SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. Expe0000;00:1-31
Published online in Wiley InterScience (www.intersciemgkey.com). DOI: 10.1002/spe

Evolutionary Algorithms for the
Multi-Objective Test Data Generation Problem

Javier Ferrer* , Francisco Chicartoand Enrique Alb&

I Departamento de Lenguajes y Ciencias de la Computacibivelsity of Malaga, Spain

SUMMARY

Automatic Test Data Generation is a very popular domainerfitid of Search Based Software Engineering.
Traditionally, the main goal has been to maximize coveréigsvever, other objectives can be defined, like
the oracle cost, which is the cost of executing the entire gdeée and the cost of checking the system
behaviour. Indeed, in very large software systems, thespesit to test the system can be an issue, and then
it makes sense considering two conflicting objectives: mizing the coverage and minimizing the oracle
cost. This is what we do in this paper. We mainly compare two@gches to deal with the Multi-Objective
Test Data Generation Problem: a direct multi-objectiverapph and a combination of a mono-objective
algorithm together with multi-objective test case setattdoptimization. Concretely, in this work we use
four state-of-the-art multi-objective algorithms and twwmno-objective evolutionary algorithms followed
by a multi-objective test case selection based on Pareitiegifly. The experimental analysis compares
these techniques on two different benchmarks. The first sreinposed by 800 java programs created
through a program generator. The second benchmark is cemiys13 real programs extracted from the
literature. In the direct multi-objective approach, theulés indicate that the oracle cost can be properly
optimized; however the full branch coverage of the systesep@ great challenge. Regarding the mono-
objective algorithms, although they need a second phasssb€ase selection for reducing the oracle cost,
they are very effective maximizing the branch coverage.

Copyright(© 0000 John Wiley & Sons, Ltd.

Received ...

KEY WORDS: Multi-objective Test Data Generation; Branchv@age; Oracle Cost; Evolutionary
Testing; Evolutionary Algorithms; Search Based Softwangikeering

1. INTRODUCTION

Automatic software testing is one of the most studied topidke field of Search-Based Software
Engineering (SBSE) [1, 2, 3, 4]. From the very first work [5t@&howadays, many approaches have
been proposed for solving the automatic test data genarptablem (TDGP). This great effort in
building computer aided software testing tools is motiddig the cost and importance of the testing
phase in the software development cycle. It is estimatedcdathe time spent on software project
development, and more than half its cost, is devoted tonigshie product [7]. This explains why
Software Industry and Academia are interested in autortatis for testing.

Evolutionary algorithms (EAs) have been the most populardebased algorithms for
generating test cases [3]. In fact, the teewolutionary testings used to refer to this approach. In
the paradigm o$tructural testinga lot of research has been performed using EAs and, in pknticu
different elements of the structure of a program have bastied in detail. Some examples are the

*Correspondence to: Departamento de Lenguajes y CienclagGtemputacion, Universidad de Malaga, Spain. E-mail:
ferrer@lcc.uma.es

Copyright@© 0000 John Wiley & Sons, Ltd.
Prepared usingpeauth.cls [Version: 2010/05/13 v3.00]

presence of flags in conditions [8], the coverage of loopgf@ existence of internal states [10], and
the presence of possible exceptions [11]. In addition,re¢esolutionary algorithms have been used
as the search engine like scatter search [12], geneticigdgar [13, 14], simulated annealing [15],
and tabu search [16].

Traditionally, the solution of the TDGP is a set of test casb®se execution is able to cover
all the software elements. Branch coverage is usually thet papular goal. Despite most previous
work only considering branch coverage, real-world engisdeal with the tedious and costly task of
checking the system behaviour for all the generated tesscasis significant and usually neglected
cost is called the oracle cost [17]. Thus, a reformulatiorthef TDGP to deal with real-world
problems is a need, taking into account the oracle cost ab@nionportant objective to minimize.
The oracle cost can be reduced by minimizing the test suite $he ideal scenario is to reduce the
test suite size without any loss of coverage. However, itagesituations the two objectives are
in conflict: minimizing the oracle cost implies minimizinge coverage. When there are multiple
conflicting objectives the optimization literature recoemds the consideration of a Pareto optimal
optimization approach that is able to take into account gelrio balance the conflicting objectives.
Thus, the TDGP has been reformulated into a multi-objegiieblem (MOTDGP) in the work by
Lakhotiaet al.[18] and more recently, in 2010, in a work by Harmetral.[17].

Our main goal in this work is the comparison between two apgnes to deal with the MOTDGP:
a direct multi-objective approach (MM) and a combinatiomahono-objective algorithm followed
by a multi-objective test case selection optimization (mWhe general scheme of the proposed
approaches can be seen in Figure 1.

" MM approach J— B
Objeuctil\,e — Pareto ~
front
/
4 mM approach)
. —

e TestCase "~ Pareto
Objecftlve - Selection - front
Algorith

L9 o

Figure 1. The general scheme of the two proposed approaches.

On the one hand, the MM approach considers the conflictingatibgs during all the test data
generation process, thapriori it focuses both on the test suite size minimization and therege
maximization. On the other hand, the mM approach only camsithe branch coverage during the
test data generation process, tlaugriori it focuses only on the branch coverage maximization. In
order to deal with the optimization of the test suite size¢hia second approach an additional second
phase of multi-objective test case selection is performlAsdobody has previously compared these
approaches yet, we can raise the following research quesditd try to answer them in an extensive
experimental study.

How does MM approach deal with MOTDGP?

Is the MM approach good enough in maximizing the coverage?

How good is the mM approach performance in optimizing theecage and the test suite size?
Which approach is the best?

In order to completely answer the questions we should usthelpossible automatic test data
generators both in multi and mono-objective or, at leasirgel number of them. We can also focus
on some test data generators and answer the previous aussstishem, taking into account that in
this case the results will be valid for the test data genesatonsidered. This is what we do in this

paper. In particular, we study the MOTDGP with two objectivenaximizing the branch coverage

and minimizing the oracle cost. Among our contributions, gemerate the test data and we also
minimize the number of tests needed to achieve differentegabf coverage of the program. The
solutions are provided as Pareto fronts. For the MM approa&etuse five test data generators: four
of them based on evolutionary testing and an additional @sed on random search. In the mM

approach we use three mono-objective test data generaitbra wecond phase of multi-objective

test data selection.

The rest of the paper is organized as follows. In the nexiaeegte define the multi-objective
test data generation problem. Then, in Section 3 we presam¢ vackground on multi-objective
optimization. Next, in Section 4 we describe the MM approact the multi-objective algorithms.
After that, in Section 5, we describe the mM approach, we igedetails regarding the general
structure of the test data generator for single objectigerithms and the algorithms used in the
experiments. Section 6 is devoted to the experimental rdetbgy where we explain the quality
indicators and the benchmark of programs that we use in thergwents. In Section 7, we show
the results of the experiments and we answer the proposearobsguestions. Finally, in Section 8,
some conclusions and future work are outlined.

2. MULTI-OBJECTIVE TEST DATA GENERATION PROBLEM

The most popular technique to test software programs dsrigigxecuting the program with a set
of test datagoftware testing The engineer selects an initial set of configurationstiergrogram
under test (PUT), called test data suite, and s/he checlifidehaviour with them. Since the size
of the test data suite is an engineer’s decision, s/he canottime effort devoted to this task, which
is the oracle cost. In order to ensure the correctness ofgrgarowith this technique, it would be
necessary to execute the PUT with all the possible configunstbut in practise this is unfeasible.
The alternative consists in testing the program with a ieprtative set of test data.

Automatic test data generatioautomatic software testingonsists in proposing an adequate
set of test data in an automatic way to test a program, thueptieg the engineer from the task
of selecting an adequate set of test data to test the PUTatkisnation of the process requires a
precise definition of what is an “adequate set” of test dagéindion that we will defer until some
terms are defined. As we said before, this is a costly and lssiddf the software development.
Thus, another objective for a software engineer is the ni@tion of the oracle cost, which can be
reduced to the minimization of the test suite size. In thiefahg, we formally define the MOTDGP,
but we first need to introduce several terms and notation.

Let P be a program, we denote witBp the set of branches of the program and with
BranchEzecp(C') the set of branches covered ih due to the execution of a given set of test
data,C. We define the branch coverage of the test stitdBrCovp(C), as the ratio between the
traversed branches in the executions of the progPanith the set of test dat& and the number of
branches of the program, i.e.,

BrCoup(C) = |BranchEzecp(C)| (1)
|Bp|

The adequacy criterion of branch coverage states that suigs for a programP is “adequate”
when BrCov,(C) = 1. Nevertheless, it is not always possible to reach such a&waflwoverage,
and in case of reaching it, the cost to test the entire progiambe unaffordable. Consequently, a
balance between coverage and the cost to achieve such geveraandatory. Since the cost of the
testing phase depends on the test suite size, minimizintettesuite size, denoted with'|, must
be another goal.

Finally we deal with the MOTDGP with two conflicting objectis:

e max BrCovp(C)
e min |C|,

that is, maximizing the branch coverage and minimizing #s¢ $uite size.

3. MULTI-OBJECTIVE BACKGROUND

In this section, we provide background on multi-objectipéimization. In particular, we define the
concept of multi-objective optimization problem (MOP),r®® dominance, and Pareto front. In
these definitions we are assuming, without loss of gengr#tiat minimization is the goal for all
the objectives.

A general MOP can be formally defined as follows:

Find a vectorx* = (z7,z3,...,2z}) that satisfies then inequality constraintg; (x) > 0,i =
1,2,...,m, thep equality constrainté; (X) = 0,7 = 1,2, ..., p, and minimizes the vector function
f(X) = (f1(X), f2(X), ..., fin(X))", wherex = (21,2, ...,z,)" is the vector of decision variables.

The set of all the values satisfying the constraints definefetsible regiorf2 and any poink € Q
is afeasible solution

Taking into account this definition of a MOP, a solutidn= (1,21, ..., z}.) is said to dominate a
solutionx? = (2%, 3, ..., #2) denoted withx! > x2, ifand only if £;(x!) < f;(x?) fori = 1,2, ...,m,
and there exists at least onél < j < m)suchthatf;(x!) < f;(x?). Conversely, two points are said
to be non-dominated whenever none of them dominates the &ilyere 2 depicts some examples
of dominated and non-dominated solutions. In this figurelominate<” becausef, (4) < f1(C),
andf>(4) < f2(C). Meanwhile,A and B are non-dominated solutions becauses better thamnB
in the first objective functionff (4) < fi(B)), but B is better tham in the other objective function

(f2(4) > f2(B)).
” A and B are non-dominated

A and B dominate C

fl

Figure 2. Examples of dominated and non-dominated solsition

The solution of a given MOP is usually a set of solutions (ref@ to as the Pareto optimal set)
satisfying:

e Every pair of two solutions in the set are hon-dominated.
¢ Any other solutiony, is dominated by at least one solution in the set.

The representation of this set in the objective space isrezf@¢o as thd”areto front Generating
thePareto frontof a problem is the main goal of multi-objective optimizati@chniques. In theory,
a Pareto front could contain a large number of points. Intpraca usable approximate solution will
only contain a limited number of them; thus, an important gothat solutions should be as close as
possible to the exact Pareto front and uniformly spreacretise, they would not be very useful to
the decision maker. Besides, closeness to the Pareto fientes that we are dealing with optimal
solutions, while a uniform spread of the solutions meanswleahave made a good exploration of
the objective space and no regions are left unexplored.

Figure 3 depicts these issues of convergence and diversigyleft front (a) depicts an example
of good convergence and bad diversity: the approximatibn@®ains Pareto optimal solutions but
there are some unexplored regions of the objective spaaeapproximation set depicted on the
right (b) illustrates poor convergence but good diversitijas a diverse set of solutions but they are
not Pareto optimal. Finally, the lowermost front (c) depiah approximation front with both good
convergence and diversity.

1.4

° Approximation Set ° Approximation Set
1.2F —Optimal Pareto Fronty 1.2% —Optimal Pareto Fronty

0.81

0.61

0.4r

0.21

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

fy fy

(a) good convergence and bad diversity. (b) bad convergence and good diversity.

1 : ;
o Approximation Set
— Optimal Pareto Front
0.8r]
0.6r
~d_f\l

0.4r
0.2r

0

0 0.2 0.4 0.6 0.8 1

fy

(c) good convergence and good diversity.

Figure 3. Examples of Pareto fronts with different behawificonvergence and diversity.

4. MM APPROACH

In this work we are dealing with the MOTDGP from two points ééw: a direct multi-objective
approach (MM) and the application of a mono-objective dthar followed by a multi-objective
test case selection phase (mM). In this section we explaifitst approach: the MM approach. We
describe how we deal with the MOTDGP and the algorithms usadlive the problem.

The MM approach considers the conflicting objectives dualhthe test data generation process,
thusa priori, it focuses on both objectives during all the process. Is déipiproach a solution to the
problem is a test suite, that is, a set of test data. Thessudss are evaluated according to both
objectives. The evaluation of the first objective (covejagquires, in general, the execution of the
test suite over the program under test. The evaluation afébend objective is a simple count of the
number of test data in the set. In the following subsectiopresent the multi-objective algorithms
used in the experimental section.

4.1. Multi-objective Algorithms

In this section we describe the five multi-objective aldoris used in the experimental section:
NSGA-II, MOCell, SPEA2, PAES and a random search algoritRNDMulti).

NSGA-II, proposed by K. Dekt al.[19], is a genetic algorithm which is the reference alganith
in multi-objective optimization (with over 4,860 citatisrat the time of writing). Its pseudocode

tData from Google Scholar: 4,860 citations on Juty” 2011.

is presented in Algorithm 1. NSGA-II makes use of a poputa{®) of candidate solutions (known
as individuals). In each generation, it works by creating nelividuals after applying the genetic
operators to P, in order to create a new population Q (lines&.tThen, both the current (P) and
the new population (Q) are joined; the resulting populati®nis ordered according to a ranking
procedure and a density estimator known as crowding distéime 13) (for further details, please
see [19]). Finally, the populatioR is updated with the best individuals i (line 14). These steps
are repeated until the termination condition is fulfilled.

Algorithm 1 Pseudocode of NSGA-II.

1: proc Input:(nsga-Il) /IAlgorithm parameters in ‘nsga-II’
2: P+« Initialize_Population() // P = population

3:Q« 0 /I Q = auxiliary population

4: while not Termination_Condition() do

5 for i < 1 to (nsga-Il.popSize / 2o

6: parents-Selection(P)

7 offspring—Recombination(nsga-Il.Pc,parents)

8

9

offspring—M utation(nsga-II.Pm,offspring)
: Evaluate_Fitness(offspring)
10: I nsert(offspring,Q)
11: endfor
12: R+« PUQ
13: Ranking_And_Crowding(nsga-ll, R)
14: P+ Select_Best_Individuals(nsga-ll, R)
15: end while
16: end_proc

MOCell (Multi-Objective Cellular Genetic Algorithm), imbduced by Nebraet al. [20], is a
cellular genetic algorithm (cGA) which outperforms NSGIAf some studies [20, 21]. In cGAs,
the concept of (smallpeighbourhoodis paramount. This means that an individual may only
cooperate with its nearby neighbours in the breeding looger@pped small neighbourhoods of
cGAs help in exploring the search space because they indsicevaliffusion of solutions through
the population, providing a kind of exploration (diversifion). Exploitation (intensification) takes
place inside each neighbourhood by applying the typicaktiemperations (crossover, mutation,
and replacement).

MOCell includes an external archive to store the non-doteithaolutions found as the algorithm
progresses. This archive is limited in size and uses thedingndistance of NSGA-II to maintain
diversity. The pseudocode of MOCell is presented in Aldwnit2, which corresponds with the
version called aMOCell4, described in [21].

Algorithm 2 Pseudocode of MOCell.

1: proc Input:(MOCell) /IAlgorithm parameters in ‘MOCell’
2: archive« 0 //Creates an empty archive

3: whilenot Termination_Condition() do

4 for individual <— 1 to MOCell.popSizedo

5: n.list«Get_neighbour hood(MOCell,position(individual))
6: parentt-Selection(n_list)

7. parent2-Selection(archive)

8 offspring—Recombination(MOCell.Pc,parentl, parent2)

9 offspring—M utation(MOCell.Pm,offspring)

10: Evaluate_Fitness(offspring)

11: Replacement(position(individual),offspring, MOCell)
12: Insert_Pareto_Front(offspring, archive)

13: end for

14: end while

15: end_proc

We can observe that, in this version, for each individual ve¢éec one parent from its
neighbourhood and one from the archive, in order to guidesdach towards the best solutions
found (lines 5 to 8). Then a new solution is created by applyire genetic operators to these

parents. The new solution is used to replace the currentieol(line 11), and it is considered for
inclusion in the archive (line 12). This constitutes a singération of the algorithm. The overall
algorithm iterates until a termination condition is fukdl.

The Strength Pareto Evolutionary Algorithm (SPEA2) is atimibjective evolutionary algorithm
proposed by Zitleet al.in [22]. We show the algorithm’s pseudocode in Algorithm BE2 uses
a population and an archive simultaneously in its operatiorit, each individual is assigned a
fithess value that is the sum of its strength raw fithess andhsitgeestimation. The strength value
of a solutioni represents the number of solutions (in either the populaiicthe archive) that are
dominated by that solution, that &) = |{j|j € P. U P; Ai > j}|. The strength raw fitness value
of a given solutiori, on the contrary, is the sum of strengths of all the solutitvat dominate
it, and is subject to minimization, that i%(i) = >, p, 7 ;~; S(j). The algorithm applies the
selection, crossover, and mutation operators to fill anieeasf individuals; then, the non-dominated
individuals of both the original population and the archare copied into a new population. If
the number of non-dominated individuals is greater tharptiigulation size, a truncation operator
based on calculating the distances to kil nearest neighbour is used (a typical valué is 1),
D(i) = sz, wheres} is the distance from solutionto its k-th nearest neighbour. This way, the
individuals having the minimum distance to any other indidal are chosen.

Algorithm 3 Pseudocode of SPEA2.

3: Initialize(Py, Pp)

4: while not EndingConditionf,P;) do
5 FitnessAssignment, P;)

6: Piy1 + NonDominatedf; U P;11)
7 if ‘Pt+1‘ > N then

8 P;+1 < TruncateP11)

9 else

10: Pi+1 + FillwithDominated®;)
11: endif
12:

13

14

15

Parents« BinaryTournament; ;1)
Offspring« CrossoverParenty
P41 + MutateOffspring

: t—t+1
16: end while
17: end_proc

PAES is a metaheuristic proposed by Knowles and Corne [2®@) algorithm is based on a simple
(1+1) evolution strategy. To find diverse solutions in theeRaoptimal set, PAES uses an external
archive of non-dominated solutions, which is also used t&em#ecisions about new candidate
solutions. An adaptive grid is used as a density estimatdahénarchive. The most remarkable
characteristic of PAES is that it does not make use of anyméaation operators (crossover).
New solutions are generated only by modifying the currehitsan. The pseudocode of PAES is
presented in Algorithm 4. It starts with a random solutiong3). In each iteration, a new solution
is produced by modifying the current solution (line 5). Thew solution is included in the archive
and it is considered as a potential replacement for the musa@ution (lines 7 to 14). These steps
are repeated until the maximum number of evaluations idethc

We have included PAES in our study because of its simplid®ES does not use any
recombination operator, and its only parameter is the nurabpartitions of the adaptive grid of
the archive. Its relative simplicity makes it attractivace there are comparatively few parameters
that require tuning in order to know that the algorithm isngeapplied properly (e.g., population
size, crossover probability, mutation probability).

We also apply a random search (RNDMulti). This is merely aityacheck’; all metaheuristic
algorithms should be capable of comfortably outperformdoan search for a well-formulated
optimization problem. The pseudocode of the RNDMulti issereed in Algorithm 5. The final
result of this random search is the set of all the non-domathablutions found.

Algorithm 4 Pseudocode of PAES.

: proc Input:(paes) //Algorithm parameters in ‘paes’

. archive« 0

. currentSolution— Create_Solution(paes) // Creates an initial solution

: while not Termination_Condition() do

mutatedSolutios-M utation(currentSolution)

Evaluate_Fitness(mutatedSolution)

if IsDominated(currentSolution, mutatedSolutiotf)en
currentSolutior— mutatedSolution

else

10: if Solutions_Are_Nondominated(currentSolution, mutatedSolutioth)en

11: Insert(archive, mutatedSolution)

12: currentSolution— Select(paes, archive)

13: end if

14: endif

15: end while

16: end_proc

eoNoahhwhE

Algorithm 5 Pseudocode of RNDMulti.

. proc

. archive« 0

: currentSolution— Create_Solution() // Creates an initial solution
: while not Termination_Condition() do

newSolutiork— Create_Solution()

Insert(archive, newSolution)

: end while

: end_proc

ONOUAWNE

5. mM APPROACH

In this section we present the second approach. In this apprave use a mono-objective test
data generator to obtain a set of test data with the highestrage. The mono-objective test data
generator deals with only one branch of the program at the s&@ne. This is an advantage to obtain
high coverage because the search can focus on covering gteamoplex branches of the program.

However, the resulting test suite is usually large, redahdind inefficient because these
algorithms do not try to minimize the test suite size. One waeduce the number of test cases in
a test suite, and still test the same functionality, is byisgl a Multi Objective Test Case Selection
Problem (MOTCSP) on the given test suite. This problem wasnily formalized by Yoo and
Harman in [24] as follows: Given a test suifeand several objective functiorfg, we must find
a subsefl” C T such thatT” is a Pareto optimal set with respect to the objective fumstid'he
resulting subset of the test suifg), is composed of the non-dominated solutions consideriag th
objectives as equally important.

In order to solve the MOTCSP we always use in the experimesatetion the multi-objective
algorithm NSGA-II. Our implementation is able to generateageto front from thousands of test
cases previously generated by the mono-objective algositBut first, we delete repeated test cases
from the obtained test suite in order to reduce from thousaffitest cases to hundreds of them. Two
test cases are repeated when both of them traverse the sancbds. We have compared the results
obtained with and without this reduction phase, and thelteswe better when this reduction is
applied. Finally, for the mono-objective algorithm invetVin the first phase of test data generation,
we use three different algorithms: a genetic algorithm vafugionary strategy and a random search.
In the following we describe in detail the test data generatal the algorithms used as its search
engine.

5.1. Test Data Generator

Our test data generator breaks down the global objectivedter all the branches) into several
partial objectives consisting of dealing with only one lofarof the program. Then, each partial

objective can be treated as a separate optimization prablerhich a solution to the problem is a
test datum and the function to be minimized is a distance é&tvthe current test datum and one
satisfying the partial objective. In order to solve suchimization problem EAs are used. The main
loop of the test data generator is shown in Figure 4.

Test Case Generator Program
Select a Partial Blockl
Objective l
l Test case

Optimization
Algorithm (Objective function

True False Block3
= @ l_ . —l :

no

True False
cl

Bl().Ck2 T:T:ls o2 t‘ll?

End

Figure 4. The test data generation process.

In a loop, the test data generator selects a partial obgetdivranch) and uses the optimization
algorithm to search for test data exercising that branchem¢htest datum covers a branch, the test
datum is stored in a set associated to that branch. The wteuobmposed of the sets associated to
all the branches is calleobverage tableAfter the optimization algorithm stops, the main loop ttar
again and the test data generator selects a different hréahishscheme is repeated until total branch
coverage is obtained or a maximum number of consecutiverésilof the optimization algorithm is
reached. When this happens the test data generator exitsindoop and returns the sets of test
data associated to all the branches. In the following twtiges we describe two important issues
related to the test data generator: the objective functionihimize and the optimization algorithms
used.

5.2. Objective Function

We have to solve several minimization problems: one for daaehch. Now we need to define an
objective function (for each branch) to be minimized. Thisdtion will be used for evaluating each
test datum, and its definition depends on the desired bramthvhether the program flow reaches
the branching condition associated to the target branclobrinthe condition is reached we can
define the objective function on the basis of the logical egpion of the branching condition and
the values of the program variables when the condition ished. The resulting expression is called
branch distanceand can be recursively defined on the structure of the logigatession. That is,
for an expression composed of other expressions joineddigdboperators the branch distance is
computed as an aggregation of the branch distance applted twmponent logical expressions.
For the Java logical operatof#& and| | we define the branch distance as:

bd(a&&b) = bd(a) + bd(b) @)
bd(a| | b) = min(bd(a), bd(b)) 3)

wherea andb are logical expressions.

In order to completely specify the branch distance we neelgtime its value in the base case of
the recursion, that is, for atomic conditions. The parac@xpression used for the branch distance
in this case depends on the operator of the atomic condifio@ operands of the condition appear
in the expression. A lot of research has been devoted in tstetpéhe study of appropriate branch
distances in software testing. An accurate branch distannsidering the value of each atomic

condition and the value of its operands can better guideghechk. In procedural software testing
these accurate functions are well-known and popular initegture. They are based on distance
measures defined for relational operators lke>, and so on [25]. We use here these distance
measures described in the literature.

When a test datum does not reach the branching conditioredgatiet branch we cannot use the
branch distance as objective function. In this case, wetiiyehe branching condition whose value
must first change in order to cover the target branch (ctitianching condition) and we define the
objective function as the branch distance of this branchomglition plus thepproximation level
The approximation level, denoted here with(c, b), is defined as the number of branching nodes
lying between the critical one: and the target branch)([26].

In this paper we also add a real valued penalty in the obgftinction to those test data that do
not reach the branching condition of the target branch. Wighpenalty, denoted hy, the objective
value of any test datum that does not reach the target bragpcbindition is higher than the one of
any test datum that reaches the target branching condfttmexact value of the penalty depends
on the target branching condition and it is always an uppendof the target branch distance.
Finally, the expression for the objective function is asdek:

| bdp(x) if bis reached by
folw) = { bd.(z) + ap(c,b) xp otherwise “)

wherec is the critical branching condition, andl,, bd. are the branch distances of branching
conditionsbh andec. The use of the penalty could be avoided by normalizing the branch distance
to the intervall0, 1) (see [27] for example). However, in this work we do not noigethe branch
distance, thus, requiring the penalty vahjevhich is set tgp = 10000 in the experiments.

Nested branches pose a great challenge for the search.dfpk if the condition associated to
a branch is nested within three conditional statementshaltonditions of these statements must
be true in order for the program flow to proceed onto the negt dinerefore, for the purposes of
computing the objective function, it is not possible to cargpthe branch distance for the second
and third nested conditions until the first one is true. Tiélgal release of information might cause
efficiency problems for the search (what McMinn calls tessting problenj28]), which forces us
to concentrate on satisfying each predicate sequentially.

In order to alleviate the nesting problem, the test data igeoeselects as objective in each loop
one branch whose associated condition has been previemsthed by other test data stored in
the coverage table. Some of these test data are insertee initial population of the EA used
for solving the optimization problem. The percentage ofvitilials introduced in this way in the
population is called theeplacement factoand is denoted bjg f. At the beginning of the generation
process some random test data are generated in order tos@aetbranching conditions.

5.3. Mono-Objective Algorithms

We use two EAs inside the test data generator used in the mkbagip a genetic algorithm and
an evolutionary strategy. Let us first describe the genémattsire of an EA and then we detail the
differences between the EAs used here. In Figure 6 we shomdneloop of an EA.

Initially, the algorithm creates a population pfindividuals randomly or by using a seeding
algorithm. At each step, the algorithm applies stochagt@rators such as selection, recombination,
and mutation in order to compute a setadescendant individualg. The objective of the selection
operator is to select some individuals from the populatmnvhich the other operators will be
applied. The recombination operator generates a new ohivifrom several ones by combining
their solution components. This operator is able to putttogregood solution components that are
scattered in the population. On the other hand, the mutapenator modifies one single individual
and is the source of new different solution components impthulation. The individuals created
are evaluated according to the fitness function. The lagtadtéhe loop is a replacement operation
in which the individuals for the new populatid?(¢ + 1) are selected from the offsprir@(¢) and
the old oneP(t). This process is repeated until a stop criterion is fulfillegch as reaching a pre-
programmed number of iterations of the algorithm or findimgirdividual with a preset target

Algorithm 6 Pseudocode of an EA.

: proc Input: (ea)

t=0:

: P(t)«< Create_Population() // P = population

Q0 /I Q = auxiliar population // Creates an initial solution

: while not Termination_Condition() do

for i < 1 to (ea.popSizejlo
parents-Selection(P(t))
offspring—Recombination(ea.Pc,parents)
offspring—M utation(ea.Pm,offspring)

10: Evaluate_Fitness(offspring)

11: I nsert(offspring,Q(t))

12: endfor

13: P(t+1) := Replace (Q(t),P(t))

14: t=t+1

15: end while

16: end_proc

eeNoahhwhE

quality. In this work we use two EAs as the optimization altfon of the test data generator: an
evolutionary strategy (ES) and a genetic algorithm (GA}hfollowing we focus on the details of
the ES. We defer the details of the GA to the parameterizatation.

In an ES [29] each individual is composed of a vector of reahbers representing the problem
variables), a vector of standard deviations)(@and a vector of angles,j. These two last vectors
are used as parameters for the main operator of this teadnilyje@ Gaussian mutation. They are
evolved together with the problem variables themselvess gilowing the algorithm to self-adapt
the search to the landscape. The mutation operator is geddnthe three following equations:

o; = o;exp(TN(0,1) + nN;(0,1)) (5)
wi = w; + ©N;(0,1) (6)
X' = x4 N(0,C(o", o)) %

whereC'(¢',w’) is the covariance matrix associatettoandw’, N(0,1) is the standard univariate
normal distribution, andN (0, C) is the multivariate normal distribution with me@rand covariance
matrix C'. The subindex in the standard normal distribution indicates that a nevdoam number

is generated anew for each component of the vector. Theiowt&i(0, 1) is used for indicating
that the same random number is used for all the components palameters, 5, and ¢ are

set to(2n)~1/2, (4n)~'/*, and57 /180, respectively, as suggested in [30]. For the recombination
operator of an ES there are many alternatives: each of tlee tteal vectors of an individual
can be recombined in a different way. In our particular impdatation, we use discrete uniform
recombination for the solution vectar, where each component is selected from the best parent
with a predefined probability, callduias For the vector of standard deviations and angles we use
arithmetic recombination. The exact expressions for tlegmments of the vectors are:

[x; ifU(0,1) < bias
i = { x; otherwise ®
0; = (0 +07)/2 9)
wi = (w +w?)/2 (10)

where the superindices are used to denote the two paretibssl! is the best one) and (0, 1)
denotes a random sample of a uniform distribution in theruate[0,1). With respect to the
replacement operator, there is a special notation to iteliasdether the old population is taken
into account or not to form the new population. When only tksvrindividuals are used, we
have a(u, A\)-ES; otherwise, we have @ + \)-ES. Regarding the representation, since all the
test programs have integer parameters, each componerd wétior solutiork is rounded to the
nearest integer and used as actual parameter of the proghame is no limit in the input domain,
thus allowing the ES to explore the whole solution space.

We also apply a random algorithm (RNDMono) as search endioamtest data generator (see
Algorithm 7). This is again merely a ‘sanity check’. The fimasult of this random search is the set
of all the created solutions.

Algorithm 7 Pseudocode of RNDMono.

: proc

: conditionTable— @

: currentSolution— Create_Solution() // Creates an initial solution
: while not Termination_Condition() do

newSolutiork— Create_Solution()

Insert(conditionTable, newSolution)

: end while

: end_proc

ONOUAWNR

6. EXPERIMENTAL METHODOLOGY

This section is aimed at presenting the indicators used asare the quality of the obtained results
and the benchmark programs we have used. It also descrilveshleosolutions of the problem
have been encoded and the genetic operators employed ifigucation of the algorithms, and the
methodology we have followed.

6.1. Quality Indicators

Two different issues are normally considered for assedbagjuality of the results computed by a
multi-objective optimization algorithm:

1. To minimize the distance of the computed solution set gy gloposed algorithm to the
optimal Pareto front (convergence towards the optimaltBdrent).

2. To maximize the spread of solutions found, so that we cae halistribution of vectors as
smooth and uniform as possible (diversity).

A number of quality indicators have been proposed in theditge. Among them, we can
distinguish betweePRareto complianendnon Pareto complianindicators [31]. Given two Pareto
fronts, A and B, if A dominates B, the value of a Pareto comiliquality indicator is higher
for A than for B; meanwhile, this condition is not fulfilled bhe non—compliant indicators.
Thus, the use of Pareto compliant indicators should be el In this work, we apply the
Hypervolume [32] (Pareto compliant), which takes into asdothe convergence as well as the
diversity of the solutions; and Empirical Attainment Suda [33], which measures the probability
of being dominated by the approximated Pareto front. Batlicators are defined as follows:

e Hypervolume (HV). This indicator calculates the volume (in the objective s)@overed by
members of a non-dominated set of solutighéthe region enclosed into the discontinuous
line in Figure 5(a)Q = {A, B,C?}) for problems where all objectives are to be minimized.
Mathematically, for each solutiane @, a hypercube; is constructed with a reference point
W and the solution as the diagonal corners of the hypercube. The referencégamrsimply
be found by constructing a vector of the worst objective fiomcvalues. Thereafter, a union
of all hypercubes is found and its hypervolume (HV) is cadted!:

QI
HV = volume | | Jvi | . (11)
i=1
We apply this metric after a normalization of the objectivadtion values to the range..1].

A Pareto front with a higher HV than another one could be duesdme solutions in the
better front dominate solutions in the other, or, solutionthe better front are more widely

A e e .W
f2 : f,
\ \ 75%-attainment surface
| \\
........ i \\ /
| \
i \
\ 3\
\ \\
\ ><
......... \ ~_
N T
Pareto-aptimal font. ~— 25%-attainment surface™ =~ -
f, f
(&) The hypervolume enclosed by the (b) 25%-, 50%-, and 75%-attainment
non-dominated solutions. surfaces.

Figure 5. Examples of hypervolume and attainment surfaces.

distributed than in the other. Since both properties aresidened to be good, algorithms
with larger values of HV are considered to be desirable. Tayathis quality indicator, it

is usually necessary to know the optimal Pareto front (formmralization purposes). Of
course, typically, we do not know the location of the optirfraht. Therefore, we employ
as areference Pareto optimal frorihe front composed of all the non-dominated solutions out
of all the executions carried out (i.e., the best front knamtil now).

e Empirical Attainment Surfaces (EAS): In the related literature, the trade-off between
several objectives in a MOP is usually presented by showiregad the approximated Pareto
fronts obtained in one single run of a given algorithm. Hogrethe optimization algorithms
used are stochastic and therefore there is no warrantyhitbaame result is obtained after a
new run of the algorithm. Thus, a single run of a stochasgor@thm gives no information
about the average performance of the algorithm. We need aofvagpresenting the results
of a multi-objective algorithm that allows us to observe thpected performance and its
variability, in the same way as the average and the standaidtibn are used in the single-
objective case. To do this we use the concept of empiricainstient function (EAF) [33]. In
short, the EAF is a function from the objective spacg” to the interval0, 1] that estimates
for each vector in the objective space the probability ohelominated by the approximated
Pareto front of one single run of the multi-objective al¢fum. Given ther approximated
Pareto fronts obtained in the different runs, the EAF is defias:

a(z) = 3 YT < (=) (12

where A’ is thei-th approximated Pareto front obtained with the multi-ghije algorithm
and! is an indicator function that takes value 1 when the prediaaside it is true, and 0
otherwise. The predicaté’ < {z} means4’ dominates solution. Thanks to the attainment
function, it is possible to define the conceptidb-attainment surface [33]. The attainment
function « is a scalar field inR™ and thek%-attainment surface is the level curve with
valuek/100 for a. Informally, the 50%-attainment surface in the multi-aitjee domain is
analogous to the median in the single-objective one. In dlaiway, the 25%- and 75%-
attainment surfaces can be used as the first and third “tpirdnts” and the region between
them could be considered a kind of “interquartile regiorég$-ig. 5(b)). When the number
of objectives is one, the 50%-attainment surface is the amedid the “interquartile region”
is the interquartile range.

6.2. Automatic Program Generator

We designed an automatic program generator able to gergagems similar to the ones of the
real-world software. To achieve this goal, we focus on messsunade on source code pieces, which
do not require the execution of the program, called statiasuges. Once we have computed these
static measures in real-world software, we generate pnagjfaaving values of the static measures
that are similar to the ones of the real-world programs. Ttaénncharacteristic of our program
generator is that it is able to create programs for whicH to@nch coverage is possible, but they
do not solve any concrete problem. We propose this genenatbrthe aim of generating a big
benchmark of programs with certain characteristics chbyehe user.

In a first approximation we could create a program using aesapitation based on a syntax
tree and a table of variables. The tree stores the sentehaesire generated and the table of
variables stores basic information about the variabletadedt and their possible use. With these
structures, we are able to generate programs, but we camaeoteethat all the branches of the
generated programs are reachable. The unreachabilitytbbadbranches is a quite common feature
of real-world programs, so we could stop the design for thggttor at this stage. However, another
objective of the program generator is to be able of creatmognams that can be used to compare
the performance of different algorithms for test data gatien. In this case, programs for which
total coverage is reachable are desirable, because we edhaisoverage obtained by a test suite
as a measure of its quality.

Let us illustrate this with an example. Let us suppose thavengtool for automatic test case
generation is able to find test suites that cover 80% of thedhes of programi and 90% of the
branches of program® (a test suite for each program). It seems that the tool is reffegtive in
programB, since it is able to generate a test suite with higher cowersdgw, imagine that 20% of
the branches of progranh are unreachable and all the branches of progBaarne reachable. Then,
the tool obtained the maximum possible coverage in progdabut not in programB. Thus, we
would say that the tool is more effective for program

This example shows that coverage is not a good measure oétfampance of an automatic tool
for test case generation if we do not know the maximum redel@iverage for each program. In
previous work, alternative measures, such as correcteztage [34] have been used to alleviate this
problem. In this work we adopt a different approach. Sincauematically generate the programs
of the benchmark, we decided to generate programs for whiehrtaximum coverage is always
100%. This way, we can safely use the coverage as a measueefafpance of the automatic test
data generators and we can compare these generators araongdimg coverage.

An alternative approach would be to generate programs factwthere is no warranty that
100% of branch coverage can be obtained and then analyze phegrams in order to find the
maximum possible coverage and use a corrected coverageimedswever, the drawback of this
alternative approach is that the size of the benchmark waailohited, since we should check all the
programs by hand (the automatic determination of the maxirmatanch coverage is an undecidable
problem), and we would lose statistical confidence in thalteslt would be unviable to generate
800 programs (as we do in this work) and analyze them manually

With the goal of generating programs for which total cover&greachable, we thought in the
way the variables are treated in symbolic execution [35aB6] some methods of formal derivation
of programs [37, 38, 39]. Unlike the formal derivation of grams, our generator is not guided by a
specification. Therefore, at the end, we introduce logidigages in the program generation process
in order to generate programs for which total coverage isgdvensured.

The program generator is parameterizable, the user canvietadeparameters of the program
under constructionRUC). Thus, we can assign the probability distributions of thenber of
sentences of theUC, the number of variables, the maximum number of atomic da per
condition, and the maximum nesting degree. Another pamrmntle¢ user can tune is the percentage
of control structures or assignment sentences that wikapin the code. By tuning this parameter
the program will contain the desired density of decisions.

Once the parameters are fixed, the program generator bhidgeneral scheme of the PUC. It
stores in the syntax tree the program structure, and craatesn method where the local variables

are first declared. Then, the program is built through a sezpief basic blocks of sentences where,
according to a probability, the program generator decideihvsentence will be added to the

program. The creation of the entire program is done in a sdg@ivay. The user can decide whether
all the branches of the generated program are reachabld.or no

If total reachability is desired, logic predicates are usepresent the set of possible values that
the variables can take at a given point of the PUC. Using thesdicates we can know the range
of values that a variable can take. This range of values iiLisebuild a new condition that can
betrue or false For example, if at a given point of the program we have thelipatez < 3 we
know that a forthcoming condition < 100 will be always true and if this condition appears in an
i f statement, thel se branch will not be reachable. The predicates are thus usgditte the
program construction to obtain a 100% coverable program.

In general, at each point of the program the predicate iemifft. During the program
construction, when a sentence is added to the program, vdedmeempute the predicate at the point
after the new sentence. For this computation we distingwistcases. First, if the new sentence is
an assignment then the new predicate’ is computed after the previous od&” by updating
the values that the assigned variable can take. For exarhfie, new sentence is = z + 7 and
CP =z < 3,thenwe hav&€' P’ = z < 10.

Second, if the new sentence is a control statementf astatement for example, then the program
generator creates two new predicates called True-prediE#&t) and False-predicaté'(P). TheT P
is obtained as the result of the AND operation betw€dhand the condition related to the control
statement. Thé' P is obtained as the result of the AND operation betweerCtieand the negated
condition. In order to ensure that all the branches can ensad, we check that botf,P and
F P are not equivalent téalse If any of them were false, this new predicate is not valid amgew
control structure would be generated.

Once these predicates are checked, the last control statésneorrect and new sentences are
generated for the two branches. The predicates are comimsidé the branches in the same way.
After the control structure is completed, the last predisatf the two branches are combined using
the OR operator and the result is the predicate after theaaitucture. In Figure 6 we illustrate
the previous explanation with one example.

[* CPlEZL”S?)*/

if (x <0)

{
[CPL=TPi=2<3ANxz<0=z<0 */
y=5;
[+ CPs=x<0Ay=5 */

}

el se

{
/| CPL=FP=2<3Az>0=0<2<3 */
X=X-3;
[* CPs=-3<z<0 */

}

[+ CPs=x2<0Ay=5V-3<z<0 */

Figure 6. lllustration of the predicates transformation.

6.3. Benchmark of Test Programs

In the experimental section we use two benchmarks. The firsti® composed of 800 synthetic
program$. They are described in the next section. The second one ipased of 13 real-world
programs that are described in Section 6.3.2.

6.3.1. Synthetic Program$he program generator can create programs having the sdoeefoa
the static measures, as well as programs having differédnésdor the measures. In addition, the
generated programs are characterized by having a 100%agmethus all possible branches are
reachable.

Our program generator takes into account the desired vafussme static measures. The static
measures selected are: the number of atomic conditionseiag degree, the number of sentences
and the number of variables. The main features of the gestepabgrams are: they deal with integer
input parameters, their conditions are joined by whichdagical operator, they are randomly
generated and all their branches are reachable.

The methodology applied for the program generation wasdh@sing. First, we analyzed a set
of Java source files from the JDK 1.5 (java.util.*, java.igava.sql.*, etc.) and we computed the
static measures on these files. Next, we used the ranges oidbkeinteresting values, obtained
in this previous analysis as a guide to generate Java solgsehéiving values in the same range
for the static measures. This way, we generated prograntsthét values in these ranges, e.g.,
nesting degree in 1-4 (25% for each value), atomic conditfgar condition in 1-4 (68.43% with 4
conditions per decision), and statements in 25, 50, 75 o(29% for each value). The percentage
of control flow statements is 32.23% (in this work we use IResteents), this means that the test
case generator should cover around 64 different brancl2esy8 and 32 false) in programs with
100 statements. The previous values are realistic withegp the static measures, making our
study meaningful. Besides, we generated 50 programs forgae and nesting degree (50 x 4 sizes
x 4 nesting degrees = 800), which is a total of 800 Java progiram

6.3.2. Real Programsn order to improve the interest of our work we propose an tauithl
benchmark of real programs. It is composed of 13 real progrextracted from the literature [40,
41, 42]. Some of them have been extracted from the iDdkumerical Recipesavailable on-line
at http://www.nr.com/. They deal with real and integer inpalues and some of them also contain
loops. The programs are listed in Table |, where we informf@rhaximum nesting degree, the
lines of code (LOC), the number of branches, and the numlktygre of input arguments.

Table I. Characteristics of the Real Programs

Name ND | LOC | Branches| Arguments| Description

calday 2 a7 22 3 Integer | Calculate the day of the week

complex 3 74 24 6 Integer | Calculate complex arithmetic functions

gcd 2 28 8 2 Integer | Greatest common denominator

line 8 92 36 8 Integer | Check if two rectangles overlap

numbers 3 71 28 1 Integer | Parse a big number from integer to string
gformula 2 24 4 3 Double | Solve Real Equations

gformulas| 2 22 6 3 Integer | Solve Integer Equations

remainder| 6 49 18 2 Integer | Calculate the remainder of an integer division
tmichael 5 69 20 3 Integer | Classify triangles in 4 types: Michael

tmyers 6 54 12 3 Integer | Classify triangles in 4 types: Myers

triangle 4 53 28 3 Integer | Classify triangles in 4 types: Our implementation
tsthamer 3 76 26 3Integer | Classify triangles in 5 types: Sthamer
twegener | 3 46 26 3 Double | Classify triangles in 5 types: Wegener

¥They are available at http:/neo.lcc.uma.es/masefiptipcomponent/content/article/48-problems/121-seafe800-
sythetic-programs

6.4. Solution Encoding, Genetic Operators and Configuratio

Here we detail the configuration of the operators and the dingoof the solutions used in the
algorithms.

6.4.1. Details of the Mono-objective algorithmist this work, each solution is encoded as an
integer/real vector of length (the number of arguments). As we said in Section 5.1 the géorer
breaks down the global objective (to cover all the brancims)several partial objectives consisting
of dealing with only one branch of the program. Thus, two piog conditions exist: one for partial
objectives and the other one for the whole test data geparptiocess. The search for one partial
objective stops when 1000 evaluations are performed whéeédst data generation process ends
after 150000 evaluations.

In our GA we use as recombination operator the uniform cres@UX), in which each
component of the new solution is randomly selected from W garents. The formal definition
is the same as Equation (8) withias = 0.5. The mutation operator adds a random value to the
components of the vector. That is,

z; = x; + U(—500,500) (13)

where the probability distribution of these random values iuniform distribution in the range
[—500, 500]. However, not all the components of the individual are péed, only half of them are.
In our ES, we use a discrete crossover operator and a Gaumssiation. We show in Table Il a
summary of the parameters used by the two EAs in the expetaisaction.

Table Il. Parameters of the two mono-objective EAs usedérettperimental section

ES GA

Population 25 indivs. 25 indivs.
Selection Random, 5 indivs.| Random, 5 indivs.
Mutation Gaussian Add U (-500, 500)
Crossover dlscref[e (blas_z 06 Uniform

+ arith. + arith.
Replacement Elitist Elitist
Stopping cond. 1000 evals. 1000 evals.
Total Evals. 150000 evals. 150000 evals.

After the execution of the test data generator, we obtaingg htable of coverage where the test
data that satisfy a concrete branch during the executiosared. This table is filtered in order to
remove those test data for which a different test exist int#inde traversing the same branches,
as explained in Section 5. Then, a test data selection i®noeefd over this set using a standard
NSGA-II.

6.4.2. Details of the Multi-objective algorithmén the multi-objective approach, each individual is
encoded as a set of test data. In Table Il can be seen the g@n@of the multi-objective EAs used
in the experimental section. As genetic operators, we hagdhinary tournamenas the selection
scheme. This operator works by randomly choosing two inldigis from the population and the
one dominating the other is selected,; if both solutions aredominated one of them is randomly
selected.

We created some crossover operators to increase the effiaéthe algorithm. The best results
were obtained with thanion crossoverlt takes two solutions}; andCs, and creates a new odé
that is the union of both, that i€ = C; U C,. If the resulting solutiorC has more coverage than
C, andC, thenC' is the new offspring. Otherwise, the solution with more cage (C; or Cs) is
the new child.

Table Ill. Parameters of the Multi-objective EAs used in éxperimental section

NSGA-II MOCell SPEA2 PAES
Population 20 indivs. 20 indivs. 20 indivs. 20 indivs.
Selection BT, 2 indivs. BT, 2 indivs. BT, 2 indivs. BT, 2 indivs.
Mutation Adaptive Mutation | Adaptive Mutation| Adaptive Mutation| Adaptive Mutation
Crossover Union Crossover | Union Crossover | Union Crossover -
Replacement Elitist Elitist Elitist Elitist
Total Evals. 150000 evals. 150000 evals. 150000 evals. 150000 evals.

Finally, the mutation operator adds new test data to thetisolwith proability 0.6, deletes one
test datum with probability 0.2 and keeps the individualharged with proability 0.2. In the case
of adding test data, the number of new test data is 30% of heléga present in the solution.

If the resulting individual has the same coverage and matedi@ta, at the end of the iteration,
the algorithm deletes it from the population because tHigiem is dominated.

All the multi-objective algorithms have been implementathg jMetal [43], a Java framework
aimed at the development, experimentation, and study ailmeetistics for solving multi-objective
optimization problems.

7. EXPERIMENTAL ANALYSIS

In this section we present the results of the two proposedoagpes. In the first subsection we
analyze the MM approach and we compare the performance ahtiigobjective algorithms. In
the second subsection we study the mM approach and we cothgaperformance of the mono-
objective algorithms used as the base for the approach., Tinenthird subsection we compare
the two proposed approaches for the academic benchmarKiratlgl, in the last subsection, we
compare both approaches with a benchmark of real programs.

For the study we use the 800 Java programs automaticallyrafedeand another benchmark
composed of 13 real programs. Both benchmarks were dedciib&ection 6.3. Since we are
dealing with stochastic algorithms, we need to perform hwrdependent runs of each algorithm
and program, 30 in our case, in order to obtain a very staldeage of the measures. All test
data generators used in this work proceed by generatingagstuntil a maximum of 150,000 test
data are generated. We also perform a multiple comparististgtal test for each program on the
obtained results to compare the algorithms among them. Weamfidence level of 95%p{value
under0.05) for the whole comparison (all the algorithms acting on agpam) and we used the
Bonferroni correction for each particular comparison.

7.1. Evaluation of the MM approach

In this section, we analyze the behaviour of the multi-otdyecalgorithms with the aim of
highlighting the algorithm that works better. We have amaty 800 programs, so we cannot
represent all HV values for all the programs. For this reasgnsummarize in Table IV the times
one algorithm has better median HV than the others. We hassifled the results according to
the nesting degree and the size of the PUT. For this indictterhigher the value, the better the
quality of the obtained results. Thus, by looking at thedaplve can see that MOCell was usually
the algorithm computing clearly the best results regardiivg However, when the programs are
small (25-50 statements) and complex (nesting degree, fthe)NSGA-II algorithm has a better
behaviour. We must highlight the big difference between MO(43), NSGA-II (198) and the
others altogether (43).

Then, we compare the HV values of all the programs and indigenexecutions with the
Kruskal-Wallis test. In each cell of a table of statistics have a pair (number, triangle). The
number indicates how many programs are significantly difierand the triangle indicates that
the program in the row is significantly bettar)(or worse §) than the program in the column. The
results are summarized in Table V. Although the previousesket a clear tendency, the absence of

Table IV. Programs in which the median Hypervolume of onewdigm is better than the others

Nesting degree Statements MOCell | NSGA-Il | SPEA2 | PAES | RNDMulti
25 10 1 0 0 0

1 50 24 9 0 2 2
75 34 6 1 1 0

100 38 4 0 1 0

Total 106 20 1 4 2

25 13 5 1 2 3

5 50 35 13 0 0 0
75 37 12 0 0 0

100 40 10 0 0 0

Total 125 40 1 2 3

25 18 11 3 1 2

3 50 33 15 0 0 0
75 32 16 1 0 0

100 30 19 0 0 0

Total 116 61 4 1 2

25 17 20 3 2 2

4 50 23 25 2 1 0
75 27 19 2 0 1

100 29 13 10 0 0

Total 96 77 17 3 3
| Total | [443] 198 | 23] 10 | 10]

significant differences between MOCell, NSGA-Il and SPEdds not allow us to say that MOCell
is better than the other two. However, we can mention that RINIE is the worst algorithm in all
the programs (800) and PAES is worse than MOCell in 18 progr&®&GA-Il in 9 programs, and
SPEA2 in only 2 programs.

Table V. Number of programs where there exists significdferdince among the HV obtained.

RNDMulti | PAES | SPEA2| NSGA-Il | MOCell

MOCell 8004 18a 0 0 —
NSGA-II 800A A 0 - 0
SPEA2 798A 2a - 0 0
PAES 750A - 2v 9v 18v
RNDMulti — | 750V 798V 800V 800V

With the aim of showing an example of the computed fronts f@ instances, we selected
one program for each nesting degree, which can represenygital behaviour of the different
algorithms in this kind of instance. In Figure 7 are depidtesl 50%-attainment surfaces of these
selected programs. In the instance with low nesting dedi€xCell dominates the others and has
a good performance because it reaches almost the sameeardmitrage with the same test data.
NSGA-II has a similar behaviour except in the right extrerfhe figure where it is not able to reach
the same maximum coverage as MOCell. On the other hand, rtigeam with nesting degree 4,
NSGA-II is the algorithm that is able to reach the best cogerand dominates all the other fronts.
The other two multi-objective algorithms (SPEA2 and PAE&)éhproblems finding the solutions
with high coverage, in the upper-right bound of the figurel are worse than MOCell and NSGA-II.
RNDMulti is always the worst. MOCell has been able to find mlmminated solutions in the right
area where SPEA2, PAES and RNDMulti have not found any of t(satutions in the extremes of

the front). This is related to a better exploration of thersleapace by MOCell. Specifically, this
is one of the properties of the cellular GA model, on which M&I@G based. This fact has been
reported in many studies on single-objective optimizafsee [44]). There is only one exception,
when a program has nesting degree 4 and it is more difficulbtaio high coverage, NSGA-II has
the best performance.

Nesting 1 Nesting 2
100 T 100 T T T
s 10 e et
- ®
920 ® 1 90 e a4 B
[] & =
o 80F . L] 1 o 80 . " " E
=) L > []
o [& "
g 70 1 ¢ 7 . g
o o
o o
5 60 1 5 60 E
f=4 =4
[[
o -] o i
%0 MOCell + 50 MOCell +
NSGA-II X NSGA-II X
40 SPEA2 o© B 40 SPEA2 o -
PAES A PAES A
30 L ‘ ‘ ‘ ‘ RNDMu\Il = 30 ‘ ‘ ‘ ‘ RNDMLIH\ =
0 2 4 6 8 10 12 2 4 6 8 10 12
Number of Test Cases Number of Test Cases
(a) Program with nesting degree 1 (b) Program with nesting degree 2
Nesting 3 Nesting 4
100 T T 100 T
+
% | ¥ 8 8 7 9 .
s 0o :
g . x & &8 7
o 8 5 ° 1 4, 80F ; 9 1
g g &
= = L]
g 70 & 1 ¢ 7t s, o= L] R
o o
S O []
5 60 & 1 5 60t E
[=} n [=} &
§ s ®n " " E H
o " a
50 1 50 B
. MOCell + MOCell +
NSGA-II X NSGA-II X
40 SPEA2 o© B 40 . SPEA2 o -
- PAES A PAES A
L= ‘ ‘ ‘ ‘ RNDMu\Il = 30k L] ‘ ‘ ‘ ‘ RNDMLIH\ =
0 2 4 6 8 10 12 0 2 4 6 8 10 12

Number of Test Cases
(d) Program with nesting degree 4

Number of Test Cases
(c) Program with nesting degree 3

Figure 7. 50%-attainment surfaces: coverage against timbdauof test cases.

We have also analyzed the reduction obtained in the numbldesbtases, since one of our goals
is to minimize the number of test cases. We analyze the rexfuexperienced using our approaches
compared with the use of all the generated test cases. Itysdifficult to analyze this reduction
because not all the algorithms achieve a 100% coverage thelprograms. For this reason, we
cannot simply average the number of test cases, but we mkestinigo account the maximum
obtained coverage in order to give the real reduction madidynulti-objective algorithm. The
total reduction is from thousands of test cases generat@atmd ten, but this reduction could also
be easily computed based in ttable of coveragef the algorithms by choosing one test case per
branch. The drawback of the latter approach is that the niaition of the test suite would be far
from optimal. For this reason, we establish a theoreticpbupound of the required number of test
cases needed. This upper bound is the number of branchesdhatachieved by the algorithm.
We compute the real oracle cost of the test suites genergtadybalgorithm according to the next
expression:

upper_bound(P, A) = Bp x MazCov(P, A)

te(P,A
oracle_cost(P, A) = Wmd)(m

(14)

where P is a program,A is an algorithm,Bp is the number of branches of the progrdm
MazCov(P, A) is the maximum coverage obtained by the algoritdnin the programP, and
te(P, A) is the number of test cases needed by the algorithim obtain the maximum coverage in
programP.

We can state that the oracle cost of the test suite genenataitithe multi-objectives algorithms
can be reduced by our approach, only 15.12% of the test case®aded in comparison with the
computed upper bound. This reduction is computed in theafahe maximum coverage, and hence
the largest number of computed test cases. But we must beanihthat our solution is a complete
Pareto front offered to the expert to make a decision abautast suite that best fits his/her needs,
therefore a similar percentage of reduction is carried outfich coupleoverage-number of test
caseghat appears in the Pareto front.

In the TDGP, it is particularly hard to achieve a 100% branatecage, specially if one uses a
multi-objective algorithm because its execution is notrefyt guided to obtain a total coverage.
The multi-objective approach deals with all the branchebaisame time, this provokes a lack of
information. In addition, the search does not spend mostsoéffort to cover the most complex
branches. In Table VI we show the average of maximum covdegeng the solutions in the front)
obtained with the solutions for all the programs with difler nesting degree. We highlight the
maximum values in the table for each nesting degree. As weated, MOCell's performance is
the best on nesting degree 1, 2 and 3. On the other hand, NE@#alins the best coverage with
nesting degree 4. Since the differences are low, we complaganbverage values of all the programs
and independent executions with the Kruskal-Wallis teke fiesults are summarized in Table VII.
As we expected, MOCell obtains significant differences imarrograms with respect to PAES and
RNDMulti, than NSGA-Il and SPEA2.

Table VI. Relationship between the nesting degree and teeage maximum coverage for the multi-
objective algorithms. The standard deviation is shown bsstipt.

Nesting degree MOCell | NSGA-Il | SPEAII PAES | RNDMulti
1 98.1020s8 | 97.9G.22 | 97.5334 | 93.08 30 | 81.362.74

2 94.773 44 | 94.423 49 | 93.563.75 | 87.59.31 | 75.0414.00

3 90.665.83 | 90.415.46 | 89.29565 | 81.55768 | 69.7713.87

4 85.509 45 85.77g.18 | 84.615.12 | 75.879.02 63.8715.95

Total 92.267 54 92.12¢.99 91.247 54 | 84.529 72 72.5115.57

Table VII. Number of programs where there exists a signitidifierence among the coverage values

obtained.
RNDMulti | PAES | SPEA2 | NSGA-Il | MOCell
MOCell 800A | 800A 2A 0 —
NSGA-II 800A | 799A 0 - 0
SPEA2 800A | 782A — 0 2V
PAES 711A — 782v 799v 800V
RNDMulti — | 711V 800V 800V 800V

If we consider the HV obtained (Table 1V), the significant HWfefences (Table V), the
attainment surfaces and the average maximum coveragevadhésbowed in Table VI, it is clear
that the ranking of the performance of the algorithms is: MOG the best, second NSGA-II, third
SPEAZ2, fourth PAES, and finally RNDMulti, the worst one, apexted.

7.2. Evaluation of mM approach

In this section we analyze the mM approach. First of all, welgtthe values of HV. We show in
Table VIl the programs in which one algorithm has a bettén@af HV.

Table VIII. Programs in which the median Hypervolume of olgoegthm is better than the others.

| Nesting degreg Statement§ GA | ES | RNDMono |

25 3 3 0

1 50 7 18 1
75 7 26 3

100 9 33 3

Total 26 | 80 7

25 13 8 1

5 50 23 17 0
75 23| 22 1

100 18| 29 1

Total 77| 76 3

25 23 6 0

3 50 31| 16 0
75 30| 16 0

100 21| 29 0

Total 105 | 67 0

25 37 3 0

4 50 41 6 0
75 39 11 0

100 34| 14 0

Total 151 | 34 0

[Total | [359 [257 | 10 |

It is noteworthy that when the nesting degree is the smgll§she ES obtains better results and
when the nesting degree is large (3 and 4) the GA is betterttt@nthers. In other words, when
the program is more complex, the GA is clearly the best. ThésHsgtter in large programs (100
statements) except when the program has nesting degreel'feam, we compared the HV values
of all the programs and independent executions with the kaidd/allis test. The results indicate
that there is no significant difference between GA and ESI€Ted). As we expected, the results of
RNDMono are worse than ES in 786 programs and GA in 765 progiram

Table IX. Programs where a significant difference existsragribe HV obtained.

RNDMono | ES GA

GA 765A 0 —
ES 786 A — 0
RNDMono — | 786V | 765V

Second, we show the 50%-attainment surfaces of four repese programs with different
nesting degree in Figure 8. In the instance with nestingededr the attainment surfaces are very
similar between GA and ES. RNDMono is far from the behaviduhe others. In the instance with
nesting degree 2, the three algorithms obtain similar tesihe instances with nesting degree 3 and
4, represent the general behaviour of the algorithms in widsie programs. The RNDMono is far
from the others, the ES obtains similar values of coverageddA with the same number of test
cases, but GA can achieve the best value of coverage. The @ izest algorithm in maximum
obtained coverage. This is related to a better exploitaifdhe search space by GA.

In order to highlight the reduction of the test cases needeghieve the maximum coverage, we
have applied Equation (14). We can state that the oracleodisé test suite generated by the three

Nesting 1 Nesting 2
100 — ¥ T T 100 T : Tx ¥
x ¥ % o
90 N g 90 ¥ e
X © &
& %
° 80 1 o 80 | B
j=2) (=}
o o @
g 70} 4 8 70t g
o =}
o [§)
5 60} 41§ eof e
i=4 c
o [
D 50+ & 4 @ 50t E
40 GA + A 40 F & GA + 1
ES X ES X
30 & I I I I I I RNE\)MOHD\ ° 14 30 & I I I I I I RNPMOHO‘ ° =
0 2 4 6 8 10 12 14 16 18 0 2 4 6 8 10 12 14 16 18
Number of Test Cases Number of Test Cases
(a) Program with nesting degree 1 (b) Program with nesting degree 2
Nesting 3 Nesting 4
100 T T T % T 100 T T T
X
L E T b
90 x ¥ R % s ox E
L i L 3 ,
° 80 X + ° 80 L X
j=2) o X
<] X o o °©
g 70} 4 8 70t ¥ o © g
o 1 o
o [§) °
5 60} o o 41§ eof e
g ¥ ,0° g 3
®osor 12 sot i
40 - GA + A 40 + GA + A
ES X ES X
30 & pd I I I I I I RNE\)MOHD\ ° 14 30 & # I I I I I I RNPMOHO‘ ° 14

8 10 12
Number of Test Cases

(c) Program with nesting degree 3

14 16 18

Figure 8. 50%-attainment surfaces:

6 8 10 12

Number of Test Cases
(d) Program with nesting degree 4

14 16 18

coverage against timbewof test cases.

studied mono-objective algorithms can be reduced by ouroggp, only 19.32% of the test cases
are needed in comparison with the computed upper bound pEncentage of test cases needed to
achieve a concrete coverage is larger than the one obtaiiiethe MM approach (15.12%).

Now, let us analyze the best value of coverage obtained Wwétthree algorithms. In Table X
we show the average of maximum coverage of the three algwsitAs is known, achieving a total
coverage is a great challenge for the search, for this reaserconsider that an algorithm must
focus on obtaining a high value of coverage. In this sengeGiA and ES obtain very good values
of coverage, both above 90% in all the cases. However, thageeoverage obtained by the GA is
always the best. This advantage of the GA increases in progvéath higher nesting degree where
high values of coverage are very difficult to obtain. We perfed a statistical test (Table XI), but,
although the GA obtains the best results, significant difiees only exist in 23 programs between
GA and ES. Thus, it seems that GA is the best in obtaining avagire of coverage, specifically in
more complex programs.

7.3. MM vs. mM approaches

In the previous sections we have performed a comparisordeetthe algorithms used in each of the
approaches. In the mM approach, GA seems to be the bestthtgdr most of the programs and

ES is the best algorithm in programs with the lowest nestegyele. Regarding the MM approach,
MOCell was the best in most of the programs, except in a fewynaras with high nesting degree.

In this section we compare all the algorithms together, Withaim of showing what technique is

the overall best.

Table X. Relationship between the nesting degree and theagwemaximum coverage for the mono-
objective algorithms. The standard deviation is shown bsstipt.

Nesting degree GA ES RNDMono
1 99.195 90 | 98.70263 | 85.3310.51

2 98.855.02 | 97.872.44 | 79.2012.14

3 98.525.09 | 95.664.54 | 71.941336

4 96.894.80 | 93.19.66 | 66.4214.50

Total 98.363.13 | 96.364.99 75.7214 65

Table XI. Number of programs where there exists a signifidiférence between the coverage obtained.

RNDMono | ES GA

GA 800A | 23A —
ES 800A — 23V
RNDMono — | 800V | 800V

First of all, we analyze the HV indicator. In Table XII we surarize the number of times where
the HV value of an algorithm is better than the rest. The teslow that, on the one hand, MOCell
is better for programs with low nesting degree (1-2). On theiohand, the GA is better for programs
with high nesting degree (3-4). The performance of the MO&gbrithm and the GA is similar but
they work better in different kind of programs. This perfamee depends on the maximum nesting
degree of the program. NSGA-II and the ES have similar perémces among them; however they
are clearly worse than MOCell and GA. Finally, the perforeeaof SPEA2, PAES, RNDMono, and
RNDMulti is clearly worse than the previous algorithms (MEICGA, NSGA-Il and ES).

Table XII. Programs in which the median Hypervolume of orgodthm is better than the others.

ND | Statements|| MOCell | NSGA-Il | SPEA2 | PAES | RNDMulti || GA | ES | RNDMono
25 1 0 0 0 0 0 0 0

1 50 5 0 0 0 0 0 0 0
75 16 2 0 1 0 0 0 0

100 14 2 0 0 0 0 2 0

Total 36 4 0 1 0 0 2 0

25 4 1 0 0 0 0 0 0

> 50 16 4 0 0 0 4 2 0
75 24 6 0 0 0 4 1 0

100 26 8 0 0 0 6 4 0

Total 70 19 0 0 0 14 7 0

25 4 0 1 0 0 6 1 0

3 50 10 1 0 0 0 18 4 0
75 14 4 0 0 0 20 9 0

100 13 10 0 0 0 13| 11 0

Total 41 15 1 0 0 57 | 25 0

25 2 1 1 0 0 19 1 0

4 50 6 5 0 0 0 34 0 0
75 7 2 0 0 0 33 6 0

100 3 6 4 0 0 27 7 0

Total 18 14 5 0 0] 113 | 14 0

| Total | I 165 | 52 | 6 | 1] 0 [[184] 48 | 0 |

In order to clarify the obtained results, we have perforntesl gtatistical test to check if there
exist significant differences among the HV values. In TablB, Xve can see that there is just a
small significant difference among the main evolutionagoathms. However, there are significant
differences between the worse algorithms (the two randgorigdhms and PAES), and the rest. In

Table XlII we show that the HV values of GA are significantlyttee than the others, except the ES.
The same observation can be made on ES: it is significantigritdin the others (except the GA).
NSGA-II, MOCell and SPEA2 are worse than GA and ES, but fortnobshe programs their HV
values are better than the random algorithms. In some pragrenere are significant differences
between MOCell and PAES and also between NSGA-II and PAES.

In summary, the mM approach using the evolutionary algoT#{GA and ES) always achieves
good HV values. We observed that MOCell, NSGA-Il and SPEAR significantly better than
PAES in more programs than GA and ES. In this case, the HV sabfieghe mM approach are
worse, concretely they do not get a good diversity becaus®#neto fronts are computed from a
finite subset of test cases obtained by the mono-objectjaidims. However, the MM approach
takes better care of the convergence as well as the diverfsibe Pareto front, consequently their
HV values will be better. For the purpose of illustratingstigsue we plot in Figure 9 the 50%-
attainment surfaces for the best algorithms: MOCell, NSG/&A, and ES.

Table XIIl. Programs where a significant difference exist®ag the HV obtained.

RNDMulti PAES | SPEA2 | NSGA-Il | MOCell RNDMono GA ES

MOCell 800A | 235A 0 0 — 8004 39v v
NSGA-II 800A | 197aA 0 — 0 800A 29V 5V
SPEA2 8004 61A — 0 0 8004 13v 2V
PAES 7994 — 61V 197v 235V 645A 36V 18v
RNDMulti — 799V 800V 800V 800V 24V | 782V | 795V
ES 795A 18A 24 5A TA T37A 0 -
GA 7824 36A 13 294 394 6894 - 0
RNDMono 24A | 645V 800V 800V 800V — | 689V | 737V

We focus on the most interesting area (80%-100% coveragiegblots in Figure 9. In all the
pictures, we appreciate that MOCell and NSGA-II have thé fsests in the programs with nesting
degree 1, 2 and 3, although they do not obtain the best cavénagjl cases. In addition, we must
highlight that the fronts of GA and ES are dominated in thisecaVe find the exception when the
program has nesting degree four, where the GA is the begitlligobecause its solutions dominate
the others. The second in performance is the ES; close toallies/of GA. The other algorithms
only find solutions with middle values of coverage and mose ¢ases.

At this stage of the study, we know that the MM approach presichore diversity in the solutions.
In other words, it is able to find a test suite with few test sabat the obtained coverage is not very
large. On the other hand, the mM approach is able to bettéoedhe search space to find solutions
with a high coverage, but it needs more test cases than the pykbach. The MM approach obtains
worse average coverage because nested statements poaechghenge for the search. We think
that the main reason for this fact is that the multi-objectilgorithms deal with all the branches at
the same time and less information is obtained to guide theeke

As we previously said, automatically generating a tesiesthiat covers the entire program is a
hard task. When a program has high nesting degree and th&adecare very complex, the task
of covering all the program code requires a lot of effortsltmportant for an algorithm to be able
to find test cases to cover all the program’s branches. We ghdable XIV a comparison of the
average maximum coverage obtained for all the algorithnisadinthe programs. It is clear that
the best algorithm, if coverage is the main objective, is GAubtains the best results in all the
groups of programs with different nesting degree, and fhexan the complete benchmark. The
performance of ES is also very good because it is alwaysrlibtie the multi-objective algorithms.
If the nesting degree increases, the distance between ¢haga/coverage of GA and ES increases.
In other words, the ES has a similar performance to GA in lomglexity programs and it is worse
than GA in complex programs. On the other hand, MOCell and NdFGiave almost the same
coverage; it only varies at the decimal level. SPEA2 is oyviorse in the entire benchmark with
respect to MOCell and NSGA-II. The results of the PAES aldoni are in the middle between the
best (GA) and the worst (RNDMulti).

Nesting 1 Nesting 2

100 T T T 100 T T T
* o]
* 0
o x & &
95 - E 95 e 2 E
° o X ° + X
g x + g ®
o 9 4 O 9} * E
§ o + é ®
<] X [x
o o
85 - e 85 - -
GA + GA +
+ ES X + ES X
MOCell o <] MOCell o
NSGA-I & x NSGA-Il 2
80 Il Il Il Il Il Il Il Il Il 80 Il Il Il Il Il Il Il Il Il
0 2 4 6 8 10 12 14 16 18 0 2 4 6 8 10 12 14 16 18
Number of Test Cases Number of Test Cases
(a) Program with nesting degree 1 (b) Program with nesting degree 2
Nesting 3 Nesting 4
100 T T 100 T T
+
*
X
95 X+ g 95 E
S)
g o * 8 L.
g o x % + X
o 9 o x + 4 O 9} N “ E
G o + G
i=4 c X
S & x 3
o o + 5] 4+ X A
85 - e 85 - -
* GA + roxoe0 GA +
© + ES x x A o ES x
X MOCell o MOCell o
NSGA-I & + & 0 NSGA-Il 2
80 Il Il Il Il Il Il Il Il Il 80 Il Il Il Il Il Il Il Il Il
0 2 4 6 8 10 12 14 16 18 0 2 4 6 8 10 12 14 16 18
Number of Test Cases Number of Test Cases
(c) Program with nesting degree 3 (d) Program with nesting degree 4

Figure 9. 50%-attainment surfaces: coverage against tidauof test cases of all the algorithms.

Table XIV. Relationship between the nesting degree and theage coverage for all the algorithms. The
standard deviation is shown in subscript.

ND GA ES RNDMono MOCell NSGA-II SPEA2 PAES RNDMulti
1 99.192.20 | 98.702.63 | 85.3310.51 | 98.102.08 | 97.9G.22 | 97.53.34 | 93.08 30 | 81.3G2.74
2 98.852 .02 97.872.44 79.2012.14 94.773.44 94.423 49 93.563.75 87.59¢.31 75.0414.00
3 98.522.09 | 95.664.54 71.9413.36 | 90.665.83 | 90.415.46 | 89.29565 | 81.557.63 | 69.7713.87
4 96.894.80 93.196.66 66.4214.80 85.509.45 85.77s.18 84.618.12 75.879 .22 63.8715.95

Total 98.363.13 96.364.90 75.7214.65 92.267 54 92.126.99 91.247 .24 84.529 72 72.5115.57

In order to provide a high level of confidence to these reswuits have performed statistical
tests. The results are shown in Table XV. There are someadiffes among the best algorithms;
we can take as a reference the column of the GA values. Thisreotan be seen as a ranking of
performance of all algorithms. The GA has the best resutlatperforms the rest of the algorithms
in average maximum coverage. ES is the second in averagemmaxcoverage (with significant
difference), next MOCell, then NSGA-II, and finally SPEA2s A&ve expected, the statistical test
does not show significant differences among MOCell, NSGadll SPEA2, but if the number
of independent runs were higher, the significant differerveeuld appear. We should highlight that
PAES is not much better than the random algorithms. Therdiffees in average maximum coverage
shown in Table XIV have been confirmed by the statisticabtesting a GA is the best way to obtain
high branch coverage.

Finally, we have considered in this experimental study tiaioed HV, the significant
differences, the attainment surfaces and the average maxiooverage achieved with all the

Table XV. Number of programs where a significant differernciste among the coverage obtained.

RNDMulti | PAES | SPEA2 | NSGA-Il | MOCell || RNDMono | GA ES

MOCell 800A | 797A 0 0 - 800A | 350V 30v
NSGA-II 800A | 786A 0 - 0 800A | 438V 87v
SPEA2 800A | 691A - 0 0 800A | 613V | 322V
PAES 5034 - 691v 786V 797V 854 | 800V | 800V
RNDMulti — | 503v 800V 800V 800V 7V | 800V | 800V
ES 800A | 800A 3224 874 304 8004 1v -
GA 800A | 800A 613A 438A 350A 8004 - 1A
RNDMono 7A 85V 800V 800V 800V — | 800V | 800V

algorithms and the benchmark of 800 programs. After anaty#e experimental results we can
state that the GA is the best mono-objective algorithm andQdiDis the best multi-objective
algorithm. We expected that an algorithm like MOCell woulldearly superior to all the mono-
objective ones in the MOTDGP, but in fact this is not true. didision, the GA is clearly superior in
HV and average maximum coverage when we are testing progsétimfigh nesting degree. This
fact is due to a better exploration of the search space bechissalgorithm is able to find solutions
for the most complex branches that appear in the code. It mess$ of its evaluations in most
complex branches, in order to achieve a high coverage. Hewie multi-objective algorithms deal
with all the branches at the same time, for this reason theptlose most of its evaluations trying to
cover a concrete complex branch. This fact suggests thariétexist hard requirements of coverage
and the program has high nesting degree, we should use the &%ech engine of an automatic test
data generator. Nevertheless, a second phase of multitdigjeest case selection must be performed
in order to minimize the oracle cost. On the other hand, ifdtere cost requirements, we highly
recommend the use of MOCell algorithm.

7.4. Real Programs

In this section we analyze the two proposed approaches gsimg real programs. We study 13
real programs extracted from the literature and with chargstics similar to the artificial programs
used in the previous sections. The reader must take intauattuat the number of programs used
in the previous sections gives us the chance to average ad@@ngrograms and extract statistically
more reliable results. Despite the fact that in this sectienonly analyze the performance of the
proposed approaches and algorithms over 13 programs, rhitbst oonclusions are similar to the
ones we have been obtained with the synthetic programs.

Once again we start the analysis with the HV indicator. Inl@a®/| we summarize the number
of programs where the HV value of an algorithm is better thendthers. There are six programs
where an algorithm is the best. The GA outperforms the otlgarighms in four programs, then
the ES in two programs, and the MOCell in only one programhinprevious results these three
algorithms also obtain the best results.

Table XVI. Real programs in which the median Hypervolume roé algorithm is better than the others and
average maximum coverage of all the real programs.

- MOCell | NSGA-Il | SPEA2 | PAES | RNDMulti GA ES RNDMono
HV Better 1 0 0 0 0 4 2 0
Avg. Max. Cov. 87.26 91.35 89.31 | 72.43 76.84 || 94.14 | 92.27 80.09

In order to validate these previous results we compared Whedlues of all the real programs
using the multiple comparison statistical test. In TablelD{Me show the existing differences among
the HV value of all the algorithms. We can observe that the Gfperforms the other algorithms
in at least one program. Then, there is a group of algorithongposed by ES, NSGA-II, SPEA2,
MOCell and RNDMono that are better than PAES and RNDMultt, the statistical test does not

show significant differences among them. In addition, wearsalyze the PAES column in order to
obtain an informal ranking of algorithms according to the Hdicator.

Table XVII. Real programs where a significant differencesexamong the HV obtained.

RNDMulti | PAES | SPEA2 | NSGA-II | MOCell || RNDMono | GA | ES

MOCell 1A 1A 0 0 — 0] 2v 0
NSGA-II 3A 3A 0 — 0 0] 1v 0
SPEA2 3A 24 — 0 0 0] 1v 0
PAES 0 - 2V 3V 1v 1v | 7v | 6V
RNDMulti — 0 3v 3V 1v 1v | 7v | 4V
ES 4A 6A 0 0 0 0] 1v | —
GA TA TA 1A 1A 24 3A — | 1A
RNDMono 1A 1A 0 0 0 - | 3v 0

Let us analyze the average maximum coverage obtained bygbethms when are applied to
real programs (Table XVI). We must highlight that the GA ahd ES are the best algorithms in
coverage for the real programs. In contrast, the PAES hasnaat the worst results, even worse
than the random algorithms. In Table XVIII, we show the resof a statistical test to compare the
maximum coverage. Once again the GA is the best algorithobtdins significant differences in
40 comparisons. NSGA-II obtains significant difference8@ncomparisons. Next, SPEA2 and ES
are better than the others in 18 comparisons. Most of thgséfisant differences are obtained in
comparison with PAES or the random algorithms. Only a fefedéinces exist between the best
algorithms. Nevertheless, the performance of GA seems tmetier than the other algorithms. On
the other hand, the PAES has obtained the worst results. Miettiat these results are due to the
absence of crossover operator and the nature of the sefgrctghms (i.e., number of equalities in
the code).

Table XVIII. Number of real programs where a significant eliince exists among the coverage obtained.

RNDMulti | PAES | SPEA2 | NSGA-IT | MOCell || RNDMono | GA | ES

MOCell GA 124 0 0 — 0 2V 0
NSGA-II 124 134 1A - 0 4A 0 0
SPEA2 TA 13A — 0 1A 0 3V 0
PAES 0 — 13V 13V 12v 4A | 13V | 12V
RNDMulti - 0 v 12v 6V 3v | 12v 9V
ES 9A 12A 0 0 1] 0 3V —
GA 12A 13A 3A 0 2A TA — 3A
RNDMono 3A 4v 0 4v 0 — v 0

Finally, with the aim of showing an example of the computedfs for the instances, we selected
theline program. This program can represent the typical behavibthieodifferent algorithms in
this kind of instance. In Figure 10 the 50%-attainment sug$a0f the best algorithms are depicted.
In this instance, GA dominates the others and has a goodrpafice because it always reaches the
best coverage with the same test data. MOCell is the onlyrigthgo able to obtain all the points of
the front. This is a desirable property for a solution of atiroibjective problem.

8. CONCLUSIONS

In this paper we have studied the Multi-Objective Test Dagém&ation Problem with the aim of
analyzing the performance of a direct multi-objective ayggh (MM) versus the application of
mono-objective algorithms followed by a test case seledtioM). Previous results in the literature
have only focused on the coverage of a program while the @@dt is a significant cost that has

T T T T T T T T T
100 | 4+
&
;887
&
80 + & i
o &
& 5 &8 °
g 60 - & e -
S -
S
3]
8 40| -
o &
L GA +
20 =N
MOCell o
NSGA-l &
O 1 1 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16 18

Number of Test Cases

Figure 10. 50%-attainment surfaces: coverage againsiuttmder of test cases for the progrdine.

been ignored in most of the previous studies. For this reaadhis work we have dealt with the
coverage and the oracle cost as equally important targets.

Our study has been performed on 800 synthetic programs. ¥vgraal a program generator able
to produce programs ensuring a 100% of branch coverage.Kiridsof programs is very useful
because all the branches are reachable and we can compakgdhighms in a fair way using
coverage. In addition, we have also analyzed the two prapagproaches with a benchmark of 13
real and popular programs in the literature. We have evedlfatur state-of-the-art multi-objective
optimization algorithms: MOCell, NSGA-Il, SPEA2, and PAB®0 mono-objective algorithms
GA, ES, and two random algorithms as merely a ‘sanity chéidk's comparison has been done on
the basis of three quality indicators: the hypervolumebbb-empirical attainment surface, and the
average maximum coverage obtained by those algorithmsaweee a final ranking of algorithms
in Table XIX.

In terms of convergence towards the optimal Pareto front,a@84 MOCell have been the best
solvers in our comparison. On the one hand, MOCell has obddime best fronts in programs with
nesting degree 1 and 2, values commonly found in practiceh®wother hand, the GA is the best
algorithm for facing programs with high nesting degree aiglthe algorithm which is significantly
better in most of the programs, attending to the HV indicatat to the average maximum coverage.
This fact indicates that GA is the best alternative if thegdgprogram has a high nesting degree or
we need a high coverage. But, if we have time restrictiondjiglely recommend the use of MOCell
as a search engine for an automatic test data generatoaugglththe multi-objective approach is
working very well in most of the programs, we realized thaley with only one branch at the
same time (mono-objective approach) can be more effectivenwthe program under test has high
nesting degree. In addition, we must highlight that bottrappghes (MM and mM) are quite good at
reducing the number of test cases needed to obtain a givenage: The oracle cost can be greatly
reduced because the mM approach only needs 19.32% of the bpped of test cases needed
for obtaining the maximum value of coverage, and the MM applnais even better, only needing
a 15.12% of the test cases. This improvement justifies theolisar approaches to deal with the
MOTDGP.

Future work will verify these findings with still larger realorld software. Also, we should find a
set of representative software programs because researochunity has not established a standard
benchmark of well-known programs. We also want to advanceesigning better evolutionary

Table XIX. Ranking of algorithms according to maximum cage and hypervolume grouped by nesting

degree.
Coverage

Rank | ND 1 | ND 2 | ND 3 | ND 4 || All
1 GA GA GA GA GA
2 ES ES ES ES ES
3 MOCell MOCell MOCell NSGA-II MOCell
4 NSGA-II NSGA-II NSGA-II MOCell NSGA-II
5 SPEA2 SPEA2 SPEA2 SPEA2 SPEA2
6 PAES PAES PAES PAES PAES
7 RNDMono | RNDMono | RNDMono | RNDMono || RNDMono
8 RNDMulti RNDMulti RNDMulti RNDMulti RNDMulti

Hypervolume

Rank | ND 1 | ND 2 | ND 3 | ND 4 I All
1 MOCell MOCell GA GA GA
2 NSGA-II GA MOCell MOCell MOCell
3 ES NSGA-II NSGA-II ES ES
4 GA ES ES NSGA-II NSGA-II
5 PAES SPEA2 SPEA2 SPEA2 SPEA2
6 SPEA2 PAES PAES PAES PAES
7 RNDMono | RNDMono | RNDMono | RNDMono || RNDMono
8 RNDMulti RNDMulti RNDMulti RNDMulti RNDMulti

operators in order to deal with programs with high nestingrele that could pose a challenge for
our algorithms, especially for the multi-objective ones.

9. ACKNOWLEDGEMENTS

This work has been partially funded by the Spanish Minisfrg@ence and Innovation and FEDER
under contract TIN2008-06491-C04-01 (the Idroject). It has been also partially funded by the
Andalusian Government under contract PO7-TIC-03044 (BB project).

IN

o~N o O

10.
11.

REFERENCES

. Xanthakis S, Ellis C, Skourlas C, Gall AL, Katsikas S, Kamalios K. Application of genetic algorithms to software

testing. Proceedings of the 5th International Conference on Sofwiamgineering and Applicationgoulouse,
France, 1992; 625-636.

. Harman M, Jones BF. Search-based software engineénfugmation & Software Technologpecember 2001;

43(14):833-839.

. McMinn P. Search-based software test data generatianvaeysSoftware Testing, Verification and Reliabilityne

2004;14(2):105-156.

. Harman M. The current state and future of search basewaeftengineeringProceedings of International

Conference on Software Engineering / Future of Softwareirigmging 2007 (ICSE/FOSE '07)EEE Computer
Society: Minneapolis, Minnesota, USA, 2007; 342—-357.

. Miller W, Spooner DL. Automatic generation of floatingipitest datalEEE Trans. Software End976;2(3):223—

226.

. Korel B. Automated software test data generati®EE Transactions on Software EngineeriAgigust 1990;

16(8):870-879.

. Beizer B.Software testing techniqueznd edn., Van Nostrand Reinhold Co.: New York, NY, USA, 1990
. Baresel A, Binkley DW, Harman M, Korel B. Evolutionary teg in the presence of loop—assigned flags: A

testability transformation approadhternational Symposium on Software Testing and AnaliS&TA 2004)2004;
108-118.

. Diaz E, Blanco R, Tuya J. Tabu search for automated loagrage in software testind?roceedings of the

International Conference on Knowledge Engineering andifdes Support (ICKEDS)Porto, 2006; 229-234.
Zhan Y, Clark JA. The state problem for test generatiosinmlink. GECCQO’06: Proceedings of the 8th annual
conference on Genetic and evolutionary computathldM Press, 2006; 1941-1948.

Tracey N, Clark J, Mander K, McDermid J. Automated testadgeneration for exception conditior&oftware
Practice and Experienc2000;30(1):61-79.

12.
13.
14.
15.
16.
17.

18.

19.
20.
21.

22.
23.
24,
25.
26.
27.
28.
29.
30.
31.
32.
33.

34.

35.
36.
37.
38.
39.
40.

41.

42.
43.

44,

Blanco R, Tuya J, Adenso-Diaz B. Automated test dat@mgion using a scatter search approdoh. Softw.
Technol.2009;51(4):708-720.

Ahmed MA, Hermadi |. GA-based multiple paths test dataegator.Computers & Operations Resear@008;
35(10):3107-3124.

Alshraideh M, Bottaci L. Search-based software test dateration for string data using program-specific search
operatorsSoftw. Test. Verif. ReliaR006;16(3):175-203.

Xiao M, El-Attar M, Reformat M, Miller J. Empirical evation of optimization algorithms when used in goal-
oriented automated test data generation technidtrapirical Software Engineering007;12(2):183-239.

Diaz E, Tuya J, Blanco R, Dolado JJ. A tabu search algurifor structural software testingcomputers &
Operations Research008;35(10):3052 — 3072.

Harman M, Kim SG, Lakhotia K, McMinn P, Yoo S. Optimizing fthe number of tests generated in search based
test data generation with an application to the oracle cmdtlpm.Proceedings of the 3rd International Workshop
on Search-Based Software Testing (SBST) in conjunctidnl@&T 2010IEEE: Paris, France, 2010; 182-191.
Lakhotia K, Harman M, McMinn P. A multi-objective appabato search-based test data generat@BCCO '07:
Proceedings of the 9th annual conference on Genetic andigooary computationACM: New York, NY, USA,
2007; 1098-1105.

Deb KD, Pratap A, Agarwal S, Meyarivan T. A fast and diitiltiobjective genetic algorithm : NSGA-IIEEE
Transactions on Evolutionary Computatighugust 20026(2):182—-197.

Nebro AJ, Durillo JJ, Luna F, Dorronsoro B, Alba E. MOC@&l cellular genetic algorithm for multiobjective
optimization.Int. J. Intell. Syst2009;24(7):726—-746.

Nebro AJ, Durillo 33, Luna F, Dorronsoro B, Alba E. Desiggues in a multiobjective cellular genetic algorithm.
Evolutionary Multi-Criterion Optimization. 4th Internanal Conference, EMO 200Tecture Notes in Computer
Sciencevol. 4403, Obayashi S, Deb K, Poloni C, Hiroyasu T, Muratads(), Springer, 2007; 126—140.

Zitzler E, Laumanns M, Thiele L. SPEA2: Improving theestyth pareto evolutionary algorithifechnical Report
103 Gloriastrasse 35, CH-8092 Zurich, Switzerland 2001.

Angeline PJ, Michalewicz Z, Schoenauer M, Yao X, ZalZalgeds.).The Pareto Archived Evolution Strategy: A
New Baseline Algorithm for Pareto Multiobjective Optintisa, vol. 1, IEEE Press: Mayflower Hotel, Washington
D.C., USA, 1999.

Yoo S, Harman M. Pareto efficient multi-objective testecaelection 9-12 July 2007; :140-150.

Michael CC, McGraw G, Schatz MA. Generating softwaré desa by evolutionlEEE Transactions on Software
EngineeringDecember 200127(12):1085-1110.

Wegener J, Baresel A, Sthamer H. Evolutionary test enmient for automatic structural testingformation and
Software Technologpecember 200143(14):841-854.

Arcuri A. It really does matter how you normalize the lmfanlistance in search-based software tesBujtware
Testing, Verification and Reliabili§011: (doi 10.1002/stvr.457)

McMinn P, Binkley D, Harman M. Empirical evaluation of asting testability transformation for evolutionary
testing. ACM Trans. Softw. Eng. Methoddlune 200918:11:1-11:27.

Rechenberg Evolutionsstrategie: Optimierung technischer Systeneh iinzipien der biologischen Evolution
Fromman-Holzboog Verlag: Stuttgart, 1973.

Rudolph GEvolutionary Computation 1. Basic Algorithms and Operateol. 1, chap. 9, Evolution Strategies.
IOP Publishing Lt, 2000; 81-88.

Knowles J, Thiele L, Zitzler E. A Tutorial on the Perfonmca Assessment of Stochastic Multiobjective Optimizers.
TIK Report 214 Computer Engineering and Networks Laboratory (TIK), ETl#tigh February 2006.

Zitzler E, Thiele L. Multiobjective evolutionary algthims: a comparative case study and the strength pareto
approachlEEE Trans. Evolutionary Computatidr999;3(4):257-271.

Knowles J. A summary-attainment-surface plotting meétHor visualizing the performance of stochastic
multiobjective optimizersinternational Conference on Intelligent Systems Deisgih Applications 2005; 552—
557.

Alba E, Chicano F. Observations in using parallel andisetial evolutionary algorithms for automatic software
testing.Computers & Operations Resear2f08;35(10):3161-3183.

King JC. A new approach to program testiS§GPLAN NotApril 1975; 10:228-233.

King JC. Symbolic execution and program test@gmmun. ACMuly 1976;19:385-394.

Dijkstra EWA Discipline of ProgrammingPrentice Hall, 1976.

Gris D.The science of programmingpringer-Verlag, 1981.

Kaldewaij A.Programming: The derivation of algorithmBrentice-Hall, 1990.

May PS. Test Data Generation: Two Evolutionary Appreacto Mutation Testing. PhD Thesis, Computing
Laboratory 2007.

Arcuri A. Evolutionary repair of faulty softwardpplied Soft Computing011;11:3494-3514.

Jones BF, Sthamer HH, Eyres DE. Automatic structuréihigsising genetic algorithms, 1996.

Durillo JJ, Nebro AJ, Luna F, Dorronsoro B, Alba E. jMet&l Java Framework for Developing Multi-
Objective Optimization Metaheuristic¥echnical Report ITI-2006-1Mepartamento de Lenguajes y Ciencias de
la Computacion, University of Malaga, E.T.S.I. Infortica, Campus de Teatinos December 2006.

Alba E, Dorronsoro BCellular Genetic AlgorithmsOperations Research/Computer Science Interfacek 42.
Springer-Verlag Heidelberg, 2008.

