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SUMMARY

Automatic Test Data Generation is a very popular domain in the field of Search Based Software Engineering.
Traditionally, the main goal has been to maximize coverage.However, other objectives can be defined, like
the oracle cost, which is the cost of executing the entire test suite and the cost of checking the system
behaviour. Indeed, in very large software systems, the costspent to test the system can be an issue, and then
it makes sense considering two conflicting objectives: maximizing the coverage and minimizing the oracle
cost. This is what we do in this paper. We mainly compare two approaches to deal with the Multi-Objective
Test Data Generation Problem: a direct multi-objective approach and a combination of a mono-objective
algorithm together with multi-objective test case selection optimization. Concretely, in this work we use
four state-of-the-art multi-objective algorithms and twomono-objective evolutionary algorithms followed
by a multi-objective test case selection based on Pareto efficiency. The experimental analysis compares
these techniques on two different benchmarks. The first one is composed by 800 java programs created
through a program generator. The second benchmark is composed by 13 real programs extracted from the
literature. In the direct multi-objective approach, the results indicate that the oracle cost can be properly
optimized; however the full branch coverage of the system poses a great challenge. Regarding the mono-
objective algorithms, although they need a second phase of test case selection for reducing the oracle cost,
they are very effective maximizing the branch coverage.
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1. INTRODUCTION

Automatic software testing is one of the most studied topicsin the field of Search-Based Software
Engineering (SBSE) [1, 2, 3, 4]. From the very first work [5, 6]to nowadays, many approaches have
been proposed for solving the automatic test data generation problem (TDGP). This great effort in
building computer aided software testing tools is motivated by the cost and importance of the testing
phase in the software development cycle. It is estimated that half the time spent on software project
development, and more than half its cost, is devoted to testing the product [7]. This explains why
Software Industry and Academia are interested in automatictools for testing.

Evolutionary algorithms (EAs) have been the most popular search-based algorithms for
generating test cases [3]. In fact, the termevolutionary testingis used to refer to this approach. In
the paradigm ofstructural testinga lot of research has been performed using EAs and, in particular,
different elements of the structure of a program have been studied in detail. Some examples are the�Correspondence to: Departamento de Lenguajes y Ciencias dela Computación, Universidad de Málaga, Spain. E-mail:
ferrer@lcc.uma.es

Copyright c
 0000 John Wiley & Sons, Ltd.

Prepared usingspeauth.cls [Version: 2010/05/13 v3.00]



presence of flags in conditions [8], the coverage of loops [9], the existence of internal states [10], and
the presence of possible exceptions [11]. In addition, several evolutionary algorithms have been used
as the search engine like scatter search [12], genetic algorithms [13, 14], simulated annealing [15],
and tabu search [16].

Traditionally, the solution of the TDGP is a set of test caseswhose execution is able to cover
all the software elements. Branch coverage is usually the most popular goal. Despite most previous
work only considering branch coverage, real-world engineers deal with the tedious and costly task of
checking the system behaviour for all the generated test cases. This significant and usually neglected
cost is called the oracle cost [17]. Thus, a reformulation ofthe TDGP to deal with real-world
problems is a need, taking into account the oracle cost as another important objective to minimize.
The oracle cost can be reduced by minimizing the test suite size. The ideal scenario is to reduce the
test suite size without any loss of coverage. However, in certain situations the two objectives are
in conflict: minimizing the oracle cost implies minimizing the coverage. When there are multiple
conflicting objectives the optimization literature recommends the consideration of a Pareto optimal
optimization approach that is able to take into account the need to balance the conflicting objectives.
Thus, the TDGP has been reformulated into a multi-objectiveproblem (MOTDGP) in the work by
Lakhotiaet al. [18] and more recently, in 2010, in a work by Harmanet al. [17].

Our main goal in this work is the comparison between two approaches to deal with the MOTDGP:
a direct multi-objective approach (MM) and a combination ofa mono-objective algorithm followed
by a multi-objective test case selection optimization (mM). The general scheme of the proposed
approaches can be seen in Figure 1.

Figure 1. The general scheme of the two proposed approaches.

On the one hand, the MM approach considers the conflicting objectives during all the test data
generation process, thusa priori it focuses both on the test suite size minimization and the coverage
maximization. On the other hand, the mM approach only considers the branch coverage during the
test data generation process, thusa priori it focuses only on the branch coverage maximization. In
order to deal with the optimization of the test suite size, inthis second approach an additional second
phase of multi-objective test case selection is performed.As nobody has previously compared these
approaches yet, we can raise the following research questions and try to answer them in an extensive
experimental study.� How does MM approach deal with MOTDGP?� Is the MM approach good enough in maximizing the coverage?� How good is the mM approach performance in optimizing the coverage and the test suite size?� Which approach is the best?

In order to completely answer the questions we should use allthe possible automatic test data
generators both in multi and mono-objective or, at least, a large number of them. We can also focus
on some test data generators and answer the previous questions on them, taking into account that in
this case the results will be valid for the test data generators considered. This is what we do in this



paper. In particular, we study the MOTDGP with two objectives, maximizing the branch coverage
and minimizing the oracle cost. Among our contributions, wegenerate the test data and we also
minimize the number of tests needed to achieve different values of coverage of the program. The
solutions are provided as Pareto fronts. For the MM approach, we use five test data generators: four
of them based on evolutionary testing and an additional one based on random search. In the mM
approach we use three mono-objective test data generators with a second phase of multi-objective
test data selection.

The rest of the paper is organized as follows. In the next section we define the multi-objective
test data generation problem. Then, in Section 3 we present some background on multi-objective
optimization. Next, in Section 4 we describe the MM approachand the multi-objective algorithms.
After that, in Section 5, we describe the mM approach, we provide details regarding the general
structure of the test data generator for single objective algorithms and the algorithms used in the
experiments. Section 6 is devoted to the experimental methodology where we explain the quality
indicators and the benchmark of programs that we use in the experiments. In Section 7, we show
the results of the experiments and we answer the proposed research questions. Finally, in Section 8,
some conclusions and future work are outlined.

2. MULTI-OBJECTIVE TEST DATA GENERATION PROBLEM

The most popular technique to test software programs consists in executing the program with a set
of test data (software testing). The engineer selects an initial set of configurations for the program
under test (PUT), called test data suite, and s/he checks thePUT behaviour with them. Since the size
of the test data suite is an engineer’s decision, s/he can control the effort devoted to this task, which
is the oracle cost. In order to ensure the correctness of a program with this technique, it would be
necessary to execute the PUT with all the possible configurations, but in practise this is unfeasible.
The alternative consists in testing the program with a representative set of test data.

Automatic test data generation (automatic software testing) consists in proposing an adequate
set of test data in an automatic way to test a program, thus preventing the engineer from the task
of selecting an adequate set of test data to test the PUT. Thisautomation of the process requires a
precise definition of what is an “adequate set” of test data, definition that we will defer until some
terms are defined. As we said before, this is a costly and hard task of the software development.
Thus, another objective for a software engineer is the minimization of the oracle cost, which can be
reduced to the minimization of the test suite size. In the following, we formally define the MOTDGP,
but we first need to introduce several terms and notation.

Let P be a program, we denote withBP the set of branches of the program and withBran
hExe
P (C) the set of branches covered inP due to the execution of a given set of test
data,C. We define the branch coverage of the test suiteC, BrCovP (C), as the ratio between the
traversed branches in the executions of the programP with the set of test dataC and the number of
branches of the program, i.e.,BrCovP (C) = jBran
hExe
P (C)jjBP j (1)

The adequacy criterion of branch coverage states that a testsuiteC for a programP is “adequate”
whenBrCovp(C) = 1. Nevertheless, it is not always possible to reach such a value of coverage,
and in case of reaching it, the cost to test the entire programcan be unaffordable. Consequently, a
balance between coverage and the cost to achieve such coverage is mandatory. Since the cost of the
testing phase depends on the test suite size, minimizing thetest suite size, denoted withjCj, must
be another goal.

Finally we deal with the MOTDGP with two conflicting objectives:� max BrCovP (C)� min jCj,
that is, maximizing the branch coverage and minimizing the test suite size.



3. MULTI-OBJECTIVE BACKGROUND

In this section, we provide background on multi-objective optimization. In particular, we define the
concept of multi-objective optimization problem (MOP), Pareto dominance, and Pareto front. In
these definitions we are assuming, without loss of generality, that minimization is the goal for all
the objectives.

A general MOP can be formally defined as follows:
Find a vectorx� = (x�1; x�2; : : : ; x�n) that satisfies them inequality constraintsgi (x) � 0; i =1; 2; : : : ;m, thep equality constraintshi (x) = 0; i = 1; 2; : : : ; p, and minimizes the vector function

f (x) = (f1(x); f2(x); : : : ; fm(x))T , wherex = (x1; x2; : : : ; xn)T is the vector of decision variables.
The set of all the values satisfying the constraints defines thefeasible region
 and any pointx 2 

is afeasible solution.

Taking into account this definition of a MOP, a solutionx1 = (x11; x12; :::; x1n) is said to dominate a
solutionx2 = (x21; x22; :::; x2n) denoted withx1 > x2, if and only iffi(x1) � fi(x2) for i = 1; 2; :::;m,
and there exists at least onej (1 � j � m) such thatfj(x1) < fj(x2). Conversely, two points are said
to be non-dominated whenever none of them dominates the other. Figure 2 depicts some examples
of dominated and non-dominated solutions. In this figure,A dominatesC becausef1(A) < f1(C),
andf2(A) < f2(C). Meanwhile,A andB are non-dominated solutions becauseA is better thanB
in the first objective function (f1(A) < f1(B)), butB is better thanA in the other objective function
(f2(A) > f2(B)).

Figure 2. Examples of dominated and non-dominated solutions.

The solution of a given MOP is usually a set of solutions (referred to as the Pareto optimal set)
satisfying:� Every pair of two solutions in the set are non-dominated.� Any other solution,y, is dominated by at least one solution in the set.

The representation of this set in the objective space is referred to as thePareto front. Generating
thePareto frontof a problem is the main goal of multi-objective optimization techniques. In theory,
a Pareto front could contain a large number of points. In practice, a usable approximate solution will
only contain a limited number of them; thus, an important goal is that solutions should be as close as
possible to the exact Pareto front and uniformly spread, otherwise, they would not be very useful to
the decision maker. Besides, closeness to the Pareto front ensures that we are dealing with optimal
solutions, while a uniform spread of the solutions means that we have made a good exploration of
the objective space and no regions are left unexplored.

Figure 3 depicts these issues of convergence and diversity.The left front (a) depicts an example
of good convergence and bad diversity: the approximation set contains Pareto optimal solutions but
there are some unexplored regions of the objective space. The approximation set depicted on the
right (b) illustrates poor convergence but good diversity:it has a diverse set of solutions but they are
not Pareto optimal. Finally, the lowermost front (c) depicts an approximation front with both good
convergence and diversity.
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(a) good convergence and bad diversity.
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(b) bad convergence and good diversity.
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(c) good convergence and good diversity.

Figure 3. Examples of Pareto fronts with different behaviour of convergence and diversity.

4. MM APPROACH

In this work we are dealing with the MOTDGP from two points of view: a direct multi-objective
approach (MM) and the application of a mono-objective algorithm followed by a multi-objective
test case selection phase (mM). In this section we explain the first approach: the MM approach. We
describe how we deal with the MOTDGP and the algorithms used to solve the problem.

The MM approach considers the conflicting objectives duringall the test data generation process,
thusa priori, it focuses on both objectives during all the process. In this approach a solution to the
problem is a test suite, that is, a set of test data. These testsuites are evaluated according to both
objectives. The evaluation of the first objective (coverage) requires, in general, the execution of the
test suite over the program under test. The evaluation of thesecond objective is a simple count of the
number of test data in the set. In the following subsection wepresent the multi-objective algorithms
used in the experimental section.

4.1. Multi-objective Algorithms

In this section we describe the five multi-objective algorithms used in the experimental section:
NSGA-II, MOCell, SPEA2, PAES and a random search algorithm (RNDMulti).

NSGA-II, proposed by K. Debet al. [19], is a genetic algorithm which is the reference algorithm
in multi-objective optimization (with over 4,860 citations at the time of writingy). Its pseudocodeyData from Google Scholar: 4,860 citations on July13th 2011.



is presented in Algorithm 1. NSGA-II makes use of a population (P) of candidate solutions (known
as individuals). In each generation, it works by creating new individuals after applying the genetic
operators to P, in order to create a new population Q (lines 5 to 8). Then, both the current (P) and
the new population (Q) are joined; the resulting population, R, is ordered according to a ranking
procedure and a density estimator known as crowding distance (line 13) (for further details, please
see [19]). Finally, the populationP is updated with the best individuals inR (line 14). These steps
are repeated until the termination condition is fulfilled.

Algorithm 1 Pseudocode of NSGA-II.
1: proc Input:(nsga-II) //Algorithm parameters in ‘nsga-II’
2: P Initialize Population() // P = population
3: Q ; // Q = auxiliary population
4: while not Termination Condition() do
5: for i  1 to (nsga-II.popSize / 2)do
6: parents Selection(P)
7: offspring Recombination(nsga-II.Pc,parents)
8: offspring Mutation(nsga-II.Pm,offspring)
9: Evaluate Fitness(offspring)

10: Insert(offspring,Q)
11: end for
12: R P[ Q
13: Ranking And Crowding(nsga-II, R)
14: P Select Best Individuals(nsga-II, R)
15: end while
16: end proc

MOCell (Multi-Objective Cellular Genetic Algorithm), introduced by Nebroet al. [20], is a
cellular genetic algorithm (cGA) which outperforms NSGA-II in some studies [20, 21]. In cGAs,
the concept of (small)neighbourhoodis paramount. This means that an individual may only
cooperate with its nearby neighbours in the breeding loop. Overlapped small neighbourhoods of
cGAs help in exploring the search space because they induce aslow diffusion of solutions through
the population, providing a kind of exploration (diversification). Exploitation (intensification) takes
place inside each neighbourhood by applying the typical genetic operations (crossover, mutation,
and replacement).

MOCell includes an external archive to store the non-dominated solutions found as the algorithm
progresses. This archive is limited in size and uses the crowding distance of NSGA-II to maintain
diversity. The pseudocode of MOCell is presented in Algorithm 2, which corresponds with the
version called aMOCell4, described in [21].

Algorithm 2 Pseudocode of MOCell.
1: proc Input:(MOCell) //Algorithm parameters in ‘MOCell’
2: archive ; //Creates an empty archive
3: while not Termination Condition() do
4: for individual 1 to MOCell.popSizedo
5: n list Get neighbourhood(MOCell,position(individual))
6: parent1 Selection(n list)
7: parent2 Selection(archive)
8: offspring Recombination(MOCell.Pc,parent1, parent2)
9: offspring Mutation(MOCell.Pm,offspring)

10: Evaluate Fitness(offspring)
11: Replacement(position(individual),offspring,MOCell)
12: Insert Pareto Front(offspring, archive)
13: end for
14: end while
15: end proc

We can observe that, in this version, for each individual we select one parent from its
neighbourhood and one from the archive, in order to guide thesearch towards the best solutions
found (lines 5 to 8). Then a new solution is created by applying the genetic operators to these



parents. The new solution is used to replace the current solution (line 11), and it is considered for
inclusion in the archive (line 12). This constitutes a single iteration of the algorithm. The overall
algorithm iterates until a termination condition is fulfilled.

The Strength Pareto Evolutionary Algorithm (SPEA2) is a multi-objective evolutionary algorithm
proposed by Zitleret al. in [22]. We show the algorithm’s pseudocode in Algorithm 3. SPEA2 uses
a population and an archive simultaneously in its operation. In it, each individual is assigned a
fitness value that is the sum of its strength raw fitness and a density estimation. The strength value
of a solutioni represents the number of solutions (in either the population or the archive) that are
dominated by that solution, that isS(i) = jfjjj 2 Pt [ Pt ^ i > jgj. The strength raw fitness value
of a given solutioni, on the contrary, is the sum of strengths of all the solutionsthat dominate
it, and is subject to minimization, that is,R(i) =Pj2Pt[Pt;j>i S(j). The algorithm applies the
selection, crossover, and mutation operators to fill an archive of individuals; then, the non-dominated
individuals of both the original population and the archiveare copied into a new population. If
the number of non-dominated individuals is greater than thepopulation size, a truncation operator
based on calculating the distances to thek-th nearest neighbour is used (a typical value isk = 1),D(i) = 1�ki +2 , where�ki is the distance from solutioni to its k-th nearest neighbour. This way, the
individuals having the minimum distance to any other individual are chosen.

Algorithm 3 Pseudocode of SPEA2.
1: proc
2: t 0
3: Initialize(P0, P0)
4: while not EndingCondition(t,Pt) do
5: FitnessAssignment(Pt , Pt)
6: Pt+1 NonDominated(Pt [ Pt+1)
7: if jPt+1j > N then
8: Pt+1 Truncate(Pt+1)
9: else

10: Pt+1 FillWithDominated(Pt)
11: end if
12: Parents BinaryTournament(Pt+1 )
13: Offspring Crossover(Parents)
14: Pt+1 Mutate(Offspring)
15: t t+ 1
16: end while
17: end proc

PAES is a metaheuristic proposed by Knowles and Corne [23]. The algorithm is based on a simple
(1+1) evolution strategy. To find diverse solutions in the Pareto optimal set, PAES uses an external
archive of non-dominated solutions, which is also used to make decisions about new candidate
solutions. An adaptive grid is used as a density estimator inthe archive. The most remarkable
characteristic of PAES is that it does not make use of any recombination operators (crossover).
New solutions are generated only by modifying the current solution. The pseudocode of PAES is
presented in Algorithm 4. It starts with a random solution (line 3). In each iteration, a new solution
is produced by modifying the current solution (line 5). Thisnew solution is included in the archive
and it is considered as a potential replacement for the current solution (lines 7 to 14). These steps
are repeated until the maximum number of evaluations is reached.

We have included PAES in our study because of its simplicity.PAES does not use any
recombination operator, and its only parameter is the number of partitions of the adaptive grid of
the archive. Its relative simplicity makes it attractive since there are comparatively few parameters
that require tuning in order to know that the algorithm is being applied properly (e.g., population
size, crossover probability, mutation probability).

We also apply a random search (RNDMulti). This is merely a ‘sanity check’; all metaheuristic
algorithms should be capable of comfortably outperform random search for a well-formulated
optimization problem. The pseudocode of the RNDMulti is presented in Algorithm 5. The final
result of this random search is the set of all the non-dominated solutions found.



Algorithm 4 Pseudocode of PAES.
1: proc Input:(paes) //Algorithm parameters in ‘paes’
2: archive ;
3: currentSolution Create Solution(paes) // Creates an initial solution
4: while not Termination Condition() do
5: mutatedSolution Mutation(currentSolution)
6: Evaluate Fitness(mutatedSolution)
7: if IsDominated(currentSolution, mutatedSolution)then
8: currentSolution mutatedSolution
9: else

10: if Solutions Are Nondominated(currentSolution, mutatedSolution)then
11: Insert(archive, mutatedSolution)
12: currentSolution Select(paes, archive)
13: end if
14: end if
15: end while
16: end proc

Algorithm 5 Pseudocode of RNDMulti.
1: proc
2: archive ;
3: currentSolution Create Solution() // Creates an initial solution
4: while not Termination Condition() do
5: newSolution Create Solution()
6: Insert(archive, newSolution)
7: end while
8: end proc

5. mM APPROACH

In this section we present the second approach. In this approach we use a mono-objective test
data generator to obtain a set of test data with the highest coverage. The mono-objective test data
generator deals with only one branch of the program at the same time. This is an advantage to obtain
high coverage because the search can focus on covering the most complex branches of the program.

However, the resulting test suite is usually large, redundant and inefficient because these
algorithms do not try to minimize the test suite size. One wayto reduce the number of test cases in
a test suite, and still test the same functionality, is by solving a Multi Objective Test Case Selection
Problem (MOTCSP) on the given test suite. This problem was recently formalized by Yoo and
Harman in [24] as follows: Given a test suiteT and several objective functionsFi, we must find
a subsetT 0 � T such thatT 0 is a Pareto optimal set with respect to the objective functions. The
resulting subset of the test suite,T 0, is composed of the non-dominated solutions considering the
objectives as equally important.

In order to solve the MOTCSP we always use in the experimentalsection the multi-objective
algorithm NSGA-II. Our implementation is able to generate aPareto front from thousands of test
cases previously generated by the mono-objective algorithms. But first, we delete repeated test cases
from the obtained test suite in order to reduce from thousands of test cases to hundreds of them. Two
test cases are repeated when both of them traverse the same branches. We have compared the results
obtained with and without this reduction phase, and the results are better when this reduction is
applied. Finally, for the mono-objective algorithm involved in the first phase of test data generation,
we use three different algorithms: a genetic algorithm, an evolutionary strategy and a random search.
In the following we describe in detail the test data generator and the algorithms used as its search
engine.

5.1. Test Data Generator

Our test data generator breaks down the global objective (tocover all the branches) into several
partial objectives consisting of dealing with only one branch of the program. Then, each partial



objective can be treated as a separate optimization problemin which a solution to the problem is a
test datum and the function to be minimized is a distance between the current test datum and one
satisfying the partial objective. In order to solve such minimization problem EAs are used. The main
loop of the test data generator is shown in Figure 4.

Select a Partial

Objective

Optimization

Algorithm

End

Continue?
yes

no

Test Case Generator

Test case

Objective function

Program

Figure 4. The test data generation process.

In a loop, the test data generator selects a partial objective (a branch) and uses the optimization
algorithm to search for test data exercising that branch. When a test datum covers a branch, the test
datum is stored in a set associated to that branch. The structure composed of the sets associated to
all the branches is calledcoverage table. After the optimization algorithm stops, the main loop starts
again and the test data generator selects a different branch. This scheme is repeated until total branch
coverage is obtained or a maximum number of consecutive failures of the optimization algorithm is
reached. When this happens the test data generator exits themain loop and returns the sets of test
data associated to all the branches. In the following two sections we describe two important issues
related to the test data generator: the objective function to minimize and the optimization algorithms
used.

5.2. Objective Function

We have to solve several minimization problems: one for eachbranch. Now we need to define an
objective function (for each branch) to be minimized. This function will be used for evaluating each
test datum, and its definition depends on the desired branch and whether the program flow reaches
the branching condition associated to the target branch or not. If the condition is reached we can
define the objective function on the basis of the logical expression of the branching condition and
the values of the program variables when the condition is reached. The resulting expression is called
branch distanceand can be recursively defined on the structure of the logicalexpression. That is,
for an expression composed of other expressions joined by logical operators the branch distance is
computed as an aggregation of the branch distance applied tothe component logical expressions.

For the Java logical operators&& and|| we define the branch distance as:bd(a&&b) = bd(a) + bd(b) (2)bd(a||b) = min(bd(a); bd(b)) (3)

wherea andb are logical expressions.
In order to completely specify the branch distance we need todefine its value in the base case of

the recursion, that is, for atomic conditions. The particular expression used for the branch distance
in this case depends on the operator of the atomic condition.The operands of the condition appear
in the expression. A lot of research has been devoted in the past to the study of appropriate branch
distances in software testing. An accurate branch distanceconsidering the value of each atomic



condition and the value of its operands can better guide the search. In procedural software testing
these accurate functions are well-known and popular in the literature. They are based on distance
measures defined for relational operators like<, >, and so on [25]. We use here these distance
measures described in the literature.

When a test datum does not reach the branching condition of the target branch we cannot use the
branch distance as objective function. In this case, we identify the branching condition
whose value
must first change in order to cover the target branch (critical branching condition) and we define the
objective function as the branch distance of this branchingcondition plus theapproximation level.
The approximation level, denoted here withap(
; b), is defined as the number of branching nodes
lying between the critical one (
) and the target branch (b) [26].

In this paper we also add a real valued penalty in the objective function to those test data that do
not reach the branching condition of the target branch. Withthis penalty, denoted byp, the objective
value of any test datum that does not reach the target branching condition is higher than the one of
any test datum that reaches the target branching condition.The exact value of the penalty depends
on the target branching condition and it is always an upper bound of the target branch distance.
Finally, the expression for the objective function is as follows:fb(x) = � bdb(x) if b is reached byxbd
(x) + ap(
; b) � p otherwise

(4)

where
 is the critical branching condition, andbdb, bd
 are the branch distances of branching
conditionsb and
. The use of the penaltyp could be avoided by normalizing the branch distance
to the interval[0; 1) (see [27] for example). However, in this work we do not normalize the branch
distance, thus, requiring the penalty valuep, which is set top = 10000 in the experiments.

Nested branches pose a great challenge for the search. For example, if the condition associated to
a branch is nested within three conditional statements, allthe conditions of these statements must
be true in order for the program flow to proceed onto the next one. Therefore, for the purposes of
computing the objective function, it is not possible to compute the branch distance for the second
and third nested conditions until the first one is true. This gradual release of information might cause
efficiency problems for the search (what McMinn calls thenesting problem[28]), which forces us
to concentrate on satisfying each predicate sequentially.

In order to alleviate the nesting problem, the test data generator selects as objective in each loop
one branch whose associated condition has been previously reached by other test data stored in
the coverage table. Some of these test data are inserted in the initial population of the EA used
for solving the optimization problem. The percentage of individuals introduced in this way in the
population is called thereplacement factorand is denoted byRf . At the beginning of the generation
process some random test data are generated in order to reachsome branching conditions.

5.3. Mono-Objective Algorithms

We use two EAs inside the test data generator used in the mM approach: a genetic algorithm and
an evolutionary strategy. Let us first describe the general structure of an EA and then we detail the
differences between the EAs used here. In Figure 6 we show themain loop of an EA.

Initially, the algorithm creates a population of� individuals randomly or by using a seeding
algorithm. At each step, the algorithm applies stochastic operators such as selection, recombination,
and mutation in order to compute a set of� descendant individualsQ. The objective of the selection
operator is to select some individuals from the population to which the other operators will be
applied. The recombination operator generates a new individual from several ones by combining
their solution components. This operator is able to put together good solution components that are
scattered in the population. On the other hand, the mutationoperator modifies one single individual
and is the source of new different solution components in thepopulation. The individuals created
are evaluated according to the fitness function. The last step of the loop is a replacement operation
in which the individuals for the new populationP (t+ 1) are selected from the offspringQ(t) and
the old oneP (t). This process is repeated until a stop criterion is fulfilled, such as reaching a pre-
programmed number of iterations of the algorithm or finding an individual with a preset target



Algorithm 6 Pseudocode of an EA.
1: proc Input: (ea)
2: t=0:
3: P(t) Create Population() // P = population
4: Q ; // Q = auxiliar population // Creates an initial solution
5: while not Termination Condition() do
6: for i  1 to (ea.popSize)do
7: parents Selection(P(t))
8: offspring Recombination(ea.Pc,parents)
9: offspring Mutation(ea.Pm,offspring)

10: Evaluate Fitness(offspring)
11: Insert(offspring,Q(t))
12: end for
13: P(t+1) := Replace (Q(t),P(t))
14: t= t + 1
15: end while
16: end proc

quality. In this work we use two EAs as the optimization algorithm of the test data generator: an
evolutionary strategy (ES) and a genetic algorithm (GA). Inthe following we focus on the details of
the ES. We defer the details of the GA to the parameterizationsection.

In an ES [29] each individual is composed of a vector of real numbers representing the problem
variables (x), a vector of standard deviations (�) and a vector of angles (!). These two last vectors
are used as parameters for the main operator of this technique: the Gaussian mutation. They are
evolved together with the problem variables themselves, thus allowing the algorithm to self-adapt
the search to the landscape. The mutation operator is governed by the three following equations:�0i = �i exp(�N(0; 1) + �Ni(0; 1)) (5)!0i = !i + 'Ni(0; 1) (6)x0 = x+N(0; C(�0; !0)) (7)

whereC(�0; !0) is the covariance matrix associated to�0 and!0, N(0; 1) is the standard univariate
normal distribution, andN(0; C) is the multivariate normal distribution with mean0 and covariance
matrixC. The subindexi in the standard normal distribution indicates that a new random number
is generated anew for each component of the vector. The notation N(0; 1) is used for indicating
that the same random number is used for all the components. The parameters� , �, and' are
set to(2n)�1=2, (4n)�1=4, and5�=180, respectively, as suggested in [30]. For the recombination
operator of an ES there are many alternatives: each of the three real vectors of an individual
can be recombined in a different way. In our particular implementation, we use discrete uniform
recombination for the solution vectorx, where each component is selected from the best parent
with a predefined probability, calledbias. For the vector of standard deviations and angles we use
arithmetic recombination. The exact expressions for the components of the vectors are:xi = � x1i if U(0; 1) < biasx2i otherwise

(8)�i = (�1i + �2i )=2 (9)!i = (!1i + !2i )=2 (10)

where the superindices are used to denote the two parent solutions (x1 is the best one) andU(0; 1)
denotes a random sample of a uniform distribution in the interval [0; 1). With respect to the
replacement operator, there is a special notation to indicate whether the old population is taken
into account or not to form the new population. When only the new individuals are used, we
have a(�; �)-ES; otherwise, we have a(�+ �)-ES. Regarding the representation, since all the
test programs have integer parameters, each component of the vector solutionx is rounded to the
nearest integer and used as actual parameter of the program.There is no limit in the input domain,
thus allowing the ES to explore the whole solution space.



We also apply a random algorithm (RNDMono) as search engine of our test data generator (see
Algorithm 7). This is again merely a ‘sanity check’. The finalresult of this random search is the set
of all the created solutions.

Algorithm 7 Pseudocode of RNDMono.
1: proc
2: conditionTable ;
3: currentSolution Create Solution() // Creates an initial solution
4: while not Termination Condition() do
5: newSolution Create Solution()
6: Insert(conditionTable, newSolution)
7: end while
8: end proc

6. EXPERIMENTAL METHODOLOGY

This section is aimed at presenting the indicators used to measure the quality of the obtained results
and the benchmark programs we have used. It also describes how the solutions of the problem
have been encoded and the genetic operators employed, the configuration of the algorithms, and the
methodology we have followed.

6.1. Quality Indicators

Two different issues are normally considered for assessingthe quality of the results computed by a
multi-objective optimization algorithm:

1. To minimize the distance of the computed solution set by the proposed algorithm to the
optimal Pareto front (convergence towards the optimal Pareto front).

2. To maximize the spread of solutions found, so that we can have a distribution of vectors as
smooth and uniform as possible (diversity).

A number of quality indicators have been proposed in the literature. Among them, we can
distinguish betweenPareto compliantandnon Pareto compliantindicators [31]. Given two Pareto
fronts, A and B, if A dominates B, the value of a Pareto compliant quality indicator is higher
for A than for B; meanwhile, this condition is not fulfilled bythe non–compliant indicators.
Thus, the use of Pareto compliant indicators should be preferable. In this work, we apply the
Hypervolume [32] (Pareto compliant), which takes into account the convergence as well as the
diversity of the solutions; and Empirical Attainment Surfaces [33], which measures the probability
of being dominated by the approximated Pareto front. Both indicators are defined as follows:� Hypervolume (HV). This indicator calculates the volume (in the objective space) covered by

members of a non-dominated set of solutionsQ (the region enclosed into the discontinuous
line in Figure 5(a),Q = fA;B;Cg) for problems where all objectives are to be minimized.
Mathematically, for each solutioni 2 Q, a hypercubevi is constructed with a reference pointW and the solutioni as the diagonal corners of the hypercube. The reference point can simply
be found by constructing a vector of the worst objective function values. Thereafter, a union
of all hypercubes is found and its hypervolume (HV) is calculated:HV = volume0� jQj[i=1 vi1A : (11)

We apply this metric after a normalization of the objective function values to the range[0::1℄.
A Pareto front with a higher HV than another one could be due to: some solutions in the
better front dominate solutions in the other, or, solutionsin the better front are more widely
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distributed than in the other. Since both properties are considered to be good, algorithms
with larger values of HV are considered to be desirable. To apply this quality indicator, it
is usually necessary to know the optimal Pareto front (form normalization purposes). Of
course, typically, we do not know the location of the optimalfront. Therefore, we employ
as areference Pareto optimal frontthe front composed of all the non-dominated solutions out
of all the executions carried out (i.e., the best front knownuntil now).� Empirical Attainment Surfaces (EAS): In the related literature, the trade-off between
several objectives in a MOP is usually presented by showing one of the approximated Pareto
fronts obtained in one single run of a given algorithm. However, the optimization algorithms
used are stochastic and therefore there is no warranty that the same result is obtained after a
new run of the algorithm. Thus, a single run of a stochastic algorithm gives no information
about the average performance of the algorithm. We need a wayof representing the results
of a multi-objective algorithm that allows us to observe theexpected performance and its
variability, in the same way as the average and the standard deviation are used in the single-
objective case. To do this we use the concept of empirical attainment function (EAF) [33]. In
short, the EAF is a function� from the objective spaceRn to the interval[0; 1℄ that estimates
for each vector in the objective space the probability of being dominated by the approximated
Pareto front of one single run of the multi-objective algorithm. Given ther approximated
Pareto fronts obtained in the different runs, the EAF is defined as:�(z) = 1r rXi=1 I(Ai � fzg) (12)

whereAi is the i-th approximated Pareto front obtained with the multi-objective algorithm
andI is an indicator function that takes value 1 when the predicate inside it is true, and 0
otherwise. The predicateAi � fzg meansAi dominates solutionz. Thanks to the attainment
function, it is possible to define the concept ofk%-attainment surface [33]. The attainment
function � is a scalar field inRn and thek%-attainment surface is the level curve with
valuek=100 for �. Informally, the 50%-attainment surface in the multi-objective domain is
analogous to the median in the single-objective one. In a similar way, the 25%- and 75%-
attainment surfaces can be used as the first and third “quartile fronts” and the region between
them could be considered a kind of “interquartile region” (see Fig. 5(b)). When the number
of objectives is one, the 50%-attainment surface is the median and the “interquartile region”
is the interquartile range.



6.2. Automatic Program Generator

We designed an automatic program generator able to generateprograms similar to the ones of the
real-world software. To achieve this goal, we focus on measures, made on source code pieces, which
do not require the execution of the program, called static measures. Once we have computed these
static measures in real-world software, we generate programs having values of the static measures
that are similar to the ones of the real-world programs. The main characteristic of our program
generator is that it is able to create programs for which total branch coverage is possible, but they
do not solve any concrete problem. We propose this generatorwith the aim of generating a big
benchmark of programs with certain characteristics chosenby the user.

In a first approximation we could create a program using a representation based on a syntax
tree and a table of variables. The tree stores the sentences that are generated and the table of
variables stores basic information about the variables declared and their possible use. With these
structures, we are able to generate programs, but we can not ensure that all the branches of the
generated programs are reachable. The unreachability of all the branches is a quite common feature
of real-world programs, so we could stop the design for the generator at this stage. However, another
objective of the program generator is to be able of creating programs that can be used to compare
the performance of different algorithms for test data generation. In this case, programs for which
total coverage is reachable are desirable, because we can use the coverage obtained by a test suite
as a measure of its quality.

Let us illustrate this with an example. Let us suppose that a given tool for automatic test case
generation is able to find test suites that cover 80% of the branches of programA and 90% of the
branches of programB (a test suite for each program). It seems that the tool is moreeffective in
programB, since it is able to generate a test suite with higher coverage. Now, imagine that 20% of
the branches of programA are unreachable and all the branches of programB are reachable. Then,
the tool obtained the maximum possible coverage in programA but not in programB. Thus, we
would say that the tool is more effective for programA.

This example shows that coverage is not a good measure of the performance of an automatic tool
for test case generation if we do not know the maximum reachable coverage for each program. In
previous work, alternative measures, such as corrected coverage [34] have been used to alleviate this
problem. In this work we adopt a different approach. Since weautomatically generate the programs
of the benchmark, we decided to generate programs for which the maximum coverage is always
100%. This way, we can safely use the coverage as a measure of performance of the automatic test
data generators and we can compare these generators among them using coverage.

An alternative approach would be to generate programs for which there is no warranty that
100% of branch coverage can be obtained and then analyze these programs in order to find the
maximum possible coverage and use a corrected coverage measure. However, the drawback of this
alternative approach is that the size of the benchmark wouldbe limited, since we should check all the
programs by hand (the automatic determination of the maximum branch coverage is an undecidable
problem), and we would lose statistical confidence in the results. It would be unviable to generate
800 programs (as we do in this work) and analyze them manually.

With the goal of generating programs for which total coverage is reachable, we thought in the
way the variables are treated in symbolic execution [35, 36]and some methods of formal derivation
of programs [37, 38, 39]. Unlike the formal derivation of programs, our generator is not guided by a
specification. Therefore, at the end, we introduce logic predicates in the program generation process
in order to generate programs for which total coverage is always ensured.

The program generator is parameterizable, the user can fix several parameters of the program
under construction (PUC). Thus, we can assign the probability distributions of the number of
sentences of thePUC, the number of variables, the maximum number of atomic conditions per
condition, and the maximum nesting degree. Another parameter the user can tune is the percentage
of control structures or assignment sentences that will appear in the code. By tuning this parameter
the program will contain the desired density of decisions.

Once the parameters are fixed, the program generator builds the general scheme of the PUC. It
stores in the syntax tree the program structure, and createsa main method where the local variables



are first declared. Then, the program is built through a sequence of basic blocks of sentences where,
according to a probability, the program generator decides which sentence will be added to the
program. The creation of the entire program is done in a recursive way. The user can decide whether
all the branches of the generated program are reachable or not.

If total reachability is desired, logic predicates are usedto represent the set of possible values that
the variables can take at a given point of the PUC. Using thesepredicates we can know the range
of values that a variable can take. This range of values is useful to build a new condition that can
be true or false. For example, if at a given point of the program we have the predicatex � 3 we
know that a forthcoming conditionx � 100 will be always true and if this condition appears in an
if statement, theelse branch will not be reachable. The predicates are thus used toguide the
program construction to obtain a 100% coverable program.

In general, at each point of the program the predicate is different. During the program
construction, when a sentence is added to the program, we need to compute the predicate at the point
after the new sentence. For this computation we distinguishtwo cases. First, if the new sentence is
an assignment then the new predicateCP 0 is computed after the previous oneCP by updating
the values that the assigned variable can take. For example,if the new sentence isx = x+ 7 andCP � x � 3, then we haveCP 0 � x � 10.

Second, if the new sentence is a control statement, anif statement for example, then the program
generator creates two new predicates called True-predicate (TP ) and False-predicate (FP ). TheTP
is obtained as the result of the AND operation betweenCP and the condition related to the control
statement. TheFP is obtained as the result of the AND operation between theCP and the negated
condition. In order to ensure that all the branches can be traversed, we check that both,TP andFP are not equivalent tofalse. If any of them were false, this new predicate is not valid anda new
control structure would be generated.

Once these predicates are checked, the last control statement is correct and new sentences are
generated for the two branches. The predicates are computedinside the branches in the same way.
After the control structure is completed, the last predicates of the two branches are combined using
the OR operator and the result is the predicate after the control structure. In Figure 6 we illustrate
the previous explanation with one example.

/* CP1 � x � 3 */
if (x < 0)f

/* CP2 � TP1 � x � 3 ^ x < 0 � x < 0 */
y=5;
/* CP3 � x < 0 ^ y = 5 */g

elsef
/* CP4 � FP1 � x � 3 ^ x � 0 � 0 � x � 3 */
x=x-3;
/* CP5 � �3 � x � 0 */g

/* CP6 � x < 0 ^ y = 5 _ �3 � x � 0 */

Figure 6. Illustration of the predicates transformation.



6.3. Benchmark of Test Programs

In the experimental section we use two benchmarks. The first one is composed of 800 synthetic
programsz. They are described in the next section. The second one is composed of 13 real-world
programs that are described in Section 6.3.2.

6.3.1. Synthetic ProgramsThe program generator can create programs having the same value for
the static measures, as well as programs having different values for the measures. In addition, the
generated programs are characterized by having a 100% coverage, thus all possible branches are
reachable.

Our program generator takes into account the desired valuesof some static measures. The static
measures selected are: the number of atomic conditions, thenesting degree, the number of sentences
and the number of variables. The main features of the generated programs are: they deal with integer
input parameters, their conditions are joined by whicheverlogical operator, they are randomly
generated and all their branches are reachable.

The methodology applied for the program generation was the following. First, we analyzed a set
of Java source files from the JDK 1.5 (java.util.*, java.io.*, java.sql.*, etc.) and we computed the
static measures on these files. Next, we used the ranges of themost interesting values, obtained
in this previous analysis as a guide to generate Java source files having values in the same range
for the static measures. This way, we generated programs with the values in these ranges, e.g.,
nesting degree in 1-4 (25% for each value), atomic conditions per condition in 1-4 (68.43% with 4
conditions per decision), and statements in 25, 50, 75 or 100(25% for each value). The percentage
of control flow statements is 32.23% (in this work we use IF statements), this means that the test
case generator should cover around 64 different branches (32 true and 32 false) in programs with
100 statements. The previous values are realistic with respect to the static measures, making our
study meaningful. Besides, we generated 50 programs for each size and nesting degree (50 x 4 sizes
x 4 nesting degrees = 800), which is a total of 800 Java programs.

6.3.2. Real ProgramsIn order to improve the interest of our work we propose an additional
benchmark of real programs. It is composed of 13 real programs extracted from the literature [40,
41, 42]. Some of them have been extracted from the bookC Numerical Recipes, available on-line
at http://www.nr.com/. They deal with real and integer input values and some of them also contain
loops. The programs are listed in Table I, where we inform on the maximum nesting degree, the
lines of code (LOC), the number of branches, and the number and type of input arguments.

Table I. Characteristics of the Real Programs

Name ND LOC Branches Arguments Description
calday 2 47 22 3 Integer Calculate the day of the week
complex 3 74 24 6 Integer Calculate complex arithmetic functions
gcd 2 28 8 2 Integer Greatest common denominator
line 8 92 36 8 Integer Check if two rectangles overlap
numbers 3 71 28 1 Integer Parse a big number from integer to string
qformula 2 24 4 3 Double Solve Real Equations
qformulas 2 22 6 3 Integer Solve Integer Equations
remainder 6 49 18 2 Integer Calculate the remainder of an integer division
tmichael 5 69 20 3 Integer Classify triangles in 4 types: Michael
tmyers 6 54 12 3 Integer Classify triangles in 4 types: Myers
triangle 4 53 28 3 Integer Classify triangles in 4 types: Our implementation
tsthamer 3 76 26 3 Integer Classify triangles in 5 types: Sthamer
twegener 3 46 26 3 Double Classify triangles in 5 types: WegenerzThey are available at http://neo.lcc.uma.es/mase/index.php/component/content/article/48-problems/121-source-of-800-

sythetic-programs



6.4. Solution Encoding, Genetic Operators and Configuration

Here we detail the configuration of the operators and the encoding of the solutions used in the
algorithms.

6.4.1. Details of the Mono-objective algorithms:In this work, each solution is encoded as an
integer/real vector of lengthn (the number of arguments). As we said in Section 5.1 the generator
breaks down the global objective (to cover all the branches)into several partial objectives consisting
of dealing with only one branch of the program. Thus, two stopping conditions exist: one for partial
objectives and the other one for the whole test data generation process. The search for one partial
objective stops when 1000 evaluations are performed while the test data generation process ends
after 150000 evaluations.

In our GA we use as recombination operator the uniform crossover (UX), in which each
component of the new solution is randomly selected from the two parents. The formal definition
is the same as Equation (8) withbias = 0:5. The mutation operator adds a random value to the
components of the vector. That is,xi = xi + U(�500; 500) (13)

where the probability distribution of these random values is a uniform distribution in the range[�500; 500℄. However, not all the components of the individual are perturbed, only half of them are.
In our ES, we use a discrete crossover operator and a Gaussianmutation. We show in Table II a
summary of the parameters used by the two EAs in the experimental section.

Table II. Parameters of the two mono-objective EAs used in the experimental section

ES GA
Population 25 indivs. 25 indivs.
Selection Random, 5 indivs. Random, 5 indivs.
Mutation Gaussian AddU(�500; 500)
Crossover

discrete (bias = 0.6)
Uniform

+ arith. + arith.
Replacement Elitist Elitist
Stopping cond. 1000 evals. 1000 evals.
Total Evals. 150000 evals. 150000 evals.

After the execution of the test data generator, we obtain a huge table of coverage where the test
data that satisfy a concrete branch during the execution aresaved. This table is filtered in order to
remove those test data for which a different test exist in thetable traversing the same branches,
as explained in Section 5. Then, a test data selection is performed over this set using a standard
NSGA-II.

6.4.2. Details of the Multi-objective algorithms:In the multi-objective approach, each individual is
encoded as a set of test data. In Table III can be seen the parameters of the multi-objective EAs used
in the experimental section. As genetic operators, we have usedbinary tournamentas the selection
scheme. This operator works by randomly choosing two individuals from the population and the
one dominating the other is selected; if both solutions are non-dominated one of them is randomly
selected.

We created some crossover operators to increase the efficiency of the algorithm. The best results
were obtained with theunion crossover. It takes two solutions,C1 andC2, and creates a new oneC
that is the union of both, that is:C = C1 [ C2. If the resulting solutionC has more coverage thanC1 andC2 thenC is the new offspring. Otherwise, the solution with more coverage (C1 or C2) is
the new child.



Table III. Parameters of the Multi-objective EAs used in theexperimental section

NSGA-II MOCell SPEA2 PAES
Population 20 indivs. 20 indivs. 20 indivs. 20 indivs.
Selection BT, 2 indivs. BT, 2 indivs. BT, 2 indivs. BT, 2 indivs.
Mutation Adaptive Mutation Adaptive Mutation Adaptive Mutation Adaptive Mutation
Crossover Union Crossover Union Crossover Union Crossover -
Replacement Elitist Elitist Elitist Elitist
Total Evals. 150000 evals. 150000 evals. 150000 evals. 150000 evals.

Finally, the mutation operator adds new test data to the solution with proability 0.6, deletes one
test datum with probability 0.2 and keeps the individual unchanged with proability 0.2. In the case
of adding test data, the number of new test data is 30% of the test data present in the solution.

If the resulting individual has the same coverage and more test data, at the end of the iteration,
the algorithm deletes it from the population because this solution is dominated.

All the multi-objective algorithms have been implemented using jMetal [43], a Java framework
aimed at the development, experimentation, and study of metaheuristics for solving multi-objective
optimization problems.

7. EXPERIMENTAL ANALYSIS

In this section we present the results of the two proposed approaches. In the first subsection we
analyze the MM approach and we compare the performance of themulti-objective algorithms. In
the second subsection we study the mM approach and we comparethe performance of the mono-
objective algorithms used as the base for the approach. Then, in a third subsection we compare
the two proposed approaches for the academic benchmark, andfinally, in the last subsection, we
compare both approaches with a benchmark of real programs.

For the study we use the 800 Java programs automatically generated and another benchmark
composed of 13 real programs. Both benchmarks were described in Section 6.3. Since we are
dealing with stochastic algorithms, we need to perform several independent runs of each algorithm
and program, 30 in our case, in order to obtain a very stable average of the measures. All test
data generators used in this work proceed by generating testdata until a maximum of 150,000 test
data are generated. We also perform a multiple comparison statistical test for each program on the
obtained results to compare the algorithms among them. We set a confidence level of 95% (p-value
under0:05) for the whole comparison (all the algorithms acting on a program) and we used the
Bonferroni correction for each particular comparison.

7.1. Evaluation of the MM approach

In this section, we analyze the behaviour of the multi-objective algorithms with the aim of
highlighting the algorithm that works better. We have analyzed 800 programs, so we cannot
represent all HV values for all the programs. For this reason, we summarize in Table IV the times
one algorithm has better median HV than the others. We have classified the results according to
the nesting degree and the size of the PUT. For this indicator, the higher the value, the better the
quality of the obtained results. Thus, by looking at the tables, we can see that MOCell was usually
the algorithm computing clearly the best results regardingHV. However, when the programs are
small (25-50 statements) and complex (nesting degree four), the NSGA-II algorithm has a better
behaviour. We must highlight the big difference between MOCell (443), NSGA-II (198) and the
others altogether (43).

Then, we compare the HV values of all the programs and independent executions with the
Kruskal-Wallis test. In each cell of a table of statistics wehave a pair (number, triangle). The
number indicates how many programs are significantly different, and the triangle indicates that
the program in the row is significantly better (N) or worse (O) than the program in the column. The
results are summarized in Table V. Although the previous values set a clear tendency, the absence of



Table IV. Programs in which the median Hypervolume of one algorithm is better than the others

Nesting degree Statements MOCell NSGA-II SPEA2 PAES RNDMulti

1

25 10 1 0 0 0
50 24 9 0 2 2
75 34 6 1 1 0
100 38 4 0 1 0
Total 106 20 1 4 2

2

25 13 5 1 2 3
50 35 13 0 0 0
75 37 12 0 0 0
100 40 10 0 0 0
Total 125 40 1 2 3

3

25 18 11 3 1 2
50 33 15 0 0 0
75 32 16 1 0 0
100 30 19 0 0 0
Total 116 61 4 1 2

4

25 17 20 3 2 2
50 23 25 2 1 0
75 27 19 2 0 1
100 29 13 10 0 0
Total 96 77 17 3 3

Total 443 198 23 10 10
significant differences between MOCell, NSGA-II and SPEA2,does not allow us to say that MOCell
is better than the other two. However, we can mention that RNDMulti is the worst algorithm in all
the programs (800) and PAES is worse than MOCell in 18 programs, NSGA-II in 9 programs, and
SPEA2 in only 2 programs.

Table V. Number of programs where there exists significant difference among the HV obtained.

RNDMulti PAES SPEA2 NSGA-II MOCell
MOCell 800N 18N 0 0 �
NSGA-II 800N 9N 0 � 0
SPEA2 798N 2N � 0 0
PAES 750N � 2O 9O 18O

RNDMulti � 750O 798O 800O 800O
With the aim of showing an example of the computed fronts for the instances, we selected

one program for each nesting degree, which can represent thetypical behaviour of the different
algorithms in this kind of instance. In Figure 7 are depictedthe 50%-attainment surfaces of these
selected programs. In the instance with low nesting degree,MOCell dominates the others and has
a good performance because it reaches almost the same or better coverage with the same test data.
NSGA-II has a similar behaviour except in the right extreme of the figure where it is not able to reach
the same maximum coverage as MOCell. On the other hand, in theprogram with nesting degree 4,
NSGA-II is the algorithm that is able to reach the best coverage and dominates all the other fronts.
The other two multi-objective algorithms (SPEA2 and PAES) have problems finding the solutions
with high coverage, in the upper-right bound of the figure, and are worse than MOCell and NSGA-II.
RNDMulti is always the worst. MOCell has been able to find non-dominated solutions in the right
area where SPEA2, PAES and RNDMulti have not found any of them(solutions in the extremes of



the front). This is related to a better exploration of the search space by MOCell. Specifically, this
is one of the properties of the cellular GA model, on which MOCell is based. This fact has been
reported in many studies on single-objective optimization(see [44]). There is only one exception,
when a program has nesting degree 4 and it is more difficult to obtain high coverage, NSGA-II has
the best performance.
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Figure 7. 50%-attainment surfaces: coverage against the number of test cases.

We have also analyzed the reduction obtained in the number oftest cases, since one of our goals
is to minimize the number of test cases. We analyze the reduction experienced using our approaches
compared with the use of all the generated test cases. It is very difficult to analyze this reduction
because not all the algorithms achieve a 100% coverage in allthe programs. For this reason, we
cannot simply average the number of test cases, but we must take into account the maximum
obtained coverage in order to give the real reduction made bythe multi-objective algorithm. The
total reduction is from thousands of test cases generated toaround ten, but this reduction could also
be easily computed based in thetable of coverageof the algorithms by choosing one test case per
branch. The drawback of the latter approach is that the minimization of the test suite would be far
from optimal. For this reason, we establish a theoretical upper bound of the required number of test
cases needed. This upper bound is the number of branches thatwere achieved by the algorithm.
We compute the real oracle cost of the test suites generated by any algorithm according to the next
expression: upper bound(P;A) = BP �MaxCov(P;A)ora
le 
ost(P;A) = t
(P;A)upper bound(P;A) (14)



whereP is a program,A is an algorithm,BP is the number of branches of the programP ,MaxCov(P;A) is the maximum coverage obtained by the algorithmA in the programP , andt
(P;A) is the number of test cases needed by the algorithmA to obtain the maximum coverage in
programP .

We can state that the oracle cost of the test suite generated by all the multi-objectives algorithms
can be reduced by our approach, only 15.12% of the test cases are needed in comparison with the
computed upper bound. This reduction is computed in the caseof the maximum coverage, and hence
the largest number of computed test cases. But we must bear inmind that our solution is a complete
Pareto front offered to the expert to make a decision about the test suite that best fits his/her needs,
therefore a similar percentage of reduction is carried out for each couplecoverage-number of test
casesthat appears in the Pareto front.

In the TDGP, it is particularly hard to achieve a 100% branch coverage, specially if one uses a
multi-objective algorithm because its execution is not entirely guided to obtain a total coverage.
The multi-objective approach deals with all the branches atthe same time, this provokes a lack of
information. In addition, the search does not spend most of its effort to cover the most complex
branches. In Table VI we show the average of maximum coverage(among the solutions in the front)
obtained with the solutions for all the programs with different nesting degree. We highlight the
maximum values in the table for each nesting degree. As we expected, MOCell’s performance is
the best on nesting degree 1, 2 and 3. On the other hand, NSGA-II obtains the best coverage with
nesting degree 4. Since the differences are low, we comparedthe coverage values of all the programs
and independent executions with the Kruskal-Wallis test. The results are summarized in Table VII.
As we expected, MOCell obtains significant differences in more programs with respect to PAES and
RNDMulti, than NSGA-II and SPEA2.

Table VI. Relationship between the nesting degree and the average maximum coverage for the multi-
objective algorithms. The standard deviation is shown in subscript.

Nesting degree MOCell NSGA-II SPEAII PAES RNDMulti
1 98:102:08 97.902:22 97.532:34 93.085:30 81.3612:74
2 94:773:44 94:423:49 93:563:75 87:596:31 75:0414:00
3 90:665:83 90:415:46 89:295:65 81:557:68 69:7713:87
4 85:509:45 85:778:18 84:618:12 75:879:22 63:8715:95

Total 92:267:54 92:126:99 91:247:24 84:529:72 72:5115:57
Table VII. Number of programs where there exists a significant difference among the coverage values

obtained.

RNDMulti PAES SPEA2 NSGA-II MOCell
MOCell 800N 800N 2N 0 �
NSGA-II 800N 799N 0 � 0
SPEA2 800N 782N � 0 2O
PAES 711N � 782O 799O 800O

RNDMulti � 711O 800O 800O 800O
If we consider the HV obtained (Table IV), the significant HV differences (Table V), the

attainment surfaces and the average maximum coverage achieved showed in Table VI, it is clear
that the ranking of the performance of the algorithms is: MOCell is the best, second NSGA-II, third
SPEA2, fourth PAES, and finally RNDMulti, the worst one, as expected.

7.2. Evaluation of mM approach

In this section we analyze the mM approach. First of all, we study the values of HV. We show in
Table VIII the programs in which one algorithm has a better value of HV.



Table VIII. Programs in which the median Hypervolume of one algorithm is better than the others.

Nesting degree Statements GA ES RNDMono

1

25 3 3 0
50 7 18 1
75 7 26 3
100 9 33 3
Total 26 80 7

2

25 13 8 1
50 23 17 0
75 23 22 1
100 18 29 1
Total 77 76 3

3

25 23 6 0
50 31 16 0
75 30 16 0
100 21 29 0
Total 105 67 0

4

25 37 3 0
50 41 6 0
75 39 11 0
100 34 14 0
Total 151 34 0

Total 359 257 10
It is noteworthy that when the nesting degree is the smallest(1) the ES obtains better results and

when the nesting degree is large (3 and 4) the GA is better thanthe others. In other words, when
the program is more complex, the GA is clearly the best. The ESis better in large programs (100
statements) except when the program has nesting degree four. Then, we compared the HV values
of all the programs and independent executions with the Kruskal-Wallis test. The results indicate
that there is no significant difference between GA and ES (Table IX). As we expected, the results of
RNDMono are worse than ES in 786 programs and GA in 765 programs.

Table IX. Programs where a significant difference exists among the HV obtained.

RNDMono ES GA
GA 765N 0 �
ES 786N � 0

RNDMono � 786O 765O
Second, we show the 50%-attainment surfaces of four representative programs with different

nesting degree in Figure 8. In the instance with nesting degree 1, the attainment surfaces are very
similar between GA and ES. RNDMono is far from the behaviour of the others. In the instance with
nesting degree 2, the three algorithms obtain similar results. The instances with nesting degree 3 and
4, represent the general behaviour of the algorithms in mostof the programs. The RNDMono is far
from the others, the ES obtains similar values of coverage tothe GA with the same number of test
cases, but GA can achieve the best value of coverage. The GA isthe best algorithm in maximum
obtained coverage. This is related to a better exploitationof the search space by GA.

In order to highlight the reduction of the test cases needed to achieve the maximum coverage, we
have applied Equation (14). We can state that the oracle costof the test suite generated by the three
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Figure 8. 50%-attainment surfaces: coverage against the number of test cases.

studied mono-objective algorithms can be reduced by our approach, only 19.32% of the test cases
are needed in comparison with the computed upper bound. Thispercentage of test cases needed to
achieve a concrete coverage is larger than the one obtained with the MM approach (15.12%).

Now, let us analyze the best value of coverage obtained with the three algorithms. In Table X
we show the average of maximum coverage of the three algorithms. As is known, achieving a total
coverage is a great challenge for the search, for this reason, we consider that an algorithm must
focus on obtaining a high value of coverage. In this sense, the GA and ES obtain very good values
of coverage, both above 90% in all the cases. However, the average coverage obtained by the GA is
always the best. This advantage of the GA increases in programs with higher nesting degree where
high values of coverage are very difficult to obtain. We performed a statistical test (Table XI), but,
although the GA obtains the best results, significant differences only exist in 23 programs between
GA and ES. Thus, it seems that GA is the best in obtaining a highvalue of coverage, specifically in
more complex programs.

7.3. MM vs. mM approaches

In the previous sections we have performed a comparison between the algorithms used in each of the
approaches. In the mM approach, GA seems to be the best algorithm in most of the programs and
ES is the best algorithm in programs with the lowest nesting degree. Regarding the MM approach,
MOCell was the best in most of the programs, except in a few programs with high nesting degree.
In this section we compare all the algorithms together, withthe aim of showing what technique is
the overall best.



Table X. Relationship between the nesting degree and the average maximum coverage for the mono-
objective algorithms. The standard deviation is shown in subscript.

Nesting degree GA ES RNDMono
1 99:192:20 98:702:63 85:3310:51
2 98:852:02 97:872:44 79:2012:14
3 98:522:09 95:664:54 71:9413:36
4 96:894:80 93:196:66 66:4214:80

Total 98:363:13 96:364:90 75:7214:65
Table XI. Number of programs where there exists a significantdifference between the coverage obtained.

RNDMono ES GA
GA 800N 23N �
ES 800N � 23O

RNDMono � 800O 800O
First of all, we analyze the HV indicator. In Table XII we summarize the number of times where

the HV value of an algorithm is better than the rest. The results show that, on the one hand, MOCell
is better for programs with low nesting degree (1-2). On the other hand, the GA is better for programs
with high nesting degree (3-4). The performance of the MOCell algorithm and the GA is similar but
they work better in different kind of programs. This performance depends on the maximum nesting
degree of the program. NSGA-II and the ES have similar performances among them; however they
are clearly worse than MOCell and GA. Finally, the performance of SPEA2, PAES, RNDMono, and
RNDMulti is clearly worse than the previous algorithms (MOCell, GA, NSGA-II and ES).

Table XII. Programs in which the median Hypervolume of one algorithm is better than the others.

ND Statements MOCell NSGA-II SPEA2 PAES RNDMulti GA ES RNDMono

1

25 1 0 0 0 0 0 0 0
50 5 0 0 0 0 0 0 0
75 16 2 0 1 0 0 0 0
100 14 2 0 0 0 0 2 0
Total 36 4 0 1 0 0 2 0

2

25 4 1 0 0 0 0 0 0
50 16 4 0 0 0 4 2 0
75 24 6 0 0 0 4 1 0
100 26 8 0 0 0 6 4 0
Total 70 19 0 0 0 14 7 0

3

25 4 0 1 0 0 6 1 0
50 10 1 0 0 0 18 4 0
75 14 4 0 0 0 20 9 0
100 13 10 0 0 0 13 11 0
Total 41 15 1 0 0 57 25 0

4

25 2 1 1 0 0 19 1 0
50 6 5 0 0 0 34 0 0
75 7 2 0 0 0 33 6 0
100 3 6 4 0 0 27 7 0
Total 18 14 5 0 0 113 14 0

Total 165 52 6 1 0 184 48 0
In order to clarify the obtained results, we have performed the statistical test to check if there

exist significant differences among the HV values. In Table XIII, we can see that there is just a
small significant difference among the main evolutionary algorithms. However, there are significant
differences between the worse algorithms (the two random algorithms and PAES), and the rest. In



Table XIII we show that the HV values of GA are significantly better than the others, except the ES.
The same observation can be made on ES: it is significantly better than the others (except the GA).
NSGA-II, MOCell and SPEA2 are worse than GA and ES, but for most of the programs their HV
values are better than the random algorithms. In some programs, there are significant differences
between MOCell and PAES and also between NSGA-II and PAES.

In summary, the mM approach using the evolutionary algorithms (GA and ES) always achieves
good HV values. We observed that MOCell, NSGA-II and SPEA2 are significantly better than
PAES in more programs than GA and ES. In this case, the HV values of the mM approach are
worse, concretely they do not get a good diversity because the Pareto fronts are computed from a
finite subset of test cases obtained by the mono-objective algorithms. However, the MM approach
takes better care of the convergence as well as the diversityof the Pareto front, consequently their
HV values will be better. For the purpose of illustrating this issue we plot in Figure 9 the 50%-
attainment surfaces for the best algorithms: MOCell, NSGA-II, GA, and ES.

Table XIII. Programs where a significant difference exists among the HV obtained.

RNDMulti PAES SPEA2 NSGA-II MOCell RNDMono GA ES
MOCell 800N 235N 0 0 � 800N 39O 7O
NSGA-II 800N 197N 0 � 0 800N 29O 5O
SPEA2 800N 61N � 0 0 800N 13O 2O
PAES 799N � 61O 197O 235O 645N 36O 18O

RNDMulti � 799O 800O 800O 800O 24O 782O 795O
ES 795N 18N 2N 5N 7N 737N 0 �
GA 782N 36N 13N 29N 39N 689N � 0

RNDMono 24N 645O 800O 800O 800O � 689O 737O
We focus on the most interesting area (80%-100% coverage) ofthe plots in Figure 9. In all the

pictures, we appreciate that MOCell and NSGA-II have the best fronts in the programs with nesting
degree 1, 2 and 3, although they do not obtain the best coverage in all cases. In addition, we must
highlight that the fronts of GA and ES are dominated in this case. We find the exception when the
program has nesting degree four, where the GA is the best algorithm because its solutions dominate
the others. The second in performance is the ES; close to the values of GA. The other algorithms
only find solutions with middle values of coverage and more test cases.

At this stage of the study, we know that the MM approach provides more diversity in the solutions.
In other words, it is able to find a test suite with few test cases, but the obtained coverage is not very
large. On the other hand, the mM approach is able to better explore the search space to find solutions
with a high coverage, but it needs more test cases than the MM approach. The MM approach obtains
worse average coverage because nested statements pose a great challenge for the search. We think
that the main reason for this fact is that the multi-objective algorithms deal with all the branches at
the same time and less information is obtained to guide the search.

As we previously said, automatically generating a test suite that covers the entire program is a
hard task. When a program has high nesting degree and the decisions are very complex, the task
of covering all the program code requires a lot of effort. It is important for an algorithm to be able
to find test cases to cover all the program’s branches. We showin Table XIV a comparison of the
average maximum coverage obtained for all the algorithms and all the programs. It is clear that
the best algorithm, if coverage is the main objective, is GA.It obtains the best results in all the
groups of programs with different nesting degree, and therefore in the complete benchmark. The
performance of ES is also very good because it is always better than the multi-objective algorithms.
If the nesting degree increases, the distance between the average coverage of GA and ES increases.
In other words, the ES has a similar performance to GA in low complexity programs and it is worse
than GA in complex programs. On the other hand, MOCell and NSGA-II have almost the same
coverage; it only varies at the decimal level. SPEA2 is only 1% worse in the entire benchmark with
respect to MOCell and NSGA-II. The results of the PAES algorithm are in the middle between the
best (GA) and the worst (RNDMulti).



80

85

90

95

100

0 2 4 6 8 10 12 14 16 18

B
ra

n
ch

 C
o

ve
ra

g
e

Number of Test Cases

Nesting 1

GA
ES

MOCell
NSGA-II

(a) Program with nesting degree 1

80

85

90

95

100

0 2 4 6 8 10 12 14 16 18

B
ra

n
ch

 C
o

ve
ra

g
e

Number of Test Cases

Nesting 2

GA
ES

MOCell
NSGA-II

(b) Program with nesting degree 2

80

85

90

95

100

0 2 4 6 8 10 12 14 16 18

B
ra

n
ch

 C
o

ve
ra

g
e

Number of Test Cases

Nesting 3

GA
ES

MOCell
NSGA-II

(c) Program with nesting degree 3

80

85

90

95

100

0 2 4 6 8 10 12 14 16 18

B
ra

n
ch

 C
o

ve
ra

g
e

Number of Test Cases

Nesting 4

GA
ES

MOCell
NSGA-II

(d) Program with nesting degree 4

Figure 9. 50%-attainment surfaces: coverage against the number of test cases of all the algorithms.

Table XIV. Relationship between the nesting degree and the average coverage for all the algorithms. The
standard deviation is shown in subscript.

ND GA ES RNDMono MOCell NSGA-II SPEA2 PAES RNDMulti
1 99:192:20 98:702:63 85:3310:51 98:102:08 97.902:22 97.532:34 93.085:30 81.3612:74
2 98:852:02 97:872:44 79:2012:14 94:773:44 94:423:49 93:563:75 87:596:31 75:0414:00
3 98:522:09 95:664:54 71:9413:36 90:665:83 90:415:46 89:295:65 81:557:68 69:7713:87
4 96:894:80 93:196:66 66:4214:80 85:509:45 85:778:18 84:618:12 75:879:22 63:8715:95

Total 98:363:13 96:364:90 75:7214:65 92:267:54 92:126:99 91:247:24 84:529:72 72:5115:57
In order to provide a high level of confidence to these results, we have performed statistical

tests. The results are shown in Table XV. There are some differences among the best algorithms;
we can take as a reference the column of the GA values. This column can be seen as a ranking of
performance of all algorithms. The GA has the best results and outperforms the rest of the algorithms
in average maximum coverage. ES is the second in average maximum coverage (with significant
difference), next MOCell, then NSGA-II, and finally SPEA2. As we expected, the statistical test
does not show significant differences among MOCell, NSGA-IIand SPEA2, but if the number
of independent runs were higher, the significant differences would appear. We should highlight that
PAES is not much better than the random algorithms. The differences in average maximum coverage
shown in Table XIV have been confirmed by the statistical tests: using a GA is the best way to obtain
high branch coverage.

Finally, we have considered in this experimental study the obtained HV, the significant
differences, the attainment surfaces and the average maximum coverage achieved with all the



Table XV. Number of programs where a significant difference exists among the coverage obtained.

RNDMulti PAES SPEA2 NSGA-II MOCell RNDMono GA ES
MOCell 800N 797N 0 0 � 800N 350O 30O
NSGA-II 800N 786N 0 � 0 800N 438O 87O
SPEA2 800N 691N � 0 0 800N 613O 322O
PAES 503N � 691O 786O 797O 85N 800O 800O

RNDMulti � 503O 800O 800O 800O 7O 800O 800O
ES 800N 800N 322N 87N 30N 800N 1O �
GA 800N 800N 613N 438N 350N 800N � 1N

RNDMono 7N 85O 800O 800O 800O � 800O 800O
algorithms and the benchmark of 800 programs. After analyzing the experimental results we can
state that the GA is the best mono-objective algorithm and MOCell is the best multi-objective
algorithm. We expected that an algorithm like MOCell would be clearly superior to all the mono-
objective ones in the MOTDGP, but in fact this is not true. In addition, the GA is clearly superior in
HV and average maximum coverage when we are testing programswith high nesting degree. This
fact is due to a better exploration of the search space because this algorithm is able to find solutions
for the most complex branches that appear in the code. It usesmost of its evaluations in most
complex branches, in order to achieve a high coverage. However, the multi-objective algorithms deal
with all the branches at the same time, for this reason they donot use most of its evaluations trying to
cover a concrete complex branch. This fact suggests that if there exist hard requirements of coverage
and the program has high nesting degree, we should use the GA as search engine of an automatic test
data generator. Nevertheless, a second phase of multi-objective test case selection must be performed
in order to minimize the oracle cost. On the other hand, if there are cost requirements, we highly
recommend the use of MOCell algorithm.

7.4. Real Programs

In this section we analyze the two proposed approaches usingsome real programs. We study 13
real programs extracted from the literature and with characteristics similar to the artificial programs
used in the previous sections. The reader must take into account that the number of programs used
in the previous sections gives us the chance to average among800 programs and extract statistically
more reliable results. Despite the fact that in this sectionwe only analyze the performance of the
proposed approaches and algorithms over 13 programs, most of the conclusions are similar to the
ones we have been obtained with the synthetic programs.

Once again we start the analysis with the HV indicator. In Table XVI we summarize the number
of programs where the HV value of an algorithm is better than the others. There are six programs
where an algorithm is the best. The GA outperforms the other algorithms in four programs, then
the ES in two programs, and the MOCell in only one program. In the previous results these three
algorithms also obtain the best results.

Table XVI. Real programs in which the median Hypervolume of one algorithm is better than the others and
average maximum coverage of all the real programs.

- MOCell NSGA-II SPEA2 PAES RNDMulti GA ES RNDMono
HV Better 1 0 0 0 0 4 2 0

Avg. Max. Cov. 87:26 91.35 89.31 72.43 76.84 94.14 92.27 80.09

In order to validate these previous results we compared the HV values of all the real programs
using the multiple comparison statistical test. In Table XVII we show the existing differences among
the HV value of all the algorithms. We can observe that the GA outperforms the other algorithms
in at least one program. Then, there is a group of algorithms composed by ES, NSGA-II, SPEA2,
MOCell and RNDMono that are better than PAES and RNDMulti, but the statistical test does not



show significant differences among them. In addition, we cananalyze the PAES column in order to
obtain an informal ranking of algorithms according to the HVindicator.

Table XVII. Real programs where a significant difference exists among the HV obtained.

RNDMulti PAES SPEA2 NSGA-II MOCell RNDMono GA ES
MOCell 1N 1N 0 0 � 0 2O 0
NSGA-II 3N 3N 0 � 0 0 1O 0
SPEA2 3N 2N � 0 0 0 1O 0
PAES 0 � 2O 3O 1O 1O 7O 6O

RNDMulti � 0 3O 3O 1O 1O 7O 4O
ES 4N 6N 0 0 0 0 1O �
GA 7N 7N 1N 1N 2N 3N � 1N

RNDMono 1N 1N 0 0 0 � 3O 0
Let us analyze the average maximum coverage obtained by the algorithms when are applied to

real programs (Table XVI). We must highlight that the GA and the ES are the best algorithms in
coverage for the real programs. In contrast, the PAES has obtained the worst results, even worse
than the random algorithms. In Table XVIII, we show the results of a statistical test to compare the
maximum coverage. Once again the GA is the best algorithm: itobtains significant differences in
40 comparisons. NSGA-II obtains significant differences in30 comparisons. Next, SPEA2 and ES
are better than the others in 18 comparisons. Most of these significant differences are obtained in
comparison with PAES or the random algorithms. Only a few differences exist between the best
algorithms. Nevertheless, the performance of GA seems to bebetter than the other algorithms. On
the other hand, the PAES has obtained the worst results. We think that these results are due to the
absence of crossover operator and the nature of the selectedprograms (i.e., number of equalities in
the code).

Table XVIII. Number of real programs where a significant difference exists among the coverage obtained.

RNDMulti PAES SPEA2 NSGA-II MOCell RNDMono GA ES
MOCell 6N 12N 0 0 � 0 2O 0
NSGA-II 12N 13N 1N � 0 4N 0 0
SPEA2 7N 13N � 0 1N 0 3O 0
PAES 0 � 13O 13O 12O 4N 13O 12O

RNDMulti � 0 7O 12O 6O 3O 12O 9O
ES 9N 12N 0 0 0 0 3O �
GA 12N 13N 3N 0 2N 7N � 3N

RNDMono 3N 4O 0 4O 0 � 7O 0
Finally, with the aim of showing an example of the computed fronts for the instances, we selected

the line program. This program can represent the typical behaviour of the different algorithms in
this kind of instance. In Figure 10 the 50%-attainment surfaces of the best algorithms are depicted.
In this instance, GA dominates the others and has a good performance because it always reaches the
best coverage with the same test data. MOCell is the only algorithm able to obtain all the points of
the front. This is a desirable property for a solution of a multi-objective problem.

8. CONCLUSIONS

In this paper we have studied the Multi-Objective Test Data Generation Problem with the aim of
analyzing the performance of a direct multi-objective approach (MM) versus the application of
mono-objective algorithms followed by a test case selection (mM). Previous results in the literature
have only focused on the coverage of a program while the oracle cost is a significant cost that has
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Figure 10. 50%-attainment surfaces: coverage against the number of test cases for the programline.

been ignored in most of the previous studies. For this reason, in this work we have dealt with the
coverage and the oracle cost as equally important targets.

Our study has been performed on 800 synthetic programs. We designed a program generator able
to produce programs ensuring a 100% of branch coverage. Thiskind of programs is very useful
because all the branches are reachable and we can compare thealgorithms in a fair way using
coverage. In addition, we have also analyzed the two proposed approaches with a benchmark of 13
real and popular programs in the literature. We have evaluated four state-of-the-art multi-objective
optimization algorithms: MOCell, NSGA-II, SPEA2, and PAES, two mono-objective algorithms
GA, ES, and two random algorithms as merely a ‘sanity check’.This comparison has been done on
the basis of three quality indicators: the hypervolume, the50%-empirical attainment surface, and the
average maximum coverage obtained by those algorithms. We can see a final ranking of algorithms
in Table XIX.

In terms of convergence towards the optimal Pareto front, GAand MOCell have been the best
solvers in our comparison. On the one hand, MOCell has obtained the best fronts in programs with
nesting degree 1 and 2, values commonly found in practice. Onthe other hand, the GA is the best
algorithm for facing programs with high nesting degree and it is the algorithm which is significantly
better in most of the programs, attending to the HV indicatorand to the average maximum coverage.
This fact indicates that GA is the best alternative if the tested program has a high nesting degree or
we need a high coverage. But, if we have time restrictions, wehighly recommend the use of MOCell
as a search engine for an automatic test data generator. Although the multi-objective approach is
working very well in most of the programs, we realized that dealing with only one branch at the
same time (mono-objective approach) can be more effective when the program under test has high
nesting degree. In addition, we must highlight that both approaches (MM and mM) are quite good at
reducing the number of test cases needed to obtain a given coverage. The oracle cost can be greatly
reduced because the mM approach only needs 19.32% of the upper bound of test cases needed
for obtaining the maximum value of coverage, and the MM approach is even better, only needing
a 15.12% of the test cases. This improvement justifies the useof our approaches to deal with the
MOTDGP.

Future work will verify these findings with still larger real-world software. Also, we should find a
set of representative software programs because research community has not established a standard
benchmark of well-known programs. We also want to advance indesigning better evolutionary



Table XIX. Ranking of algorithms according to maximum coverage and hypervolume grouped by nesting
degree.

Coverage
Rank ND 1 ND 2 ND 3 ND 4 All

1 GA GA GA GA GA
2 ES ES ES ES ES
3 MOCell MOCell MOCell NSGA-II MOCell
4 NSGA-II NSGA-II NSGA-II MOCell NSGA-II
5 SPEA2 SPEA2 SPEA2 SPEA2 SPEA2
6 PAES PAES PAES PAES PAES
7 RNDMono RNDMono RNDMono RNDMono RNDMono
8 RNDMulti RNDMulti RNDMulti RNDMulti RNDMulti

Hypervolume
Rank ND 1 ND 2 ND 3 ND 4 All

1 MOCell MOCell GA GA GA
2 NSGA-II GA MOCell MOCell MOCell
3 ES NSGA-II NSGA-II ES ES
4 GA ES ES NSGA-II NSGA-II
5 PAES SPEA2 SPEA2 SPEA2 SPEA2
6 SPEA2 PAES PAES PAES PAES
7 RNDMono RNDMono RNDMono RNDMono RNDMono
8 RNDMulti RNDMulti RNDMulti RNDMulti RNDMulti

operators in order to deal with programs with high nesting degree that could pose a challenge for
our algorithms, especially for the multi-objective ones.
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44. Alba E, Dorronsoro B.Cellular Genetic Algorithms, Operations Research/Computer Science Interfaces, vol. 42.
Springer-Verlag Heidelberg, 2008.


