modified (e.g., functions with names B and C). The presented tool, ROSE, parses the
source code (C++, Java, Python) to map the line numbers to the syntactic or physical-level entities [15].
The subsequent entity changes in the CVS repository are grouped as a transaction using a sliding-
window technique [15]. An association-rule mining technique was employed to determine rules of the
form B = A. Examples of deriving association rules such as a particular ‘type’ definition change leads

Copyright © 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2007; 19:77-131
DOI: 10.1002/smr

116 H. KAGDI, M. L. COLLARD AND J. I. MALETIC

to changes in instances of variables of that ‘type’ and coupling between interface and implementation
is demonstrated. Their technique has various capabilities.

e Ability to identify addition, modification, and deletion of syntactic entities without utilizing any
other external information (e.g., AST).

e Handles various programming languages and HTML documents.

e Detection of hidden dependencies that cannot be identified by source code analysis.

An extension to this work was reported in [33] that allows prediction of additions to and deletion
from entities. The tool ROSE was evaluated for navigation (recommendation of other affected entities),
prevention (find missing changed entities after a developer declares a transaction complete), closure
(false suggestions for missing entities), granularity (fine versus coarse), maintenance (modified only),
multidimensional (addition and deletion), history, and recent changes. Eight open-source projects were
considered with an evaluation period of at least a month selected for each project. For a given project,
the changes that occurred during the evaluation period were predicted based on previous versions.
Additional measure feedback (percentage of queries that resulted in at least one recommendation) was
introduced to assess the ‘interactive power’ of the ROSE tool.

The average precision, recall, and feedback values taken across the given eight projects are as
follows.

e For navigation support with fine granularity, they are 29%, 33%, and 66% respectively, whereas
for navigation support with coarse (file-level) granularity they are 29%, 44%, and 82%,
respectively.

e For prevention support with fine granularity they are 69%, 75%, and 3%, respectively, whereas
for prevention support with coarse (file-level) granularity they are 70%, 76%, and 7%,
respectively.

e For navigation support with fine granularity and maintenance transactions they are 30%, 44%,
and 71%, respectively, whereas for navigation support with fine granularity and non-maintenance
transactions (at least one item added/deleted) they are 29%, 25%, and 63%, respectively.

The average feedback values in the case of closure are 1.9% and 3% for fine and coarse granularity,
respectively. The tool ROSE needs only a few weeks of history to make suggestions in the close vicinity
of the above reported assessment values. Furthermore, the results can be improved by assigning higher
weight to recent changes in the case of projects undergoing rapid renames and moves.

A similar approach was taken by Ying ef al. [34] for source code change prediction at a file level.
An association-mining technique based on FP-tree itemset mining was used. The mined rules were
classified into the categories ‘surprising’, ‘neutral’, or ‘obvious’ to indicate their level of interest.
The technique was evaluated on the version histories of Mozilla and Eclipse projects.

4.7.2. Mining usage patterns

Livshits and Zimmermann [35] presented an approach based on itemset mining for discovering call-
usage patterns (e.g., call pairs and state machines for more than two method calls in an object) from
source code versions. In addition to the standard ranking methods typically used in data mining,
they presented a corrective ranking (i.e., based on past changes that fixed bugs) to order the mined
patterns. The objective of this work was to determine useful usage patterns and their violations.

Copyright © 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2007; 19:77-131
DOI: 10.1002/smr

A SURVEY AND TAXONOMY OF APPROACHES FOR MINING SOFTWARE REPOSITORIES 117

The hypothesis was that violations of useful patterns are potential sources of errors. The patterns were
classified into valid patterns, likely error patterns, and unlikely patterns. A snapshot of the source code
was instrumented to obtain the run-time information of method calls. A candidate pattern mined from
the version archive was considered to be a valid pattern if it is executed a specified number of times and
an unlikely pattern otherwise. Likewise, if a valid pattern is also violated (i.e., only a proper subset of
the calls are executed) a (larger) number of times, it was considered as an error pattern. The approach
was validated on Eclipse and jEdit systems. The results indicate that their approach, along with the
corrective ranking, was effective in reporting error patterns.

While the above work used itemset mining (or association mining), sequential-pattern mining has
also been used for the problem of uncovering frequent patterns of co-changes.

4.7.3. Ordered change patterns

Kagdi et al. [36] applied sequential-pattern mining to uncover frequently changed files with the
supplementary information of their change order. Modern source-control systems, such as Subversion,
preserve change-sets of files as atomic commits. However, the ordering information in which files were
changed in a change-set is typically not recorded in source code repositories. They defined six heuristics
for grouping the ‘related’ change-sets in a source code repository. Given such groups, sequences of
files that frequently change together were uncovered using sequential-pattern mining. For example,
sequences of changed-files such as {f1} — {f2} and {f4} — {f5} were uncovered. The sequence
{f1} — {f2} indicates that the changes in { f 1} happen before the changes in { f2}. This approach not
only gives the (unordered) sets of files but also supplements them with (partial) ordering information.
Therefore, this approach of changed-files sequence-mining subsumes the approach of changed-files
itemset mining. Their technique was demonstrated on a subset of the KDE source code repository.
In other works, Burch et al. [82] presented a tool that supports visualization of association rules and
sequence rules, EI-Ramly and Stroulia [95] used sequence mining to detect patterns of user activities
from the system-user interaction data, and Xie and Pei [94] used sequence mining to filter the results
of a source code search tool to report API-usage patterns in which a source code entity is used.

4.8. Information-retrieval methods

Information retrieval (IR) is another methodology that is used for classification and clustering of
textual units based on various similarity concepts. IR methods have been applied to many software
engineering problems such as traceability, program comprehension, and software reuse. Metadata such
as CVS comments, textual descriptions of bug reports, and e-mails makes IR an attractive choice. In this
section, we discuss IR techniques applied to MSR.

4.8.1. Classification based on the cause of a change

An IR-based method for the classification of MRs with regards to the purpose of a change was
presented by Mockus and Votta [77]. An automatic keyword clustering and classification (heuristic-
based) algorithm was applied on the textual description of a MR and the text messages of the
associated deltas (i.e., commit operations) in the version-control system. Here, the considered
change-management system, Extended Change Management System (ECMS), records explicitly the
MR associated with each delta. The authors preliminarily focused on three types (purposes or
reasons) of change: adding new features (adaptive), fixing bugs (corrective), and code restructuring

Copyright © 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2007; 19:77-131
DOI: 10.1002/smr

118 H. KAGDI, M. L. COLLARD AND J. I. MALETIC

for future changes (perfective). An additional category, inspection, was discovered from the initial
results of the algorithm on a test system. Further interest was on studying the relation between the
type, size, and time-effort of a change.

A proprietary telecommunication subsystem was used as a test case to demonstrate the classification
approach and investigate the following questions.

e How does the purpose of a change relate to size and interval (time-effort)?
e How does the purpose of a change relate to perceived difficulty by the developers?

The method was able to automatically classify 88% of the MRs with corrective, perfective, adaptive,
and inspection forming 33.8%, 3.7%, 45%, and 5.3%, respectively. The unclassified 12% of the MRs
were later inferred to be corrective following manual validation by the authors. The percentage of the
total number of deltas, lines added, lines deleted, and lines left unmodified are as follows.

e Corrective: deltas 22.6%, added 18%, deleted 18%, and unmodified 27.2%.

e Perfective: deltas 4.3%, added 3.5%, deleted 5.8%, and unmodified 4.5%.

e Adaptive: deltas 55.2%, added 63.2%, deleted 55.7%, and unmodified 48.3%.
e Inspection: deltas 8.5%, added 5.4%, deleted 10.8%, and unmodified 10.3%.

The above numbers give an idea between the type and the size of a change. All of the changes are not
identical and vary in the size (expressed in the above attributes) with regards to the type. From the time-
effort point of view, corrective changes were found to be of shortest interval, followed by perfective
changes. The 35% of the most time-consuming adaptive changes took considerably longer than their
corresponding inspection changes. On the lower end, the 60% of least time-consuming inspection
changes took considerably longer than their counterpart adaptive changes. The authors attributed this
disparity due to the need for formal inspection for changes extending more than 50 LOC.

The level of difficulty (easy, medium, hard) perceived by developers was collected for 170 changes.
The results indicated that corrective changes were perceived to be most hard, followed by perfective
changes, and the inspection changes were perceived to be easy.

The quality of the automatic classification was validated with the developers’ opinion. The results
of the automatic classification of a selected few (30-150) MRs were validated with the manual
classification performed by the developers. About 61% of the time they were in agreement with each
other.

4.8.2. Change prediction

Canfora and Cerulo [56] used the bug descriptions and the CVS commit messages for the purpose
of change predictions. Their approach provides a set of files that are likely to change based on only
the textual description of a newly introduced bug (or feature) in the bug repository. An IR method
was used to index the changed files in the CVS repositories with the textual description of past BRs
in the Bugzilla repository and the CVS commit messages. A BR is linked to a CVS commit (i.e., a
set of changed files) based on the explicit bug identifier found (a common practice in open-source
development) in that commit message (e.g., bug id 30 000). The corpus resulting from this method is
used to query for a list of relevant files that are likely to change due to a given BR. The query is formed
from the textual description of a BR.

Copyright © 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2007; 19:77-131
DOI: 10.1002/smr

A SURVEY AND TAXONOMY OF APPROACHES FOR MINING SOFTWARE REPOSITORIES 119

The approach was evaluated on four open-source projects Kcalc, Kpdf, Kspread, and Firefox.
Precision and recall metrics were used as the assessment metrics. A validation technique known as
leave-out-one was used. That is, the indexing is formed on all bug reports (typically already fixed)
except the one whose change-set is estimated. The estimated files produced by the method were
used to compute precision and recall metrics. Precision and recall were found to increase with larger
amounts of textual information, e.g., complete versus short descriptions of BRs. For the projects Kcalc
and Kspread the bug descriptions performed better than CVS commits, whereas the inverse behavior
was found in Kpdf and Firefox. Precision and recall were reported for 30 queries on each project.
The precisions of Kcalc, Kpdf, Kspread, and Firefox were reported in the range [38%, 78%], in the
range [36%, 45%], 39%, and 36%, respectively. The recall of Kcalc, Kpdf, Kspread, and Firefox were
reported in the range [82%, 98%], in the range [70%, 85%], 79%, and 67%, respectively.

A further extension of this work was reported in [57] where the prediction was indexed at a line-
level granularity of source code. The evaluation on three open-source projects Gedit, ArgoUML, and
Firefox shows over 10% improvement in precision compared with file-level granularity. However, the
cost of indexing at line-level is of the order of hours compared with the order of seconds with file-level
granularity.

4.8.3. Importance of human guidance

The importance of a human analyst in refining the data produced by data-mining! tools, and further
guiding and tuning the data-mining process was argued by Hayes et al. [59]. It is typical of data-mining
tools not to produce ‘perfect’ results (i.e., both precision and recall are never 100%). Such results may
create (negative) ripple effects when utilized to help automate a desired task. In order to deal with
this problem, the authors suggested that only the refined results obtained by an analyst (and not those
directly produced by a data-mining tool) should be made available to others (i.e., tools/human).

Two case studies on the MODIS dataset were described in [59] and reported the following questions.

e Are the better (refined) accuracies of both the analyst and tool equivalent?
e Are there any other factors that affect analyst decision-making? Level of expertise? Trust of the
software?

A pilot study was conducted on the MODIS dataset consisting of 19 high-level requirements, 49 low-
level requirements, and 41 true links between them. A traceability tool, SuperTracePlus, based on an IR
technique was used. The data obtained by this tool were refined by experienced analysts (i.e., highly
familiar with the tool but only slightly familiar with the domain). The results indicate that further
refinement by the analysts increased precision but decreased recall. However, no general conclusions
were deduced considering the small size and scope of the case study.

In another study, a traceability task was assigned to experienced analysts using the SuperTracePlus
tool with three different settings of precision and recall values (one setting per analyst). They were
asked to report both the original and refined precision and recall values along with the time spent
in a one-week period. The results of this study show that data sets with low recall took a relatively

(ﬂHere, the term ‘data mining’ is used in a broader context, including IR methods.

Copyright © 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2007; 19:77-131
DOI: 10.1002/smr

120 H. KAGDI, M. L. COLLARD AND J. I. MALETIC

longer time to complete and produced no worse final (refined) results than data sets with high recall.
Overall, no performance-improving pattern was discovered. While this work was not directly applied
to multiple versions of a software system, we feel that it contributes a useful, and efficient, technique
for analysis of multi-version repositories.

4.8.4. New developer assistance

Cubranic et al. [60,61] described a tool, Hipikat, to assist new developers (not necessarily novice) on a
project. Various artifacts (e.g., source code, e-mail, and BRs) produced in the project were integrated
to form a project memory. A vector-based IR method was used to draw the similarity between artifacts.
Other relationships between artifacts were formed by using heuristics, e.g., MRs in Bugzilla are related
to the files in CVS by matching bug-ids in the commit messages. Hipikat recommends artifacts from
the project memory that may hold relevance to a task at hand. A developer may ask for the relevant
artifacts explicitly in the form of a explicit query, or the tool can do so automatically based on the
current context (e.g., based on the currently open documents in the developer’s workspace).

Two studies are discussed in [61] to validate the tool. One study focuses on the quality of Hipikat’s
recommendations. Twenty bugs from the Bugzilla database of Eclipse were randomly selected from
215 bugs that were assigned a severity status of ‘minor’ and fixed between June 2002 and March 2003.
The task was to recommend the relevant source code files to these bugs. The maximum precision and
recall values were found to be 56% and 71%, respectively. The average precision and recall values
were found to be 11% and 65%, respectively. The minimum values for both precision and recall were
reported to be zero in the case of four bugs.

The other is a usability study for new developers (with software tool and development experience)
using the Hipikat tool. For details on user tasks and questions we refer the reader to [61]. The results
show that Hipikat was used more (i.e., accessed and queried more) in the initial understanding of the
assigned task but not in the execution of it. The participants utilized the recommendations (and possibly
more queries based on them) until they got to a starting point providing access to the relevant source
code. Venolia [86] proposed a similar tool that allows a full-text search on different artifacts stored in
various software repositories. This includes processing of information such as e-mail addresses and
URLSs found in unstructured text.

4.8.5. Commonly occurring phenomena

Time-series representation and frequency-domain analysis approaches have been proven successful in
domains such as image/speech processing and stock-market forecasting to detect commonly occurring
similar phenomena that evolve over time. The applicability of one such efficient approach, Linear
Predictive Coding and Cepstrum coefficients (LPC/Cepstrum) for compact representation of the
evolution of software modules, was examined by Antoniol et al. [62]. The size of a software module
changing (typically increasing) over versions is thought of as a time series and is represented by an
ordered set of LPC coefficients. The LPC coefficients are used to compute Cepstrum coefficients
by inverse Fourier transformation. The LPC/Cepstrum series provides the approximation of the
time-evolving series and preserves most of the relevant information of the original series. All of
the evolving software modules are transformed into their respective LPC/Cepstrum representations.
A comparison measure such as Euclidian distance is used to compute the ‘closeness’ (similarity)

Copyright © 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2007; 19:77-131
DOI: 10.1002/smr

A SURVEY AND TAXONOMY OF APPROACHES FOR MINING SOFTWARE REPOSITORIES 121

between LPC/Cepstrum representations of software modules. A distance threshold is defined, below
which the measures are considered similar.

The LPC/Cepstrum approach was applied to the Linux kernel versions 1.1.0 to 1.3.1.0 consisting
of 1788 files and 211 releases. The size of the modules was defined by the LOC metric.
The LPC/Cepstrum computation was performed in less than 5 seconds on a P4 1.6 GHz machine.
Increasing the LPC/Cepstrum series length (better approximation of the time series) resulted in a
decreasing number of similar pairs. Similarly, increasing the threshold requirement (e.g., 1073 to 107)
resulted in a decreasing number of similar pairs. Different combinations of the LPC/Cepstrum series
lengths and distance threshold values were also tested for similarity detection. It was found that more
similar pairs were reported with decreasing both the LPC/Cepstrum series length and the threshold.

4.9. C(lassification with supervised learning

The term machine learning refers to techniques that are capable of automatically acquiring and
integrating knowledge in order to improve performance for the desired task(s). Supervised learning
is a technique for creating a cause—effect function from training data. The training data are divided into
the input objects and the desired outputs or classifications. The software repositories containing the
historical data (and metadata) of an evolving software system allow machine-learning techniques to be
applied for discovering and forming classification and prediction models within the context of MSR.

4.9.1. Maintenance relevance relations

A classification-learning technique is used by Shirabad ef al. [37-39] to determine the co-update
relations between a pair of source code files, i.e., given two files determine whether a change in one
leads to a change in the other. Such types of relations are also termed maintenance-relevance relations.
A decision-tree classifier (i.e., model) is produced by a machine-learning (induction) algorithm.
A time-based heuristic is employed to assign a relevant or non-relevant relation between a pair of
files to form the learning and testing sets. A fixed time period between time 77 and 7> (T2 < T1)
is chosen and if a given pair of files changed together in any update during that time, the relation is
considered relevant. Another time period between 73 and 7> is chosen (73 < T7) and all of the relations
between a pair of files that are not marked as relevant are considered non-relevant. The classifier takes
as input a pair of files and assigns the co-update relation between them to either relevant or non-relevant
categories. The files are described by their attributes divided into syntactic (e.g., function calls, variable,
type definitions) and text-based types (e.g., text descriptions of PRs, program traces, memory dumps,
file comments). Note that the text-based attributes are represented by a Boolean bag of words (all of
the possible values in a set of documents after the stop-word, transformation-list, and collocation-list
processing). Comparing files based on text-based attributes is then reduced to performing a logical
AND operation on a pair of Boolean vectors. The syntactic attributes are given by a list of name—value
pairs.

The approach was validated on a telephone switching system with 4700 files and 1.9 MLOC written
in a high-level programming language and assembly language [39]. Three classifiers were obtained
based on the problem report (text), comment, and syntactic attributes. The analysis of the ROC (false-
positive rate versus true-positive rate), precision, and recall plots imply that the PR attributes generate
better classifiers than those of syntactic attributes. The comment attributes generated classifiers do not

Copyright © 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2007; 19:77-131
DOI: 10.1002/smr

122 H. KAGDI, M. L. COLLARD AND J. I. MALETIC

perform on a par with those generated with the PR attributes. However, they are better than those
generated from the syntactic attributes. The classifiers generated from a combination of syntactic and
comment attributes produce better results than either of them considered alone.

4.9.2. Triage bug reports

Anvik et al. [63] used a supervised learning (i.e., support vector machine algorithm) in order to
recommend a list of potential developers for resolving a BR. Past reports in the Bugzilla repository
are used to produce a classifier. The authors developed project-specific heuristics to train the classifier
instead of directly using the assigned-to field of a BR. This was done to avoid incorrect assignment
of BRs with default assignments that may not necessarily reflect the actual developer who resolved a
bug. The approach is evaluated on three open-source projects Eclipse, Firefox, and GCC. Developers
that contributed at least nine BR resolutions over the most recent three months were considered in
the training set for Eclipse and Firefox. The precision for Eclipse and Firefox was 57% and 64%,
respectively, and the recall 7% and 2%, respectively. The precision of GCC was 6% for recommending
one developer and 18% for two/three developers. The recall of GCC was 0.3%, 2%, and 3% for
recommending one, two, and three developers, respectively.

4.10. Social network analysis

Social network analysis [104] is a technique widely used in social and behavioral sciences for deriving
and measuring ‘invisible’ relationships between social entities (i.e., people). In the context of MSR,
social network analysis is applied to discover developer roles, contributions, and associations in the
software development.

4.10.1. Developers roles and contributions

An approach based on social network analysis to group developers using the logs (deltas) stored in
the CVS repository was proposed by Huang and Liu [64]. The log data were analyzed to determine
developers’ contributions at a module (directory) level. This information was used to construct a graph
where a node represents a developer and an edge represents a ‘common contribution’ relationship.
An edge exists between a pair of developers if they are found to contribute deltas to the same directory.
This graph was analyzed to find core and peripheral developers based on the distribution of the distance-
centrality values. The distance-centrality value of a node is basically the inverse of the summation
of the distances between it and every other node. The lower the distance-centrality value of node,
the greater the connection with (possibly many) other nodes. The authors report their findings on six
projects selected from SourceForge. In one project, all of the developers were found to have similar
roles. They found core developers (indicated by high distance-centrality values) formed a relatively
small group, controlled the source code, and played central roles. The other peripheral developers
made minor contributions. The core members were shown to work very closely with each other.
The peripheral developers were found to rarely work with the other peripheral contributors.

A similar approach was earlier described by Lopez-Fernandez et al. [105] to construct committer
networks (i.e., vertices are mapped to committers and edges are mapped to contributions to a
common module) and module network (i.e., vertices are mapped to modules and edges are mapped

Copyright © 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2007; 19:77-131
DOI: 10.1002/smr

A SURVEY AND TAXONOMY OF APPROACHES FOR MINING SOFTWARE REPOSITORIES 123

to contributions by a common developer) from the CVS log data. Various graph characteristics such as
degree of a vertex and clustering coefficient of a vertex were suggested and interpreted. A case study
and the results were discussed on Apache, GNOME, and KDE systems.

4.10.2. Inter-projects collaboration

A visualization tool, Graphmania, with the goal of supporting cross-project knowledge sharing and
collaboration was presented by Ohira et al. [65]. The authors observed from the analysis of over 90 000
projects hosted on SourceForge that small projects typically consist of few developers (e.g., 66.7%
of the projects had only a single developer). The Graphmania tool is targeted to support developers
involved in a small project for performing tasks by utilizing both the knowledge of developers of other
projects and the relevant information from other projects. The authors believe that such a tool may
encourage other non-contributors to turn into active participants by directly supporting the questions
‘Who should I ask?’ and “What can I ask?’.

The Graphmania tool provides three types of collaborative social network: developer networks,
project networks, and developer—project networks. These networks are represented by an undirected
weighted graph with the following mappings.

e Developer networks: a node represents a developer and an edge between a pair of nodes
(developers) represents their participation in at least one common project. The number of
common projects is used to assign a weight to the edge.

e Project networks: a node represents a project and an edge between a pair of nodes (projects)
represents at least one common developer. The number of common developers is used to assign
a weight to the edge.

e Developer—project networks: all of the nodes and edges of the developer networks and project
networks. In addition, edges are introduced between developer nodes and their corresponding
participating project nodes (i.e., if a developer is a participant of a project).

A case study describing the application of the Graphmania tool on the above dataset from
SourceForge, but limited to nodes with a maximum of five edges was described. Only small subsets
(sub-graphs) of the three networks were presented. Further analysis showed that the bridge nodes in
the case of a developer network may reveal a ‘linchpin’ developer connecting to the other component
(social network) of a graph. Such ‘linchpin’ developers may form potential contacts of external
knowledge. In the case of a project network, a developer involved in a cluster of projects can share
information and help avoid consideration of other irrelevant projects from other clusters. Similarly,
the developer to project edges in the developer—project network may help a developer to acquire
information for a given project (task) from other neighbors (i.e., other projects in which the same
developer is involved).

5. DISCUSSION AND OPEN ISSUES

The realistic nature (i.e., actual evolution data) of MSR investigations appears to be a promising avenue
to help support and understand software evolution. However, establishment of history-based techniques

Copyright © 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2007; 19:77-131
DOI: 10.1002/smr

124 H. KAGDI, M. L. COLLARD AND J. I. MALETIC

as an alternative and/or complement to traditional techniques remains largely an open question for
further investigation. Answering this question will provide the underlying validation of MSR research.
In order to take steps towards this, the following issues needs to be addressed:

(1) we need to be able to perform MSR on fine-grained entities;
(2) there needs to be clear guidelines for the number of versions to be considered; and
(3) standards for validation must be developed.

Let us discuss each of these issues in more detail.
5.1. MSR on fine-grained entities

One major issue is the disparity between the software-evolution data available in the repositories
and the needs of the stockholders, not just researchers but also including software maintainers.
The majority of current MSR approaches operate at either the physical level (e.g., system,
subsystems, directories, files, lines) or at a fairly high level of logical/syntactic entities (e.g., classes).
This is regardless of the primary focus, i.e., changes of properties or artifacts. In part this is due
to the researchers restricting their approaches/studies to what is directly available and supported by
the software repositories (e.g., file and line view of source code and their differences). However, the
investigations by Zimmermann et al. [33] have shown the benefits of further processing the information
directly available from source code repositories for change prediction and impact-analysis tasks.

In their study [33], there was no significant difference in precision and recall values between file-
based and logical-based entities (i.e., classes, methods, and variables) with respect to change-prediction
tasks. However, there is an implicit gain in terms of the context available to the maintainer, for example,
the exact location of a predicted change. Predicting a change at an entity level rather than a file level
reduces the manual effort as only the predicted entities (versus the whole file) need to be examined.
This leads to the issue of extending current MSR by increasing the source code awareness.

The issue of source code awareness could be twofold with regards to the types of MSR questions
and the source code artifacts and differences. For example, on one end, a market-basket question is
used to find logical/evolutionary couplings between source code entities. These couplings are termed
‘hidden’ dependencies as they are solely based on the historical information of software changes.
However, very little attention has been paid as to whether these hidden dependencies correspond to
relationships present in well-established source code models (e.g., control-flow graphs, dependency
graphs, call graphs, and UML models). We feel that a finer-grained understanding of the source
code changes is needed to address these types of questions. Fluri ef al. [106] analyzed change-sets
from a CVS repository to distinguish between changes within source code entities such as classes
and methods (termed as structural changes) from the changes to license updates and white space
between source code entities (termed as non-structural changes). The goal of their work was to
refine evolutionary couplings detected from the version history with this information (i.e., reduce
false positives). Their study on an Eclipse plugin found over 31% of change-sets with no structural
changes and over 51% of change-sets with at least one non-structural change. In one of the rare cases,
Ying et al. [34] defined the interestingness measure of the evolutionary coupling based on the source
code dependencies such as calls, inheritance, and usage. Their study on Eclipse and Mozilla found
evolutionary couplings that were not represented by the source code dependencies they considered.
We feel that further utilizing such source code dependencies (such as association and dependency

Copyright © 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2007; 19:77-131
DOI: 10.1002/smr

A SURVEY AND TAXONOMY OF APPROACHES FOR MINING SOFTWARE REPOSITORIES 125

relationships defined in UML) will result in developing heuristics and criteria that would further
reduce false evolutionary couplings. It will also help to detect evolutionary couplings that are prevalent
but do not exhibit any source code dependencies (e.g., domain or developer induced dependencies).
More studies in this direction are needed to realize the exclusive and synergistic contributions of MSR
approaches.

5.2. Historical context: how many versions?

Software repositories bring a rich history of software development and evolution. One goal of MSR is
to undercover the past successes, and failures, from historical information and improve the evolution
process of the software system(s) under consideration. However, one needs to be careful when selecting
the amount and period of historical data for basing tools or models supporting a particular aspect of
software evolution. Considering the development data too far back in the history imposes a risk of
irrelevant information. The design or operational assumptions of the system may no longer be similar,
or worse may be entirely different. For example, consider a hypothetical system that has undergone
1000 versions. The information about the changes in the first 50 versions may be totally irrelevant for
predicting the changes in version 1001. A series of changes from version 50 to version 200 could be
attributed to an unstable unit in the system that has now stabilized.

On the other hand, considering too few versions of the system imposes the risk of being incomplete
or missing important relevant information thus resulting in few useful results. For example, a current
version of a system may be in the middle of a refactoring that is achieved by a sequence of changes
(versions). The minimum requirement would be the past versions beginning from when the refactoring
started to first confirm the kind of refactoring taking place and predict the remaining steps. The number
of versions to mine depends on the task and the current state/phase of the system under consideration.

5.3. Threats to validity in MSR

MSR approaches use a variety of software repositories, ask different questions, and draw conclusions
within the context of the conducted study. All of these factors are subject to threats to validity.

Gasser et al. [16] identified the challenges associated with the common need among researchers
in selecting, gathering, and maintaining the raw data of open-source projects for their respective
investigations. They suggested a research infrastructure to deal with such challenges and to serve as a
benchmark to facilitate comparative and collaborative research. They discussed the infrastructure with
regards to representation standards for data and metadata available in various software repositories,
linking them, the required tools, and a centralized data repository. German et al. further suggested a
set of projects representing various sizes and domains, their extracted source code facts (i.e., syntax
and semantic), and the period of considered history and observation for these projects to be
benchmarked [10,18].

We call for a comparative framework to objectively compare MSR approaches with regards to
the aspects of software evolution, MSR questions, and the results. Such a framework will facilitate
more generic conclusions in the MSR research. Currently, it is difficult to see that two independent
MSR investigations are asking equivalent questions or studying the same or similar aspect of software
evolution. A benchmark of this nature would help address the expressiveness and effectiveness of MSR
in improving software evolution.

Copyright © 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2007; 19:77-131
DOI: 10.1002/smr

126 H. KAGDI, M. L. COLLARD AND J. I. MALETIC

6. CONCLUDING REMARKS

Over 80 investigations were surveyed that examined multiple snapshots of software artifacts
(e.g., source code version from CVS, system release, etc.) and/or other temporal information
(e.g., effect on size and structure of a system, BRs, etc.). From this survey of the literature, a
layered taxonomy was derived that characterizes the software repositories utilized, the purpose of
the investigation, the methodology used, and the evaluation methods. Each investigation was then
categorized within this taxonomy.

The taxonomy facilitates comparison of new approaches/investigations for mining information from
software repositories by the research community. Previously, no overarching survey or taxonomy of
this literature has been presented. The intent of this work is to form a basis for those researchers
interested in MSR for the purpose of understanding the evolution of a software system. Our hope is
this taxonomy will assist in the continued advancement of the field.

We feel that the work presented here is a prerequisite to understanding what additional contributions
MSR approaches bring to the table for understanding software evolution, beyond that of other software
engineering research (e.g., traditional program analysis techniques or software metrics). A clearer
understanding will support the development of tools, methods, and processes that more precisely reflect
the actual nature of software evolution.

ACKNOWLEDGEMENTS

We thank the reviewers for their detailed comments and suggestions. These were instrumental in helping us
improve the presentation of the survey.

REFERENCES

1. Lehman M. On understanding laws, evolution and conservation in the large program life cycle. Journal of Systems and
Software 1980; 1(3):213-221.

2. Lehman M, Perry D, Ramil JF. On evidence supporting the FEAST hypothesis and the laws of software evolution.
Proceedings 5th International Symposium on Software Metrics (METRICS’98). IEEE Computer Society Press:
Los Alamitos CA, 1998; 84-88.

3. Lehman M, Ramil JF. An approach to a theory of software evolution. Proceedings International Workshop on Principles
of Software Evolution (IWPSE’01). IEEE Computer Society Press: Los Alamitos CA, 2001; 70-74.

4. Lehman M, Ramil JF. Evolution in software and related areas. Proceedings International Workshop on Principles of
Software Evolution (IWPSE’01). IEEE Computer Society Press: Los Alamitos CA, 2001; 1-16.

5. Lehman MM, Belady LA. Program Evolution: Processes of Software Change. Academic Press: New York NY, 1985.

6. Ramil JF, Lehman M. Metrics of software evolution as effort predictors—a case study. Proceedings 16th IEEE
International Conference on Software Maintenance (ICSM’00). IEEE Computer Society Press: Los Alamitos CA, 2000;
163-172.

7. Weiss DM, Basili VR. Evaluating software development by analysis of changes: Some data from the software engineering
laboratory. IEEE Transactions on Software Engineering 1985; 11(2):157-168.

8. Eick SG, Graves TL, Karr AF, Marron JS, Mockus A. Does code decay? Assessing the evidence from change management
data. IEEE Transactions on Software Engineering 2001; 27(1):1-12.

9. Kagdi H, Collard ML, Maletic JI. Towards a taxonomy of approaches for mining of source code repositories. Proceedings
2nd International Workshop on Mining Software Repositories (MSR’05). ACM Press: New York NY, 2005; 90-94.

10. German DM, Cubranic D, Storey MAD. A framework for describing and understanding mining tools in software
development. Proceedings 2nd International Workshop on Mining Software Repositories (MSR’05). ACM Press:
New York NY, 2005; 95-99.

Copyright © 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2007; 19:77-131
DOI: 10.1002/smr

A SURVEY AND TAXONOMY OF APPROACHES FOR MINING SOFTWARE REPOSITORIES 127

14.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

31.

. Kim M, Notkin D. Program element matching for multi-version program analyses. Proceedings 3rd International

Workshop on Mining Software Repositories (MSR’06). ACM Press: New York NY, 2006; 58-64.

. Buckley J, Mens T, Zenger M, Rashid A, Kniesel G. Towards a taxonomy of software change. Journal of Software

Maintenance and Evolution: Research and Practice 2005; 17(5):309-332. DOI:10.1002/smr.319.

. Robles G, Gonzdlez-Barahona JM, Ghosh RA. GlueTheos: Automating the retrieval and analysis of data from publicly

available software repositories. Proceedings Ist International Workshop on Mining Software Repositories (MSR’04).
University of Waterloo: Waterloo ON, 2004; 28-31. Available at:
http://plg.uwaterloo.ca/~aeehassa’/home/pubs/MSR2004ProceedingsFINAL_IEE_Acrobat4.pdf [1 February 2007].
Alonso O, Devanbu PT, Gertz M. Database techniques for the analysis and exploration of software repositories.
Proceedings 1st International Workshop on Mining Software Repositories (MSR’04). University of Waterloo: Waterloo
ON, 2004; 37—41. Available at:
http://plg.uwaterloo.ca/~aeehassa/home/pubs/MSR2004ProceedingsFINAL_IEE_Acrobat4.pdf [1 February 2007].

. Zimmermann T, Wei3gerber P, Diehl S, Zeller A. Mining version histories to guide software changes. Proceedings 26th

International Conference on Software Engineering (ICSE’04). IEEE Computer Society Press: Los Alamitos CA, 2004;
563-572.

Gasser L, Ripoche G, Sandusky RJ. Research infrastructure for empirical science of F/OSS. Proceedings 1st International
Workshop on Mining Software Repositories (MSR’04). University of Waterloo: Waterloo ON, 2004; 12—-16.

Available at:

http://plg.uwaterloo.ca/~aeehassa’/home/pubs/MSR2004ProceedingsFINAL_IEE_Acrobat4.pdf [1 February 2007].
Conklin M, Howison J, Crowston K. Collaboration using OSSmole: A repository of FLOSS data and analyses.
Proceedings 2nd International Workshop on Mining Software Repositories (MSR’05). ACM Press: New York NY, 2005;
116-120.

German DM. Mining CVS repositories, the SoftChange experience. Proceedings 1st International Workshop on Mining
Software Repositories (MSR’04). University of Waterloo: Waterloo ON, 2004; 17-21. Available at:
http://plg.uwaterloo.ca/~aeehassa’/home/pubs/MSR2004ProceedingsFINAL_IEE_Acrobat4.pdf [1 February 2007].
Howison J. Crowston K. The perils and pitfalls of mining Sourceforge. Proceedings 1st International Workshop on Mining
Software Repositories (MSR’04). University of Waterloo: Waterloo ON, 2004; 7—11. Available at:
http://plg.uwaterloo.ca/~aeehassa’/home/pubs/MSR2004ProceedingsFINAL_IEE_Acrobat4.pdf [1 February 2007].

Gall H, Hajek K, Jazayeri M. Detection of logical coupling based on product release history. Proceedings 14th IEEE
International Conference on Software Maintenance (ICSM’98). IEEE Computer Society Press: Los Alamitos CA, 1998;
190-199.

German DM. An empirical study of fine-grained software modifications. Proceedings 20th IEEE International Conference
on Software Maintenance (ICSM’04). IEEE Computer Society Press: Los Alamitos CA, 2004; 316-325.

Chen A, Chou E, Wong J, Yao AY, Zhang Q, Zhang S, Michail A. CVSSearch: Searching through source code using
CVS comments. Proceedings 17th IEEE International Conference on Software Maintenance (ICSM’01). IEEE Computer
Society Press: Los Alamitos CA, 2001; 364-373.

Fischer M, Pinzger M, Gall H. Populating a release history database from version control and bug tracking systems.
Proceedings 19th IEEE International Conference on Software Maintenance (ICSM’03). IEEE Computer Society Press:
Los Alamitos CA, 2003; 23-32.

Zou L, Godfrey MW. Detecting merging and splitting using origin analysis. Proceedings 10th Working Conference on
Reverse Engineering (WCRE’03). IEEE Computer Society Press: Los Alamitos CA, 2003; 146—154.

Askari M, Holt R. Information theoretic evaluation of change prediction models for large-scale software. Proceedings
3rd International Workshop on Mining Software Repositories (MSR’06). ACM Press: New York NY, 2006;
126-132.

Gall H, Jazayeri M, Krajewski J. CVS release history data for detecting logical couplings. Proceedings 6th International
Workshop on Principles of Software Evolution (IWPSE’03). IEEE Computer Society Press: Los Alamitos CA, 2003;
13-23.

Fischer M, Oberleitner J, Ratzinger J, Gall H. Mining evolution data of a product family. Proceedings 2nd International
Workshop on Mining Software Repositories (MSR’05). ACM Press: New York NY, 2005; 12-16.

Sliwerski J, Zimmermann T, Zeller A. When do changes induce fixes? Proceedings 2nd International Workshop on Mining
Software Repositories (MSR’05). ACM Press: New York NY, 2005; 24-28.

Hindle A, German DM. SCQL: A formal model and a query language for source control repositories. Proceedings
2nd International Workshop on Mining Software Repositories (MSR’05). ACM Press: New York NY, 2005;
100-104.

. Kim S, Whitehead EJ, Bevan J. Analysis of signature change patterns. Proceedings 2nd International Workshop on Mining

Software Repositories (MSR’05). ACM Press: New York NY, 2005; 64—68.
Maletic JI, Collard ML. Supporting source code difference analysis. Proceedings 20th IEEE International Conference on
Software Maintenance (ICSM’04). IEEE Computer Society Press: Los Alamitos CA, 2004; 210-219.

Copyright © 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2007; 19:77-131

DOI: 10.1002/smr

128

H. KAGDI, M. L. COLLARD AND J. I. MALETIC

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

S1.

52.

. Van Rysselberghe F, Demeyer S. Mining version control systems for FACs (frequently applied changes). Proceedings 1st

International Workshop on Mining Software Repositories (MSR’04). IEE: Stevenage, 2004; 48-52.

. Zimmermann T, Zeller A, Weiligerber P, Diehl S. Mining version histories to guide software changes. IEEE Transactions

on Software Engineering 2005; 31(6):429-445.

. Ying ATT, Murphy GC, Ng R, Chu-Carroll MC. Predicting source code changes by mining change history. I[EEE

Transactions on Software Engineering 2004; 30(9):574-586.

. Livshits B, Zimmermann T. DynaMine: Finding common error patterns by mining software revision histories.

Proceedings 13th International Symposium on Foundations of Software Engineering (ESEC/FSE’05). ACM Press:
New York NY, 2005; 296-305.

Kagdi H, Yusuf S, Maletic JI. Mining sequences of changed-files from version histories. Proceedings 3rd International
Workshop on Mining Software Repositories (MSR’06). ACM Press: New York NY, 2006; 47-53.

Shirabad JS, Lethbridge TC, Matwin S. Supporting software maintenance by mining software update records. Proceedings
17th IEEE International Conference on Software Maintenance (ICSM’01). IEEE Computer Society Press: Los Alamitos
CA, 2001; 22-31.

Shirabad JS, Lethbridge TC, Matwin S. Mining the maintenance history of a legacy software system. Proceedings 19th
IEEFE International Conference on Software Maintenance (ICSM’03). IEEE Computer Society Press: Los Alamitos CA,
2003; 95-104.

Shirabad JS, Lethbridge TC, Matwin S. Mining the software change repository of a legacy telephony system.
Proceedings 1st International Workshop on Mining Software Repositories (MSR’04). University of Waterloo: Waterloo
ON, 2004; 53-57. Available at:
http://plg.uwaterloo.ca/~aeehassa/home/pubs/MSR2004ProceedingsFINAL_IEE_Acrobat4.pdf [1 February 2007].
Dinh-Trong TT, Bieman JM. The FreeBSD project: A replication case study of open source development. /IEEE
Transactions on Software Engineering 2005; 31(6):481-494.

Robles G, Gonzilez-Barahona JM. Developer identification methods for integrated data from various sources.
Proceedings 2nd International Workshop on Mining Software Repositories (MSR’05). ACM Press: New York NY, 2005;
106-110.

Sandusky RJ, Gasser L, Ripoche G. Bug report networks: Varieties, strategies, and impacts in a F/OSS development
community. Proceedings 1st International Workshop on Mining Software Repositories (MSR’04). University of Waterloo:
Waterloo ON, 2004; 80—-84. Available at:
http://plg.uwaterloo.ca/~aeehassa/home/pubs/MSR2004ProceedingsFINAL_IEE_Acrobat4.pdf [1 February 2007].
Ostrand TJ, Weyuker EJ. A tool for mining defect-tracking systems to predict fault-prone files. Proceedings Ist
International Workshop on Mining Software Repositories (MSR’04). University of Waterloo: Waterloo ON, 2004;
85-89. Available at:

http://plg.uwaterloo.ca/~aeehassa/home/pubs/MSR2004ProceedingsFINAL_IEE_Acrobat4.pdf [1 February 2007].
Robles G, Gonzilez-Barahona JM, Michlmayr M, Amor JJ. Mining large software compilations over time: Another
perspective of software evolution. Proceedings 3rd International Workshop on Mining Software Repositories (MSR’06).
ACM Press: New York NY, 2006; 3-9.

Williams CC, Hollingsworth JK. Bug driven bug finders. Proceedings 1st International Workshop on Mining Software
Repositories (MSR’04). University of Waterloo: Waterloo ON, 2004; 70-74. Available at:
http://plg.uwaterloo.ca/~aeehassa/home/pubs/MSR2004ProceedingsFINAL_IEE_Acrobat4.pdf [1 February 2007].
Williams CC, Hollingsworth JK. Automatic mining of source code repositories to improve bug finding techniques. IEEE
Transactions on Software Engineering 2005; 31(6):466—480.

Selby RW. Enabling reuse-based software development of large-scale systems. IEEE Transactions on Software
Engineering 2005; 31(6):495-510.

Williams CC, Hollingsworth JK. Recovering system specific rules from software repositories. Proceedings 2nd
International Workshop on Mining Software Repositories (MSR’05). ACM Press: New York NY, 2005; 7-11.

Gorg C, Weilligerber P. Error detection by refactoring reconstruction. Proceedings 2nd International Workshop on Mining
software repositories (MSR’05). ACM Press: New York NY, 2005; 29-33.

Ying ATT, Wright JL, Abrams S. Source code that talks: An exploration of Eclipse task comments and their implication
to repository mining. Proceedings 2nd International Workshop on Mining software repositories (MSR’05). ACM Press:
New York NY, 2005; 53-57.

Capiluppi A, Morisio M, Ramil JF. Structural evolution of an open source system: A case study. Proceedings 12th IEEE
International Workshop on Program Comprehension (IWPC’04). IEEE Computer Society Press: Los Alamitos CA, 2004;
172-182.

Menzies T, Di Stefano JS, Cunanan C, Chapman R. Mining repositories to assist in project planning and resource
allocation. Proceedings 1st International Workshop on Mining Software Repositories (MSR’04). University of Waterloo:
Waterloo ON, 2004; 75-79. Available at:
http://plg.uwaterloo.ca/~aeehassa/home/pubs/MSR2004ProceedingsFINAL_IEE_Acrobat4.pdf [1 February 2007].

Copyright © 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2007; 19:77-131

DOI: 10.1002/smr

A SURVEY AND TAXONOMY OF APPROACHES FOR MINING SOFTWARE REPOSITORIES 129

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

. Van Rysselberghe F, Demeyer S. Studying software evolution information by visualizing the change history. Proceedings

20th IEEE International Conference on Software Maintenance (ICSM’04). IEEE Computer Society Press: Los Alamitos
CA, 2004; 328-37.

. Ratzinger J, Fischer M, Gall H. Improving evolvability through refactoring. Proceedings 2nd International Workshop on

Mining software repositories (MSR’05). ACM Press: New York NY, 2005; 69-73.

. Kim M, Notkin D. Using a clone genealogy extractor for understanding and supporting evolution of code clones.

Proceedings 2nd International Workshop on Mining Software Repositories (MSR’05). ACM Press: New York NY, 2005;
17-21.

Canfora G, Cerulo L. Impact analysis by mining software and change request repositories. Proceedings 11th IEEE
International Symposium on Software Metrics (METRICS’05). IEEE Computer Society Press: Los Alamitos CA, 2005;
29-37.

Canfora G, Cerulo L. Fine grained indexing of software repositories to support impact analysis. Proceedings 3rd
International Workshop on Mining Software Repositories (MSR’06). ACM Press: New York NY, 2006; 105-111.

Ohba M, Gondow K. Toward mining concept keywords from identifiers in large software projects. Proceedings 2nd
International Workshop on Mining Software Repositories (MSR’05). ACM Press: New York NY, 2005; 48-52.

Hayes JH, Dekhtyar A, Sundaram S. Text mining for software engineering: How analyst feedback impacts final results.
Proceedings 2nd International Workshop on Mining Software Repositories (MSR’05). ACM Press: New York NY, 2005;
58-62.

Cubranic D, Murphy GC. Hipikat: Recommending pertinent software development artifacts. Proceedings 25th
International Conference on Software Engineering (ICSE’03). IEEE Computer Society Press: Los Alamitos CA, 2003;
408-418.

Cubranic D, Murphy GC, Singer J, Booth KS. Hipikat: A project memory for software development. IEEE Transactions
on Software Engineering 2005; 31(6):446-465.

Antoniol G, Rollo VF, Venturi G. Linear predictive coding and Cepstrum coefficients for mining time variant information
from software repositories. Proceedings 2nd International Workshop on Mining Software Repositories (MSR’05).
ACM Press: New York NY, 2005; 74-78.

Anvik J, Hiew L, Murphy GC. Who should fix this bug? Proceedings 28th International Conference on Software
Engineering (ICSE’06). ACM Press: New York NY, 2006; 361-370.

Huang S-K, Liu K-M. Mining version histories to verify the learning process of legitimate peripheral participants.
Proceedings 2nd International Workshop on Mining Software Repositories (MSR’05). ACM Press: New York NY, 2005;
84-78.

Ohira M, Ohsugi N, Ohoka T, Matsumoto K-I. Accelerating cross-project knowledge collaboration using collaborative
filtering and social networks. Proceedings 2nd International Workshop on Mining Software Repositories (MSR’05).
ACM Press: New York NY, 2005; 111-115.

Ohira M, Yokomori R, Sakai M, Matsumoto K, Inoue K, Torii K. Empirical project monitor: A tool for mining multiple
project data. Proceedings 1st International Workshop on Mining Software Repositories (MSR’04). University of Waterloo:
Waterloo ON, 2004; 42-46. Available at:
http://plg.uwaterloo.ca/~aeehassa/home/pubs/MSR2004ProceedingsFINAL_IEE_Acrobat4.pdf [1 February 2007].
Purushothaman R, Perry DE. Towards understanding the rhetoric of small changes. Proceedings Ist International
Workshop on Mining Software Repositories (MSR’04). University of Waterloo: Waterloo ON, 2004; 90-94.

Available at:

http://plg.uwaterloo.ca/~aeehassa’/home/pubs/MSR2004ProceedingsFINAL_IEE_Acrobat4.pdf [1 February 2007].
Purushothaman R, Perry DE. Toward understanding the rhetoric of small source code changes. IEEE Transactions on
Software Engineering 2005; 31(6):511-526.

Hassan AE, Holt RC. Predicting change propagation in software systems. Proceedings 20th IEEE
International Conference on Software Maintenance (ICSM’04). IEEE Computer Society Press: Los Alamitos CA,
2004; 284-293.

Raghavan S, Rohana R, Leon D, Podgurski A, Augustine V. Dex: A semantic-graph differencing tool for studying
changes in large code bases. Proceedings 20th IEEE International Conference on Software Maintenance (ICSM’04).
IEEE Computer Society Press: Los Alamitos CA, 2004; 188-197.

Neamtiu I, Foster JS, Hicks M. Understanding source code evolution using abstract syntax tree matching. Proceedings
2nd International Workshop on Mining Software Repositories (MSR’05). ACM Press: New York NY, 2005; 2-6.
Godfrey MW, Zou L. Using origin analysis to detect merging and splitting of source code entities. IEEE Transactions on
Software Engineering 2005; 31(2):166—181.

Nikora AP, Munson JC. Understanding the nature of software evolution. Proceedings 19th IEEE International Conference
on Software Maintenance (ICSM’03). IEEE Computer Society Press: Los Alamitos CA, 2003; 83-93.

Tu Q, Godfrey MW. An integrated approach for studying architectural evolution. Proceedings 10th International
Workshop on Program Comprehension (IWPC’02). IEEE Computer Society Press: Los Alamitos CA, 2002; 127-136.

Copyright © 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2007; 19:77-131

DOI: 10.1002/smr

130

H. KAGDI, M. L. COLLARD AND J. I. MALETIC

75.

76.

7.

78.

79.

80.

Holt R, Pak JY. GASE: Visualizing software evolution-in-the-large. Proceedings 3rd Working Conference on Reverse
Engineering (WCRE’96). IEEE Computer Society Press: Los Alamitos CA, 1996; 163-167.

Gall H, Jazayeri M, Riva C. Visualizing software release histories: The use of color and third dimension. Proceedings
15th IEEE International Conference on Software Maintenance (ICSM’99). IEEE Computer Society Press: Los Alamitos
CA, 1999; 99-108.

Mockus A, Votta LG. Identifying reasons for software changes using historic databases. Proceedings 16th IEEE
International Conference on Software Maintenance (ICSM’00). IEEE Computer Society Press: Los Alamitos CA, 2000;
120-130.

Gorg C, Weiligerber P. Detecting and visualizing refactorings from software archives. Proceedings 13th International
Workshop on Program Comprehension (IWPC’05). IEEE Computer Society Press: Los Alamitos CA, 2005; 205-214.
Bieman JM, Andrews AA, Yang HJ. Understanding change-proneness in OO software through visualization. Proceedings
11th IEEE International Workshop on Program Comprehension (IWPC’03). IEEE Computer Society Press: Los Alamitos
CA, 2003; 44-53.

German DM. Using software trails to reconstruct the evolution of software. Journal of Software Maintenance and
Evolution: Research and Practice 2004; 16(6):367-384. DOI: 10.1002/smr.301.

81. Beyer D, Noack A. Clustering software artifacts based on frequent common changes. Proceedings 13th
International Workshop on Program Comprehension (IWPC’05). IEEE Computer Society Press: Los Alamitos CA, 2005;
259-268.

82. Burch M, Diehl S, Weiligerber P. Visual data mining in software archives. Proceedings ACM Symposium on Software
Visualization (SoftVis’05). ACM Press: New York NY, 2005; 37-46.

83. Chen K, Schach SR, Yu L, Offutt J, Heller GZ. Open-source change logs. Empirical Software Engineering 2004;
9(3):197-210.

84. Kim S, Pan K, Whitehead EJ Jr. Micro pattern evolution. Proceedings 3rd International Workshop on Mining Software
Repositories (MSR’06). ACM Press: New York NY, 2006; 40-46.

85. Riva C. Visualizing software release histories with 3DSoftVis. Proceedings 22nd International Conference on Software
Engineering (ICSE’00). ACM Press: New York NY, 2000; 789.

86. Venolia G. Textual allusions to artifacts in software-related repositories. Proceedings 3rd International Workshop on
Mining Software Repositories (MSR’06). ACM Press: New York NY, 2006; 151-154.

87. Nagappan N, Ball T, Zeller A. Mining metrics to predict component failures. Proceedings 28th International Conference
on Software Engineering (ICSE’06). ACM Press: New York NY, 2006; 452-461.

88. Sager T, Bernstein A, Pinzger M, Kiefer C. Detecting similar java classes using tree algorithms. Proceedings 3rd
International Workshop on Mining Software Repositories (MSR’06). ACM Press: New York NY, 2006; 66-71.

89. Dig D, Comertoglu C, Marinov D, Johnson R. Automated detection of refactorings in evolving components. Proceedings
European Conference on Object-Oriented Programming (ECOOP’06). Springer: Berlin, 2006; 404-428.

90. Dig D, Johnson R. How do APIs evolve? A story of refactoring. Journal of Software Maintenance and Evolution: Research
and Practice 2006; 18(2):83-107. DOI: 10.1002/smr.328.

91. Godfrey M, Dong X, Kapser C, Zou L. Four interesting ways in which history can teach us about software. Proceedings
Ist International Workshop on Mining Software Repositories (MSR’04). University of Waterloo: Waterloo ON,
2004; 58-62. Available at:
http://plg.uwaterloo.ca/~aeehassa/home/pubs/MSR2004ProceedingsFINAL_IEE_Acrobat4.pdf [1 February 2007].

92. Henkel J, Diwan A. CatchUp!: Capturing and replaying refactorings to support API evolution. Proceedings 27th
International Conference on Software Engineering (ICSE’05). ACM Press: New York NY, 2005; 274-283.

93. Weiligerber P, Diehl S. Are refactorings less error-prone than other changes? Proceedings 3rd International Workshop on
Mining Software Repositories (MSR’06). ACM Press: New York NY, 2006; 112-118.

94. Xie T, Pei J. MAPO: Mining API usages from open source repositories. Proceedings 3rd International Workshop on
Mining Software Repositories (MSR’06). ACM Press: New York NY, 2006; 54-57.

95. El-Ramly M, Stroulia E. Mining software usage data. Proceedings Ist International Workshop on Mining Software
Repositories (MSR’04). University of Waterloo: Waterloo ON, 2004; 64—68. Available at:
http://plg.uwaterloo.ca/~aeehassa/home/pubs/MSR2004ProceedingsFINAL_IEE_Acrobat4.pdf [1 February 2007].

96. Mockus A, Fielding T, Herbsleb D. Two case studies of open source software development: Apache and Mozilla. ACM
Transactions on Software Engineering and Methodology 2002; 11(3):309-346.

97. Koch S, Schneider G. Effort, cooperation and coordination in an open source software project: Gnome. Information
Systems Journal 2002; 12(1):27-42.

98. Robles G, Koch S, Gonzilez-Barahona JM. Remote analysis and measurement of Libre software systems by means
of the CVSAnalY tool. Proceedings 2nd Remote Analysis of Software Systems (RAMSS’04). 1IEE: Stevenage, 2004;
51-55.

99. Gil JY, Maman 1. Micro patterns in Java code. Proceedings 20th Object Oriented Programming Systems Languages and
Applications (OOPSLA 05). ACM Press: New York NY, 2005; 97-116.

Copyright © 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2007; 19:77-131

DOI: 10.1002/smr

A SURVEY AND TAXONOMY OF APPROACHES FOR MINING SOFTWARE REPOSITORIES 131

102.
103.

104.

105.

106.

. Demeyer S, Tichelaar S, Steyaert P. FAMIX 2.0: The FAMOOS information exchange model.

http://www.iam.unibe.ch/~famoos/FAMIX/ [20 June 2006].

. Maletic JI, Marcus A, Collard ML. A task oriented view of software visualization. Proceedings Ist IEEE Workshop of

Visualizing Software for Understanding and Analysis (VISSOFT’02). IEEE Computer Society Press: Los Alamitos CA,
2002; 32-40.

Fowler M. Refactoring: Improving the Design of Existing Code. Addison-Wesley: Reading MA, 1999.

Kim M, Bergman L, Lau T, Notkin D. An ethnographic study of copy and paste programming practices in OOPL.
Proceedings International Symposium on Empirical Software Engineering (ISESE’04). IEEE Computer Society Press:
Los Alamitos CA, 2004; 83-92.

Wasserman S, Faust K. Social Network Analysis: Methods and Applications. Cambridge University Press: Cambridge,
1994.

Lopez-Fernandez L, Robles G, Gonzdlez-Barahona JM. Applying social network analysis to the information in CVS
repositories. Proceedings 1st International Workshop on Mining Software Repositories (MSR’04). University of Waterloo:
Waterloo ON, 2004; 101-105. Available at:
http://plg.uwaterloo.ca/~aeehassa/home/pubs/MSR2004ProceedingsFINAL_IEE_Acrobat4.pdf [1 February 2007].

Fluri B, Gall H, Pinzger M. Fine-grained analysis of change couplings. Proceedings 5th International Workshop on Source
Code Analysis and Manipulation (SCAM’05). IEEE Computer Society Press: Washington DC, 2005; 66-74.

AUTHORS’ BIOGRAPHIES

Huzefa Kagdi is a Doctoral Candidate in the Department of Computer Science at Kent
State University in Ohio, U.S.A. His research interests are in mining software repositories,
source code representations and analysis, and UML visualization for supporting evolution
of large-scale software systems. He received his MS in Computer Science from Kent
State University, U.S.A., and BE in Computer Engineering from Birla Vishwakarma
Mahavidyalaya, India.

Michael L. Collard is a Visiting Assistant Professor in the Department of
Mathematics and Computer Science at Ashland University in Ohio, U.S.A. His research
interests are in source code and source model representation, source code analysis,
transformation/refactoring, and differencing for software evolution. He received his PhD,
MS, and BS in Computer Science from Kent State University.

Jonathan I. Maletic is an Associate Professor in the Department of Computer Science at
Kent State University in Ohio, U.S.A. His research interests are centered on software
evolution and he has authored over 60 refereed publications in the areas of analysis,
transformation, comprehension, traceability, and visualization of software. He received
his PhD and MS in Computer Science from Wayne State University and BS in Computer
Science from The University of Michigan—Flint.

Copyright © 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2007; 19:77-131

DOI: 10.1002/smr

	1 INTRODUCTION
	1.1 Scope
	1.2 Background
	1.3 Previous classifications in MSR
	1.4 Organization

	2 DIMENSIONS OF THE SURVEY
	2.1 Information sources
	2.2 Purpose
	2.3 Methodology
	2.4 Evaluation

	3 A TAXONOMY OF MSR APPROACHES
	3.1 A layered taxonomy
	3.2 Validating the taxonomy

	4 MSRS: A COMPREHENSIVE SURVEY
	4.1 Metadata analysis
	4.1.1 Logical couplings and change patterns
	4.1.2 Heuristics for change predictions
	4.1.3 Bug-fixing change analysis
	4.1.4 Characteristics of different types of changes
	4.1.5 Formalism for querying metadata
	4.1.6 Characteristics of small changes
	4.1.7 Searching and browsing source code
	4.1.8 Successful open-source development
	4.1.9 Developer identities
	4.1.10 Relationships between bugs/features
	4.1.11 Software defects/faults and predictors
	4.1.12 Evolution of a software distribution
	4.1.13 Completeness of ChangeLog files

	4.2 Static source code analysis
	4.2.1 Bug finding and fixing
	4.2.2 Factors for successful software reuse
	4.2.3 Function usage patterns
	4.2.4 Incomplete refactorings
	4.2.5 Function-interface changes
	4.2.6 Communication via source code comments

	4.3 Source code differencing and analysis
	4.3.1 Semantic differencing
	4.3.2 Syntactic differencing for fine-grain analyses
	4.3.3 Identification of refactorings in changes
	4.3.4 Changes in micro patterns
	4.3.5 Detecting similar Java classes
	4.3.6 Studying API changes

	4.4 Software metrics
	4.4.1 Complexity of different changes
	4.4.2 Change-prone classes and change-couplings
	4.4.3 Types of changes and origin analysis
	4.4.4 System complexity
	4.4.5 Validation of defect detectors
	4.4.6 Predicting post-release failures

	4.5 Visualization
	4.5.1 Co-changing files
	4.5.2 Structural and architectural changes
	4.5.3 Change smells and refactorings
	4.5.4 Visualizing data mining rules

	4.6 Clone-detection methods
	4.6.1 Clones and their relationships
	4.6.2 Frequently occurring changes
	4.6.3 Code duplication and origin analysis

	4.7 Frequent-pattern mining
	4.7.1 Evolutionary couplings and change predictions
	4.7.2 Mining usage patterns
	4.7.3 Ordered change patterns

	4.8 Information-retrieval methods
	4.8.1 Classification based on the cause of a change
	4.8.2 Change prediction
	4.8.3 Importance of human guidance
	4.8.4 New developer assistance
	4.8.5 Commonly occurring phenomena

	4.9 Classification with supervised learning
	4.9.1 Maintenance relevance relations
	4.9.2 Triage bug reports

	4.10 Social network analysis
	4.10.1 Developers roles and contributions
	4.10.2 Inter-projects collaboration

	5 DISCUSSION AND OPEN ISSUES
	5.1 MSR on fine-grained entities
	5.2 Historical context: how many versions?
	5.3 Threats to validity in MSR

	6 CONCLUDING REMARKS

