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Abstract

Late binding and subtyping create run-time overhead for object-oriented languages.
Dynamic typing and multiple inheritance create even more overhead. Static typing and
single inheritance lead to two major invariants—of reference and position—that make
the implementation as efficient as possible. Coloring is a technique that preserves these
invariants for dynamic typing or multiple inheritance at minimal spatial cost.

Coloring has been introduced and applied, more or less independently, to method
invocation—under the name of selector coloring—to subtype tests under the name of
pack encoding and to attribute access. This paper reviews a number of uses of coloring
for optimizing object-oriented programming and generalizes them. It specifies several
variations of coloring, such as bidirectional coloring and n-dimensional coloring. Coloring
is NP-hard, so compilers that use it depend on heuristics. The paper describes some
experimental results which indicate that bidirectional coloring gives the best results.

Keywords: object-oriented programming, graph coloring, conflict graph, downcast,
graph coloring, late binding, message sending, multiple inheritance, object layout, pack
encoding, selector coloring, single inheritance, subtype test, virtual function tables

1 Introduction

One of the implementation issues characteristic of object-oriented languages is late binding,
which is also referred to as the message sending metaphor. The underlying principle is that
the address of the actually called procedure is not statically determined at compile-time,
but depends on the dynamic type of a distinguished parameter known as the receiver. In
dynamically typed languages, the receiver’s dynamic type is completely unknown and message
sending can result in a run-time type error. However, static typing ensures only that the
receiver’s dynamic type is a subtype of its static type—the actual dynamic type is bounded,
thus avoiding run-time errors, but remains statically unknown. An issue similar to message
sending arises with attributes (aka instance variables, slots, data members according to the
languages), since their position in the object layout may depend on the object’s dynamic type.
Furthermore, subtyping introduces another original feature, i.e. run-time subtype checks,
which amounts to testing whether the value of x is an instance of some class C' or, equivalently,



whether the dynamic type of x is a subtype of C'. This is the basis for so-called downcast
operators.

Message sending, attribute access and subtype testing need specific implementations, data
structures and algorithms. In statically typed languages, late binding is usually implemented
with tables, called virtual function tables in C++ jargon. These tables reduce method calls
to function calls, through a small fixed number—usually 2—of extra indirections. It follows
that object-oriented programming yields some overhead, as compared to usual procedural
languages. When static typing is combined with single inheritance—this is single subtyping—
two major invariants hold: (i) a reference to an object does not depend on the static type
of the reference; (ii) the position of attributes and methods in the tables does not depend
on the dynamic type of the object. These invariants allow direct access to the desired data
and optimize the implementation. Otherwise, dynamic typing or multiple inheritance make
it harder to retain these two invariants. Actually, the most commonly used language with
multiple inheritance, i.e. C+-, does not keep these invariants—hence its implementation is
hampered by both significant overhead and ill-specified features [Ellis et Stroustrup, 1990|;
Lippman, 1996[; Ducournau, 2002aj.

Implementation is thus not a problem with single-subtyping languages. However, there
are almost no such languages. The few examples, such as OBERON |[Mossenbock, 1993,
MoDULA-3 [Harbinson, 1992], or ADA 95, result from the evolution of non-object-oriented
languages and object orientation is not their main feature. In static typing, commonly used
pure object-oriented languages, such as C++ or EIFFEL |[Meyer, 1992; Meyer, 1997], offer
the programmer plain multiple inheritance. More recent languages like JAVA and C# offer
a limited form of multiple inheritance, whereby classes are in single inheritance and types,
i.e. interfaces, are in multiple subtyping. Furthermore, the absence of multiple subtyping was
viewed as a deficiency of the ADA 95 revision, and this feature was incorporated in the next
version [Taft et al., 2006]. This is a strong argument in favour of the importance of multiple
inheritance. So there is a real need for efficient object implementation in the context of
multiple inheritance and static typing. The multiple inheritance requirement is less urgent
in the context of dynamic typing—an explanation is that the canonical static type system
corresponding to a language like SMALLTALK |Goldberg et Robson, 1983] would be that of
JAVA, i.e. multiple subtyping. Anyway, dynamic typing gives rise to implementation issues
which are similar to that of multiple inheritance, even though the solutions are not identical,
and the combination of both, as in CLOS [Steele, 1990], hardly worsens the situation.

Coloring can be defined as an optimization technique that retains these two invariants
at minimal spatial cost. It has been introduced and applied, more or less independently, to
method invocation—under the name of selector coloring [Dixon et al., 1989]—to attribute
access [Pugh et Weddell, 1990 ; [Ducournau, 1991] and to subtype testing—under the name of
pack encoding [Vitek et al., 1997] and with the notion of meet incompatible antichain partition
[Fall, 1995].

This article presents coloring as the versatile generalization of these three techniques,
which amounts to coloring the graph of specific entities, respectively methods, attributes or
classes. Coloring makes multiple inheritance as efficient as single inheritance implementa-
tions, so it should be envisaged for implementing languages but it is essential, first, to present
theoretical and experimental evidence of its tractability. A theoretical analysis, following
the first results by [Pugh et Weddell, 1990; Pugh et Weddell, 1993|, is first presented. It
turns out that optimal coloring is almost always NP-hard, so the paper proposes heuristics,
together with a general scheme for using coloring with separate compilation, in spite of its



non-incrementality. Finally, the tractability of coloring is assessed by its simulation on sev-
eral large-scale benchmarks commonly used in the object-oriented language implementation
community.

Overall, the contribution of this article is manyfold: (i) a survey of coloring as a general-
ization of the various proposals dedicated to each of the three aforementioned mechanisms;
(ii) an analysis of its practical use in object-oriented implementation; (iii) a graph-theoretic
formalization which stresses the role of a conflict graph and presents a synthesis of complex-
ity results; (iv) a variety of heuristics; (v) a large-scale experiment on real-size benchmarks
which show that bidirectional coloring is both efficient and tractable. Besides marginal usage
in the YAFOOL language [Ducournau, 1991], we are not aware of any actual use of coloring
in a real language. We are currently developping an experimental language, PRM [Privat et
Ducournau, 2005; Privat, 2006], that uses coloring, but the main objective of this paper is
to convince implementers that coloring is a worthwhile alternative to current object-oriented
implementations.

Structure of the paper

Section [2] presents the usual object implementation in the static typing and single inheri-
tance context. The problem with dynamic typing or multiple inheritance is stated. Section
presents the principles and briefly reviews the various contributions to coloring. Several vari-
ations are considered, according to the colored entities (methods, attributes, or classes) and
the minimization criterion (color number or table size). A generalization to bidirectional and
n-dimensional coloring is proposed and the practical use of all of these variants is examined.
Finally, putting coloring into practice is discussed from the standpoint of compilers, linkers
and loaders. In Section [4], two theoretical analyses are undertaken. The first one regards the
structure of the class hierarchy, namely the so-called conflict graph, which is the main target
of the coloring problem. The second one reports various contributions to the complexity of
the problem, which is akin to minimum graph coloring. As expected, it is NP-hard in all
but a few cases. Section [5 describes tractable heuristics and presents the results of their
experiments. It follows that coloring is tractable, from the standpoint of computation time,
at compile or link time, and also from that of memory occupation, at run-time. Section [6]
presents some works closely related to coloring, together with some alternatives. A conclusion
and perspectives are presented at the end of the paper.

2 From single subtyping to multiple inheritance

Single subtyping, i.e. single inheritance and static typing, allows for a straightforward constant-
time implementation of the basic object-oriented mechanisms. We first present this imple-
mentation and explain why it does not easily generalize to multiple inheritance or dynamic
typing. The reader is referred to |[Ducournau, 2002a) for a review of the implementation
techniques for object-oriented languages.

2.1 Single subtyping
2.1.1 Method call and object layout

In separate compilation of statically typed languages, late binding is generally implemented
with tables called wvirtual function tables in C++ jargon. Method calls are then reduced to
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Figure 1: Single subtyping implementation. A class hierarchy with 3 classes A, B and C
with their respective instances, a, b and ¢ (left). Method tables (center)—including Cohen’s
display—and object layout (right). This diagram respects the following conventions. In
method tables, A (resp. B, C) represents the set of addresses of methods introduced by A
(resp. B, C). Method tables are drawn from right to left to reduce edge crossing. In object
layouts, the same convention applies to attributes but the tables are drawn from left to right.

function calls through a small fixed number (usually 2) of extra indirections. On the other
hand, an object—e.g. the receiver—is laid out as an attribute table, with a header pointing at
the class table and possibly some added information, e.g. for garbage collection. With single
inheritance, the class hierarchy is a tree and the tables implementing a class are straight-
forward extensions of that of its single superclass (Figure [1)). Figure [2f presents a diagram
of the object layout and method table in this setting, together with the corresponding code
sequences in an intuitive pseudo-code. This pseudo-code is borrowed from [Driesen, 2001].
Contrary to previous works, instruction-level parallelism will not be considered, as it has no
effect here. So the role of these code sequences is mostly paraphrasing the corresponding
diagrams.

The resulting implementation respects two essential invariants: (i) a reference to an
object does not depend on the static type of the reference; (ii) the position of attributes and
methods in the tables does not depend on the dynamic type of the object. Therefore all
accesses to objects are straightforward, but this simplicity requires both static typing and
single inheritance. From a spatial standpoint, the object layout is clearly optimal, since there
is one field per attribute, with a single extra pointer at the method table, which shares all
data common to all direct instances of the considered class. The method tables are not very
small, but they are also, in some sense, optimal. If one assumes that the method introduction
is uniformly distributed over all classes, the total size of method tables is linear in the size of
the class specialization relationship, which is assumed to be reflexive and transitive. In the
worst case, this is however quadratic in the number of classes.

2.1.2 Subtype tests

This feature resorts to dynamic typing, hence it does not depend on static types. So there is
no need, here, to distinguish between class and type, or between specialization and subtyping.
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Figure 2: Single subtyping implementation. Code sequences for the 3 basic mechanisms and
the corresponding diagram of object layout and method table. Pointers and pointed values
are in Roman type with solid lines, and offsets are italicized with dotted lines.

In the following, the class specialization relationship is denoted <. It is transitive, reflexive
and antisymmetric.

Subtype testing is less straightforward than method invocation and access to attributes. In
the single inheritance context, several techniques have been proposed and are commonly used.
We present only one of the simplest ones that provides a basis for further generalizations.
The technique is known as Cohen’s display and was first described by [Cohen, 1991] as an
adaptation of the ‘display’ originally proposed by [Dijkstra, 1960].

Cohen’s display consists of assigning two integers to each class, a unique ID and a non-
unique color. Let the ID of class C' be idc and the color of C be x(C). Each subclass of a
class C has idc stored in its method table at x(C'). Thus, an object is a direct or indirect
instance of a class C' if and only if offset x(C) in its method table (tab) contains idc. This
is equivalent to testing that the class, say D, that has instantiated the considered object is a
subtype of C:

D = C < tabp[x(O)] = idc (1)

Originally, Cohen’s method required a set of tables separate from the method tables, and
x(C) was the depth of C in the class hierarchy. However, in a statically typed language,
these tables can be merged with the method tables. Class offsets are ruled by the same
position invariant as methods and attributes. This can be thought of as giving each class C
a method for checking whether an object is an instance of C, i.e. such that its instances can
check that they are. The test fails when this pseudo-method is not found.

Inlining the Cohen display in the method table requires that a class ID must be distinct
from a method address. As addresses are even numbers (due to word alignment), coding class
IDs with odd numbers avoids any confusion between the two types. In theory, tabp[x(C)] is
sound only if x(C) is in tabp. If one assumes that class offsets are positive, a comparison
of x(C) with the length of tabp seems required, together with memory access to the length
itself—this would hinder efficiency. Fortunately, there is a simple way to avoid this test, i.e.
by ensuring that, in some specific memory area, the value idc always occurs at offset x(C)
of the table tabp of some class D. This can be ensured if method tables contain only method
addresses and class IDs—which cannot be confused—and if the specific memory area contains
only method tables and is padded with some even number, to a length corresponding to the
maximum tab size. In this way, Cohen’s test preserves linear-space tables. If method tables



contain more data than addresses and IDs, i.e. something that might take any half-word or
word value—even though we did not identify what—a more complex coding or an indirection
might be required. Anyway, if class IDs are gathered within specific tables, distinct from
method tables and allocated in the same contiguous way, this extra indirection will have the
same cost as access to length—apart from cache misses—but the test itself will be saved.

A frequently proposed way to save on this bound check is to use fixed-size tabp. [Click et
Rose, 2002] attribute the technique to [Pfister et Templ, 1991]. However, statistics on a set
of benchmarks commonly used in the object-oriented language implementation community
(Table {4)) show that, on these benchmarks, the maximum superclass number may be 5-fold
greater than its average. Hence, fixed size tables would entail a large space overhead and a
physical limitation, with a tradeoff between both. Actually, a fixed size always entails this
tradeoff. However, limitation for limitation, the overhead is quite a bit larger when the fixed
size concerns many, possibly thousands, small tables rather than a single or a few large areas.

2.2  Multiple inheritance
2.2.1 Semantics of inheritance

The meaning of multiple inheritance is a subject of endless debates which are far beyond the
scope of this paper. Therefore, we first present a simple abstraction which will be sufficient
for the present paper and make things clear—interested readers should refer to a more formal
in-depth presentation in [Ducournau et Privat, 2008]. Inheritance involves two basic entities,
classes and properties, with the latter standing for methods and attributes. Classes have
a name and properties have a signature, i.e. this accounts for parameter types and static
overloading. Classes are organized in a specialization hierarchy, i.e. a partial order denoted
(X,<). B < A means that A is a superclass of B. The relationships between classes and
properties can be characterized by 4 verbs—a class knows, defines, introduces and inherits
properties:

e a class A knows a property p—this means that instances of A can answer the message
p, i.e. they have a value (attribute) or a function (method) of the same signature as p;

e a class A defines a property p if the definition of A includes a definition of the signature
of p;

e a subclass B inherits all properties of its superclass A—i.e. if A knows p, then B knows
b;

e a class A introduces p if A defines a property p with a new signature, i.e. a signature
which does not correspond to any inherited properties; of course, if A introduces p, then
A knows p.

The term ‘introduction’ is used with this meaning throughout the paper. We must now
distinguish two cases, according to whether the typing is static or dynamic.

In static typing, we assume that all signatures are fully qualified, i.e. they include the
name of the introducing class. Moreover, each property is introduced by a single class—
[Pugh et Weddell, 1990] call these properties class-based. When considering the property foo
introduced in class A, we must think of A@foo either in A or in all subclasses of A. So the pair
formed by the signature and the introduction class is unambiguous—e.g. in the code fragment
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Figure 3: Subobject-based implementation. The object layout of a single instance d of the
class D is depicted, with its 4 subobjects and the corresponding method tables.

{x:T; x.A@foo;}, where T is some subclass of A. In a real language, the qualification would
be inferred from the static type and x.foo would be unambiguous in the same context. In the
diamond example of Figure 3] if both B and C introduce a property with the same unqualified
signature bar, they actually respectively introduce the signatures B@bar and C@bar, and
their common subclass D inherits both as distinct properties. In contrast with the preceding
example, the fragment {x:T; x.bar;}, where T is some subclass of D, is ambiguous and the
explicit qualification would be mandatory in a real language.

In dynamic typing, we cannot rely on the static type, hence there is no way to distinguish
properties with the same signature when they are introduced by different classes. Therefore,
a property has an unqualified signature and can be introduced by several classes—e.g. class
D inherits a single property of signature bar.

Without loss of generality, implementation of method invocation and attribute access is
only concerned by allocating a position to properties, i.e. to unqualified signatures in dynamic
typing, or to pairs of signatures and introduction classes in static typing. The precise property
definition does not matter—this is the method address which will fill in the method table entry
at the considered position.

2.2.2 Subobject-based implementation

With multiple inheritance, both invariants of reference and position cannot hold together, at
least if compilation—i.e. computation of positions—is to be kept separate. For instance, in
the diamond hierarchy of Figure |3] if the implementations of B and C' simply extend that of
A, as in single inheritance, the same offsets will be occupied by different properties in B and
C, thus prohibiting a sound implementation of D. Therefore, the ‘standard’ implementation
of multiple inheritance (SMI) in a static typing and separate compilation setting—i.e. that of
C+-+—is based on subobjects. The object layout is composed of several subobjects, one for
each superclass of the object’s class. Each subobject contains attributes introduced by the
corresponding class, together with a pointer to a method table which contains the methods
known by the class. Both invariants are dropped, as both reference and position depend on the
current static type. This is the C++ implementation, when the keyword virtual annotates
each superclass |Ellis et Stroustrup, 1990; [Lippman, 1996/; [Ducournau, 2002a). It is time-
constant and compatible with dynamic loading, but method tables are no longer space-linear.
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Figure 4: Standard multiple inheritance implementation—code sequences for all the ba-
sic mechanisms, but subtype testing, and the corresponding diagrams of object layout and
method table.

The number of method tables is exactly the size of the specialization relationship. In the worst
case, the total table size of a class is itself quadratic in the number of superclasses—so the
total size for all classes is cubic in the number of classes. Furthermore, all polymorphic object
manipulations—i.e. assignments and parameter passing, when the source type is a subtype
of the target type—which are quite numerous, require pointer adjustments between source
and target types, as they correspond to different subobjects. These pointer adjustments are
purely mechanical and do not bring any semantics. They are also safe—i.e. the target type
is always a supertype of the source type—so they are implemented more efficiently than
subtyping tests. They can be done with explicit pointers, called VBPTRSs, in the object
layout or with offsets in the method tables. There are, however, a lot of variants, according
to whether compiler-generated fields are allocated in the object layout, like VBPTRs, or
in the method tables, as in Figure [Sweeney et Burke, 2003] analyse this variety, from
the ARM implementation, where all fields are allocated in the object layout, to the ALL
implementation, where all fields are allocated in the method tables. We only consider ALL
implementation here, which is closest to most actual implementations, but our conclusions
hold for the whole implementation family. Furthermore, contrary to single inheritance, there
is no known way to derive a subtype test from the technique used for method invocation. It
is no longer possible to consider that testing if an object is an instance of some class C' is
a kind of method introduced by C because this pseudo-method would not have any known
position other than in static subtypes of C.

Figure [4] displays the code sequence for basic SMI mechanisms—apart from subtype
testing—together with the corresponding diagram. At method invocation, self—adjustmentp_-]
is required since the static type of the receiver in the callee is not known in the caller—it
is done, here, by an offset included in the 2-fold entries of the method table. The diagram

! self denotes the current receiver in SMALLTALK and corresponds to this in C++ and JAvA and to
current in EIFFEL. Here we follow the SMALLTALK usage, which is closer to the original metaphor. Self can
be considered as a reserved formal parameter of the method, and its static type—even in dynamic typing!—is
the class within which the method is defined.



displays three different pointers at the same object: object is the original reference to the
object in the caller, with a certain static type C, self is the reference to the subobject of
some type D, unrelated with C, which has defined the callee method, and tobject is the
reference to the subobject corresponding to a supertype of C which introduces the desired
attribute.

More details can be found in the aforementioned references. The overall complexity of the
implementation is clear but instruction-level parallelism partly reduces the actual overhead for
method invocation [Driesen, 2001]. Finally, the main drawback of this implementation family
is that its overhead remains even when multiple inheritance is not used. Therefore, language
designers have provided alternative specification and implementation, known as non-virtual
inheritance, when omitting the virtual keyword. Non-virtual inheritance gives exactly the
same implementation as single inheritance in the case of single inheritance hierarchies, but it is
ill-specified for general multiple inheritance hierarchies, hence preventing sound reusability—
for instance, in the diamond example of Figure |3 the attributes introduced by A would be
duplicated in the object layout of D.

2.3 Dynamic typing

Replacing multiple inheritance by dynamic typing leads to similar problems regarding method
invocation and access to attributes—however, the subtype test does not depend on static or
dynamic typing. The same property foo—i.e. properties with the same name foo—can be
introduced in unrelated classes, therefore at different places, in such a way that an access
to foo on an entity x, e.g. x.foo(), cannot directly determine the position of foo in the
table of the current value of x. Thus, the pioneer of object-oriented languages, SMALLTALK
[Goldberg et Robson, 1983], finds an efficient solution in a strict encapsulation of attributes—
the language reserves to self all accesses to attributes. Although SMALLTALK is dynamically
typed, the position invariant holds for attributes because an object’s attributes can only be
accessed by its methods. Regarding method invocation, it mainly involves a combination
of non-constant time techniques, e.g. hashing and caching [Conroy et Pelegri-Llopart, 1983|;
Deutsch et Schiffman, 1984 ; Holzle et al., 1991].

3 Principle, history and applicability of coloring

The general idea underlying coloring is to keep the two invariants of single inheritance—i.e.
reference and position. There is a trivial but inefficient solution, i.e. give each attribute,
method and class a unique number. This will result in a lot of empty slots, so a lot of wasted
space. Coloring is a way of minimizing the wasted space. This cannot be done separately
for each class, but requires complete knowledge of the class hierarchy. Figure [5| depicts a
possible implementation of the example of Figure 3] The section first presents a short history
of coloring and the combinatorics of all variants. Putting coloring to work is then examined
by successively analyzing (i) the role of typing, either static or dynamic, (ii) the implications
on compilers, linkers and run-time systems, then (iii) the n-directional variants.

3.1 Short history

Coloring, as a general implementation technique, has been independently discovered in the
specific case of each basic mechanism. It follows from Section that all three mechanisms
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occupy the same positions as B because both classes have no common subclass.

are basically reducible to each other—indeed, a subtype test can be reduced to a kind of
special method but the method table layout can also be considered as an object layout at
the meta level and attributes can be accessed through accessor methods. Therefore, this is
not surprising that all three mechanisms can be generalized in a single one, i.e. coloringﬂ
However, object layout and method table have memory requirements of their own.

3.1.1 Method coloring and minimization of color number

Coloring was first mentioned as an implementation technique for object-oriented languages by
[Dixon et al., 1989]. The technique, called selectmﬂ coloring, is applied to method invocation.
This coloring problem is an instance of the well known graph coloring problem since deter-
mining an offset—called a color—for each selector amounts to coloring the undirected graph,
that here we call selector coexistence graph, whose vertices are selectors, whereby there is an
edge between two selectors when both are known by some class. The optimization criterion
is the color number. From the complexity standpoint, as an instance of the classic minimum
graph coloring problem, this is an NP-hard problem |Garey et Johnson, 1979; Toft, 1995
Jensen et Toft, 1995]. From the spatial standpoint, this is equivalent to minimizing the size
of a large matrix, whose rows are classes and columns are selector colors.

A first experiment with real-size hierarchy—the SMALLTALK hierarchy—was reported by
[André et Royer, 1992]. As they explicitly computed the coexistence graph, which was quite
large, before using heuristics to color it (see Section , the conclusions were rather negative
and coloring was long considered to be an intractable techniqueﬂ Later, selector coloring was

2 This common abstraction is however not possible with all implementations, as we have noted that subtype
testing was irreducible to method invocation in subobject-based implementations.

3 Selector is the term used in SMALLTALK for what we call signature (Section .

4 This critique is not directed at André and Royer—the author is actually deeply indebted to them for

10



integrated in a general framework for method dispatch by [Holst et Szafron, 1997].

3.1.2 Attribute coloring and minimization of table size

At about the same time as selector coloring, [Pugh et Weddell, 1990] proposed a similar
technique, but applied to attributes. The attribute coexistence graph is defined in an analogous
way, by substituting attribute to selector in the selector coexistence graph definition. The
point is no longer to minimize the number of colors, i.e. the matrix size, but rather the total
size of all of the tables associated with the different classes. Equivalently, this amounts to
minimizing the number of holes, i.e. empty entries of tables. A coloring without hole is said
to be perfect.

From an historical standpoint, [Pugh et Weddell, 1990] cite [Dixon et al., 1989] but the
authors do not explicitly recognize their proposition as an analogue of selector coloring. They
actually consider graph coloring, but only in order to decide on the existence of bidirectional
perfect coloring or to prove the complexity of bidirectional coloring (Section . However,
[Cheung et Grogono, 1992] make a similar but rather underdeveloped proposition, which is
applied in the DEE system—both [Dixon et al., 1989] and [Pugh et Weddell, 1990] are cited
and recognized as similar. Independently, attribute coloring was also used, on a rather small
scale, in the YAFOOL language [Ducournau, 1991].

Of course, minimizing the total size of a set of variable-size tables was obviously also
applicable to methods—this was done later, in a French-language review paper on message
sending in dynamically typed languages [Ducournau, 1997]. Moreover, this paper presented
experimental evidence of the existence of tractable heuristics.

3.1.3 Bidirectional and n-dimensional coloring

Besides applying coloring to attributes and object layout, Pugh and Weddell provide a very
interesting generalization, bi-directionality, which reduces the size. Bidirectional coloring
involves both positive and negative colors, contrary to unidirectional coloring, which involves
only positive colors. Generalization to n-directional or n-dimensional coloring was further
proposed by [Pugh et Weddell, 1993] and rediscovered by [Zibin et Gil, 2003]—[Gil et al.,
2008] is a synthesis. Besides coloring, the bidirectionality of method tables or object layout
has been widely reused [Myers, 1995; Krall et Grafl, 1997); (Gil et Sweeney, 1999 ; |Gagnon et
Hendren, 2001]. Bidirectional coloring must not be confused with two-way coloring [Huang et
Chen, 1992, which is a generalization of selector coloring that merges both rows and columns
of the dispatch matrix.

Whereas [Pugh et Weddell, 1990|; Pugh et Weddell, 1993] are key works on coloring—
all considerations were already there apart from the application to method invocation and
subtype testing—strangely enough the importance of these papers has been overlooked. In
the 90s, it seems that the first paper was only cited by |[Myers, 1995] and |Gil et Sweeney,
1999]. It also appears in the reference list of Driesen’s PhD thesis [2001], but we could not
find any comments on this reference in the text.

initially inciting him to focus more closely on this issue—but at computer scientists, collectively. A negative
experiment is not a counter-example of the tested approach, but only of the applied protocol.
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optimization colored
criterion entities typing systems
2. v £ 218 3
> Z T Y|y £ | = & = & 35
paper % 5 23 L£| 8 % ©|® |8 & & =
Dixon et al. [1989] | x X X X | x
Pugh and Weddell [1990] X X X X | x %
Ducournau [1991] X X X
André and Royer [1992] | x X x | x X
Cheung and Grogono  [1992] X X X
Pugh and Weddell [1993] X X | x X x | x x
Fall [1995] | x X
Ducournau [1997| X X X | x
Vitek et al. [1997] | x X X
Ducournau [2002b] X X X X X | x x| x x
Palacz and Vitek 12003] | x X | x X
Zibin and Gil [2003] X X X X | x
Privat and Ducournau [2005| X X X X X | X X
Privat and Morandat  [2008] X X X X X | x X X

Table 1: Coloring bibliography

3.1.4 Class coloring and pack encoding

Class coloring was proposed by [Vitek et al., 1997] under the name of pack encoding. This is
the direct extension of Cohen’s test to multiple inheritance. Class coexistence graph is now
defined as the undirected graph whose vertices are classes such that there is an edge between
two classes iff they have a common subclass, particularly if one of them is a subclass of the
other. [Fall, 1995] anticipated this idea with the notion of meet incompatible antichain, but
he did not look into it closely when he recognized that the problem was NP-hard. Vitek et
al. use fixed-size tables, so the technique amounts to minimizing the color number. However,
they do not make any reference to graph coloring—the word ‘color’ is actually not used—and
the paper does not cite [Dixon et al., 1989] nor [Pugh et Weddell, 1990].

Finally, though coloring is inherently non-incremental, [Palacz et Vitek, 2003] propose to
use it for subtype tests in JAVA, when the target type is an interface.

3.2 Combinatorics of coloring

All of these various works can be abstracted in a general technique, here called coloring, which
has different variants (Table [1):

e it can apply to classes, methods or attributes; actually, as methods and classes should
likely be colored in the same tables, it should apply jointly to classes and methods; more-
over, class coloring can also serve for accesses to attributes through accessor simulation

(Section [3.3.2);

e the minimization criterion may be the color number or the total table size or, equiv-
alently, the hole number; in the case of attributes, the size should be weighted by the
number of instances;

e typing may be static or dynamic;
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idc f nmet hAddr
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o M [ method table
// attribute access table i
load [object + #tableOffset], table colorC
load [table + #colorC+1], attC met h
; col or at t Val
add object, attC, attgr T
load [attgr + #attOffset], attVal [ \ I [ object
att
attC of f set
obj ect

Figure 6: Accessor simulation in static typing—code sequence for access to attributes and
diagram of object layout and method table. The group of attributes introduced by class C' is
in grey.

e coloring may be unidirectional, bidirectional, or even n-dimensional.

e and, finally, coloring is preferably used in a global setting rather than with dynamic
loading, but incremental versions have also been proposed for SMALLTALK [André et
Royer, 1992] or Java [Palacz et Vitek, 2003).

All combinations are possible, and their respective efficiency and complexity must be
studied (Section [.5). The optimization problem is exactly minimum graph coloring—when
fixed-size tables are used—or akin to it. So, it is likely NP-hard in most cases. Therefore
heuristics are needed, along with some experiments to check their tractability and evaluate
the size of the resulting data structures (Section [f)).

3.3 Coloring and typing
3.3.1 Application to static typing

In a static typing setting, uni- and bi-directional coloring are direct extensions of single inheri-
tance implementation, and all three mechanisms use the exact same code and implementation
as that used for single subtyping, hence providing the same time efficiency. However, colors
must be globally computed, whereas single inheritance allows an incremental computation.
Moreover, coloring results in tables that may include some holes, i.e. empty slots. This is not
too expensive for method and class coloring, since class tables are usually a small percent-
age of the total size of a program. However, attribute coloring can be expensive—if a class
with only a few attributes but many instances has a few holes, the wasted space might be
large. One solution is to profile a program, determine which classes have the most instances,
and make sure that they are not classes with holes in their attributes. Another solution is
accessors, which eliminates the need for profiling at a slight run-time cost.

3.3.2 Accessors and accessor simulation

An accessor is a method that either reads or writes an attribute. Suppose that all accesses to
an attribute are through an accessor. Then the attribute layout of a class does not have to
be the same as the attribute layout of its superclass. A class will redefine the accessors for an
attribute if the attribute has a different offset in the class than it does in the superclass. True
accessors require a method call for each access, which can be inefficient. However, a class can
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simulate accessors by replacing the method address in the method table with the attribute’s
offset. This approach is called field dispatching by [Zibin et Gil, 2003]. Another improvement
is to group attributes introduced by the same class together in the method table. Then one
can substitute, for their different offsets, the single relative position of the attribute group,
stored in the method table at the class color—i.e. at an invariant position (Figure @

Accessor simulation is a generic approach for access to attributes, which works with any
method invocation technique—only grouping can be conditioned by static typing, since at-
tributes must be partitioned by the classes which introduce them.

3.3.3 Application to dynamic typing

Coloring is also applicable to dynamic typing, with some key differences regarding attribute
and method coloring. The lack of static typing forces the compiler to generate, for each
call site, the code allowing to check at run-time that the invoked method is actually known
by the current receiver—i.e. the receiver might know another method with the same color.
A simple way to do this is to add an extra parameter to each method—i.e. the selector
itself—and to check it in the method prologueﬂ Furthermore, bound checking is mandatory
and empty entries are filled with the address of a function which signals an exception—
doesNotUnderstand in SMALLTALK. Regarding attributes, an analogue would require an
image of the object layout in the method table, whereby each field contains the name of
the corresponding attribute. This would not be efficient and the SMALLTALK solution is
surely the best one—mnamely encapsulation which reserves attributes to self. Access to
attributes of other entities is mediated by true accessors, which may be generated by the
compiler or defined by the programmer—i.e. only the latter in SMALLTALK. Coupled with
single inheritance, encapsulation makes attribute access to self as efficient as with single
subtyping. Coupled with multiple inheritance, encapsulation allows for both attribute coloring
and accessor simulation, that would apply as in static typing, apart from grouping which is no
longer possible since an attribute can be introduced by more than one class. However, with
accessor simulation, the efficiency of attribute access to self would be partially lost. Despite
this relative inadequacy, attribute coloring was mostly proposed and studied in dynamic
typing settings—either FLAVORS [Pugh et Weddell, 1990] or YAFOOL [Ducournau, 1991].
Finally, as noted above, subtype testing does not depend on static types, so class coloring can
be applied in dynamic typing without any change.

3.4 From compilation to class loading

The single subtyping implementation is truly modular and incremental—it can be applied in
separate compilation and dynamic loading. This is still the case for subobject-based imple-
mentations, but not for coloring.

3.4.1 Link-time coloring

The main defect of coloring is that it requires complete knowledge of all classes in the hierar-
chy. This complete knowledge is usually achieved by global compilation. However, giving up

5 As this extra parameter is used only in the prologue, it can be passed in a register, i.e. more efficiently
than other parameters.
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the modularity provided by separate compilation may be considered too high a price for pro-
gram optimization. An alternative was already noted by [Pugh et Weddell, 1990]. Coloring
does not require knowledge of the code itself, but only of the ‘model’ (aka ‘schema’) of the
classes, all of which is already needed by separate compilation of object-oriented programs,
namely the model of the superclasses of the currently compiled class, together with other
classes which are used for typing the code of the current class. This class model is included
in specific header files (in C++) or automatically extracted from source or compiled files (in
JAVA). Therefore, the compiler can separately generate the compiled code without knowing
the value of the colors of the considered entities, representing them with specific symbols.
At link time, the linker will collect the models of all classes and color all the entities, before
substituting values to the different symbols, as a linker commonly does. The linker can also be
enriched by optimizations, e.g. type analysis and dead code elimination [Privat et Ducournau,
2005], but this is far beyond the scope of this paper.

The double compilation scheme proposed by [Myers, 1995] provides a final optimization
of accessor simulation, when attributes are encapsulated. It involves assuming that each
class has one primary superclass plus some secondary superclasses. Each class is compiled
in two versions. The efficient version considers that the current class is always specialized
as a primary superclass and all accesses to attributes of self are compiled in the usual
position-invariant way. On the contrary, the second version considers that the current class is
sometimes specialized as a secondary superclass—hence, the position invariant does not hold
and accesses to attributes must use accessor simulation, i.e. extra memory access. The appro-
priate version is selected at link-time. When classes are only used in single inheritance, the
efficient version is always chosen, so accessors entail no overhead, at least for all encapsulated
accesses.

[Privat et Morandat, 2008 examine the possibility of using coloring with shared libraries
and global linking. In their proposition, only the library code is shared. Method tables and
colors are proper to each program and the actual implementation requires extra memory
access for all colors and class IDs.

3.4.2 Load-time coloring

Finally, a definitive defect will remain—i.e. coloring is not incremental, hence apparently not
suitable for dynamic loading. However, as aforementioned, some authors have attempted to
use coloring at load-time. Actually, any global technique can be used in a dynamic loading
setting at the expense of dynamic data structures, hence extra indirections, and of possibly
complete recomputations. When the considered technique is inherently non-incremental, us-
ing it in a dynamic setting might make it lose all its desired qualities that are ensured in
a global setting. So, the point with using coloring at load-time is to examine the overhead
entailed at load-time—recomputation cost—and at run-time—extra indirection cost. From
the load-time standpoint, specific incremental heuristics must be designed since coloring is
NP-hard and near—optimaﬁ global heuristics are roughly cubic (see Section |5)). These incre-
mental heuristics will likely favour load time to the detriment of run-time space. At run-time,
the generated code also requires memory access to colors—i.e. colors cannot be replaced by
values at link-time. Nevertheless, the main point would be that the method table of exist-

6 This is an informal usage of the term. We only mean that these heuristics give apparently good results,
but we do not mean that they always give good results. In the general case, minimum graph coloring problem
is non-approximable within a constant factor [Bellare et al., 1998].
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// preamble

load [object + #tableOffset], table

load [table + #ctableOffset], ctable attc
load [classColor], colorC idc met hC
add ctable, colorC, entry

\ MTT color table

// attribute access

load [entry + #1], attC
add object, attC, attgr colorC met hAddr
load [attgr + #attOffset], attVal

ctable

| method table

[
[ [

// method invocation tabl e
load [entry + #2], methC met h

add table, methC, methgr methC of f set att val

load [methgr + #methOffset], methAddr T 777777
call methAddr [ ‘ [' | object

// subtype test att
load [entryl, idC . attC of f set
comp idC, #targetId obj ect

bne #fail

// succeed

Figure 7: Load-time coloring in static typing—all three mechanisms begin with the same
preamble

ing instances would have to be updated—this is easy to do, but at the expense of an extra
indirection. Moreover, a dynamic method table might well make bound checks mandatory
in Cohen’s test. It would also be unreasonable for attribute coloring—the layout of existing
objects might change—unless an expensive feature like the CLOS change-class generic func-
tion is accepted [Steele, 1990]. Furthermore, since incremental heuristics will likely be less
space-optimal than global ones, the number of holes in the object-layout will be significant.
Of course, load-time coloring would still be compatible with accessor simulation. Overall,
coloring can be envisaged at load-time in a static typing setting, as follows (Figure [7)):

e class coloring is the basis of all mechanisms;

e attributes are implemented with accessor simulation, i.e. the offset attC of the attribute
group is stored at the class color colorC;

e methods are implemented in an analogous way, i.e. all methods introduced by a class
are grouped together in the method table and the offset methC of the method group is
stored at the class color colorC.

The class coloring table is made of 3-fold entries: the class identifier idC, for subtyping
test, the attribute offset attC and the method offset methC. This allows one to make object-
layout and method tables invariant and reducing load-time computation to class coloring.
However, the resulting run-time efficiency is far from that of link-time coloring, especially for
attributes, since they require four extra loads, in three unrelated memory areas, hence with
possible cache misses.

JAvaA-like languages present a more realistic application field. In these languages, classes
are in single inheritance but types, i.e. classes and interfaces, are in multiple subtyping.
Therefore, attributes are not concerned and incremental coloring could be applied to subtype
testing when the target type is an interface—this is the proposition of [Palacz et Vitek,
2003]—but also to method invocation when the receiver is typed by an interface.
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Figure 8: Bidirectional object layout for garbage collection. When an object layout uses
negative colors, an extra pointer to the method table is added. The length of the object-
layout is included in the method table, together with the required information to decide
which fields are pointers that must be followed during garbage collection.

Dynamic typing would make things even more difficult since attributes and methods
cannot be grouped according to their introduction class. So dynamic typing requires method
coloring at load-time but this would be quite expensive.

3.5 Application of n-dimensional coloring

Let us first specify the terminology. Let n be an arbitrary positive integer, then n-directional
coloring consists of coloring with n tables of positive offsets—each entity is assigned both a
table and a color in this table. So the technique described up to now is unidirectional, i.e.
1-directional, coloring. When n = 2, both tables can be interpreted as a single 1-dimensional
array, with negative and positive offsets—this is bidirectional coloring. One generalizes with
k-dimensional coloring, which involves k bidirectional arrays, i.e. 2k-directional coloringﬂ
Conversely, n-directional coloring involves [n/2] dimensions. In all generality, increasing n
must reduce the hole number—if the coloring of a class in n tables produces some holes, these
holes could be avoided with an extra table. For instance, in Figure [5] coloring C' in negative
offsets would yield perfect coloring.

Unidirectional Unidirectional coloring directly applies to all three cases of attributes,
classes and methods—preferrably, of classes and methods jointly. However, the resulting
space may be considered as less than optimal and far from desired, so an improved technique
may be preferred.

Bidirectional The application of bidirectional coloring is also straightforward in the case
of methods and classes. Bidirectional method tables—i.e. negative offsets—are not a prob-
lem. They are actually rather common, at least in a research setting [Myers, 1995; |Krall
et Grafl, 1997); Gil et Sweeney, 1999); |Gagnon et Hendren, 2001]. In contrast, bidirectional
object layout might make memory management difficult, as garbage collection requires some
information regarding memory allocation at the beginning—or at least at a fixed offset from

" This terminology is slightly different from that of |Zibin et Gil, 2003]—i.e. our dimension is their layer.
Conversely, their two dimensions follow from the fact that an entry is determined by two coordinates, the table
index (among 1..k) and the offset in the bidirectional table—hence, the actual color is the pair index-offset.
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Figure 9: n-dimensional method tables, with an n-pointer header in the object layout (left)
or with indirections in the method table (right).

the beginning—of each memory block. Therefore, an extra pointer to method table might be
required, at least when negative offsets are used [Desnos, 2004 (Figure . The memory gain
w.r.t. unidirectional coloring will be reduced accordingly.

|Gagnon et Hendren, 2001] propose a bidirectional layout designed especially for opti-
mizing garbage collection, by assigning negative offsets to references and positive offsets to
immediate values. In a copying garbage collection, this incurs no overhead as all fields must
be scanned before being copied and an extra pointer is not required. This is, however, not
applicable to bidirectional coloring, since negative offsets are no longer dedicated to references.

Multi-dimensional The aim of n-dimensional coloring, when n > 1, is to reduce the hole
number, which should decrease when n increases—though heuristics cannot always ensure
this obvious mathematical fact. The gain is, however, questionable. In the case of methods,
it yields multiple method tables which can be, however, contiguous. A possible object layout
involves an n-word header, with each word pointing at the corresponding bidirectional table
(Figure @], left). Of course, in a static typing setting, the header can be left-truncated when
there is no method in the upper dimensions. With such a layout, method invocation incurs
no overhead at all, however this is to the detriment of object layout. An alternative involves a
single pointer at the method table in the first dimension—while the other tables are pointed by
the first one (Figure@ right). This incurs no overhead in object layout, but rather a constant
overhead in method invocation for all methods which are not in the first dimension. In a
global compilation setting, the overhead will likely concern only a small subset of method calls.
However, in a separate compilation and global linking setting, it might concern all method
calls. Regarding class coloring, the same arguments apply—however, the left truncation would
require an extra bound check. Now, it is not mandatory to improve on bidirectional coloring
for methods and classes since it is already quite good—the expected gain would be low and
counterbalanced by the multi-dimensional drawbacks. Therefore, it is likely useless to further
consider n-dimensional coloring for classes and methods.

The real point is attribute coloring which presents the same alternative as method coloring
(Figure . Each dimension represents, in the object layout, a kind of bidirectional subob-
ject. These subobjects might be explicitly linked with n—1 pointers in the first subobject, but
it would contradict the intention of saving on space—this would generate the same drawbacks
as VBPTRs (Section . Therefore, the alternative proposed by [Zibin et Gil, 2003] would
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Figure 10: n-dimensional object layout, with an n-pointer header in the object layout (left)
or with indirections through offsets in the method table (right).

be preferred—i.e. the relative positions of n — 1 subobjects are stored in the method table.
The argument is now the same as with methods. Most attributes are presumed to be in the
first dimension, which incurs no overhead in a global compilation setting. Other dimensions
require an indirection in the method table, as with accessor simulation or subobject-based im-
plementation, when the attribute is not introduced by the static type of the receiver. Hence,
perfect n-dimensional attribute coloring may be understood as an optimization of accessor
simulation (Section , but it optimizes only with global compilation, not with global link-
ing which cannot avoid indirection for the first dimension. Double compilation optimization
applies, but in a slightly different way, namely multiple compilation, since several versions can
be considered. For instance, if a class is always specialized as a primary superclass, attributes
introduced by the class can be laid out in the first dimension. This is, however, not always
true for inherited attributes. An alternative is to consider the case where all attributes of the
class can be laid out in the first dimension. Overall, n-dimensional attribute coloring might
be a slight improvement of accessor simulation, but at the expense of a somewhat significant
complication and it should be reserved to global compilation.

Conclusion Anticipating the results of our experiments (Section , it follows from this
analysis that language implementers should use bidirectional coloring for classes and meth-
ods. Regarding attributes, the choice is mainly between accessor simulation and bidirectional
coloring—profiling applications would be a major improvement for coloring.

4 Formal definitions and Theoretical results

This section presents formal definitions and surveys theoretical results. Though this section
can be mostly skipped, the definitions introduced in Section [4.2]are essential for understanding
the heuristics proposed in Section

4.1 Notations and definitions

Definition 4.1 ((Hierarchy)). A hierarchy (aka inheritance graph) is an directed acyclic
graph (X, <g4), where X is the set of classes and <q is the direct specialization relationship—
i.e. B <4 A iff A is a direct superclass of B. < denotes the transitive closure of <4 and =< is
the reflexive closure of <.
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We assume that <; includes no transitivity arcs—i.e. <4 is the transitive reduction of
<. (X, =) is a partial order (aka poset), since < is reflexive, transitive and antisymmetric.
Mazimal (resp. minimal) elements of a subset of X refer to <: x is maximal (resp. minimal)
in X’ C X iff there is no 2’ € X’ such that x < 2’ (resp. 2/ < z). max<(X’) and min<(X’)
denote, respectively, the sets of maximal and minimal elements of X’. Unqualified uses of
max and min denote the single mazimum or minimum element of an integer set. The reader
is referred to [Cormen et al., 2001] for a definition of all other notions of graph and order
theories that might be used hereafter but are not essential. Finally, given two sets F and F,
E W F asserts that the sets are disjoint and denotes their union. Moreover, given a function
f:E— F and a subset E' C E, f(E’) denotes the set {f(z) | x € E'}.

P is the set of the considered properties, i.e. either attributes or methods. Moreover, h is
a subset of X x P which formalizes the relationship between classes and properties—h(z,y)
holds iff the class z knows the property y. The function p : X — 2F associates with each

class z the set p(z) def {y € P | h(x,y)} of properties known by x. The following property
characterizes inheritance:

¥ < x=px) Cpl) (2)
Conversely, the function ¢ : P — 2% associates with each property y the set of classes which

introduce the property:
def
o(y) = max{z € X | h(z,y)} (3)

As aforementioned, a property is class-based iff c¢(y) is a singleton and, in static typing, all
properties are class-based.

In the following, we consider a hierarchy (X, <4), a set of properties P, together with h, p
and c. Y stands for X, P or X & P—the latter in the case of class and method joint coloring.

Definition 4.2 ((Coloring)). A unidirectional (resp. bidirectional, k-directional) coloring is
a function x 1Y — Z, with Z =N (resp. Z, N x [1,k]), such that Vz,y €Y,

x,y have no common subclass z,y € X
x(x) = x(y) = < z,y do not belong to the same class x,y € P (4)
y does not belong to a subclass of x x€ X,y e P

Of course, N (resp. Z) and N x [1,1] (resp. N x [1,2]) are isomorphic—so, unidirectional
(resp. bidirectional) is an abbreviation for 1-directional (resp. 2-directional). For all i = 1..k,
Yi={zeY | x(x) =(n,i)} and x; : ¥; — N is the function such that x(z) = (xi(x),?).
We do not consider n-dimensional coloring—IN should just be replaced by Z in k-directional
coloring.

Definition 4.3 ((Color table)). Given a coloring x : Y — Z, the function x* : X — 27 is
defined as follows:

fyle=yy Y=X
X'(@) = x(Ya)  with Yy = qp(z) Y=P (5)
union of both Y =XWP

X*(z) is called the color table of . When Z = N x [1,k|, for all i € [1,k|, the projection
X X — N is defined by: xf(z) ={n| (n,i) € x*(x)}.
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Alternatively, one defines x*, x" : X — 2%, such that x*(z) (resp. x'(z)) denotes the set
of colors introduced (resp. inherited) by x:

{x(z)} Y =X

(x(z) |zec(z)} V=P (6)
union of both Y=XWwWP

@) € U xvw = (7)

X (@) = x"(2) wx* (@) (8)

Proposition 4.4. A function x : Y — Z is a coloring iff x is injective on Yy, for all x € X.

>
+
&
Ile

This alternative characterization of coloring amounts to note that a color table cannot
contain two different things at the same place. The restriction to all x € min<(X) keeps the
condition sufficient. The proof is trivial.

Definition 4.5 ((Optimal coloring)). A coloring x : Y — Z is optimal if it

maxycy X(y) Z =N, min. color number
imimises > pex max(x*(x)) Z =N, minimum size

Y pex(max(x*(z)) —min(x*(x) U{0})) Z = Z, minimum size

Doict g wex max(x;(z)) Z =N x [1,k], min. size

In the bidirectional case, the minimum must be negative to keep the isomorphism with
2-directional coloring. Furthermore, the argument used in Section for saving the bound
check in Cohen’s test can be applied to bidirectional coloring, under the condition that color 0
is inside each table. In practice, this is likely for all rooted hierarchies, as 0 is the natural root
color. This is also true for property coloring—color 0 is occupied by the pointer at method
table, which is considered as an implied attribute introduced in the hierarchy root, and is
used for information about memory allocation, in the method table.

Alternatively, when the minimization criterion is the size, holes can be defined:

Definition 4.6 ((Hole)). Given a coloring x, a hole is an empty entry in the color table of
some class x, i.e. an element of the set

0, max(x*(2))\x* (2) Z=N

[min(x*(z) U{0}), max(x*(z))\x"(z) Z=Z (9)
Wiz ([0, max(x7 ())\x; (2)) x {i}) Z =N x[1,k]

hy(x) is the number of holes in the color table of x, i.e. the cardinality of H,(z).

def
Hx(x) =

Minimizing the total size is equivalent to minimizing the total hole number, i.e. >y h\(z).

Definition 4.7 ((Optimal weighted coloring)). Given a weight function w : X — N, a
coloring x : Y — Z is optimal if it minimizes

Y zex w(z). max(x*(z)) Z=N
Y pex w(z).(max(x*(z) — min(x*(z) U{0}) Z=Z (10)
Dimt g 2gex w(z). max(x; (z)) Z =N x [1,k]

or, equivalently, the weighted number of holes, > .y w(x).hy ().
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4.2 Structure of the hierarchy
4.2.1 Regular coloring

Property coloring is largely reducible to class coloring. Indeed, two attributes or methods
‘conflict’, i.e. they cannot have the same color, if they have been introduced in ‘conflicting’
classes, which cannot have the same color, e.g. when they are =<-related. The condition is
however sufficient only when properties are class-based. Intuitively, a class-based property
can be colored in the same condition as the single class which introduces it. The analogy
is exact when each class introduces exactly one property—class coloring is a special case of
property coloring. In order to formalize this intuition, we introduce the notion of regular
coloring:

Definition 4.8 ((Regular coloring)). A regular coloring is either a class coloring (Y = X)
or a property coloring (Y = P orY = X W P) where all properties are class-based, i.e.
lc(y)| =1, Vy € P.

In static typing, all colorings are regular. Anyway, in all cases, an analysis of the class
hierarchy is mandatory.

4.2.2 Core and crown

The single inheritance approach applies to regular colorings when and where classes are in
single inheritance. Given a regular coloring of a class and all its superclasses, this coloring
can be simply extended to subclasses which are only specialized in single inheritance. This
leads to distinguishing parts of the hierarchy which are in single or multiple inheritance.

Definition 4.9 ((Core)). The core of the hierarchy is the subset X, of classes in multiple
inheritance, i.e. which have more than one direct superclasses or such a subclass:

X {reX | Jy,z1,20€ X1y 22,y <q 21,y <a 22,21 # 22} (11)
Definition 4.10 ((Crown)). The crown of the inheritance graph is the subset X, of classes
i single inheritance, that are only specialized in single inheritance: X, df ¥ \Xeo-

In the poset terminology, the core is a filter of (X, =) and the crown is an ideaﬁ Moreover,
(Xer, <q) i a forest, i.e. a set of disjoint directed trees. An interesting subset of the core is
the border:

Definition 4.11 ((Border)). The border of the inheritance graph is the subset X, of <-
minimal classes in the core, that have several direct classes but whose subclasses are all in
single inheritance:

Xpo def {reX,|ly<e=yeX,}= m<in(XCO).

Figure presents an example of the IDL hierarchy, with its core, crown and border.
Intuitively, a regular coloring of X amounts to coloring the core X.,, then to extending this
coloring to the crown X, in the same algorithmic way as in single inheritance, except that

there may be some holes in the superclass table, which must be filled in the subclass. This
intuition is formalized as follows:

8 F C X is afilter of (X, <) iff z € F & x < y implies y € F. Conversely, I is an ideal iff z € T & y <
implies y € 1.
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Figure 11: Core, crown and border. The pictures depict a part of the IDL hierarchy (left), its
core (middle) and border (right)—dashed lines represent edges originating from the crown.

Definition 4.12 ((Partial coloring)). A partial coloring of a filter X' of X, is a function
x:Y' = Z, where Y' is X', the subset P C P of properties introduced by classes in X', or
X'"W P, such that holds for all x,y € Y'.

Definition 4.13 ((Partial coloring extension)). A partial coloring X' of X' extends a partial
coloring X" of X" if X" C X' and X'/Y" = X".

As coloring is essentially non-incremental, any partial coloring cannot be extended into a
complete coloring. However,

Proposition 4.14. Any partial reqular coloring of the core can be extended in a coloring of
the whole hierarchy.

The proof follows from the fact that a class in the crown cannot induce a conflict between
two superclasses. ]

However, this proposition does not mean that any optimal regular coloring of the core can
be extended to an optimal coloring of the whole hierarchy. Indeed, the crown plays a role
in the minimization criterion. Conversely, the restriction to the core of an optimal regular
coloring may be nonoptimal.

4.2.3 Conflict graph

Coloring amounts to graph coloring, for some coexistence graphs of classes, attributes or
methods.

Definition 4.15 ((Coexistence graph)). The coexistence graph of Y is the undirected graph
(Y, ©), where xy iff
x,y have common subclasses x,y € X
x #y and { x,y belong to the same class x,y € P
y belongs to a subclass of v x € X,y € P
This condition is a logical complement of equation in Deﬁnition Hence, an equiva-

lent characteristics of colorings is that, for all k, x (k) is an independent set of the coexistence
graph—i.e. the restriction ©/x~!(k) is empty.
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The < relationships account for the informal use of the term ‘conflict’ in Section 4.2.1
However, even the class coexistence graph (when Y = X) is too large to be useful—for instance
it includes <—and a better formulation of regular colorings requires defining the following
conflict graph, which greatly simplifies the problem:

Definition 4.16 ((Conflict graph)). The conflict graph of a hierarchy is the undirected graph
(Xeo,¢2), where x >y iff t Ay, y Az and 3z € Xep, 2 < 2,2 < 9.

Two classes conflict iff they are <-incomparable and have a common subclass. In other
words, the conflict graph is the incomparability graph of (X, <), restricted to classes with
common subclasses. The class coexistence relation < is the disjoint union of both < and <
relationships. All edges in the conflict graph are between two classes in X\ Xp,—however,
Proposition[4.14]does not hold if the border is not considered. From now on, the term ‘conflict’
is related to the conflict graph. Two classes conflict when they are <»-related.

The conflict graph can also serve for regular property coloring. Indeed, two class-based
properties conflict iff their introducing classes conflict. This is a simplification of the conflict
graph defined on the set P of all properties—attributes or methods:

Definition 4.17 ((Property conflict graph [Pugh et Weddell, 1990])). The property conflict
graph is the undirected graph (P, <), where x <> y iff  and y coexist in some class and there
are classes with x, without y, and classes with y, without x:

yey &5 c(y) ¢ oY) & ely) ¢ ely) & (G € X, h(z,y) & h(z,y)) (12)

Actually, this set-wise condition can be implemented in a more efficient way, by simply
counting the corresponding entities and comparing the resulting numbers [Pugh et Weddell,
1990].

Proposition 4.18. Let y,y’ € P be two class-based properties, with c(y) = {x} and c(y’) =
{2'}. Then y <y iff v < 2.

The proof is straightforward. O

4.3 Perfect regular coloring

Single subtyping implementation is a special perfect case of coloring, where there is no hole
at all. [Pugh et Weddell, 1990 generalizes this remark by defining perfect coloring:

Definition 4.19 ((Perfect coloring)). A perfect coloring x is a coloring without any holes,
i.e. hy(xz) =0,V € X.

A perfect coloring is optimal. Proposition extends to perfect colorings:

Proposition 4.20. Any perfect partial reqular coloring of the core can be extended in a perfect
coloring of the whole hierarchy.

Proof. The natural extension of core coloring involves applying the single inheritance algo-
rithm to the crown, i.e. a top-down class ordering with the selection of the next free color
(Section [5.1.1]). It cannot introduce new holes since there are no conflicts between classes in
the crown. O
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Pugh and Weddell have shown that the existence of perfect coloring is closely related to
the property conflict graph colorability. The following proposition generalizes their results to
regular coloring.

Proposition 4.21. [Pugh et Weddell, 1990, Th. 1 and 2, for k < 2]There is a perfect
k-directional regular coloring if the conflict graph can be colored in k colors.

This characterization of perfect regular colorings involves two-level coloring. Each color
of the conflict graph determines a direction—in the following, we shall use ‘direction’ instead
of ‘color’. Then each direction is separately colored—in the second meaning.

Proof. A k-coloring of the conflict graph partitions X, in k independent sets X;,i = 1..k,
i.e. for all 4, the restriction of <» to X; is empty. Then each (X, <) is a forest, which can be
colored as in single inheritance. O

The condition is sufficient but not necessary. Necessary conditions may be added in the
following way:

Proposition 4.22. There is a perfect k-directional class coloring iff the conflict graph can
be colored in k colors.

Proof. Let us prove that the directions give a coloring of the conflict graph, i.e. that each
direction is an independent set. Let xz and y be two classes colored in the same direction
and suppose that x <> y. Then y;(x) # x;(y) and, for instance, x;(x) < x;(y). Then x;(z) is
obviously a hole in the y table color, since z and y have a common subclass. O

Corollary 4.23. There is a uni- (resp. bi-) directional class coloring iff the conflict graph is
edgeless (resp. bipartite).

Finally, note that it is hopeless to expect a local characterization of perfect colorings, for
instance based on the restriction of the conflict graph on the superclasses of each class. Any
graph is the conflict graph of some hierarchy—a common subclass just has to be added to
each connected pair. In the resulting hierarchy, the conflict graph restriction to each class is
2-colorable.

Proposition holds also for class and method joint coloring when methods are class-
based. In the case of property regular coloring, the necessary condition holds only if the
conflict graph is restricted to classes introducing properties:

Proposition 4.24. There is a perfect k-directional method (resp. attribute) regular coloring
iff the conflict graph restricted to classes introducing methods (resp. attributes) can be colored
in k colors.

Proof. The proof of Proposition [£:22] works, but z and y must be constrained to introduce
some properties—obviously, a class which introduces no properties has no effect at all on
regular property coloring. O

Example

Figure[12| presents an example of the IDL hierarchy. The core and conflict graph are depicted.
It appears that the latter is bipartite—hence there is a perfect bidirectional coloring. Class
coloring is displayed in the unidirectional case (with 3 holes) and in the perfect bidirectional
case, together with the specific memory area which gathers all color tables and avoids bound
checking.
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Figure 12: Class coloring of the core of the IDL hierarchy. From top to bottom and left to
right: core and conflict graph, bidirectional and unidirectional color tables, and the specific
memory area gathering all bidirectional color tables.
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4.4 Irregular coloring
4.4.1 Perfect irregular coloring

In dynamic typing, when properties are no longer class-based, one would like to formulate
conditions on perfect coloring in terms of property conflict graphs—e.g. there is a perfect
k-directional property coloring iff the property conflict graph can be colored in k colors.
However, only the sufficient condition holds. [Pugh et Weddell, 1990] prove that 2-colorability
is a sufficient condition for 2-directional perfect coloring. In their 1993 paper, they generalize
to all k£ but they also prove that there are no necessary conditions:

Proposition 4.25. [Pugh et Weddell, 1993, Theorem 1] There is a perfect k-directional
property coloring if the property conflict graph is k-colorable.

Proposition 4.26. [Pugh et Weddell, 1993, Theorem 2| For any positive integer n, there is a
hierarchy with perfect unidirectional coloring, but where the conflict graph is not n-colorable.

4.4.2 Attribute coloring and abstract classes

In the case of attributes, the optimization criterion must be the total size but it should also
take the number of instances of each class into account. Hence an optimal weighted coloring
is needed. Of course, determining w is an issue that requires profiling or some other approach.

An apparently simpler way involves only abstract classes, i.e. classes without direct instances—
some languages allow the programmer to declare that a class is abstract. This amounts to
considering that w takes its values in {0,1}. It would be advantageous to remove abstract
classes from the conflict graph—in the same way as we did for classes introducing no proper-
ties. However, this removal would make us lose the advantage of static typing, i.e. class-based
properties. When taking abstract classes into account, attribute coloring is no longer regular.
Indeed, after the removal of some abstract class, attributes introduced by this class would be
implicitly introduced by all of its direct subclasses.

Hence, Proposition [4.26] shows that it is no longer possible to correlate a perfect coloring
with abstract classes to the k-colorability of the conflict graph. Assume that all classes in the
core are abstract. Irrespective of the conflict graph, given an optimal coloring of the core, it is
always possible to define non-abstract classes in the crown in such a way that perfect coloring
of the crown is obtained by simply filling the holes in the layout of the abstract classes.

Conversely, when a property is introduced by several classes, it is always possible to add
classes to factorize the property. This can be done by minimizing the number of added
classes, following the approach of Galois lattices (aka formal concept analysis) [Wille, 1992|;
Godin et al., 1998]. This is roughly what is done when one goes from the SMALLTALK type
system to the JAVA type system. However, these new classes, called interfaces in JAvVA, are
abstract—this is a blind alley, as abstract classes and non-class-based attributes appear to be
equivalent.

4.5 Problem complexity

In all variants, coloring is an instance of the graph coloring problem. When the minimization
criterion is color number, this is the well known minimum graph coloring problem. Any
graph may be the conflict graph of some class hierarchy—one only needs to add one common
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classes methods attributes

typing with abstract cl.  without a. c.
static k<2 k<2 — k<2
dynamic | k<2 — — —

Table 2: Conditions for polynomiality when there is perfect coloring

subclass to each connected pair. Therefore, with this minimization criterion, optimal coloring
is NP-hard in the general case.

Now, when the minimization criterion is the total size of tables or, equivalently, the hole
number, intuition tells us that this is not easier but a proof is required. [Pugh et Weddell,
1990); [Pugh et Weddell, 1993] give proofs in the specific case of attribute coloring, but the
proof is complete only for irregular colorings. We reformulate their results in our notations
as follows.

Proposition 4.27. [Pugh et Weddell, 1993, Theorem 7] Optimal irreqular k-directional col-
oring is NP-hard, for all k.

The proof proceeds by a reduction to the minimum graph coloring problem, where the
colored graph is the conflict graph. As the proof relies on the construction of abstract classes
(called virtual classes by Pugh and Weddell), it applies only to irregular colorings.

Regarding regular colorings, the situation slightly depends on k.

Proposition 4.28. [Pugh et Weddell, 1993, Theorem 6] Optimal reqular k-directional color-
ing is NP-hard, for all k > 2.

Proof. Tt follows from Propositions and that the existence of perfect k-directional
regular coloring polynomially reduces to k-colorability, which is NP-complete when k& > 2 and
polynomial otherwise. As the existence of perfect coloring easily follows from the computation
of any optimal coloring, k-directional optimal coloring is NP-hard when k > 2. 0

Regular k-directional coloring with £ < 2 was the missing link in the Pugh and Weddell
results, since their proof of Proposition [4.27 implies abstract classes, hence irregular coloring.
When k < 2, the existence of a perfect regular coloring is polynomial. Therefore it has to
be proven that computing an optimal regular coloring is NP-hard, when there is no perfect
such coloring. Proving it for class coloring is sufficient, since class coloring is a special case
of regular property coloring.

Proposition 4.29. [Takhedmit, 2003] Optimal k-directional class coloring is NP-hard, for
all k < 2, unless there is perfect k-coloring.

The proof proceeds by a reduction to the mazimum 2-satisfiability problem.
Overall, optimal k-directional coloring is always NP-hard, except when it is regular, k < 2
and there is perfect k-directional coloring (Table .

5 Heuristics and experiments

It follows from the complexity results that exact algorithms are intractable, hence heuristics
are required. In the case where perfect coloring is tractable, these heuristics should provide
perfect colorings when they exist. Several heuristics have already been proposed [Pugh et
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Algorithm: SI-COLORING

Data: a hierarchy (X, <4)
foreach class x € X in top-down topological ordering do
if z is a root (no superclass) then
| x(z)«0
else
L y <— direct superclass of x;

xT(@) + x*(v);
x(@) < x(y) +1

Figure 13: Single inheritance class coloring

Weddell, 1990|; [Pugh et Weddell, 1993/; |Ducournau, 1997|; Ducournau, 2002b/; |Takhedmit,
2003]. Their efficiencies were proven on large-scale class hierarchies. In this section, we
describe two heuristic families for regular coloring and experimentation of one of them on
large benchmarks. We also briefly consider heuristics for irregular coloring and incremental
class coloring.

5.1 Heuristics

The first heuristics are rather naive—they are based on an adaptation of the single inheritance
algorithm to multiple inheritance. They were first described in [Ducournau, 2001); Ducour-
nau, 2003] (in French). The second ones are based on graph-theoretical results |Takhedmit,
2003]. We first describe class coloring—hence irrespective of static or dynamic typing—before
generalizing to property coloring.

5.1.1 Naive heuristics

In single inheritance, the coloring algorithm for Cohen’s test is quite simple—the color of
a class is its depth in the hierarchy tree. As the intuitive recursive algorithm is not easily
generalizable, we just transform it by ordering classes in some topological ordering from
root(s) to leaves—in other words, superclasses are colored before subclasses (Figure . If
there is more than one root, a virtual single root is added.

Schema of heuristics Such a simplicity cannot be kept with multiple inheritance, but it
still gives a good starting point for generalizing. First, the structure of the hierarchy—i.e.
core, crown, border, conflict graph—must be computed, before coloring the core which is the
crux of the heuristics MI-COLORING (Figure . In all generality, coloring the core involves
computing successive partial colorings, by repeatedly choosing a class and a color for this
class. A class must be colored after all its superclasses. Therefore a set Y. of <-maximal
uncolored classes must be maintained. At each step of the CORE-COLORING algorithm, any
element in this set Yax can be chosen to be colored. In single inheritance, the color choice
amounts to taking the next color, i.e. adding 1 to the direct superclass color. With multiple
inheritance, classes must maintain a set of free colors, i.e. colors which are not already used
for superclasses (<) or conflicting classes («<»). Once a class x and a color k have been chosen,
the choice must be propagated. First, x is removed from the superclasses of its subclasses, and
the set of maximal classes is updated. Then, the color k is ‘frozen’ in yet uncolored conflicting
classes, because they share common subclasses with x. Note that propagation is done through
two relationships, <» and <., which are restricted to X, \Xp, and updated in order to remove
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Algorithm: MI-COLORING
Data: (X, <4) a hierarchy

begin
(Xcoy Xpoy Xer) < computation of core, border and crown ; /* initialization */
<< computation of the conflict set;
core-coloring(Xco\Xpo) ; /* core coloring */
crown-coloring(Xp,) ; /* border coloring */
crown-coloring(Xcr) ; /* crown coloring */
end

Algorithm: CORE-COLORING

Data: a conflict graph (Y = X¢o\Xpo, ¢);
the associated specialization <,=<g4 /Y

Ymax < max<,. (Y) ; /* uncolored maximal classes */

while Ymax # 0 do
2 ¢ choose-max-class(Ymax) ; /* class choice */
xT(z) + inherits-colors(z, <) ; /* initializes color table */
x(z) < choose-free-color(z) ; /* color choice */
propagate-subclasses(z, <r) ; /* propagates to subclasses */
Ymax < update(Ymax); /* updates Ymax */
propagate-conflicts(z, ) ; /* propagates to conflicting classes */

Algorithm: CROWN-COLORING

Data: a poset (Y, <g4)

foreach class x € Y in topological ordering do

if z is a root (no superclass) then

| x(z)«0

else
y <— direct superclass of x;
xT(z) « x*(v) ; /* color table copy */
if xT(z) has some holes then

x(z) < any hole

else
| x(2) < max(x"(z)) + 1

Figure 14: Unidirectional class coloring—general algorithm in multiple inheritance

classes once they are colored. Therefore, the complex part of the algorithm is only a function
of the core, not of the whole hierarchy. Finally, once the set of maximal classes is empty, the
border and crown can be colored almost as in single inheritance (CROWN-COLORING).

Overall, the heuristics have two degrees of freedom, the choice of a maximal class among
Yiax (choose-max-class) and the color choice among the free colors (choose-free-color).
When a maximal class x is being colored, one distinguishes in its color table inherited colors
(xT(z)), holes, colors frozen by conflicting colored classes and the next free color:

froz(z) = U xt(y) whereby y is restricted to already colored classes

TY

holes(z) = [0, max(x"(z))] \ (x"(z) & froz(z)) unidirectional

next(x) = min (] max(x ' (x)), 00 \ froz(x)) unidirectional

So, in the unidirectional case, the free color is selected in holes(x), if it is not empty, or is the
single next(x) color. There is a choice only when there are several holes—indeed, it is useless
to choose the next color when there are holes, since another class ordering would produce
the same coloring. This easily generalizes to k-directional coloring, by considering XZT, froz;,
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holes; and nezxt; in each direction i. However, when there are no holes, there is yet a choice
between the k directions.

In some sense, all possible colorings can be obtained by the heuristics which only exclude
colorings with unnecessary holes. For instance, a random variant would involve taking the
class at random among Y.y, and taking a color at random among the free colors of the
class. Of course, this does not ensure any formal statistical distribution, but it allows us
to check that a particular behaviour does not happen only by chance |[Ducournau, 2001|;
Ducournau, 2003].

Perfect coloring The heuristics compute a perfect coloring in the unidirectional case—
i.e. when the hierarchy is in single inheritance. In the bidirectional case, an extra condition
is required. A perfect coloring is computed if (i) choose-max-class chooses a maximal
uncolored class z among classes conflicting with some previously colored class, if any, and if
(ii) choose-free-color chooses the next color in the opposite direction to previously colored
conflicting classes. This condition ensures that the bipartition will be exact if any exists.
However, a preliminary bipartition gives a better result when the coloring is not perfect (see

Section [5.1.2)).

Weighted heuristics Weight naturally appears in the class choice and Yjax can be ordered
by decreasing weight. The weight may be the subclass number, or the expected instance
number for attribute coloring. Note that, as for all weighted heuristics, it is quite difficult
to tune the weight in an optimal way. Consider simply, for instance, that the number of
subclasses should not have the same weight according to their relative depth. More precisely,
if the current class has g holes, any subclass of a crown subtree, at a relative depth d will fill
max (g, d) holes. Therefore, g holes in a core class will entail exactly > ;_; , (g —k)ny holes
in a crown subtree rooted in the considered class with ny classes at depth k.

Complexity analysis Initialization is mostly linear in the size of the graph, thus in O(| X |+
| <), ie. O(| Xeol+| Zco |[+]|Xer|). However, computing the conflict graph is in O((| Xeo|+| <co
NI Xeol), hence O(]Xeo|?) in the worst case. Coloring the core is in O(]| X,,|?) if one assumes
that choose-max-class, choose-free-color and the computation of free colors are time-
constant, for instance in case of arbitrary choice (first found). Indeed, all operations—i.e.
propagation, color inheritance—are in O(|X,,|). However, better heuristics may consider the
uncolored classes conflicting with the current one, which might yield O(|Xc|?). Anyway,
this is not more than for conflict graph. The second part of the heuristics is obviously in
O(|Xpo| + | Xer|) and the overall complexity is O(| Xeo|® + | Xer|)-

5.1.2 Graph theoretical heuristics
More sophisticated heuristics are based on various other graph optimization problems, which

unsurprisingly are all NP-hard.

Unidirectional coloring and maximum independent sets [Takhedmit, 2003] proposes
weighted heuristics for unidirectional coloring, based on independent sets. Indeed, an alter-
native view of coloring is to consider it as a partition in maximal independent sets (Definition

1.15).
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Algorithm: CORE COLORING IS

Data: Class hierarchy (X, <4);
a subset Y C X and conflict relationship <>

Attribute to each € Y a weight w(z) ; /* weights */
S+ 0; /* ordered sequence of independent sets */
l+0; /* length of the sequence */
foreach z € Y sorted by decreasing weight do

m < 0;

for k=1 to [ while m=0 do
if  is not <- or <>-related to S[k| then
S[k] <+ S[k] W {x}; /* independent set */
L m < k;

if m=0 then
m,l <1+ 1;
S[m] < {=z}

| reorder(S, S[m]); /* reorder by decreasing weights */

for k=1 to [-1 do
L permute(S[k],S[k+1]); /* try permutations to make S[k] heavier */

for k=1 to [ do
| foreach z € S[k] do x(z) < k

Figure 15: Unidirectional class coloring with independent sets. Note that < is not explicitly
computed and independent sets are incrementally checked—S[k] is an independent set and
only possible relations between x and elements in S[k] need to be checked.

Mazximum independent set is another NP-hard problem—hence greedy heuristics are used.
An optimization involves permutation of classes between two independent sets, when this
increases the weight of the heavier one. The heuristics CORE-COLORING-IS presented in Fig-
ure (15 give sound results if the weight w is somewhat ‘additively monotonous’, i.e. w(x) >
Zy <, W(y) when z is a tree root, hence Y is ordered by a top-down topological sorting of
<. This is the case when w(z) is the number of subclasses of z, or its number of instances.
As these heuristics involve only coloring the core, perfect coloring is yielded when it exists,
i.e. in case of single inheritance.

The complexity of the heuristics for computing independent sets is O(| X.|?), i.e. less
than that of conflict graph computation. So, the overall complexity is the same as that of the
naive heuristics. The heuristics proposed by [Vitek et al., 1997] are akin to CORE-COLORING-
1s—independent sets are called buck:etsﬂ and the notions of core, crown and border are used,
under the respective terms of ‘spine’; ‘plain’ and ‘join’.

Multi-directional coloring and maximum k-cut k-directional coloring amounts to uni-
directional coloring of k sub-hierarchies. Therefore, the point is to partition X.,\Xp, into &
blocks which minimize the number of conflicts inside the blocks. The mazimum k-cut problem
offers a formalization of this problem. It involves partitioning an undirected graph in k blocks
maximizing the number of crossing edges. This is yet another NP-hard problem. [Takhedmit,
2003] proposes heuristics based on the family of meta-heuristics GRASP ( Greedy Randomized
Adaptive Search Procedure) |Festa et al., 2002].

When k = 2, an exact bipartition algorithm may be tried before applying the heuristics—
this will give, in case of success, a perfect bidirectional coloring. However, mazimum 2-cut,
aka maximum bisection, is also NP-hard in the general case—hence, if the conflict graph is

9 In the literature on coloring, independent sets are often called ‘buckets’, ‘slices’ or ‘layers’.
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Algorithm: IRREGULAR-COLORING

Data: a class hierarchy (X, <,) with conflict relationship <;
a set P, of non-class-based properties associated with each class x;
a number n, of class-based properties associated with each class x;

Ymax ¢ max<, (X) ; /* uncolored maximal classes */
while Ynax # 0 do
z ¢ choose-max-class(Ymax) ; /* class choice */
XT(x) < inherits-colors(z, <r) ; /* initializes color table */
x1(x) < reserved-colors(z)
while P, # () do
p  choose-property(Py) ; /* property choice */
Py < Pe\{p}
k < choose-one-free-color(z, c(z)\{z}) ; /* color choice */
propagate-introduction(k, c(z)\{z}); /* propagates to introduction classes */
xt(@) « xt (@) Wik}
K < choose-n-free-colors(z,nz) ; /* color choice */
xt(@) xt @WK
propagate-subclasses(z, <r) ; /* propagates to subclasses */
Ymax < update(Ymax); /* updates Ymax */
propagate-conflicts(z, ) ; /* propagates to conflicting classes */

Figure 16: Irregular coloring—general algorithm in multiple inheritance

not bipartite, the heuristics is applied.

5.1.3 Property coloring

Property coloring involves the same kind of techniques as class coloring. However, the prop-
erty coexistence graph is an order of magnitude larger than the class coexistence graph. This
is certainly the reason for the relative failure of the tests of [André et Royer, 1992, though
Pugh and Weddell [1990/; 1993] were more successful. Therefore, a sensible solution is to
rely on class coloring heuristics—i.e. on class hierarchy and conflict graph. This is rather
straightforward for regular coloring, but it is also possible for non-class-based properties as
the SMALLTALK hierarchies colored in [André et Royer, 1992/; Ducournau, 1997].

Regular coloring The naive heuristics of Figure [14] extend easily to property coloring—for
each class z, the algorithm allocates as many colors as there are properties introduced by x,
instead of a single one. Regarding n-directional coloring, the properties introduced by a class
can be colored in different directions, but only when there are some holes to fill. Anyway,
the preliminary partition is only based on the conflict graph, possibly restricted to classes
introducing properties.

Irregular coloring When a property can be introduced by more than one class, relying only
on the class hierarchy and conflict graph is not enough. However, there are likely not many
non-class-based properties—only 27% in the SMALLTALK hierarchy tested by [Ducournau,
1997]—so the main work can rely on class hierarchy. The heuristics principle remains, but
its complexity is markedly increased (Figure . First, one must distinguish between class-
based and non-class-based properties—introducing classes have to be associated with each
property of the second kind. Coloring such a property involves selecting a color that is free
not only in all introduction classes but also in their superclasses (choose-one-free-color).
Propagation to yet uncolored classes is also more complex: the selected color is ‘reserved’
in all other introduction classes, and ‘frozen’ in all their super-classes and conflicting classes
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Algorithm: INCR-CLASS-COLORING

Data: a class hierarchy (Y, <4);

a loaded class z € Y, minimal in (Y, <4);

a partial class coloring x on the filter Y\z

begin

superg +— {y €Y | x <4 y}; /* direct superclasses */
k  max(x(Y'\2));

if supery = () then

‘ x(z) < 0; /* z is a root (no superclass) */
else
if supery = {y} then
‘ XT(UE) — xX*(y); /* like crown coloring */
else
C[0..k] an array of empty sets ; /* multiple inheritance */
foreach class z € Y such that x < z; /* all superclasses */

do
L Cx(2)] + Clx(2)] v {z}

cs + {c||C[c]| > 1} ; /* conflict set */
if cs # () then
Z « 0;
foreach color c € cs ; /* conflict resolution */
do
u —choose-unchanged(C|c]) ; /* left unchanged */
Z +— ZWClc)\{u};
Clc] + {u}

C + recompute-colors(Z)
L xT(z) « {c| Cle] # 0}
if xT(z) has some holes then

| x(x) <+ any hole
else

x(@) + max(x"(2)) + 1;
if x(z) > k then
L reallocate all color tables; /* only with fixed-size tables */

end

Figure 17: Load-time unidirectional class coloring—general algorithm (from Palacz and Vitek
[2003]). The algorithm is straightforward unless there are conflicts. Of course, the choice of
the unchanged class and the computation of new colors is a matter of global optimization.

(propagate-introduction). Of course, reserved colors are not free and must be included in
the color table once a class is colored. In this way, the algorithm limits propagation to the
detriment of free color testing, which must look up in superclasses. An alternative would be
to propagate down allocated colors to subclasses. Finally, it is useless to design a specific
algorithm for the crown, since non-class-based property can be introduced anywhere.

5.1.4 Incremental class coloring

In their proposition, [Palacz et Vitek, 2003] consider a special case of class coloring where color
tables have fixed size. As aforementioned, this is a common way of saving on bound checks
in Cohen’s test, to the detriment of space. However, this space overhead can be partially
counter-balanced by encoding class identifiers on single bytes, instead of half-words, so that
the identifiers are unique only among classes with the same color. Moreover, since incremental
coloring is restricted to classes, space concerns are less urgent.

The heuristics are sketched in Figure Anyway, whether the size is fixed or variable,
coloring heuristics present different degrees of efficiency. Firstly, the new loaded class may
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have a single direct superclass. Otherwise, the first step involves inheriting the colors of all its
superclasses—this is a partial coloring. A conflict may occur when two superclasses share the
same color. When there is no conflict, extending the partial coloring is straightforward. The
only point is to select a free color—i.e. a free position in the fixed-size table. So this is very
efficient when there is no conflict and when the table is not full—an O(k+n) operation, where
n is the number of superclasses of the considered class and k is the color table size. When the
table is full, the fixed size must be incremented and all color tables must be reallocated—this
is an O(kN) operation, where N is the number of classes. With a variable-size color table,
this is even simpler since there is no need for propagating the new color to already loaded
classes—hence this remains an O(k + n) operation.

When there are conflicts, extending the partial coloring is no longer possible. The color of
one of the two conflicting classes must be changed, in a way which must be compatible with
all subclasses of the changed class. Therefore, color recomputation (recompute-colors in
Figure does not extend a partial coloring—i.e. by examining only superclasses—but must
take into account all subclasses and all conflicting classes of those that must be recolored.
The optimum is of course NP-hard but simple heuristics are possible. Their exact worst-
case cost cannot be estimated since it depends on the possible propagation that is done
when a color is assigned to a class. However this worst-case cost at load-time must be at
least O(nN). Indeed, an incremental computation of the conflict graph is first required,
with O(n?) complexity since all superclasses might be conflicting, and all other classes might
already conflict with the superclasses.

5.2 Benchmarks

We tested coloring on several large benchmarks commonly used in the object-oriented im-
plementation communitym, e.g. by [Vitek et al., 1997; |Gil et Zibin, 2005]. The bench-
marks are abstract schemata of large class libraries, from various languages: JAVA (from
IBM-SF to HotJava in Table , CecIL (Cecil, Vortex3), DyLAN, CLos (Harlequin), SELF,
EIFFEL (SmartEiffel), E1rreL-like (Lov and Geode) and PrRM (PRMcl). All benchmarks
are classical, except PRMcl which is the PRM compiler-linker [Privat et Ducournau, 2005/;
Privat, 2006]. Here, all benchmarks are multiple inheritance hierarchies and, in JAVA bench-
marks, there is no distinction between classes and interfaces. According to our conclusions
on n-dimensional coloring, we restricted our tests to uni- and bi-directional coloring.

5.2.1 Hierarchies and conflict graphs

Table |3| presents statistics on class hierarchies and conflict graphs: (i) the total number of
classes and the subset in the core, (ii) the number of conflicting classes and the subsets which
introduce methods (wm) or attributes (wa), (iii) the average, maximum and total number of
conflicting edges, and (iv) statistics on connected components. A first observation is that the
core, i.e. the set of classes that are in multiple inheritance, is quite a bit smaller than the
whole hierarchy, while being of the same magnitude in many benchmarks. More precisely, the
crown is larger than the core in all hierarchies, except Lov-obj-ed, Geode and IBM-SF, where
multiple inheritance is the most intensively used. So many benchmarks are representative of

10 Many people contributed to these benchmarks, including Karel Driesen and Jan Vitek: a recent repository
was Yoav Zibin’s website, http://www.cs.technion.ac.il/ zyoav/. They are also available on the author’s
website http://www.lirmm.fr/ ducour/.
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class conflict graphs connected components

number vertices edges bipartite | non-bipartite

total core tot wm wa | avg max total | # size | # size max
IBM-SF 8793 4770 | 2566 1852 13.3 2057 17099 3 8 | 2 2558 2550
JDK1.3.1 7401 1512 762 572 6.6 205 2529 | 21 61 | 8 701 596
Orbix 2716 271 177 106 4.7 110 416 7 23 | 1 154 154
Corba 1699 383 213 92 7.6 144 810 0 0] 1 213 213
Orbacus 1379 502 315 184 6.5 166 1025 3 91 1 306 306
HotJava 736 217 108 91 10.8 54 583 2 8 | 2 100 95
Cecil 932 306 167 100 6.1 46 511 6 20 | 2 147 130
Dylan 925 65 35 17 3.1 8 54 5 20 | 1 15 15
Harlequin 666 278 169 23 15.8 71 1331 9 37 | 5 132 95
Javal.6 5075 1422 645 506 155 6.6 283 2124 | 15 45 | 4 600 574
Geode 1318 989 500 373 206 | 22.5 258 5613 1 2| 3 498 482
Unidraw 614 25 14 8 9 2.1 5 15 1 91 1 5 5
Lov-obj-ed 436 271 159 144 73 | 15.6 81 1241 1 2 1 157 157
SmartEiffel 397 67 26 21 7 2.8 8 36 2 5 1 21 21
PRMcl 479 133 81 56 34 3.4 12 139 6 26 | 3 55 29

Table 3: Class hierarchies and conflict graphs. Columns 2-3 display the number of classes in
the whole hierarchy and in the core. Columns 4-6 present the number of non-isolated vertices
in the conflict graph and distinguish classes which introduce methods (‘wm’) or attributes
(‘wa’). Columns 6-9 present the number of edges—the average and maximum per class and the
total. Columns 10-14 give statistics on connected components in the conflict graph—number,
total and maximum size—according to whether they are bipartite or not.

an heavy use of multiple inheritance and heuristics will benefit from being restricted to the
core.

The conflict graph is even smaller, and the restriction to classes introducing properties is
effective—columns ‘wm’ and ‘wa’. Regarding the conflict graph, the Table presents statistics
on the number and size of its connected components, according to whether they are bipartite
or not. It appears that all conflict graphs consist of a single large non-bipartite connected
component, plus some other small components—some of which are bipartite, but they are
quite small. A deeper analysis [Ducournau, 2001, not reported here, shows that the same
phenomenon arises if one considers 2-connected componentslﬂ This proves that, on all the
considered benchmarks, bidirectional class coloring will be far from perfect.

5.2.2 Class coloring

Table [4] presents the class coloring results, which should be compared with the size of the
hierarchy (] X|, | =< | and their ratio). The first four columns give the size of the specialization
graph together with the average and maximum number of indirect superclasses per class. The
three following columns give the hole numbers, according to the minimization criterion—i.e.
color number, unidirectional and bidirectional colorings. Let us examine the PRMcl example:
when minimizing color#, the color tables have 2203 (| < |) occupied slots, plus 3545 holes,
hence a total of 5748=12*479 (max *|X|). Minimizing the color number is not as good as uni-
or bi-directional coloring from a spatial standpoint. This implies that, when applied to classes

11 FBach connected component can be colored regardless of the other components. This is no longer true for
2-connected components, but two of them share at most one class. Hence, the complexity is mostly in the size
of the 2-connected components.
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hierarchy total hole number bidirectional

| < /1X] minimization criterion | hole size
| X| | X| avg max | color# uni- bi- | rate avg max
IBM-SF 8793 80860 9.2 30 | 182930 19746 4507 | .06 9.7 30
JDK1.3.1 7401 32480 4.4 24 | 145144 4331 1307 .04 4.6 24
Orbix 2716 7560 2.8 13 27748 347 18 .00 2.8 13
Corba 1699 6551 3.9 18 | 24031 533 115 .02 39 18
Orbacus 1379 6244 45 19 19957 935 181 .03 4.7 19
HotJava 736 3768 5.1 23 13160 1210 248 .07 5.9 23
Cecil 932 6032 6.5 23 15404 573 141 .02 6.6 23
Dylan 925 5097 5.5 13 6928 87 4 .00 55 13
Harlequin 666 4493 6.7 31 16153 1599 545 12 7.6 31
Javal.6 5075 27309 5.4 23 | 89416 3314 1155 .04 56 23
Geode 1318 18442 14.0 50 47458 10005 4477 24 174 50
Unidraw 614 2468 4.0 10 3672 15 1 .00 4.0 10
Lov-obj-ed 436 3707 8.5 24 6757 1838 1283 35 114 24
SmartEiffel 397 3428 8.6 14 2130 36 4 .00 8.6 14
PRMcl 479 2203 4.6 12 3545 131 31 .01 4.7 12

Table 4: Class coloring. Columns 2-5 display statistics on the class hierarchy. Columns 6-8
present the total hole number according to the minimization criterion. The last part presents,
in the bidirectional case, the global hole rate and the average and maximum color table size per
class—they must be compared with the average and maximum superclass number, columns
4-5.

only, as in [Vitek et al., 1997; [Palacz et Vitek, 2003, variable length tables are cheaper than
fixed-size tables, even with byte-encoding of class identifiers. Unidirectional coloring is better
and, unsurprisingly, bidirectional coloring is the best. Finally, the hole rate appears to be
quite small, less than 10% in most cases and 35% in the worst case. The last two columns give
the average and maximum size of the color tables, which must be compared to the superclass
number (columns 4 and 5).

From a graph-theoretic standpoint, one must observes that, in all cases, the heuristics
computes the exact optimal color number (the so-called chromatic number)—the two columns
‘max’ are equal. This only proves that all these benchmarks are easy instances of the minimum
graph coloring problem.

5.2.3 Property coloring

Here, we must recall the terminology proposed in Section [2.2.1} methods and attributes
are signatures introduced in some class, and only wvirtual functions are considered. We only
investigated regular coloring—i.e. each set of properties is interpreted as if it were in static
typing so that each property is introduced by a single class. Table [5| presents statistics
of methods (and attributes), introduced or known per class, together with method (and
attribute) coloring. All data are 2-fold, namely average and maximum per class, and represent
cardinal numbers (#) or rates (/) relative to the total useful size of method tables (or object
layouts). Rates are ratios, not percentages. The difference between columns ‘avg# color
number’ and ‘avg# known’ is the average hole number.

Only bidirectional method coloring is displayed, since it is better and does not raise any
problem. Note that in most benchmarks the maximum color number is exactly the maximum
number of known methods—this means that the heuristics give the optimal solution of the
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methods method coloring SMI
introduced known color number  hole rate | method table
avg# max# avg# max# | avg# max# avg/ max/ avg# max#
IBM-SF 2.8 257 449 346 62.9 397 .40 15.9 231.3 2063
JDK1.3.1 1.3 149 19.2 243 19.8 243 .03 15.2 72.4 1391
Orbix 0.4 64 8.3 109 8.4 109 .00 2.1 23.0 534
Corba 04 43 8.0 67 9.9 81 .24 5.0 26.9 427
Orbacus 1.2 74 18.0 137 18.3 137 .01 2.3 68.3 761
HotJava 1.8 80 34.2 189 36.0 189 .05 17.8 134.8 817
Cecil 2.9 61 78.7 156 80.2 156 .02 0.6 441.5 2058
Dylan 0.9 64 77.1 139 77.2 139 .00 0.2 335.8 1073
Harlequin 0.6 62 34.8 129 35.0 129 .01 0.3 219.3 977
Javal.6 4.4 286 37.5 670 38.2 670 .02 4.5 136.5 3873
Geode 6.1 193 231.8 880 | 291.0 892 .26 16.1 | 1445.6 10717
Unidraw 2.9 103 24.1 124 24.1 124 .00 0.0 68.9 318
Lov-obj-ed 8.3 117  85.9 289 | 113.5 289 .32 4.7 422.1 1590
SmartEiffel 12.2 222 135.3 324 | 1354 324 .00 0.2 743.5 1576
PRMcl 4.9 115 78.3 208 83.1 209 .06 2.7 316.5 1918
attribute number color holes SMI
introduced known number bidirect. unidirect. subobject#
avg# max+# avg# max+# |avg# max# |avg/ max/ max# |avg/ max/ max+#|avg/ max/ max#
Javal.6 1.6 55 5.4 137 6.4 138] .00 0.0 0| .00 0.0 0ol .81 7.3 22
Geode 2.2 182 10.9 217| 12.7 218 .13 7.0 21 .18 19.7 59| 1.19 10.0 49
Unidraw 2.6 36 8.3 47 9.3 48| .05 1.0 1} .00 0.5 2| .36 2.0 9
Lov-obj-ed 2.9 74 82 105 9.3 106| .07 3.0 3] .21 6.0 291 .92 10.5 23
SmartEiffel| 2.5 39 4.9 44 5.9 45| .00 0.0 0| .00 0.0 0| 1.55 5.0 13
PRMcl 1.2 28 5.0 29| 6.1 30| .06 1.3 4] .03 2.0 8| .72 3.0 11

Table 5: Property coloring. Each table first displays the number of properties (methods or
attributes) introduced or known per class, then the size of bidirectional tables—which must
be compared with the number of known propertiess—with the associated hole rate. In the
attribute case, unidirectional results are also displayed. The last part presents the method
table size or the subobject number in ‘standard’ multiple inheritance (SMI), i.e. C++.
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underlying minimum graph coloring problem. The hole rate is somewhat larger than for
class coloring—this is likely because the heuristics are less optimal as there are more choices.
The last columns give the corresponding table sizes in the ‘standard’ multiple inheritance
implementation (SMI), based on subobjectﬁ While ‘SMI avg#’ is between 2- and 7-fold
larger than ‘color avg#’, ‘known methods max#’ is often larger than ‘SMI avg#’—once again,
this is against minimizing the color number.

Attribute coloring has been tested on the few benchmarks which include attribute defini-
tion data. However, the heuristics do not take the expected number of instances into account,
since such data were not available. The statistics are analogous to that on methods, with
a few differences—the unidirectional case is added and, in the SMI numbers, the subobject
number replaces the table size, and the maximum number of holes or subobjects is added
(‘max#’). The numbers from the last 3 groups of columns are respectively comparable—they
represent the number of useless fields in the object layout or the ratio w.r.t. the useful fields.
Moreover, when negative colors are used, the extra pointer required for garbage collection
(Figure [8]) is considered as a hole, and the ‘color number’ column includes all of the point-
ers at the method table. One observes that the solution to the underlying minimum graph
coloring problem is still optimal—known attribute and maximum color numbers differ by ex-
actly one in all benchmarks. Moreover, both Javal.6 and SmartEiffel have a perfect coloring,
because Proposition applies. The comparison between the average rates (‘avg/’) of all
‘useless’ fields in the object layout is markedly in favor of coloring. The number of SMI sub-
objects has actually the same order of magnitude as the number of known attributes. Hence,
SMI—in the ALL implementation (see Section —roughly doubles the object size and
coloring markedly reduces the dynamic space overhead—and of course it markedly improves
all other aspects. Other SMI implementations, with extra compiler-generated fields allocated
in the object layout—Ilike VBPTRs or with the ARM implementation—would be markedly
more space-consuming. Anyway, attribute coloring is a significant improvement w.r.t. SMI
implementations, mostly because holes do not concern a large part of each hierarchy.

The comparison between uni- and bi-directional coloring shows that the gain from bidirec-
tionality is mostly counterbalanced, on average, by the extra method table pointer. However,
the attribute case is more demanding and one must also take care of the maximum hole rate
and number, which represent the worst case in a hierarchy—both are markedly in favor of
bidirectionality. Let us consider the bidirectional data for Geode. The average hole rate is
.13—i.e. assuming that all classes have exactly the same instance number, the total hole
rate is 13%. This would be an acceptable overhead. However, the maximum hole rate is up
to 7—this means that there is some class in the Geode hierarchy which has = useful and 7z
useless fields. The maximum hole number confirms the comparison—it is 21 in bidirectional
coloring, versus 59 in unidirectional and 49 extra subobjects in SMI. Such a worst case might
be unacceptable if the considered class is intensively instantiated—imagine that the Lisp cells
(instances of the cons class) occupy 24 words—i.e. 3 useful fields and 21 useless ones—instead
of 3! Therefore, attribute coloring should be coupled with profiling or accessor simulation
might be preferred.

12 Remember that SMI is the C++ implementation when the keyword virtual is used for all inheritance
relationships. This is the only way to define fully reusable classes but not the common C++ programming
style, so SMI numbers do not reflect actual C++ programs.
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initialization coloring total

read init | conflict bipartite color | avg/class
IBM-SF 1281 647 280 547 5091 0.9
JDK1.3.1 438 364 48 104 1129 0.3
Orbix 113 88 8 16 238 0.2
Corba 110 97 24 26 237 0.3
Orbacus 7 56 15 37 183 0.3
HotJava 43 74 8 22 88 0.3
Cecil 65 42 11 18 149 0.3
Dylan 37 34 2 2 82 0.2
Harlequin 52 33 14 62 116 0.4
Javal.6 415 796 58 227 1031 0.5
Geode 139 148 73 259 534 0.9
Unidraw 65 22 9 1 76 0.3
Lov-obj-ed 82 35 14 50 140 0.7
SmartEiffel 56 17 2 2 79 0.4
PRMcl 72 19 3 7 67 0.3

Table 6: Performance of bidirectional class and method coloring (in ms, on an Intel® Core™

2 CPU T7200 at 2.0 GHz). The first five columns display the duration time of successive
phases and the last column is the total duration per class.

5.2.4 Synthesis

Bidirectional coloring is clearly the best approach. When considering classes and methods,
the gain w.r.t. unidirectional coloring is not essential, but uni- and bi-directional coloring
are markedly better than fixed-size tables. In contrast, bidirectionality is likely essential for
attribute coloring as it markedly reduces the worst-case overhead.

5.2.5 Performance

Table [6] describes the performance of the heuristics on a Intel® Core™ 2 CPU T7200 at
2.0 GHz. Coloring is computed on a platform written in CoMMON LisP and CLOS, dedicated
to the simulation of various implementation techniques. This platform was used for other
simulations |[Ducournau, 2002al; Ducournau, 2008]. Many other statistics are computed and
coloring was not specially optimized—on the contrary, the general algorithm (Figure [14]) is
designed for testing various heuristics. Therefore, an operational implementation would be
substantially more efficient. The bidirectional coloring heuristics use a preliminary bipartition
and methods and classes are colored together. The table displays the duration time of five
main steps. The first steps are not specific to coloring: ‘read’ is the input phase, which reads
the class schemata; ‘init’ manages inheritance and computes the core, border and crown. The
last steps are specific: ‘conflict’ computes the conflict graph, ‘bipartite’ makes a bipartition of
the conflict graph and ‘color’ computes the bidirectional coloring. Overall, the coloring time
is not much greater than the read and initialize phases, and the overall time is less than 1 ms
per class.

6 Related works

There is quite substantial literature on the implementation of object-oriented languages.
Problems arise when dynamic typing or multiple inheritance are considered. Separate compi-
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lation and dynamic loading worsen the situation. We just consider, here, some related works
that are either close to coloring or true alternatives.

Multiple selection In many dynamically typed languages, method invocation is specified
with multiple selection (aka multi-methods), which involves the dynamic type of all parame-
ters, not only that of the receiver. CLOs, CECIL and DYLAN are typical examples of this ap-
proach. Methods are now orthogonal to classes—they are called generic functions in CLOS—
and dispatch tables are attached to them, not to classes. As for usual method invocation in
dynamic typing, the most common technique is based on hashtables and caches [Kiczales et
Rodriguez, 1990]. [Amiel et al., 1994; Dujardin et al., 1998] propose a constant-time imple-
mentation based on a generalization of the coloring principle, with several indirections. The
dispatch table of a generic function of arity n is an n-dimensional array, indexed by classes.
This array can be compressed by grouping classes which determine identical hyperplanes in
the array. This is a matter of coloring.

C++ implementations The specification and implementation of multiple inheritance in
C++ has been the source of a lot of papers. [Sweeney et Burke, 2003] examines the best
ways to distribute compiler-generated fields between the object layout and the method tables.
Devirtualization is a global optimization which aims at removing all unnecessary virtual
keywords—in both meanings—from the class definition of a given program [Gil et Sweeney,
1999 ; [Eckel et Gil, 2000]. This global optimization could be applied in a global compilation
setting but it seems difficult to apply it at link-time without substantially modifying C++
compilers.

Row displacement In a global setting, an alternative to coloring has been proposed, row
displacement |Driesen, 1993; Driesen et Holzle, 1995|; [Driesen, 2001]. This sparse table com-
pression technique, from [Tarjan et Yao, 1979), involves superposing rows of the large class-
selector matrix in such a way that two occupied entries do not coincide. It works well for
methods and roughly achieves the same compactness as coloring. Regarding subtype tests,
row displacement has not yet been considered but it could obviously work, with the same pre-
cautions as for Cohen’s test to avoid bound checks. Finally, row displacement does not apply
to attributes—hence, it should be coupled with accessor simulation and it is more appropriate
for static typing.

Rows may be class-based or selector-based. According to Driesen, selector-based row
displacement achieves better compression than class-based row displacement, which is better
than selector coloring in its original variant, i.e. unidirectional and minimizing the color
number. As compared to our results, it appears that selector-based (resp. class-based) row
displacement and bi-directional (resp. uni-directional) coloring are quite comparable. Overall,
row displacement might offer an alternative to class and method coloring, with exactly the
same generated code and similar table sizes. Selector-based displacement achieves a better
compression rate but is less adapted to dynamic class loading. Hence, it should be globally
computed at link-time, like coloring. On the contrary, class-based rows might be considered
in a dynamic loading setting, though the cost of inserting a new row may not be negligible,
and the compression rate is not very good.
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Binary tree dispatch (BTD) Method tables represent the most intuitive and common
technique for implementing late binding, but it is not the only one. Cache techniques
used in dynamically typed languages have been extended to polymorphic caches when sev-
eral types are expected [Holzle et al., 1991]. Usually, cache-based techniques must provide
a solution for cache misses—e.g. hashtables—when the actual type is not among the ex-
pected types. However, in a global setting, a static type analysis—coupled with dead code
elimination—allows computing of the concrete type, i.e. the set of possible receiver types
in all executions of the considered program. In this context, all types expected at a given
call site can be exhaustively tested. An efficient organization of the tests is a balanced bi-
nary tree. The technique also applies to attributes and subtype tests. This is the basis of
the GNU EIFFEL compiler, SMART EIFFEL (formerly SMALL EIFFEL) [Zendra et al., 1997;
Collin et al., 1997]. Of course, binary tree dispatch is not constant-time, but its average
behavior is considered as very good. Two arguments are in favor of it: (i) modern processors
are equipped with prediction capabilities for conditional branching which outmatch the cor-
responding capabilities for indirect branching; (ii) most method call sites are monomorphic
or weakly polymorphic (aka oligomorphic). Against it, when call sites are highly polymorphic
(aka megamorphic), the technique can be quite inefficient. The efficiency of BTD depends on
the class IDs. In single inheritance, with a preorder class numbering, BTD can be thought
of as the inlined form of interval containment, the technique proposed by |Muthukrishnan et
Muller, 1996]—this ordering likely ensures a quasi-optimal test number. However, the exten-
sion to multiple inheritance proposed by [Gil et Zibin, 2007] does not seem to apply to BTD,
i.e. it does not seem to compile well.

In all compilation settings, an intraprocedural type analysis can detect a small part of
monomorphic call sites that can be compiled into a static call. For the other call sites, when
an interprocedural type analysis is possible—i.e. with global compilation, as in SMART EIFFEL,
or global linking, as in PRM—the best method invocation implementation involves binary tree
dispatch for oligomorphic sites and coloring for megamorphic sites. The only point is to finely
tune the threshold between oligo- and mega-morphism.

Two-way coloring and mixed techniques [Huang et Chen, 1992 propose a general-
ization of selector coloring where both methods and classes are colored. Two classes C
and D can share the same color if their method tables are compatible, i.e. for each en-
try i, either tabcli] = tabpli] or one of them is empty—therefore, both method tables can
be merged. It works well for message sending in either static or dynamic typing but it
does not apply to object layout nor subtype testing. [Vitek et Horspool, 1994] general-
ize this idea by accepting merging even when both method tables have a few conflicting
entries—each entry of the resulting table contains the address of a method or of a binary
tree dispatch. This technique aims at reducing the total size of method tables but the size
of the trees mostly counterbalances the gain in method tables [Vitek et Horspool, 1996|;
Ducournau, 1997]. However, this approach provides an incremental variant of coloring, which
can be interesting in a dynamic typing setting since message sending now requires an addi-
tional parameter, i.e. the selector, which must be tested to detect the ‘message not understood’
error. This extra parameter may also be used in dispatch trees when there are several possible
selectors for one table entry. However, in static typing, this would add uniform and significant
overhead. [Alpern et al., 2001] takes a similar approach for method invocation on interface-
typed receivers in JAVA—the so-called invoke-interface operator—with hashtables where
collisions are compiled into tree dispatches. [Queinnec, 1998] proposes a dual approach, where
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dispatch is organized as a binary tree some nodes of which contain an array. In all cases, this
does not work for subtype tests—on the contray, subtype testing may be required to select
the right branch in the dispatch tree.

In their 1996 paper, Vitek and Horspool try to correct the drawbacks of their approach by
proposing to partition the property set in order to allow better sharing of the same method
tables between several classes. This is akin to multi-dimensional coloring, with the same
drawbacks—i.e. one extra memory access. It might be considered as an optimization of multi-
dimensional coloring—i.e. the optimization criterion would be maximizing sharing. There
are, however, other approaches for higher compactness, but they markedly degrade the time
efficiency. For instance, |[Muthukrishnan et Muller, 1996] propose an implementation with
linear-size method tables, in O(N + M), but O(loglog N) method invocation time, where N
is the number of classes and M is the number of method definitions.

Subtype tests Class coloring is likely not the most efficient subtype test. Its benefits are
that it is efficient, simple, inlinable and generalizable to method invocation and attribute
access. In another setting, e.g. knowledge representation instead of object-oriented program-
ming, another technique might be preferred.

A classic alternative to Cohen’s test is relative numbering [Schubert et al., 1983], which
involves a very simple double numbering of classes. Of course, the technique applies only in
single inheritance and, contrary to Cohen’s test, it is not incremental. Cohen’s display and
Schubert’s numbering are the best techniques from the time standpoint and they differ by the
encoding direction. A class encodes its superclasses in the former, its subclasses in the latter.
A bottom-up encoding is in favour of incrementality. Both techniques have been generalized to
multiple inheritance, the former with coloring and the latter with range compression |Agrawal
et al., 1989], where several intervals can be associated with each class. The test is no longer
time-constant. Several authors propose to combine both approaches in such a way that each
class is associated with: (i) a color (equivalently, the set of classes is partitioned in slices, see
Note @, (ii) one or more identifiers, (iii) one or more intervals. With PQ-encoding |Gil et
Zibin, 2005], each class is associated with one identifier in each slice and a single interval for
encoding its subtypes. It gives one of the most compact constant-time techniques available
for multiple inheritance. In contrast, [Alavi et al., 2008] propose a similar though inverted
combination for encoding the supertypes. Each class is now associated with a single identifier
and one interval in each slice. However, with a single interval in each slice, the technique is
not incremental and the authors avoid global recomputations by allowing several intervals per
slice. This closely resembles range compression, apart from the encoding direction. Hence,
the test is no longer time-constant.

On the other hand, a generic approach to subtype testing involves bit-vector encoding of
hierarchies [Caseau, 1993; [Habib et Nourine, 1994|; Habib et al., 1995/; Habib et al., 1997/;
Krall et al., 1997|. The technique involves coloring a conflict graph whose definition is slightly
different from both our conflict and coexistence graphs. The subtype testing problem can also
be generalized to the computation of lower and upper bounds in a lattice, e.g. for computing
the most general common subclass of two classes [Ait-Kaci et al., 1989]—this is however far
beyond the scope of this paper. Anyway, all of these approaches to subtype testing do not
efficiently generalize to method invocation or attribute access.

43



Perfect hashing Hashtables provide a general alternative to implementations based on
the position invariant. They are usually not strictly time-constant, but only on average.
However, there is a constant-time, collision-free variant called perfect hashing |Sprugnoli,
1977; Mehlhorn et Tsakalidis, 1990; (Czech et al., 1997]. Perfect hashing applies only to
static hashtables, without addition or deletion—this is the case for class hierarchies as long as
one does not consider dynamic unloading and reloading, or incremental definitions of classes.
[Ducournau, 2008] proposes to use perfect hashing for subtype tests and method invocation—
the latter in the special case of interface-typed receiver in JAVA. In all generality, perfect
hashing applies to both subtype tests and method invocation. Hence, it would also apply
to attributes, through accessor simulation. Perfect hashing is a true generalization of class
coloring, where the coloring function x is replaced by a family of functions h¢o which depend
on class C. A key difference is that he is an explicit function—e.g. he(z) = hash(z, He),
where hash is some hash function and H¢ is a parameter depending on C—whereas x has a
purely extensional definition.

Overall, perfect hashing is a complete implementation technique. It has a major advantage—
it is incremental and compatible with dynamic loading. It has, however, a major drawback.
While being time-constant and space-linear, time constant is about 2-fold that of coloring for
subtype test and method invocation, and substantially more for access to attributes. There-
fore, besides subtype testing, it may only be suited to JAvA-like languages, where it can
be reserved to interface-typed operations, as they remain a small part of all object-oriented
operations and do not concern attributes.

7 Conclusion and Perspectives

Coloring is a versatile implementation technique whose different variants have been discovered
and rediscovered by several people [Dixon et al., 1989; Pugh et Weddell, 1990|; [Ducournau,
1991); \Vitek et al., 1997); |Zibin et Gil, 2003]. The main goal of this paper was to generalize
these different works and highlight their unity—i.e. what we have called coloring. A first
by-product of this synthesis is the obvious possibility of applying an optimization provided
in some variant to the technique proposed in another one—e.g. bi-directionality [Pugh et
Weddell, 1990] improves selector coloring |Dixon et al., 1989] and pack encoding [Vitek et
al., 1997). Another contribution of this article is an analysis of theoretical issues—though the
work was mostly undertaken by [Pugh et Weddell, 1990|; Pugh et Weddell, 1993]. As expected,
the coloring problem is NP-hard, except in a few cases where coloring is regular and there
is perfect coloring. A more decisive contribution is a proposition of efficient heuristics and
their systematic experimentation, on a wide set of large-scale benchmarks. This was the main
drawback of all early studies—apart from [Vitek et al., 1997]. Overall, coloring appears to be
an efficient implementation technique, likely one of the most efficient in multiple inheritance.
Contrary to C++ subobject-based implementation, which is detrimental to efficiency even
when and where one does not use multiple inheritance, coloring provides exactly the same
implementation as with single inheritance for single inheritance hierarchies. Moreover, with
multiple inheritance, its overhead w.r.t. single inheritance is low and concerns only the memory
space occupied by objects and classes. Coloring requires, however, a global computation which
can be postponed at link-time.
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Coloring in a real object-oriented language A main perspective of this work is to
use coloring for implementing real object-oriented languages. This is complicated, however,
since implementation of basic features is usually hard-wired in most compilers. Moreover,
there are not many object-oriented languages, especially with both static typing and multiple
inheritance—C—++4, EIFFEL—and they present inheritance-related features that would not
easily fit with coloring [Ducournau et Privat, 2008]. In C+4+, the specification of inheritance,
either virtual or non-virtual, seems to impose a subobject-based implementation |Lippman,
1996]. In EIFFEL, an unrestricted use of renaming makes the semantics unclear. In both cases,
besides the difficulty of modifying the compiler, applying the modified compiler to existing
programs would be a mess. So the solution has been to specify and implement a new object-
oriented language, i.e. PRM. We are currently achieving this [Privat et Ducournau, 2005|;
Privat, 2006]. The bootstrap of the PRM compiler provides a test-bed dedicated to the
run-time assessment of different implementation techniques, including coloring, binary tree
dispatch, perfect hashing, etc. The specifications of the PRM language include a powerful
notion of module and class refinement [Ducournau et al., 2007] which is the basis of the PRM
compiler modular architecture and makes it easy to replace, e.g. the coloring module, by the
BTD module, and test it. Systematic tests are currently undertaken.

Truly incremental implementation The major drawback of coloring is its non-incrementality,
hence its relative incompatibility with dynamic loading. Therefore, the main issue concern-
ing coloring is to find an efficient incremental variant. We have briefly proposed a solution,
inspired by [Palacz et Vitek, 2003, available only in a static typing setting (Figure . This
solution works but would be likely inefficient at run-time, especially for attributes. So this can
only be envisaged for JAvA-like languages. Nevertheless, when class loading introduces con-
flicts between previously non-conflicting superclasses, the load-time recomputation cost must
be precisely evaluated. Alternatives to this scheme must also be examined. For instance,
method tables themselves could also be recomputed but could this save on one indirection?
Besides the algorithm itself, its run-time cost and its total space-cost, the issue would be
method table management. How could the method tables of current instances be modified
without adding an extra indirection?

Among the various alternatives to coloring that we have briefly surveyed (Section @, three
techniques can be understood as possible propositions for an incremental implementation:
(i) the mixed technique proposed by [Vitek et Horspool, 1994] could be used at load-time
for solving color conflicts between already loaded superclasses of the currently loaded class;
(ii) perfect hashing is an exact incremental generalization of coloring; (iii) class-based row
displacement represents a last alternative. All three techniques have numerous drawbacks.
The former could penalize all usages of multiple inheritance, as long as classes are loaded one
at a time. Therefore, the technique would gain from a notion of ‘module’—long advocated
in the object-oriented community [Szyperski, 1992; Ducournau et al., 2007]—allowing to
load and color a set of classes as a whole. Moreover, an extra parameter is required for all
method invocations and subtype checks. Access to attributes, though possible, would be
rather inefficient, as compared to link-time coloring. On the other hand, perfect hashing is
truly incremental, without penalization for any specific situation apart from uniform overhead.
It is not too inefficient for method invocation and subtype test, but access to attributes
would really not be better than with the aforementioned incremental version of coloring. So,
like incremental coloring, this can likely be only envisaged for multiple subtyping languages.
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Class-based row displacement may be promising but this requires further research.

Currently, there is no convincing incremental version of coloring, and the search for such
a variant or for an alternative is the main perspective of this work. Anyway, PRM and
its modular compiler will represent a powerful testbed for assessing the feasability and the
efficiency of these various hypothetic techniques.
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