
SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. Exper. 2000; 00:1–7 Prepared using speauth.cls [Version: 2002/09/23 v2.2]

Decomposition Tool for
Event-B

Renato Silva1, Carine Pascal2, Thai Son Hoang3, Michael Butler1

1 University of Southampton, UK
2 Systerel, Aix-en-Provence, France
3 ETH Zurich, Zurich, Switzerland

SUMMARY

Two methods have been identified for Event-B model decomposition: shared variable
and shared event. The purpose of this paper is to introduce the two approaches and the
respective tool support in the Rodin platform. Besides alleviating the complexity for
large systems and respective proofs, decomposition allows team development in parallel
over the same Event-B project which is very attractive in the industrial environment.

key words: Event-B, Decomposition, Shared Event, Shared Variable, Formal Methods

Introduction

The “top-down” style of development used in Event-B [2] allows the introduction of new events
and data-refinement of variables during refinement steps. A consequence of this development
style is an increasing complexity of the refinement process when dealing with many events
and state variables. The main purpose of the model decomposition is precisely to address
such difficulty by cutting a large model into smaller components. Two methods have been
identified for the Event-B decomposition: shared variable [3, 1] and shared event [11, 12]. We
propose a plug-in developed for the Rodin platform [22] supporting these two methods for
Event-B. Since decomposition is monotonic [11], the generated sub-components can be further
refined independently. Therefore we can introduce team developments: several developers share
parts of the same model and work independently in parallel. Moreover decomposition also
partitions proof obligations (POs) which are expected to be discharged more easily in the
sub-components. Next we introduce briefly the formalism used during the description of our
work: Event-B.

Contract/grant sponsor: R. Silva is sponsored by a Fundação Ciência e Tecnologia (FCT-Portugal) scholarship.
Contract/grant sponsor: Part of this research was carried out within the European Commission ICT DEPLOY
(http://www.deploy-project.eu); contract/grant number: 214158

Copyright c⃝ 2000 John Wiley & Sons, Ltd.

2 R. SILVA ET AL.

Event-B Language

Event-B is a formal methodology that uses mathematical techniques based on set theory and
first order logic supporting system development with abstract specification. An abstract Event-
B specification is divided into a static part called context and a dynamic part called machine. A
machine sees as many contexts as desired. A context consists of sets (collection of elements or
a type definition), constants and assumptions (axioms) of the system. A machine contains the
state (global) variables whose values are assigned in events. Events can only occur when enabled
by their guards being true and as a result actions are executed. Events can have parameters
(local variables) used by guards or actions. Invariants defines the dynamic properties of the
specification and POs are generated to verify that these properties are maintained before and
after an event is enabled. The predicates (axioms, invariants, guards) can also be defined as
theorems. Theorems are proved from other invariants and axioms of seen contexts [3].

An abstract Event-B specification can be refined by adding more details in order to make
it closer to an implementation (concrete). A context extends an abstract context by adding
sets, constants or axioms. The abstract context properties are still assumed. Refinement of a
machine consists of refining existing events. The relation between variables in the concrete and
abstract model is given by a gluing invariant. POs are generated to ensure that this invariant
is preserved in the concrete model. It is possible to add new events that refine skip which may
be declared as convergent, meaning they do not cause divergence. The convergence is proved if
each new event decreases a variant. The variant must be well-founded and may be an integer
or a finite set.

Decomposition Styles

In order to explain the decomposition we will use the inverse operation (composition) as a
subterfuge. Composition can be described as the capacity to model the interaction of partial
specifications (sub-components) generating larger/full specifications. The interaction of partial
specifications occurs through shared state [3], events’ synchronisation [14] or a combination of
both [5]. Shared state composition allows the interaction of sub-components by state sharing.
Because variables usually define the state of a system, this composition is also known as
shared variable. When specifying an automated teller machine (ATM) system, user and
cash machine can have separated partial specifications. Both partial specifications can define
variables to describe the used debit/credit cards for the transactions. The composition of these
two specifications can interact through shared variables: the variables representing the cards.
The other variables used only in a single partial specification are called private variables. A
shared event composition allows sub-components to interact through synchronised events in
parallel; moreover sub-components can communicate using shared parameters which is useful
for modelling message passing systems. A constraint of the latest is disallow variable sharing.
Returning to the ATM system, the partial specification user can have an event that defines the
personal identification number (PIN) of the card:user defines PIN and cash machine contains
an event that changes the card PIN: change PIN card. A shared event composition of the
partial specifications originates a new event user change PIN that allows the introduction

Copyright c⃝ 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

DECOMPOSITION TOOL FOR EVENT-B 3

(a) (b)

Figure 1. Shared Variable decomposition on the left and shared event decomposition on the right

of a new PIN for a particular card. Such event could be specified by composing events
user define PIN and change PIN card. Both shared state and shared event composition allow
the individual refinement of the partial specifications. Another option is to define the full
specification of the ATM system using a mix of both composition styles. The decomposition of
a specification means finding two or more components (sub-components) whose composition
refines some abstract machine. Two styles where identified for the decomposition of a
specification: shared variable and shared event based on the composition approach. Like in
the composition, the decomposed sub-components can be further refined [1, 12].

We describe the two decomposition styles using Fig. 1. Machine M has events e1 to e4
and variables v1 to v3. The solid lines connect variables used by events. In Fig. 1(a), M is
decomposed using shared variable decomposition: events in the original component are selected
and partitioned among the sub-components. In Fig. 1(a) the decomposition is represented by
the dashed line in M : e1 and e2 are allocated to sub-component M1 and e3 and e4 are
allocated to sub-component M2. Consequently, v1 and v3 are private variables of M1 and
M2 respectively. On the other hand, variable v2 is a shared variable between e2 and e3. To
keep the same behaviour of the shared variable among the sub-components, additional events
(called external events) are introduced. They simulate how shared variables are handled in
the other sub-components: external event e3 ext is added to M1 and e2 ext is added to M2.
A restriction of the shared state approach is that the shared variables and respective external
events in the sub-components cannot be refined and must be always present in the the further
refinements. The re-composition of the (refined) sub-components should always be possible
resulting in a refinement of the original system [1].

In Fig. 1(b), M is decomposed using the shared event decomposition: variables in the original
component are selected and partitioned among the sub-components. The decomposition is
represented by the dashed line in M : v1 is placed in M1 and v2, v3 are placed in M2. Events
using variables allocated to different sub-components (e2 shares v1 and v2) must be split into
partial versions of the non-decomposed event. A partial version of an event consists in a copy

Copyright c⃝ 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

4 R. SILVA ET AL.

of original event restricted to a variable (or variables): only parameters, guards and actions
referring to the specified variable are preserved from the original. e2 1 in M1 is a partial
version of e2 restricted to variable v1 and similarly, e2 2 is restricted to v2. Sub-components
can be further refined independently. For the application of each of the styles, shared event
approach is suitable for developing message-passing distributed systems while shared variable
approach is suitable for designing parallel algorithms [9].

Limitations

For the shared variable decomposition, the partition of events is always possible in the sense
that it is always possible to generate sub-components. However that decomposition might be
less significant despite being possible: a large number of shared variables may not be of much
interest in particular for further refinements that become more complex and do not benefit
the development. The point of decomposition is important, since if it is done too early in the
development, the sub-component might be too abstract and will not be able to be refined
(without knowing more about the other sub-components). If the system is decomposed too
late, e.g. when the system is already concrete, it will not benefit from the approach anymore.

For the shared event decomposition, the partition of variables is not always possible for
all developments. Due to the restriction of shared variables, it might be necessary to have
a “preparation refinement step” to solve complex predicates (invariants, guards, axioms) or
assignments (actions) by separating variables allocated to different sub-components. If that
step is not done, these complex predicates/assignments are automatically flagged by the tool
and the user’s intervention is required to explicitly make the separation (such operations cannot
be done automatically). Another limitation is that we do not allow the overlapping of elements
in the sub-components which sometimes may be useful. Even in the shared variable approach,
the overlapped (shared) elements cannot be further refined independently.

Decomposition Tool

The Rodin Platform [22] is the result of an EU research project. It is a software toolset,
based on modern software programming tools developed to use Event-B notation. It is open
source, based on Eclipse Platform [15] and it works has a complement for rigorous modelling
developments [13]. The aim is to benefit industry by permitting the integration of any
necessary functionality in the same tool. Rodin contains a Static Checker that analyses Event-
B components for syntactical errors (well-formedness and typing of models). There is a Proof
Obligation Generator for generating PO and these obligations can be discharged by a theorem
prover. An important Rodin feature is the high level of extensibility reflected by, for instance,
the ability to contribute plug-ins. Plug-ins are components providing a certain type of service
within the context of the Eclipse workbench. By components here we mean objects that may
be configured into a system at system deployment time [15], such as the default theorem prover
(B4free [4]) or model checking systems (ProB [21]). The decomposition tool described here is
also implemented as a plug-in for the Rodin platform.

Copyright c⃝ 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

DECOMPOSITION TOOL FOR EVENT-B 5

(a)

COMPOSED MACHINE CM
TYPE SHARED EVENT
REFINES Mn

INCLUDES
N P Q

EVENTS
evt 1 REFINES Mn.evt 1

Combines Events N.evt 1 ∥ P.evt 1
. . .
evt n REFINES Mn.evt n

Combines Events P.evt n ∥ Q.evt n
END

(b)

Figure 2. Decomposition tool diagram for a machine Mn and composed machine CM
using the shared event approach

The input for the decomposition is a machine of a given Rodin project selected by the end-
user. After the selection of the decomposition style and decomposition configuration, the tool
generates the sub-components automatically. Below are the steps to be followed in order to
decompose machine Mn in Fig. 2(a):

1. The end-user selects a machine Mn to decompose.
2. The end-user defines sub-components to be generated: N, P, Q
3. The end-user selects the decomposition style to use:

Shared Variable: The end-user selects the events to be allocated to sub-components.

Shared Event: The end-user selects the variables to be allocated to sub-component.

4. The end-user can opt to decompose the seen contexts into the sub-components similarly
to the machine decomposition.

5. Sub-components are generated according to the decomposition configuration.
6. The decomposition configuration is stored as a composed machine.
7. Sub-components N, P, Q . . . can be further refined.

The decomposition style to be used depends on the input system and on the end-user’s
preference. The decomposition generates sub-components according to the configuration:
events/variables partition, sub-components stored in new projects or in the same one; context
is to be decomposed or copied. That configuration is stored persistently in a composed machine
[23] for future reuse or editing as seen in Fig. 2. “Replaying” the decomposition might require
additional storing mechanisms. We intend to address this issue in the future. The configuration
is performed through the Rodin Graphical User Interface. A limitation of the tool is to select
which invariants are allocated to which sub-component. Currently, a solution is to introduce
these invariants into the model before decomposition, e.g. into Mn, as theorems.

Copyright c⃝ 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

6 R. SILVA ET AL.

!Communication_M0

!1 !machine Communication_M0 sees Communication_C0

!2 !

!3 !variables a b

!4 !

!5 !invariants

!6 ! @inv1 a ! DATA

!7 ! @inv2 b ! DATA

!8 !

!9 !events

!10 ! event INITIALISATION

!11 ! then

!12 ! @act1 a " d0

!13 ! @act2 b :! DATA

!14 ! end

!15 !

!16 ! event copy

!17 ! then

!18 ! @act1 b " a

!19 ! end

!20 !end

!21 !

!Page 1

(a)

!Communication_C0

!1 !context Communication_C0

!2 !

!3 !constants d0

!4 !

!5 !sets DATA

!6 !

!7 !axioms

!8 ! @axm1 d0 ! DATA

!9 !end

!10 !

!Page 1

(b)

Figure 3. Diagrams corresponding to the Communication example

!Communication_M1

!1 !machine Communication_M1 refines Communication_M0

!2 !sees Communication_C0

!3 !

!4 !variables a b m ctrl

!5 !

!6 !invariants
!7 ! @inv1 m ! DATA

!8 ! @inv2 ctrl ! BOOL

!9 ! @inv3 ctrl = TRUE ⇒ m = a

!10 !

!11 !variant {ctrl,TRUE}

!12 !

!13 !events
!14 ! event INITIALISATION

!15 ! then
!16 ! @act1 a " d0

!17 ! @act2 b :! DATA

!18 ! @act3 m :! DATA

!19 ! @act4 ctrl " FALSE

!20 ! end
!21 !

!22 ! convergent event copy_1

!23 ! any p
!24 ! where
!25 ! @grd1 p = a

!26 ! @grd2 ctrl = FALSE

!27 ! then
!28 ! @act1 m " p

!29 ! @act2 ctrl " TRUE

!30 ! end
!31 !

!32 ! event copy_2 refines copy

!33 ! !any p
!34 ! where
!35 ! @grd1 ctrl = TRUE

!36 ! @grd2 p = m

!37 ! then
!38 ! @act1 b " p

!Page 1

!Communication_M1

!39 !

!40 !

!41 !

!42 !

!43 ! convergent event copy_1

!44 ! any p
!45 ! where
!46 ! @grd1 p = a

!47 ! @grd2 ctrl = FALSE

!48 ! then
!49 ! @act1 m ! p

!50 ! @act2 ctrl ! TRUE

!51 ! end
!52 !

!53 ! event copy_2 refines copy

!54 ! !any p
!55 ! where
!56 ! @grd1 ctrl = TRUE

!57 ! @grd2 p = m

!58 ! then
!59 ! @act1 b ! p

!60 ! @act2 ctrl ! FALSE

!61 ! end
!62 !end
!63 !

!Page 2

Figure 4. Excerpt of machine Communication M1, refinement of Communication M0

Decomposing a Communication protocol

We demonstrate the use of the decomposition tool through an example: a communication
process. The abstract model called Communication can be seen in Fig. 3.

The variable a is initialised with the constant d0 and variable b is assigned any value
non-deterministically. The initial model contains only the event copy that copies the value
of a to variable b in one single step. A refinement of Communication (Communication M1)
introduces a middleware entity that copies the value of a to b in two steps: the value of a is
stored temporarily in the variable m (middleware) before being copied to b as seen in Fig. 4.
Note that a control variable ctrl is introduced to ensure that the value of m is valid to be
copied to b.

Invariant inv3 expresses that when the variable ctrl is true, the value of the middleware m
corresponds to the value of the source a. This invariant can be seen as a requirement of the

Copyright c⃝ 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

DECOMPOSITION TOOL FOR EVENT-B 7

Figure 5. Decomposition of Communication M1 into machines MA,MB and MM

refinement of event Communication M0.copy by Communication M1.copy 2. The convergent
event copy 1 requires a variant that guarantees that this event cannot be executed forever.
The variant is expressed as {ctrl, TRUE} which means that eventually the control variable
ctrl will be TRUE and in that case copy 1 event is not executed since the respective guard is
disable.

Depending on the chosen decomposition style and configuration, the system Communica-
tion M1 can be decomposed into different number of sub-components as seen in the following
sections.

Shared Event Decomposition of Communication

From the modeller’s point of view, the decomposition starts by defining which sub-components
will be generated. The following step defines the partition of variables over the sub-components.
The rest of the model decomposition (events, parameters, invariants, contexts) is a consequence
of the variables allocation as defined below. For the shared event decomposition, we decompose
Communication M1 in three parts: MA, MB and MM as seen in Fig. 5.

Using the decomposition tool, we define the partition as follows: variable a is allocated to
machine MA, variables m and ctrl to machine MM and variable b to machine MB. It follows
that event copy 1 is split between MA and MM and event copy 2 is split between MB and
MM. A diagram of the use of the tool can be seen in Fig. 6 and the resulting machines can be
seen in Fig. 7.

Next we describe the steps for a machine decomposition focusing on invariants, events,
variant and contexts. The initial partition of variables between the sub-components defines
the rest of the decomposition as detailed below.

Invariants: The decomposition of the invariants depends on the scope of the variables. The
tool only maintains the invariants related with variable type definition as seen for inv1
and inv2 in Communication M1 (Fig. 4). The other invariants depend on the input
of the user since they might be a constraint of the composed component and not a
requirement of the sub-component. For instance, invariant inv3 in Communication M1
ctrl = TRUE ⇒ m = a contains three variables: ctrl, m and a. According to the
defined decomposition configuration, ctrl and m are variables of MM and a is a variable

Copyright c⃝ 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

8 R. SILVA ET AL.

Figure 6. Shared event decomposition on Communication M1 using the tool

!MA

!machine MA

!

!sees Communication_C0

!

!variables a

!

!invariants

! !@inv1 a ! DATA

!

!events

! event INITIALISATION

! then

! @act1 a " d0

! end

!

! event copy_1

! any

! !p

! when

! @grd1 p = a

! end

!

!end

!

!Page 1

(a)

!MM

!machine MM

!

!sees Communication_C0

!

!variables m ctrl

!

!invariants

! @inv1 m ! DATA

! !@inv2 ctrl ! BOOL

!

!events

! event INITIALISATION

! then

! @act1 m :! DATA

! @act2 ctrl " FALSE

! end

!

! event copy_1

! any p

! where

! @grd1 p ! DATA

! @grd2 ctrl = FALSE

! then

! @act1 m " p

! @act2 ctrl " TRUE

! end

!

! event copy_2

! any p

! where

! @grd1 ctrl = TRUE

! @grd2 p = m

! then

! @act2 ctrl " FALSE

! end

!end

!

!Page 1

!MM

!machine MM

!

!sees Communication_C0

!

!variables m ctrl

!

!invariants

! @inv1 m ! DATA

! !@inv2 ctrl ! BOOL

!

!events

! event INITIALISATION

! then

! @act1 m :! DATA

! @act2 ctrl " FALSE

! end

!

! event copy_1

! any p

! where

! @grd1 p ! DATA

! @grd2 ctrl = FALSE

! then

! @act1 m " p

! @act2 ctrl " TRUE

! end

!

! event copy_2

! any p

! where

! @grd1 ctrl = TRUE

! @grd2 p = m

! then

! @act2 ctrl " FALSE

! end

!end

!

!Page 1

(b)

!MB

!machine MB

!

!sees Communication_C0

!

!variables b

!

!invariants

! !@inv1 b ! DATA

!

!events

! event INITIALISATION

! then

! @act2 b :! DATA

! end

!

! event copy_2

! any

! !p

! when

! @grd1 p ! DATA

! then

! @act1 b " p

! end

!end

!

!Page 1

(c)

Figure 7. Machines MA, MM and MB

of MA. This suggests that inv3 can be a constraint of the composition of the sub-
components and not a constraint of the individual sub-components. As a result, inv3
in Communication M1 is not part of any of the sub-components. Alternatively when
an invariant clause is demanded and uses variables placed outside the scope of a sub-
component, a further refinement of the composed component might be required to make
an explicit separation of the variables.

Copyright c⃝ 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

DECOMPOSITION TOOL FOR EVENT-B 9

Events: The partition of the events depends on the partition of the variables. For instance,
variables m and ctrl are part of MM so their initialisation is allocated to that sub-
component. Event copy 1 in machine Communication M1 is split between MA and MM
and has a parameter p. When the decomposition occurs, that parameter is shared between
the decomposed events and the parameter type information is added. The guard of a
decomposed event inherits the guard on the composed event according to the variable
partition. Variable a is not within the scope of machine MM so only the type of p is
defined in the guard of MM.copy 1. As mentioned in the limitation of the approach,
a guard or action involving variables of different sub-components need to be explicitly
separated.

Variant: Variant is only necessary when new events are introduced in a refinement.
Decomposed events in sub-components are inherited from the composed component so
no new events are introduced meaning that variants are not required.

Contexts: The context Communication C0 used in the example is shared between all the
machines. That context (and possible others) can be flatted into a single context and
decomposed. On the one hand, decomposing contexts can inadvertently remove relevant
information. On the other hand, not decomposing it can add too many (not relevant and
unnecessary) hypothesis which is not beneficial for the proofs: on the contrary, it might
be harmful and complicate the proving process. Therefore, the context decomposition is
optional as it varies with the system being modelled.

Shared Variable Decomposition of Communication

Before using share variable decomposition we do a further refinement. The idea is to store
the values after copying into a simple database. We represent the database fields (REGID
and PRIORITY :LOW, MEDIUM or HIGH) in the context Communication C1 as seen in
Fig. 8(b). We introduce a boolean variable processQueue that is true when a new value is
received and need to be processed. A new event enqueueDB is also introduced to store a new
register in the database based on the received value as seen in Fig. 8.

Now we decompose Communication M2 by shared variable decomposition. The copy of the
values and respective processing (storing in the database) are separated into machines MCopy
and MProcess. Using the decomposition tool as seen in Fig. 9 we allocate events copy 1 and
copy 2 to MCopy and the event enqueueDB to MProcess.

The first step is to select which variables are accessed for each sub-component and afterwards
separate shared variables from privates ones for each sub-component. The shared variables are
used in events copy 2 and enqueueDB : processQueue and b. All the other variables are private
to each sub-component. The invariants depend on the initial separation of variables. The
following step is to separate/create the private/external events: the event partition according to
the decomposition is applied; copy 2 and enqueueDB use shared variables and as a consequence
it is required an external event in the other sub-component. An external event copy 2 is created
in MProcess using the shared variables. The other variables used by the original copy 2 become
parameters in the external event as they are not in the scope of that sub-component (ctrl and
m). The event enqueueDB is similarly built. The resulting machines can be seen in Fig. 10.

Copyright c⃝ 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

10 R. SILVA ET AL.

!Communication_M2

!1 !machine Communication_M2 refines Communication_M1

!2 !sees Communication_C0 Communication_C1

!3 !

!4 !variables a b m ctrl idR processQueue priority

!5 !

!6 !invariants
!7 ! @inv1 idR ! REGID ! DATA

!8 ! @inv2 processQueue ! BOOL

!9 ! @inv4 priority!dom(idR) ! PRIORITY

!10 !

!11 !variant {processQueue,FALSE}

!12 !

!13 !events
!14 ! event INITIALISATION extends INITIALISATION

!15 ! then
!16 ! @act5 processQueue " FALSE

!17 ! @act6 idR " id0 " {d0}

!18 ! @act7 priority " id0 " {p0}

!19 ! end
!20 !

!21 ! event copy_2 extends copy_2

!22 ! where
!23 ! @grd3 processQueue = FALSE

!24 ! then
!25 ! @act3 processQueue " TRUE

!26 ! end
!27 !

!28 ! convergent event enqueueDB

!29 ! any i p
!30 ! where
!31 ! @grd1 processQueue = TRUE

!32 ! @grd2 p ! PRIORITY

!33 ! @grd3 i ! REGID#dom(idR)

!34 ! then
!35 ! @act1 processQueue"FALSE

!36 ! @act3 priority(i)"p

!37 ! @act4 idR(i)"b

!38 ! end

!Page 1

!Communication_M2

!1 !machine Communication_M2 refines Communication_M1

!2 !sees Communication_C0 Communication_C1

!3 !

!4 !variables a b m ctrl idR processQueue priority

!5 !

!6 !invariants
!7 ! @inv1 idR ! REGID ! DATA

!8 ! @inv2 processQueue ! BOOL

!9 ! @inv4 priority!dom(idR) ! PRIORITY

!10 !

!11 !variant {processQueue,FALSE}

!12 !

!13 !events
!14 ! event INITIALISATION extends INITIALISATION

!15 ! then
!16 ! @act5 processQueue " FALSE

!17 ! @act6 idR " id0 " {d0}

!18 ! @act7 priority " id0 " {p0}

!19 ! end
!20 !

!21 ! event copy_2 extends copy_2

!22 ! where
!23 ! @grd3 processQueue = FALSE

!24 ! then
!25 ! @act3 processQueue " TRUE

!26 ! end
!27 !

!28 ! convergent event enqueueDB

!29 ! any i p
!30 ! where
!31 ! @grd1 processQueue = TRUE

!32 ! @grd2 p ! PRIORITY

!33 ! @grd3 i ! REGID#dom(idR)

!34 ! then
!35 ! @act1 processQueue"FALSE

!36 ! @act3 priority(i)"p

!37 ! @act4 idR(i)"b

!38 ! end

!Page 1(a)

!Communication_C1

!1 !context Communication_C1

!2 !

!3 !constants REGID LOW MEDIUM HIGH id0 p0

!4 !

!5 !sets PRIORITY

!6 !

!7 !axioms

!8 ! @axm1 REGID ! !

!9 ! @axm2 partition(PRIORITY, {LOW}, {MEDIUM}, {HIGH})

!10 ! @axm3 id0 ! REGID

!11 ! @axm4 p0 " PRIORITY

!12 !end

!13 !

!Page 1

(b)

Figure 8. Excerpt of machine Communication M2 and context
Communication C1 that extends Communication C0

Figure 9. Shared Variable Decomposition of Communication M2

Conclusion

This paper presents the decomposition of Event-B models and tool support in the Rodin
platform. Decomposition can advantageously be used to decrease the complexity and increase
the modularity of large systems, especially after several refinements. The main benefits are
the distribution of POs over the sub-components which are expected to be easier to be
discharged and the further refinement of independent sub-components in parallel introducing
team development of a model which is attractive for the industry. Our goal is to develop a
robust tool to model distributed systems that can be used by the industry. Application to
more complex case studies and scalability issues will help improving the tool.

Several works try to exploit the decomposition benefits: [7, 6] study the formal development
of MAS (Multi-Agent Systems) which are complex distributed systems to be used for critical
applications using abstraction and decomposition for classical B and Event-B. [20] also studies

Copyright c⃝ 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

DECOMPOSITION TOOL FOR EVENT-B 11
DECOMPOSITION TOOL FOR EVENT-B 11

!MCopy

!1 !machine MCopy sees Communication_C0 Communication_C1
!2 !

!3 !variables m // Private variable
!4 ! a // Private variable
!5 ! ctrl // Private variable
!6 ! processQueue // Shared variable, DO NOT REFINE
!7 ! b // Shared variable, DO NOT REFINE
!8 !

!9 !invariants
!10 ! theorem @typing_m m ! DATA

!11 ! theorem @typing_a a ! DATA

!12 ! theorem @typing_ctrl ctrl ! BOOL

!13 ! theorem @typing_processQueue processQueue ! BOOL

!14 ! theorem @typing_b b ! DATA

!15 ! @Communication_M0_inv1 a ! DATA

!16 ! @Communication_M0_inv2 b ! DATA

!17 ! @Communication_M1_inv1 m ! DATA

!18 ! @Communication_M1_inv2 ctrl ! BOOL

!19 ! @Communication_M1_inv3 ctrl = TRUE ⇒ m = a

!20 ! @Communication_M2_inv2 processQueue ! BOOL

!21 !

!22 !events
!23 ! event INITIALISATION
!24 ! then
!25 ! @act1 a " d0

!26 ! @act2 b :! DATA

!27 ! @act3 m :! DATA

!28 ! @act4 ctrl " FALSE

!29 ! @act5 processQueue " FALSE

!30 ! end
!31 !

!32 ! event copy_1
!33 ! any p
!34 ! where
!35 ! @grd1 p = a
!36 ! @grd2 ctrl = FALSE
!37 ! then
!38 ! @act1 m " p

!39 ! @act2 ctrl " TRUE

!40 ! end
!41 !

!42 !

!43 !

!44 !

!45 !

!Page 1

!MCopy

!1 !machine MCopy sees Communication_C0 Communication_C1
!2 !

!3 !variables m // Private variable
!4 ! a // Private variable
!5 ! ctrl // Private variable
!6 ! processQueue // Shared variable, DO NOT REFINE
!7 ! b // Shared variable, DO NOT REFINE
!8 !

!9 !invariants
!10 ! theorem @typing_m m ! DATA

!11 ! theorem @typing_a a ! DATA

!12 ! theorem @typing_ctrl ctrl ! BOOL

!13 ! theorem @typing_processQueue processQueue ! BOOL

!14 ! theorem @typing_b b ! DATA

!15 ! @Communication_M0_inv1 a ! DATA

!16 ! @Communication_M0_inv2 b ! DATA

!17 ! @Communication_M1_inv1 m ! DATA

!18 ! @Communication_M1_inv2 ctrl ! BOOL

!19 ! @Communication_M1_inv3 ctrl = TRUE ⇒ m = a

!20 ! @Communication_M2_inv2 processQueue ! BOOL

!21 !

!22 !events
!23 ! event INITIALISATION
!24 ! then
!25 ! @act1 a " d0

!26 ! @act2 b :! DATA

!27 ! @act3 m :! DATA

!28 ! @act4 ctrl " FALSE

!29 ! @act5 processQueue " FALSE

!30 ! end
!31 !

!32 ! event copy_1
!33 ! any p
!34 ! where
!35 ! @grd1 p = a
!36 ! @grd2 ctrl = FALSE
!37 ! then
!38 ! @act1 m " p

!39 ! @act2 ctrl " TRUE

!40 ! end
!41 !

!42 !

!43 !

!44 !

!45 !

!Page 1

!MCopy

!46 ! event copy_2
!47 ! any p
!48 ! where
!49 ! @grd1 ctrl = TRUE
!50 ! @grd2 p = m
!51 ! @grd3 processQueue = FALSE
!52 ! then
!53 ! @act1 b ! p

!54 ! @act2 ctrl ! FALSE

!55 ! @act3 processQueue ! TRUE

!56 ! end
!57 !

!58 ! event enqueueDB // External event, DO NOT REFINE
!59 ! any i p idR
!60 ! where
!61 ! @typing_idR idR " !(" ! DATA)

!62 ! @grd1 processQueue = TRUE
!63 ! @grd2 p " PRIORITY

!64 ! @grd3 i " REGID"dom(idR)

!65 ! then
!66 ! @act1 processQueue!FALSE

!67 ! end
!68 !end
!69 !

!Page 2

(a)

(b)

Figure 10. Excerpt of the output of shared variable decomposition of
Communication M2 : MCopy and MProcess

automatic decomposition method using LOTOS [16]: the correctness is ensured if the combined
behavior of decomposed sub-specifications is the same as the system’s behavior before the
decomposition. The method decomposes a process into two processes composed by the parallel
operator and automatically generates an additional process that gives some information about
the synchronization. The additional process corresponds to the middleware in a shared event
decomposition in Event-B.

There is a need for modularisation and reuse of sub-components in order to model large
systems and manage better the respective POs. Event-B lacks a sub-component mechanism so
we propose to tackle that problem through the decomposition of a system by their events
or variables. The shared variable (state-based) approach is suitable for designing parallel
algorithms while the shared event (event-based) is suitable for message-passing distributed
systems [10]. [3] suggests the shared variable decomposition where variables are shared
and introduces the notion of external events. [10] suggests the shared event decomposition
where events are partition through the sub-components and the interaction occurs via shared
parameters. The work developed by Butler in [7] for action system is strongly related with
the same approach for shared event decomposition in Event-B [10] as both approaches are

Copyright c© 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

(a)

DECOMPOSITION TOOL FOR EVENT-B 11

(a)

!MProcess

!1 !machine MProcess sees Communication_C0 Communication_C1
!2 !

!3 !variables processQueue // Shared variable, DO NOT REFINE
!4 ! b // Shared variable, DO NOT REFINE
!5 ! priority // Private variable
!6 ! idR // Private variable
!7 !

!8 !

!9 !invariants
!10 ! theorem @typing_processQueue processQueue ! BOOL

!11 ! theorem @typing_b b ! DATA

!12 ! theorem @typing_priority priority ! !(" ! PRIORITY)

!13 ! theorem @typing_idR idR ! !(" ! DATA)

!14 ! @Communication_M0_inv2 b ! DATA

!15 ! @Communication_M2_inv1 idR ! REGID # DATA

!16 ! @Communication_M2_inv2 processQueue ! BOOL

!17 ! @Communication_M2_inv4 priority!dom(idR) " PRIORITY

!18 !

!19 !events
!20 ! event INITIALISATION
!21 ! then
!22 ! @act2 b :! DATA

!23 ! @act5 processQueue " FALSE

!24 ! @act6 idR " id0 ! {d0}

!25 ! @act7 priority " id0 ! {p0}

!26 ! end
!27 !

!28 ! event copy_2 // External event, DO NOT REFINE
!29 ! any p ctrl m
!30 ! where
!31 ! @typing_ctrl ctrl ! BOOL

!32 ! @typing_m m ! DATA

!33 ! @grd1 ctrl = TRUE
!34 ! @grd2 p = m
!35 ! @grd3 processQueue = FALSE
!36 ! then
!37 ! @act1 b " p

!38 ! @act3 processQueue " TRUE

!39 ! end
!40 !

!41 !

!42 !

!43 !

!44 !

!45 !

!46 ! event enqueueDB

!Page 1

!MProcess

!1 !machine MProcess sees Communication_C0 Communication_C1
!2 !

!3 !variables processQueue // Shared variable, DO NOT REFINE
!4 ! b // Shared variable, DO NOT REFINE
!5 ! priority // Private variable
!6 ! idR // Private variable
!7 !

!8 !

!9 !invariants
!10 ! theorem @typing_processQueue processQueue ! BOOL

!11 ! theorem @typing_b b ! DATA

!12 ! theorem @typing_priority priority ! !(" ! PRIORITY)

!13 ! theorem @typing_idR idR ! !(" ! DATA)

!14 ! @Communication_M0_inv2 b ! DATA

!15 ! @Communication_M2_inv1 idR ! REGID # DATA

!16 ! @Communication_M2_inv2 processQueue ! BOOL

!17 ! @Communication_M2_inv4 priority!dom(idR) " PRIORITY

!18 !

!19 !events
!20 ! event INITIALISATION
!21 ! then
!22 ! @act2 b :! DATA

!23 ! @act5 processQueue " FALSE

!24 ! @act6 idR " id0 ! {d0}

!25 ! @act7 priority " id0 ! {p0}

!26 ! end
!27 !

!28 ! event copy_2 // External event, DO NOT REFINE
!29 ! any p ctrl m
!30 ! where
!31 ! @typing_ctrl ctrl ! BOOL

!32 ! @typing_m m ! DATA

!33 ! @grd1 ctrl = TRUE
!34 ! @grd2 p = m
!35 ! @grd3 processQueue = FALSE
!36 ! then
!37 ! @act1 b " p

!38 ! @act3 processQueue " TRUE

!39 ! end
!40 !

!41 !

!42 !

!43 !

!44 !

!45 !

!46 !

!Page 1

!MProcess

!47 ! event enqueueDB
!48 ! any i p
!49 ! where
!50 ! @grd1 processQueue = TRUE
!51 ! @grd2 p ! PRIORITY

!52 ! @grd3 i ! REGID!dom(idR)

!53 ! then
!54 ! @act1 processQueue"FALSE

!55 ! @act3 priority(i)"p

!56 ! @act4 idR(i)"b

!57 ! end
!58 !end
!59 !

!Page 2

(b)

Figure 10. Excerpt of the output of shared variable decomposition of
Communication M2 : MCopy and MProcess

automatic decomposition method using LOTOS [16]: the correctness is ensured if the combined
behavior of decomposed sub-specifications is the same as the system’s behavior before the
decomposition. The method decomposes a process into two processes composed by the parallel
operator and automatically generates an additional process that gives some information about
the synchronization. The additional process corresponds to the middleware in a shared event
decomposition in Event-B.

There is a need for modularisation and reuse of sub-components in order to model large
systems and manage better the respective POs. Event-B lacks a sub-component mechanism so
we propose to tackle that problem through the decomposition of a system by their events
or variables. The shared variable (state-based) approach is suitable for designing parallel
algorithms while the shared event (event-based) is suitable for message-passing distributed
systems [10]. [3] suggests the shared variable decomposition where variables are shared
and introduces the notion of external events. [10] suggests the shared event decomposition
where events are partition through the sub-components and the interaction occurs via shared
parameters. The work developed by Butler in [7] for action system is strongly related with
the same approach for shared event decomposition in Event-B [10] as both approaches are

Copyright c© 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

(b)

Figure 10. Excerpt of the output of shared variable decomposition of
Communication M2 : MCopy and MProcess

MAS using shared variable decomposition to model a platoon of vehicles using Event-B. [10]
uses the shared event approach in classical B to decompose a railway system into three
sub-components: Train, Track and Communication. The system is modelled and reasoned
as a whole in an event-based approach, both the physical system and the desired control
behaviour. [17] develops a parallel program in Event-B using the tool presented in this paper.
[16] proposes an automatic decomposition method using LOTOS [19]: the correctness is ensured
if the combined behavior of decomposed sub-specifications is the same as the system’s behavior
before the decomposition. The method decomposes a process into two processes composed
by the parallel operator and automatically generates an additional process that gives some
information about the synchronization. The additional process corresponds to the middleware
in a shared event decomposition in Event-B.

There is a need for modularisation and reuse of sub-components in order to model large
systems and manage better the respective POs. Event-B lacks a sub-component mechanism so
we propose to tackle that problem through the decomposition of a system by their events
or variables. The shared variable (state-based) approach is suitable for designing parallel
algorithms while the shared event (event-based) is suitable for message-passing distributed
systems [11]. [3] suggests the shared variable decomposition where variables are shared
and introduces the notion of external events. [11] suggests the shared event decomposition

Copyright c⃝ 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

12 R. SILVA ET AL.

where events are partition through the sub-components and the interaction occurs via shared
parameters. The work developed by Butler in [8] for action system is strongly related with the
same approach for shared event decomposition in Event-B [11] as both approaches are state-
based formalism combined with event-based CSP [18]. The end-user chooses a decomposition
style depending on specific systems and on its modelling preferences. The decomposition
configuration is stored persistently for replaying/editing although further study is still required
for this matter. We present by an example the different styles of decomposition of a system
using the developed tool in the Rodin platform. A visualisation view for decomposition seems
intuitive and we intend to explore in the future.

REFERENCES

1. Jean-Raymond Abrial. Event Model Decomposition. Technical report, ETH Zurich, 2009 (Unpublished).
2. Jean-Raymond Abrial. Modeling in Event-B: System and Software Engineering. Cambridge University

Press, May 2010.
3. Jean-Raymond Abrial and Stefan Hallerstede. Refinement, Decomposition, and Instantiation of Discrete

Models: Application to Event-B. Fundam. Inf., 77(1-2):1–28, 2007.
4. B4free. http://www.b4free.com, September 2008.
5. R. J. R. Back and M. J. Butler. Fusion and Simultaneous Execution in the Refinement Calculus. Acta

Informatica, 35(11):921–949, 1998.
6. Elisabeth Ball. An Incremental Process for the Development of Multi-Agent Systems in Event-B. PhD

thesis, Southampon University, 2008.
7. Elisabeth Ball and Michael Butler. Using Decomposition to Model Multi-agent Interaction Protocols in

Event-B. In FM’06 Doctoral Symposium. Springer, 2006.
8. Michael Butler. Refinement and Decomposition of Value-Passing Action Systems. In CONCUR ’93:

Proceedings of the 4th International Conference on Concurrency Theory, pages 217–232, London,UK,
1993.

9. Michael Butler. An Approach to the Design of Distributed Systems with B AMN. In Proc. 10th Int.
Conf. of Z Users: The Z Formal Specification Notation (ZUM), LNCS 1212, pages 221–241, 1997.

10. Michael Butler. A System-based Approach to the Formal Development of Embedded Controllers for a
Railway. Design Automation for Embedded Systems, 6:355–366, 2002.

11. Michael Butler. Synchronisation-based Decomposition for Event-B. In RODIN Deliverable D19
Intermediate report on methodology, 2006.

12. Michael Butler. Decomposition Structures for Event-B. Integrated Formal Methods iFM2009, February
2009.

13. Michael Butler and Stefan Hallerstede. The Rodin Formal Modelling Tool. BCS-FACS Christmas 2007
Meeting - Formal Methods In Industry, London., December 2007.

14. Michael J. Butler. A CSP Approach to Action Systems. PhD thesis, Oxford University, 1992.
15. Eclipse. Eclipse homepage. http://www.eclipse.org, September 2008.
16. Kentaro Go and Norio Shiratori. A Decomposition of a Formal Specification: An Improved Constraint-

Oriented Method. IEEE Transactions on Software Engineering, 25(2):258–273, 1999.
17. Thai Son Hoang and Jean-Raymond Abrial. Event-B decomposition for parallel programs. In Marc

Frappier, Uwe Glässer, Sarfraz Khurshid, Régine Laleau, and Steve Reeves, editors, ASM, volume 5977 of
Lecture Notes in Computer Science, pages 319–333. Springer, 2010.

18. C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall International Series in Computer
Science, 1985.

19. ISO. LOTOS A Formal Description Technique Based on the Temporal Ordering of Observational
Behaviour. Information Systems Processing - Open Systems Interconnection, 1987.

20. Arnaud Lanoix. Event-B Specification of a Situated Multi-Agent System: Study of a Platoon of Vehicles.
In TASE ’08: Proceedings of the 2008 2nd IFIP/IEEE International Symposium on Theoretical Aspects
of Software Engineering, pages 297–304, Washington, DC, USA, 2008. IEEE Computer Society.

21. ProB. http://www.stups.uni-duesseldorf.de/ProB/overview.php, September 2008.
22. Rodin. RODIN project Homepage. http://rodin.cs.ncl.ac.uk, September 2008.
23. Renato Silva and Michael Butler. Parallel Composition Using Event-B. http://wiki.event-b.org/

index.php/Parallel_Composition_using_Event-B, July 2009.

Copyright c⃝ 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

http://www.b4free.com
http://www.eclipse.org
http://www.stups.uni-duesseldorf.de/ProB/overview.php
http://rodin.cs.ncl.ac.uk
http://wiki.event-b.org/index.php/Parallel_Composition_using_Event-B
http://wiki.event-b.org/index.php/Parallel_Composition_using_Event-B

