
SOFTWARE – PRACTICE AND EXPERIENCE
Softw. Pract. Exper. (2013)
Published online in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/spe.2225

Implementing an embedded compiler using program
transformation rules

Tegawendé F. Bissyandé1, Laurent Réveillère2,*,†, Julia L. Lawall3,
Yérom-David Bromberg2 and Gilles Muller3

1SnT - University of Luxembourg, Luxembourg
2LaBRI - University of Bordeaux, France

3Inria Paris Rocquencourt, France

SUMMARY

Domain-specific languages (DSLs) are well-recognized to ease programming and improve robustness for a
specific domain, by providing high-level domain-specific notations and checks of domain-specific properties.
The compiler of a DSL, however, is often difficult to develop and maintain, because of the need to define
a specific treatment for a large and potentially increasing number of language constructs. To address this
issue, we propose an approach for specifying a DSL compiler using control-flow sensitive concrete-syntax
based matching rules. These rules either collect information about the source code to carry out checks or
perform transformations to carry out compilation. Because rules only mention the relevant constructs, using
their concrete syntax, and hide the complexity of control-flow graph traversal, it is easy to understand the
purpose of each rule. Furthermore, new compilation steps can be added using only a small number of lines
of code. We explore this approach in the context of the z2z DSL for network gateway development and show
that it is beneficial to implement the core of its compiler in this manner. Copyright © 2013 John Wiley &
Sons, Ltd.

Received 4 July 2012; Revised 13 August 2013; Accepted 13 August 2013

KEY WORDS: DSL; compiler construction; internal (embedded) languages; embedded compilers; program
transformation

1. INTRODUCTION

Domain-specific languages (DSLs) expose concepts that are focused on a specific domain, via
specialized syntax, thus providing many opportunities for improving developer productivity and
empowering domain experts [1–5]. Designing and implementing such a language, however, raises
practical challenges. Two main currents have emerged for these tasks: external DSLs and internal
DSLs [6]. An external DSL is implemented using a standard compiler toolchain, consisting of a
parser, code checker, if any, and code generator that are dedicated to the given DSL syntax. This
approach provides maximum flexibility in the language design, because compilation tools can be
specifically targeted towards the desired language features. However, this approach requires a high
degree of compiler development expertise. An alternative is provided by an internal DSL, also
known as an embedded DSL, where the language is implemented as a library, in terms of new
operators and abstract data types, for some existing general-purpose host language. Common host
languages include Haskell, Scala, and Ruby, which provide, to varying degrees, flexible syntax,
advanced type systems, and reasonable performance that can support a variety of syntaxes and ver-
ifications, without the need to directly implement a parser, code checker, or code generator [7–10].
Internal DSLs, however, are limited to the kinds of syntax, verifications, and optimizations provided

*Correspondence to: Laurent Réveillère, LaBRI - University of Bordeaux, 33402 Talence, France.
†E-mail: reveillere@labri.fr

Copyright © 2013 John Wiley & Sons, Ltd.

T. F. BISSYANDÉ ET AL.

by the host language, and all implementation strategies target the requirements of the host language,
not of the DSL itself.

In this paper, we present an approach to DSL implementation building on a case study in the
context of the z2z DSL for network gateway development [4]. A gateway is the part of a network
infrastructure that serves to translate messages between hosts that implement different network
protocols. The environments in which we live are becoming more and more networked, and there
is a corresponding explosion in network protocol designs, making the development of gateways
increasingly necessary. Gateway code must perform complex message processing operations,
taking into account nonfunctional variations between protocols, such as the choice of the underlying
transport layer and the choice between synchronous and asynchronous messaging. Furthermore, to
reduce costs, a gateway is typically implemented as an embedded system, for which careful coding
is required to maximize performance and minimize resource usage. These issues complicate
gateway development and imply that both efficiency and correctness are critical.

The z2z DSL is a C-like language that provides abstractions dedicated to the gateway domain,
including protocol features, message structures, and the message translation logic. This language
is complemented by a highly optimized runtime system, which manages the network interaction.
The z2z DSL was originally designed and implemented as an external DSL following the source
to source transformation pattern [11]. The implementation thus amounts to a compiler [12], in that
it transforms code written in one language into another one. This compiler generates C code that
can then be further compiled into executable code by using a standard optimizing C compiler. By
passing through C, the implementation provides good performance and low memory usage. The
z2z compiler furthermore performs a number of checks to ensure robustness. The z2z DSL has
been used to implement a number of complex gateways, including a gateway to allow Session
Initiation Protocol (SIP)‡ control of a Real Time Streaming Protocol (RTSP)§ camera, a service
discovery gateway between Service Location Protocol (SLP)¶ and Universal Plug and Play (UPnP),||

and a gateway to allow tunnelling Simple Mail Transfer Protocol (SMTP)** traffic over HyperText
Transfer Protocol (HTTP)†† [4]. We are also aware of some exploratory industrial usage of the
language. A full description of the syntax and semantics of the z2z language can be found in
previous work [13].

Our experience in designing and implementing z2z, as well as several other DSLs for systems
programming tasks that require ad-hoc fine-grained code checks and aggressive optimization
[14–17], has shown that the initial design of an external DSL and the implementation of its compiler
can be done very quickly if developers are familiar with programming language concepts and
compiler construction techniques. However, as in previous work by others [18], we have also found
that a new DSL must frequently evolve, as new requirements and even new application areas become
apparent. For example, in the development of the HTTP to SMTP gateway, we found that it was
necessary for the message translation logic to explicitly manipulate Transmission Control Protocol
(TCP) connections, a functionality that was not anticipated in the initial z2z design. Extending the
z2z DSL to provide this functionality entailed the addition of new primitives, accompanied by the
corresponding addition of new code checks. These changes to the z2z DSL required a pervasive
transformation of its compiler. To support this kind of language evolution, the compiler design must
make it possible to prototype code generation and code checking rules for new language features
quickly, while keeping the language implementation understandable for later updates. If this flexi-
bility cannot be provided, language developers and users are likely to abandon the DSL and revert
to a general-purpose language-based solution.

The difficulties in implementing and maintaining the z2z compiler can essentially be attributed
to the gaps, both syntactic and semantic, between the source language (z2z), the compiler
implementation language (OCaml), and the target language (C). When a developer of the z2z

‡for multimedia sessions
§for control of streaming medias servers
¶for service discovery
||for device-to-device networking
**for sending e-mails to servers
††for interacting with web servers

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2013)
DOI: 10.1002/spe

IMPLEMENTING AN EMBEDDED COMPILER USING PROGRAM TRANSFORMATION RULES

language finds a problem in the generated code, he must track down the portion of compiler code
that produces the defect and fix it. To do so, he must first correlate the generated C code with z2z
code to determine which part of the z2z specification has been erroneously translated and then go
through the internals of the compiler’s OCaml code to fix the implementation. Whether such a fix
involves modifying the checks performed by the compiler or improving the transformations carried
out during the code generation process, it can entail significant side effects to the compiler design
and may thus require reimplementing large portions of the compiler. Even if some parts that are
affected are merely boilerplate code, the need to study and modify them, including the possibility
of introducing errors, represents a substantial burden on the language developer.

These difficulties in maintaining the z2z compiler suggest that an internal DSL design and
implementation approach may be more suitable in the long term. This requires the choice of a host
language. The z2z user community is used to programming in C-like languages, and z2z critically
relies on the performance that can only be achieved by a native C implementation. C, however, is not
a natural target for defining internal DSLs, as it does not provide a rich type system or other DSL
support features. Rather than relying on the C language to provide domain-specific features and
enforce domain-specific properties, we propose an alternate approach to internal DSL development
based on the use of externally developed transformation and code checking rules. For this, we
use Coccinelle [19], a program matching and transformation tool for C code, to replace the
compilation of z2z code to C. Coccinelle specifications are written using a syntax and following
a structure very similar to that of the target C program itself, thus freeing the language developer
from manipulating complex intermediate representations such as abstract syntax trees and control-
flow graphs. Rules are furthermore modular, being specific to the affected constructs, making them
simpler than a typical compiler pass. A thorough documentation on Coccinelle can be found on the
project web page: http://coccinelle.lip6.fr.

The results of our work are

� We propose an approach to DSL compiler development that reduces the complexity of
designing and maintaining the DSL compiler by expressing the required checks and
transformations using a notation that is syntactically close to that of the generated code. To
this end, we discuss our practical experience in first implementing the z2z DSL as an external
DSL and later migrating it to an internal DSL. We motivate the need for migration and
enumerate the benefits of the new approach.
� We describe how to use the Coccinelle program matching and transformation engine to perform

the code checking and code generation steps required by an embedded compiler.
� We show the applicability of our approach by using it to implement an embedded compiler

for the most complex and performance-demanding part of the z2z DSL, the translation of
messages. The resulting compiler is about one third the size of the original compiler for the
message translation code, which was implemented in OCaml.

The rest of this paper is organized as follows. Section 2 presents the z2z DSL and highlights
the code checking and code generation steps that are performed by its existing compiler. Sec-
tion 3 describes the changes required to the syntax of the z2z DSL to embed it into C. Section 4
presents Coccinelle and outlines our approach to internal DSL development. Section 5 assesses the
efficiency of our approach, and Section 6 discusses related work. Finally, Section 7 concludes and
presents future work.

2. A NETWORK PROTOCOL GATEWAY DOMAIN-SPECIFIC LANGUAGE

The z2z DSL provides facilities for defining a gateway in terms of three kinds of interdependent
modules that describe network protocol behaviors, message structures, and the message translation
logic, building on an optimized run-time system. A protocol specification module describes various
properties of the interaction with the network, such as the transport protocol used, whether requests
are sent in unicast or multicast, whether responses are received synchronously or asynchronously,
and how to relate invocations that should be considered to be within the same session. It also
specifies how to dispatch a received request to a specific message-translation handler for

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2013)
DOI: 10.1002/spe

T. F. BISSYANDÉ ET AL.

processing. A message specification module defines message views that describe the information
that can be extracted from incoming messages and templates that describe the structure of new
messages to be created. Both message views and templates are represented as a set of fields. Finally,
the message translation module describes how to translate between the various types of messages,
taking into account protocol properties.

The z2z DSL provides a sublanguage for describing each of these modules. Our language
implementation case study focuses on the sublanguage message translation language (MTL) for
implementing the message translation module. The message translation module describes actions
to perform on each message, while the other kinds of modules primarily define supporting data
structures and provide specifications. Thus, the message translation module is typically the most
complex and performance-demanding part of a z2z gateway implementation. The compilation of
this module, however, depends on information from the other modules.

Message translation language code consists of a set of handlers, one for each kind of relevant
incoming request, as indicated by the protocol specification module of the source protocol. Domain-
specific operators are provided for manipulating and constructing messages, for sending requests
and returning responses, and for managing sessions, which maintain state across requests. Figure 1
illustrates an extract of the message translation module of an SLP to UPnP gateway. This handler
takes SLP request s as an argument (line 1), constructs and sends a SSDP request to perform service
discovery (line 6), and then constructs and sends an HTTP GET request to obtain contact informa-
tion about the discovered services (lines 8–11). Note that the handler argument is not used in the
service discovery process, because the goal is to become aware of all available services. The result
is a message encapsulating the discovered URL. More details about MTL and the rest of the z2z
DSL are presented in previous work [4].

The compiler of the z2z DSL, treating all three sublanguages, is implemented in OCaml and
follows a traditional structure [12], consisting of a parser, which converts the source code to an
abstract syntax tree (AST), followed by various compilation phases that analyze and transform
the AST, and concludes with a code-generation phase, producing C code. This compiler performs
some domain-specific code checks to detect inconsistent specifications and ensure the generation
of safe code. We now describe the code checks and code generation steps that are performed
by the compiler.

2.1. Code checks

The checking phase (1) performs consistency checks to ensure that the information declared in each
module is used elsewhere according to its declaration and (2) applies dataflow analysis to the MTL
code to ensure that values are well-defined when they are used.

Consistency checks. The consistency checks ensure that the MTL code is consistent with the
protocol specification modules and the message specification modules. The protocol specifica-
tion module of the source protocol declares how to dispatch incoming requests to the appropriate
handlers and whether a response is expected from these handlers. The z2z compiler checks that the

Figure 1. Session Initiation Protocol (SLP) to Universal Plug and Play (UPnP) gateway (message translation
language specification extract).

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2013)
DOI: 10.1002/spe

IMPLEMENTING AN EMBEDDED COMPILER USING PROGRAM TRANSFORMATION RULES

message translation module defines a handler for each kind of expected request, as indicated by
the protocol specification module, and that this handler has the expected return type. A message
specification module indicates the set of fields associated with each message view and template and
their types. A message specification module furthermore indicates which fields are automatically
handled by the runtime system (fields declared as private) and which must be managed by the
message translation module (fields declared as public). The z2z compiler checks that fields are
only used in the allowed module and that every access or update has the declared type.

Dataflow analysis. The z2z compiler uses dataflow analysis to check the safety of MTL operations
on messages, to ensure that fields are initialized before they are accessed, and to ensure that message
structures are fully initialized before they are transmitted on the network. The compiler also uses
dataflow analysis to ensure the correct use of operations related to the management of sessions and
TCP connections.

An MTL handler, as illustrated in Figure 1, is parameterized by a view of the corresponding
request (line 1), organized as defined in the message specification module. The information in this
view can be extracted using the standard structure field access notation. If the message specification
module indicates that a view element is optional, the z2z compiler checks that any reference to the
corresponding field is preceded by an empty test to determine whether its value is available before
it is used.

To create a message, an MTL handler invokes the name of the corresponding template (lines 6,
9, and 12 in Figure 1), as defined in the message specification module, and optionally passing to
it some keyword arguments indicating the values of some or all of the fields. The remaining fields
may then be incrementally initialized (line 10) until the created message is flushed to the network
at the point of a send or return operation (lines 6, 11, and 12). Template fields may be declared
in the message specification module to be public or private. The z2z compiler checks that all
public fields of a template are initialized before the template is passed to send or return.

Finally, the dataflow analysis also checks properties of sessions and of TCP connections. If the
protocol specification module for the source protocol of the gateway declares that this protocol is
session-based, then the message translation module may declare session variables. Such variables
are defined outside of any handler and keep their values across successive requests. The z2z com-
piler checks that references to session variables do not occur outside session boundaries, as defined
by the session_start and session_end operations. Similarly, if the protocol specification
module for a target protocol of the gateway declares that the protocol relies on TCP, then the mes-
sage translation module may use some operations (tcp_connect, tcp_get_connection,
etc.) to explicitly manage the TCP connection. The z2z compiler performs various checks to detect
erroneous uses of these operations. For example, only tcp_connect can be used after a call to
tcp_close along a given control-flow path.

2.2. Code generation

The code generation phase generates C code. We focus on the generation of C code from an
MTL specification. For that purpose, the code generation phase carries out three main categories
of transformations: (1) implementation of asynchronous message sends; (2) implementation of the
variables used by MTL; and (3) implementation of memory management.

The send operation. A request is sent from the gateway to the target service using the operator
send, as illustrated in lines 6 and 11 of Figure 1. If the target protocol specifies that responses are
returned asynchronously, then the gateway must be allowed to perform other tasks until the response
is available. So that the run-time system can restart the handler, the compiler generates code to pass
send a pointer to the remainder of the current handler, amounting to a continuation [20, 21].

Variables. Local variables that must be maintained across asynchronous sends are identified and
implemented as elements of an environment structure. Similarly, session variables, which must be
maintained across multiple handler invocations, are implemented in a global environment.

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2013)
DOI: 10.1002/spe

T. F. BISSYANDÉ ET AL.

Dynamic memory management. When memory needs to be allocated dynamically, as in an invo-
cation of a template constructor for message creation, the z2z compiler generates code to manage
reference counts. These reference counts are used to ensure proper memory management, without
introducing the run-time overhead of a tracing garbage collector, as found in languages such as Java.

2.3. An increasingly obsolete compiler

Over the course of the development of z2z, the syntax of MTL, its semantics as well as the inter-
nals of its compiler have all been refined several times. Changes have included fixing bugs in the
compiler and extending the language to support new features requested by users. As the compiler
has evolved, we have found that adding new features or modifying existing ones was requiring an
increasing amount of effort. For instance, when adding support for TCP-based networking, we had
to make changes pervasively throughout our manually written compiler; this had the effect of intro-
ducing bugs that were tedious to find and fix. Indeed, out of the 26 OCaml implementation files (.ml)
that constitute the z2z compiler, two were added and 17 were modified, over the course of 2 days.
These files amount to over 80% of the MTL compiler code. Twenty other edits in all the modified
files were necessary to fix bugs in the implementation of the TCP operators in the following 2 weeks.
In the long term, the maintenance that would be necessary to extend the language to address domain
changes (e.g., new protocol paradigms) and developer needs for complex applications could, in
practice, become impossible.

An approach that achieves part of the effect of language extension is to make it possible to link
programs with externally developed libraries. For instance, the use of encryption libraries is now
commonplace for extending protocols to support encrypted communication and secure identifica-
tion [22–24]. Nevertheless, the emphasis on static code checks and safety in the design of the z2z
DSL means that MTL code cannot simply directly call existing libraries. An alternative would be
to add these libraries to the run-time system, but doing so would require substantial expertise in the
design of the run-time system. An internal DSL-based approach, in which checks are targeted to
the DSL code, while unchecked host language code is supported as well, potentially provides a way
around this problem. We consider implementing MTL in this manner.

3. MESSAGE TRANSLATION LANGUAGE AS A C INTERNAL LANGUAGE

Our approach to implementing a DSL as an internal language in C involves expressing the language
in a C-like syntax and then using the program transformation tool Coccinelle [19] to transform the
language constructs into C code that expresses their semantics. To this end, we first reorganize the
syntax of MTL so that it is recognizable as valid C code by Coccinelle. In the C language, syntax
extensions are restricted to what can be expressed using preprocessor macros, which are limited
to single identifiers or a function-call-like notation; it is not possible to, for example, define infix
operators, as permitted in languages such as Haskell and Scala and as are frequently used in DSL
implementations [11, 25, 26]. Fortunately, as illustrated in Figure 1, the syntax of MTL is already
quite close to that of C. We have found that changes are only required to the syntax of message-
variable declarations and foreach loops to produce our C-MTL language. We do not believe that
either of these changes has a significant impact on the understandability of the language.

Message-variable declarations. As illustrated in lines 1–4 of Figure 1, MTL declarations related to
messages have the form of a double type declaration, containing both an indication of the protocol
associated with the message and an indication of whether the message is a request or response. For
example, in the handler header (line 1), the return type indicates both the name of the source pro-
tocol and whether a response is required (response or void), and the parameter type indicates
again the name of the source protocol and that the parameter represents a request. Furthermore,
the variable req_http on line 3 represents an HTTP request, while the variable res_ssdp on line 2
represents a SSDP response.

C variable declarations include only one type, and thus, these double type annotations found in
MTL code do not represent valid C syntax. We thus reorganize these declarations. For the handler

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2013)
DOI: 10.1002/spe

IMPLEMENTING AN EMBEDDED COMPILER USING PROGRAM TRANSFORMATION RULES

Figure 2. The Session Initiated Protocol (SLP) to Universal Plug and Play (UPnP) gateway of Figure 1 in
C-message translation language (MTL) syntax.

header, the protocol name in the return type and the keyword request in the declaration of the
parameter are redundant, as the same protocol is mentioned in both, and the parameter always rep-
resents a request message. In these cases, we simply drop the redundant information, as illustrated
in line 1 of Figure 2. Local variables, on the other hand, can represent either requests or responses
and can be associated with any protocol. For such variables, both the designation as request or
response and the name of the protocol are thus essential. In this case, we have followed a strategy
used in Linux kernel code and defined macros DECLARE_REQUEST and DECLARE_RESPONSE
to declare these variables, as illustrated on lines 2–4 of Figure 2. These macros take as arguments the
name of the protocol and the variable name, making it possible to preserve information about both
the kind of message and the associated protocol, for use in the code checking and code generation
process. MTL also allows the declarations of variables representing simple messages, which are not
oriented as either requests or responses, and of lists of various types. For declaring such variables,
C-MTL provides the macros DECLARE_MESSAGE and DECLARE_LIST, defined similarly.

Foreach. The MTL provides a foreach loop construct, in which the loop header declares a loop
index variable using a local declaration as in C++, and expresses the possible values of this variable
by assigning it to the list over which iteration is required. An example of such a loop is as follows,
taken from the z2z specification of a SIP to RTSP gateway developed in our previous work [4].

foreach (fragment rtsp_m_ = rtsp_medias) { ... }

foreach is not part of C, and thus, it would normally be necessary to define such a construct as a
macro. The C parser of Coccinelle, however, as part of its effort to parse C code without expanding
macros [19], already recognizes foreach as a loop construct and permits a variable declaration in
the loop header. Coccinelle, however, requires that the declaration end with a semicolon, as in an
ordinary C statement, and thus, C-MTL requires this semicolon as well.

Note that although the C-MTL foreach essentially has the form of C code, it does not follow the
C semantics, in that rtsp_m_ is intended to be assigned to each of the elements of rtsp_medias,
rather than to the complete list itself. A similar use of C syntax, without the associated C semantics,
is illustrated in the use of keyword arguments in the instantiation of templates, as found on line
6 of Figure 2. There, the initializations are intended to be to the fields of the template, not to the
individual variables. Thus, although we use a C-based syntax for C-MTL, we reserve the right, via
the compiler, to assign to the various constructs domain-specific semantics. The C-MTL user should
thus keep in mind the MTL semantics and not that of C.

4. A COCCINELLE-BASED EMBEDDED COMPILER FOR C-MESSAGE
TRANSLATION LANGUAGE

Although the syntax of C-MTL is recognizable as C code, the domain-specific constructs, related
to the management of network protocol messages, have a z2z-specific semantics. Thus, to obtain an
executable gateway, the C-MTL embedded compiler must transform the domain-specific constructs
into C code that implements their intended semantics. Furthermore, it is desirable to restrict the

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2013)
DOI: 10.1002/spe

T. F. BISSYANDÉ ET AL.

ordinary C code found in the C-MTL handlers, to protect the integrity of the message processing.
The C-MTL embedded compiler must thus also enforce the intended properties. In this section, we
show how these tasks can be carried out using the program-transformation tool Coccinelle.

In the rest of this section, we first give an overview of Coccinelle and then illustrate its use in
defining the main steps of the compilation process: (1) code preprocessing, to simplify and highlight
some aspects of the code; (2) code checking; and (3) code generation, as shown in Figure 3.

4.1. Coccinelle overview

Coccinelle is a tool for performing control-flow-based program searches and transformations in
C code [19]. It provides a language, semantic patch language (SmPL), for specifying searches and
transformations and an engine for performing them. An SmPL semantic patch consists of a sequence
of rules based on pattern matching but can contain OCaml or Python code, to be able to perform
arbitrary computations. Coccinelle allows code to be matched and transformed according to patterns
that are very similar to the affected code itself. This property helps make the rules easy for the com-
piler maintainer to read. Furthermore, each rule only mentions the specific kinds of code fragments
that are relevant to the associated compilation step. Thus, changes in the semantics of a construct
of the DSL typically have only a localized impact on the compiler structure. This property further
eases compiler maintenance.

We first present an overview of the SmPL syntax, via some simple semantic patches that perform
checks and transformations required by the C-MTL compiler. A complete grammar of SmPL is
available on the Coccinelle web site (http://coccinelle.lip6.fr/).

Example 1: Restricting the use of C code. Figure 4 shows a semantic patch to prevent the use of
setjmp and longjmp in MTL handler code. The use of setjmp and longjmp in handler code
can interfere with the compiler’s ability to analyze the handler control-flow and thus could impair

Figure 3. C-message translation language compilation steps.

Figure 4. A semantic patch for reporting all uses of setjmp and longjmp in C-message translation
language handlers.

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2013)
DOI: 10.1002/spe

IMPLEMENTING AN EMBEDDED COMPILER USING PROGRAM TRANSFORMATION RULES

its ability to perform the necessary checks of the message processing code. Furthermore, we expect
that these operators are not typically useful in translating network protocol messages. The semantic
patch consists of three rules: an SmPL rule named cmtl_handlers for collecting the names of the
relevant protocol handlers (lines 1–5), an SmPL rule named hasjmps matching calls to setjmp
or longjmp in the body of one of these handlers (lines 7–19), and an OCaml rule generating an
error message when such a call is found (lines 21–30).

As illustrated by the first rule cmtl_handlers (lines 1–5), an SmPL rule begins by declaring
some metavariables and then uses these metavariables to describe a pattern to be matched in the
source code. cmtl_handlers defines two metavariables (line 2): handler that will contain the name
of a handler and proto that will contain the name of its corresponding protocol. cmtl_handlers
also declares that DECLARE_HANDLER is a variable-declarer name, as introduced in Section 3.
The pattern (line 5) then instantiates these metavariables according to the arguments of the various
DECLARE_HANDLER declarations. These DECLARE_HANDLER declarations are generated by a
separate compiler, described in Section 4.2, from the protocol specification module of the gateway’s
source protocol.

The second rule, hasjmps, declares two metavariables: handler and pos. The metavariable han-
dler is inherited from cmtl_handlers, implying that hasjmps is applied once for each possible
binding of handler. The metavariable pos is new in hasjmps and will be used to store the position
of each call to setjmp or longjmp in the source code. The pattern, on lines 13–17, then matches
either a call to setjmp or a call to longjmp, as indicated by the use of a disjunction, represented
by (, j, and) in the leftmost column. The calls to setjmp and longjmp can have arbitrary argu-
ments, as indicated by the pattern ‘...’ in their argument lists. The pattern ‘...’ (lines 12 and 18)
is also used before and after the calls to setjmp and longjmp to indicate an arbitrary sequence of
statements. The annotation when any on the pattern ‘...’ indicates that there are no constraints
on the statements that can appear in these sequences. Finally, the notation @pos records the position
of each occurrence of the keyword setjmp or longjmp in the position variable pos.

The final rule is an OCaml rule (lines 21–30). Such a rule also begins by defining some vari-
ables and then uses the variables in arbitrary OCaml code (lines 25–30). In this case, the OCaml
rule inherits the metavariable handler from the SmPL rule cmtl_handlers and the metavariable
pos from the SmPL rule hasjmps. Because hasjmps, which declares pos, inherits handler, the
OCaml rule is applied once for each observed pair of bindings of these variables; on the other hand,
if the metavariables had been defined disjointly, the OCaml rule would be applied once for each
element of the cross product of their values. After binding the metavariables, the OCaml code prints
an error message indicating the position at which the call to setjmp or longjmp occurs. In this
work, we only use OCaml rules for generating error messages in the checking rules. OCaml is not
involved in any of the code manipulation tasks.

The rules are applied to the C-MTL code in sequence, with the first rule being applied to each
top-level term (variable declaration or function definition), then the second rule being applied once
to each top-level term for each assignment of its inherited metavariables, etc. There are no loops in
this process, and thus, it is guaranteed to terminate.

Example 2: transforming C-message translation language code into C code. Figure 5 shows two
semantic patch rules related to injecting the MTL semantics of strings into C code. Unlike C strings,

Figure 5. A semantic patch implementing the z2z semantics of string constants.

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2013)
DOI: 10.1002/spe

T. F. BISSYANDÉ ET AL.

C-MTL strings can be compared using == and !=, which compare their content rather than their
pointers, and they are represented as structures containing a reference count and the string value. The
first rule (lines 1–11) rewrites comparison expressions involving constant strings to use strcmp.
The SmPL operator - at the beginning of lines 6 and 9 instructs Coccinelle to remove the matched
expressions, while the SmPL operator + at the beginning of lines 7 and 10 instructs Coccinelle
to add the corresponding code to the generated program. The added code is constructed using the
metavariable bindings obtained by matching the removed code, as well as by matching any pattern
that may be present without -/+ annotations. This pattern should be embedded in the declaration of
a handler, as was done in the rule hasjmps in Figure 4, to ensure that the rule only applies to MTL
code. We omit this detail to simplify the presentation.

The second rule (lines 12–22) replaces each constant string by a static structure containing
the required reference-count information. For this, the rule matches each handler and each of the
constant strings C occurring anywhere inside it, as indicated by the nest operator <C... ...C>
(lines 18-21). For each constant string, we need to construct a corresponding structure before the
beginning of the handler and give this structure a unique name. Thus, a fresh identifier str is declared
for each constant string C , based on the prefix _mtl_string_ (line 14), and a corresponding dec-
laration of a structure, named str, is added before the definition of the handler. The annotation
CC (line 16) allows these added structure declarations to accumulate. We also need to replace
each occurrence of the string by an access to the appropriate structure field. Thus, in the nest, the
rule replaces each matched occurrence of C by an access to the val field of the corresponding
fresh str variable.

As in the previous example, the first rule (lines 1�11) is applied once to each top-level term in the
program, and then, the second rule is applied once to each top-level term in the transformed result
produced by the first rule. Thus, for example, each constant string involved in a string comparison
operation that is created by the first rule is replaced by a reference-counted structure and appropri-
ate field accesses, by the second rule. It is also necessary to update the string references stored in
variables to refer to the structure field. This is done by a subsequent rule, which is not shown.

4.2. Preprocessing

We now turn to the implementation of the Coccinelle-based compiler itself, starting with a
preprocessing phase. To facilitate code checking and code generation using Coccinelle, the compiler
first reorganizes the MTL code, to make some operations explicit and to add tags that indicate impor-
tant points in the code. This step mainly serves to avoid redundant processing in the subsequent code
checking and code generation steps.

Incorporating information about protocols and message. The code checking and code generation
steps require information from the protocol specification and message specification modules. To
make this information available, we have implemented a dedicated compiler that encodes the con-
tents of these files into C structure declarations in header files that exist only for the compilation
process. The use of a dedicated compiler in this case seems essential, because these modules are
declarative, and thus are not naturally expressed as C code, which is required for processing using
Coccinelle. These modules serve as a critical reference for the gateway programmer and thus must
be easily understandable.

The dedicated compiler uses auxiliary information about the set of protocols involved in the
gateway to add includes of the generated header files to the top of the C-MTL code. This
phase also enhances the declarations of local variables declared using DECLARE_REQUEST or
DECLARE_RESPONSE, to distinguish between a received message, which has the type of the
corresponding message view, and a constructed message, which has template type.

Normalization of message construction code. In MTL, a message is constructed by invoking a
template on a set of keyword arguments that provide values for any subset of the fields of the
message template. The remaining fields can then be initialized by explicit assignments.
Coccinelle rules are used to normalize the message construction code, by removing any

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2013)
DOI: 10.1002/spe

IMPLEMENTING AN EMBEDDED COMPILER USING PROGRAM TRANSFORMATION RULES

Figure 6. Inserting labels for continuations.

template arguments and replacing the call to the template by a call to the message-creation operator
new having the template name as an argument. The original message arguments become assign-
ments to the fields of the allocated message. A local request or response variable is introduced to
hold the message, according to the role of the protocol, as indicated by the type of the template.

Making control-flow explicit. A send to a protocol that responds asynchronously does not directly
return a result but instead aborts the execution of the handler until the response is available. The
implementation of such an asynchronous send must thus provide to the run-time system informa-
tion about what code should be executed at that time. For this, Coccinelle rules are used to construct
a form of continuation, represented as a label, which is passed to the call to send and renamed
send_async to indicate its specific semantics. The handler is then reorganized such that it takes a
label or NULL as a parameter and, if a label is provided, jumps to the corresponding position in the
handler.

Figure 6 shows extracts of the semantic patch for managing asynchronous sends. The rule
prot_info (lines 1–5) uses the header files generated from the protocol specification module to
identify the target protocols of the gateway for which sends are asynchronous. For each such
protocol, the rule async (lines 7–19) transforms a send (line 16) whose argument is a variable
declared to be a request for the given protocol (lines 13–14) into a call to send_async. Informa-
tion about the protocol is also provided to send_async as the first argument. Then, for each call to
send_async (line 24), an OCaml script (lines 25–30) creates a name for a new label, based on the
position of the call in the MTL code (lines 29–30), obtained using the rule sasync (lines 21–24).
Finally, the rule insert_label adds the address of this label as an argument to send_async and
places this label after the call to send_async (line 44), taking care to halt the handler first with
a return statement (line 43). A tag SEND_CONT is also inserted just after the label (line 45) to
indicate that this is the entry point of a continuation that comes after a send operation. Another tag
that does not appear in the example is START_CONT, which indicates the entry point of the handler.

4.3. Code checks

As summarized in Section 2.1, the goal of the checks of the message translation module is to ensure
that this module is consistent with the protocol and message specification modules and to ensure
that values are well-defined before they are used. These checks rely on the information in the header
files that were included as part of the preprocessing phase.

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2013)
DOI: 10.1002/spe

T. F. BISSYANDÉ ET AL.

Consistency checks. As introduced in Section 2, template fields may be annotated as public or
private, and the MTL code is only allowed to access the public fields. The semantic patch
shown in Figure 7 detects attempts to initialize private fields. The first rule, ref (lines 1–5), matches
a structure field initialization, recording the name of the structure type in the metavariable T and the
name of the accessed field in the metavariable fld. The second rule, priv (lines 7–15), then matches
the structure type, included via a header file, checking for a declaration of fld. In this structure, fld
is represented as having a function type, in which the parameter types indicate the properties of the
field. This function type is not used in the execution of the gateway; instead, it is used as a means to
collect the various attributes of each template field, as indicated in the corresponding message spec-
ification module. The rule priv checks whether the type of the second ‘parameter’ of this function
type is private (line 13). The types of the other parameters of this function indicate whether the
field is mandatory or optional (mand_or_opt) and whether it is preinitialized with a default value
(init_or_uninit). Finally, an OCaml script (lines 17–22) prints an error message in the case where a
match of the ref rule also satisfies the priv rule.

The main advantage of the semantic patch described previously is that it only mentions the spe-
cific kinds of code that are relevant to the property to be checked. This makes the check understand-
able for any programmer with basic knowledge of C programming and SmPL. Writing consistency
checks in this manner makes the language implementation understandable, which in turn makes
maintenance easier.

Dataflow analysis. Checks performed by the z2z compiler also include dataflow analysis to ensure
the validity of the generated gateway code. For example, a gateway should not be allowed to send
network message packets with uninitialized fields. To check this property, the compiler must be able
to reason in terms of paths in a control-flow graph. Coccinelle provides this capability via the ‘. . . ’
operator.

In the semantic patch of Figure 8, the rule public_fld collects all the public message fields
(line 7) associated with each template. On the basis of this information for a given template, the rule
sending then checks, for each public field, whether there exists (keyword exists, on line 11) a
path in the control-flow graph from the call to new to a call to send that does not include either
a reinitialization of the variable holding the result of new or an initialization of the public field.
In this rule, ‘. . . ’ (line 17) represents the sequence of operations between new and send, and the

Figure 7. Consistency check: a message translation language specification should not update private
fields of a message template.

Figure 8. Dataflow analysis: all public fields of a template instance must be initialized before the instance
is passed to send.

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2013)
DOI: 10.1002/spe

IMPLEMENTING AN EMBEDDED COMPILER USING PROGRAM TRANSFORMATION RULES

Figure 9. Code generation: in continuations that start sessions, the lock is acquired after a session is started.

when != operators describe terms that should not appear within this sequence (lines 17 and 18).
An OCaml script, which is not shown, is then used to print an error message if sending is satisfied.

4.4. Code generation

In a traditional AST-based compiler, it is necessary to generate code for all of the constructs of the
language. In our approach, code generation is only needed for terms whose C semantics is different
from the semantics that is desired for the DSL construct. In the case of the z2z DSL, the main issues
that require code generation are the management of session variables, of local variables that are
live across asynchronous sends, of memory (as illustrated by the introduction of reference count
management in Section 4.1), and of the send operation.

Variables. To implement sessions, the values of session variables must be maintained across invo-
cations of the handlers. Session variables are represented in C-MTL as global variables, but they
cannot be implemented in this way, because a session variable is specific to each initiated session
and not global to all invocations of the handlers. To reduce the scope of the session variables, we
reimplement them as fields of an environment structure. This structure is created when a session is
started and is then passed by the run-time system to subsequent handler invocations that are within
the same session, as defined by the criteria specified in the protocol specification module of the
source protocol. Local variables that are live across a call to asynchronous sends also must be
maintained across successive calls to the same handler, as the responses for the sends become
available. The compiler introduces a similar environment structure in this case.

An additional transformation is needed in the case of session variables. Because the run-time sys-
tem is multi-threaded, multiple handlers within the same session can be invoked in parallel. Thus,
any handler that refers to a session variable should acquire a lock associated with the session before
using the session variables. If a lock is not held when needed, the result can be an inconsistent access
to the session variables, and if a lock is not released when it should be, the result can be deadlock.

Figure 9 shows an extract of the semantic patch that transforms handlers that process global vari-
ables, identified using the rule needs_locks, to insert lock acquisitions after session_start
(lines 12–13) and at the beginning of all continuations that do not contain session_start
(lines 19–20) and adds lock releases before a session_end and at the end of continuations that do
not contain session_end (rules unlock1 and unlock2).‡‡ These rules rely on the rule globals,
which is not shown, that collects the names of the session variables, storing each in the metavariable

‡‡Backslashes are used in a disjunction that appears within a single line.

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2013)
DOI: 10.1002/spe

T. F. BISSYANDÉ ET AL.

Figure 10. Code generation: the high-level synchronous-send primitive is translated into various actions
for sending messages, waiting for responses, and parsing responses for future manipulations.

i , and a rule bad_session that is used to ensure that the transformations are only performed on
continuations where session_start and session_end are correctly used.

The send operation. In MTL, a send operation is expressed as a function call taking a template as
an argument and possibly returning a message view as a result. In Figure 6, we have seen part of the
implementation of an asynchronous send and its effect on the handler control flow. Here, we focus
on the process of constructing and sending the messages and processing the result for synchronous
sends.

Figure 10 shows the semantic patch that generates code for sending requests synchronously. This
semantic patch replaces the call to send by a series of more primitive operations. First, the private
fields of the template are initialized (template_sending_req, line 14), and then, the resulting
template is flushed to a string (line 17) that can be sent on the network (line 19). Finally, the raw data
that is received as a response is parsed to fill a message view, res, (line 20) that can be processed as
an ordinary structure in the remainder of the program. Several of these operations, such as construct-
ing the view of the response and parsing the raw response data to fill this view, rely on functions
specific to the protocol associated with the sent message. Fresh identifiers (lines 3–10) are used to
create names to be used to store temporary values (lines 3–4) or to reference these protocol-specific
operations (lines 5–10).

5. EVALUATION

We compare our approach with our previous work in which we developed a traditional, AST-based
compiler from the z2z DSL to C using OCaml [4]. We have used the z2z DSL to specify a number
of gateways: between SIP and RTSP, between SLP and UPnP, and between SMTP and SMTP via
HTTP. In each case, both compilers produce gateways that are equivalent in terms of executable
binary size and performance. Therefore, we focus our evaluation on the size of the compiler and the
compiler execution time. We also illustrate the process of correcting a bug in the Coccinelle-based
compiler.

Code size. The size of the compiler gives an idea of the difficulty that may confront a language
maintainer. Table I shows that our original MTL compiler contains over three times as many lines
of code as the Coccinelle-based one. Maintenance of the Coccinelle-based C-MTL compiler is also
eased by the fact that it is clearly separated into preprocessing, checking, and generation phases;
in the original MTL compiler, these issues are somewhat mixed, making it hard for a maintainer to
separately address issues in one part without introducing and needing to deal with side effects in the
others. Finally, the fact that SmPL matching and transformation rules are syntactically close to the
original code and the generated code eases the maintenance of the language implementation.

Table II shows in more detail the size of the different parts of the compiler that deal with spe-
cific language features. For instance, for the send operation, we consider the transformation rules
involved in the code tagging process for managing continuations and in generating the appropriate

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2013)
DOI: 10.1002/spe

IMPLEMENTING AN EMBEDDED COMPILER USING PROGRAM TRANSFORMATION RULES

Table I. Code size, in lines of code (LOC), of the C-message
translation language (MTL) and MTL compilers.

Compiler code size (LOC)

529 code reorganization

Coccinelle-based C-MTL compiler 1850 403 code checks

918 code generation

OCaml-based MTL compiler 6196

Table II. C-message translation language compiler code size for specific language features.

Compiler feature # SmPL rules C-MTL compiler
code size (LOC)

Consistency checks

Message view fields – mandatory, public, 6 189and read-only
Message template fields – mandatory, public, 6
and initialized

Dataflow analysis
Initialization of public fields – empty test prior 4 108to access
Initialization of message structures – before send 5

Message construction Convert message constructors 5 355Fill message templates and fields 13

Support for TCP Add TCP protocol support 7 110connections Add code for opening/closing TCP connections 2

Session management Processing of session variables 6 160Handling of continuations 6
Insertion of locks for session variables 17

Send operation Rewrite return statements 10 388Rewrite TCP response handlers 7

Miscellaneous Add parameters to handlers 9

173Add headers for runtime system primitives 6
Modify connection functions names 6
Normalize string comparisons (with strcmp) 1

SmPL: semantic patch language; MTL: message translation language; LOC: lines of code; TCP: Transmission
Control Protocol.

code for different protocol behaviors. In this case, the limited number of lines of code combined
with the simplicity of the transformations simplifies debugging.

Whereas the MTL compiler has to generate code for all of the constructs of the language, the
C-MTL compiler performs code generation only for terms whose C semantics is different from
the C-MTL semantics, which drastically reduces the size of the compiler. Indeed, like any internal
DSL, C-MTL reuses many features of the C language, such as arithmetic operators, for free, without
requiring any extra development effort.

Compilation time. To measure the compilation time, we use a Dell 2.40 GHz Intel ® Core TM 2
Duo with 3.9 GB of RAM, running Ubuntu with Linux kernel 2.6.32. We use Coccinelle 1.0.0-rc1,
compiled using OCaml 3.11.2. We test both compilers on a gateway between the SLP and UPnP
service discovery protocols, of which an excerpt was shown in Figure 1.

The original MTL compiler requires only 0.101 seconds to compile the SLP-UPnP gateway, while
the Coccinelle-based C-MTL compiler requires 4.192 s. Indeed, just the code generation for the send

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2013)
DOI: 10.1002/spe

T. F. BISSYANDÉ ET AL.

Figure 11. Code generation: handlers that refer to the global environment need locks at the beginning of all
of their continuations.

operation, as described previously, requires 0.212 s, which is more than the total time of the original
MTL compiler on the entire gateway. As opposed to the original MTL compiler, which is dedicated
to that purpose, the C-MTL compiler relies on Coccinelle, which is a general-purpose program
matching and transformation engine for C. Furthermore, to compile a C-MTL specification, we
launch Coccinelle successively for each semantic patch, requiring the C-MTL code to be read from
disk and parsed at each step, whereas the MTL compiler parses the code only once before carrying
out, at once, all checking and generation steps. It should be straightforward to modify Coccinelle to
address this issue.

Correcting a buggy compilation rule. In Figure 9, we showed how to add the use of locks to pro-
tect accesses to session variables. Our first, incorrect, attempt at implementing this functionality
is shown in Figure 11. This semantic patch identifies handlers that reference global variables (rule
needs_locks), inserts lock acquisitions at the beginning of all continuations in such handlers (rule
buggy), and adds lock releases at the end of such continuations (rule unlock). After testing this
rule, we observed that the generated code is not correct as the lock should only be acquired after the
session is actually started.

Once the problem was identified, it was easy to correct the SmPL transformation rules by
restricting the set of affected continuations, resulting in the rules shown previously.

Improving the transformations when using Coccinelle, as highlighted in the previous texts, comes
down to extending a rule or writing an additional rule for dealing with a special case. In the origi-
nal implementation of the MTL compiler, however, rewriting the generation of lock code requires
correlating portions of code in several files. Among these files are those that are relevant to the
implementation of the traversal of the language AST and the pretty printer of the generated code.
The tasks of revisiting these files when bugs are found can become tedious, over the long term, even
for those who implemented the compiler in the first place.

6. RELATED WORK

A number of surveys have considered the advantages and disadvantages of various DSL implemen-
tation strategies. Spinellis [27], Kosar [11], and Mernik [28] have categorized various DSL design
and implementation patterns and have compared the different approaches in terms of implemen-
tation effort and end-user effort. For instance, Kosar et al. have ranked the internal (embedded)
implementation approach as the best in terms of development effort, by showing that it requires
less code. On the other hand, the source-to-source and compiler generator approaches require less
effort from the end user, because the DSL syntax can typically be more closely tied to the domain,
which often reduces DSL program sizes. In our work, we are able to provide a syntax that is tied
to the domain, as network protocol developers are used to C programming, but that follows the
internal implementation approach. We present in the succeeding texts other related work on DSL
development.

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2013)
DOI: 10.1002/spe

IMPLEMENTING AN EMBEDDED COMPILER USING PROGRAM TRANSFORMATION RULES

Internal domain-specific languages. Internal DSLs, also often referred to as domain-specific
embedded languages are increasingly common, driven by the introduction of DSL-development
methodologies based on general purpose languages (GPLs) such as Lisp, Ruby, Haskell, or Scala
that are well adapted to serve as host languages [26, 29, 30]. Indeed, these GPLs provide a number
of features that are beneficial in domain-specific embedded language implementation: support for
higher-order functions, lazy evaluation, strong typing with polymorphism, and overloading [28].
Baars et al. have also proposed a number of embedded compilers for internal languages hosted
in such languages [31–33], furthermore achieving run-time compilation of the internal language
[34,35]. However, their work requires explicit manipulation of the abstract syntax trees by the DSL
developer, which can make debugging of the DSL implementation tedious.

Recent meta-programming techniques, such as expression templates, have facilitated the hosting
of several DSLs in C++, including languages dedicated to scientific computing [10, 36]. Tratt has
recently described an approach of DSL implementation through embedding into the Converge§§

programming language [37]. In this case, the embedding is facilitated by a compile-time meta-
programming feature. Our approach instead leverages a system, Coccinelle, that is external to the
C host language. The Helvetia [38] workbench accommodates language embedding by providing
an infrastructure that defines extension points for leveraging the host language’s compiler and tools.
Similarly, Hofer et al. have advocated polymorphic embedding [39] of DSLs to reconcile the rapid
prototyping that can be achieved by simply borrowing the syntax and semantics of the host language
in pure embedding with the flexibility that can be attained by using external toolchains. We also aim
for this goal by leveraging the Coccinelle transformation engine as a tool chain for C-like programs.

The C language is a challenging target for DSL hosting. Existing approaches have typically relied
on the use of macros and domain-specific libraries [40]. With this strategy, any check requiring
control or data flow information must rely on externally developed analyses, requiring substantial
development effort. We have avoided the need to develop such analyses from scratch by leveraging
an existing scriptable code matching and transformation tool.

Compiler-based domain-specific languages. The design and implementation of compilers for
DSLs is broadly discussed in the literature [6, 9, 27, 41]. Whether developers use standard com-
piler/interpreter techniques to directly implement a DSL or extend an existing GPL compiler, the
development is often at a high cost and produces an implementation that is tied to the language or to
a domain, complicating reuse. Despite these disadvantages, the compiler approach has gained wide
acceptance because it allows constructing a DSL whose syntax is as close as possible to the notation
used by domain experts and because it may offer good error reporting [11]. In our work, we have
shown that a compiler toolkit based on Coccinelle is more flexible for DSL maintenance.

The Broadway compiler [42] allows developers to use code annotations to provide the compiler
with domain-specific knowledge, rather than hard coding the knowledge in the compiler. The
Broadway compiler, however, is more targeted towards optimizing uses of domain-specific libraries,
rather than towards DSLs.

Program transformation. Approaches to implementing DSL compilers on the basis of syntactic
rewriting or transformation rules have been proposed in the literature. Systems such as ASF+SDF
[43], JTS [44], DMS [45], and Stratego [46–48] make it possible to design and implement DSLs on
the basis of program transformation strategies. These systems often use specialized metalanguages
to describe the various aspects of the DSL. The main advantage of our approach lies in the proximity
of the language describing the transformation rules to the developed DSL and the developer effort
required in learning the former. Stratego optionally allows developers to express patterns on concrete
terms using concrete syntax, but the connections between these terms are expressed using a separate
tree traversal language, creating a gap between the source program and the Stratego specification
that transforms it.

§§http://convergepl.org/

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2013)
DOI: 10.1002/spe

T. F. BISSYANDÉ ET AL.

The Glasgow Haskell Compiler [49] is a source-to-source compiler that consists of specified
transformation rules for performing inlining, dead code elimination and other simple optimizations.
Glasgow Haskell Compiler, however, only addresses Haskell, rather than DSLs in which individual
constructs may have a richer, domain-specific semantics.

Modular compilation. In the nanopass framework [50], the implementation of a compiler is
structured into many passes, each performing very little work, to simplify development, testing,
and debugging. This approach is very close to ours as it allows the implementation steps to reflect
the organization of the analysis, transformations, and optimizations, facilitating understanding and
maintenance. Our approach goes further by allowing the implementation of each compiler pass to
be syntactically close to the generated code.

Lacey et al. pioneered the use of temporal logic to express and reason about compiler
optimizations [51]. Inspired in part by this work, the implementation of Coccinelle uses tempo-
ral logic in the implementation of the ‘. . . ’ operator. Thus, it is in a sense natural to use Coccinelle
in a compiler implementation, providing a front end to the reasoning about control flow graphs
embodied in temporal logic.

7. CONCLUSION AND FUTURE WORK

Developing a compiler for a DSL is complex, requiring both expertise in compiler construction
techniques and domain knowledge. Most compilers are implemented in a monolithic way where the
organization of domain-specific analysis and transformations is mingled, thus complicating mainte-
nance. The structure of the compiler’s code is furthermore often distant from the input and output
programs, which can be a disadvantage during testing and debugging.

In this paper, we have demonstrated the suitability of specifying a DSL compiler using control-
flow-sensitive concrete syntax-based matching rules. We embed domain-specific notations into the
C programming language and rely on Coccinelle, a program matching and transformation tool, to
carry out the required checks and transformations. In our source-to-source compiler approach, a
DSL program is incrementally processed by various transformation rules to produce the final, safe,
and optimized C program, which is compilable using a standard C compiler.

We have reported a successful experience of compiler development for a network protocol gate-
way DSL with the proposed approach, detailing its benefits over our previous compiler implemen-
tation. These benefits mainly involve the simplification of debugging and maintenance tasks, due
to the use of transformation rules that are specific to the affected language constructs. This feature
makes the rules independent of the set of constructs used in the rest of the code, potentially allowing
some parts of a DSL program to be implemented as arbitrary C code. This makes it possible to
explore the spectrum between the expressiveness of a complete C solution and the robustness of a
complete DSL solution.

This work raises several potential research directions. Debugging is known to be difficult for
languages implemented by translation, because there is no obvious connection between the
executed code and the source code. One possibility is to introduce original source line information
by using macros during the code reorganization phase, to improve error reporting. Another poten-
tial research direction is to improve the performance of Coccinelle, in the case of the application
of a series of rules to a single code base, as required by our approach. Finally, we will investigate
whether there are other DSLs that can benefit from a Coccinelle-based compiler.

REFERENCES

1. Kieburtz RB, McKinney L, Bell JM, Hook J, Kotov A, Lewis J, Oliva DP, Sheard T, Smith I, Walton L. A software
engineering experiment in software component generation. Proceedings of the 18th International Conference on
Software Engineering, ICSE ’96, Berlin, Germany, 1996; 542–552.

2. Kosar T, Oliveira N, Mernik M, Pereira MJV, Črepinšek M, da Cruz D, Henriques PR. Comparing
general-purpose and domain-specific languages: an empirical study. Computer Science and Information Systems
May 2010; 7(2):247–264.

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2013)
DOI: 10.1002/spe

IMPLEMENTING AN EMBEDDED COMPILER USING PROGRAM TRANSFORMATION RULES

3. Kosar T, Mernik M, Carver JC. Program comprehension of domain-specific and general-purpose languages:
comparison using a family of experiments. Empirical Software Engineering June 2012; 17(3):276–304.

4. Bromberg YD, Réveillère L, Lawall JL, Muller G. Automatic generation of network protocol gateways. Proceedings
of the 10th ACM/IFIP/USENIX International Conference on Middleware, Middleware’09, Urbana Champaign, IL,
USA, 2009; 1–20.

5. Bissyandé TF, Réveillère L, Bromberg YD, Lawall JL, Muller G. Bridging the gap between legacy services and web
services. Proceedings of the 11th ACM/IFIP/USENIX International Conference on Middleware, Middleware’10,
Bangalore, India, 2010; 273–292.

6. Fowler M. Domain Specific Languages, 1st edn. Addison-Wesley Professional: Upper Saddle River NJ, Boston,
2010.

7. Rhiger M. A foundation for embedded languages. ACM Transactions on Programming Languages and Systems May
2003; 25:291–315.

8. Cunningham HC. A little language for surveys: constructing an internal DSL in Ruby. Proceedings of the 46th
Annual Southeast Regional Conference, ACM-SE 46, Auburn, Alabama, USA, 2008; 282–287.

9. Leijen D, Meijer E. Domain specific embedded compilers. Proceedings of the 2nd Conference on Domain-Specific
Languages (DSL), Austin, TX, USA, 1999; 109–122.

10. Prud’homme C. A domain specific embedded language in C++ for automatic differentiation, projection, integration
and variational formulations. Scientific Programming April 2006; 14:81–110.

11. Kosar T, Martínez López PE, Barrientos PA, Mernik M. A preliminary study on various implementation approaches
of domain-specific language. Information and Software Technology April 2008; 50:390–405.

12. Aho AV, Sethi R, Ullman JD. Compilers: Principles, Techniques, and Tools. Addison-Wesley Longman Publishing
Co., Inc.: Boston, MA, USA, 1986.

13. Réveillère L. Développement de systèmes distribués efficaces: Une approche fondée sur les langages métiers,
November 2011. Hdr, Université Sciences et Technologies - Bordeaux I. Available at: http://hal.archives-ouvertes.fr/
tel-00814406 [last accessed 26 August 2013].

14. Burgy L, Réveillère L, Lawall JL, Muller G. A language-based approach for improving the robustness of network
application protocol implementations. 26th IEEE International Symposium on Reliable Distributed Systems, Beijing,
2007; 149–158.

15. Mérillon F, Réveillère L, Consel C, Marlet R, Muller G. Devil: an IDL for hardware programming. Fourth USENIX
Symposium on Operating Systems Design and Implementation (OSDI), San Diego, CA, USA, 2000; 17–30.

16. Muller G, Lawall JL, Duchesne H. A framework for simplifying the development of kernel schedulers: design and
performance evaluation. High Assurance Systems Engineering Conference (HASE), Heidelberg, Germany, 2005;
56–65.

17. Consel C, Hamdi H, Réveillère L, Singaravelu L, Yu H, Pu C. Spidle: a DSL approach to specifying streaming
application. Proceedings of the 2nd International Conference on Generative Programming and Component
Engineering, Erfurt, Germany, 2003; 1–17.

18. Mernik M, Žumer V. Incremental programming language development. Computer Languages Systems & Structures
April 2005; 31(1):1–16.

19. Padioleau Y, Lawall JL, Hansen RR, Muller G. Documenting and automating collateral evolutions in Linux device
drivers. Proceedings of the 4th ACM European Conference on Computer Systems (EUROSYS), Glasgow, Scotland,
2008; 247–260.

20. Krishnamurthi S, Hopkins PW, McCarthy J, Graunke PT, Pettyjohn G, Felleisen M. Implementation and use of the
PLT Scheme web server. Higher-Order and Symbolic Computation 2007; 20(4):431–460.

21. Wand M. Continuation-based multiprocessing. Proceedings of the 1980 ACM Conference on LISP and Functional
Programming, Stanford University, California, USA, 1980; 19–28.

22. Perrig A, Szewczyk R, Tygar JD, Wen V, Culler DE. Spins: security protocols for sensor networks. Wireless Networks
September 2002; 8(5):521–534.

23. Thekkath CA, Nguyen TD, Moy E, Lazowska ED. Implementing network protocols at user level. IEEE/ACM
Transactions on Networking October 1993; 1(5):554–565.

24. Liu A, Ning P. Tinyecc: a configurable library for elliptic curve cryptography in wireless sensor networks.
International Conference on Information Processing in Sensor Networks, IPSN ’08, St. Louis, Missouri, USA, 2008;
245–256.

25. Hudak P. Modular domain specific languages and tools. Proceedings of the 5th International Conference on Software
Reuse (ICSR), Victoria, BC, Canada, 1998; 134–142.

26. Odersky M, Spoon L, Venners B. Programming in Scala: A Comprehensive Step-by-Step Guide, 1st edn. Artima
Incorporation: USA, 2008.

27. Spinellis D. Notable design patterns for domain specific languages. Journal of Systems and Software February 2001;
56(1):91–99.

28. Mernik M, Heering J, Sloane AM. When and how to develop domain-specific languages. ACM Computing Surveys
December 2005; 37:316–344.

29. Dubochet G. On embedding domain-specific languages with user-friendly syntax. Proceedings of the 1st Workshop
on Domain-Specific Program Development, Nantes, France, 2006; 19–22.

30. Tate B, Hibbs C. Ruby on Rails: Up and Running. O’Reilly Media, Inc.: Sebastopol, California, USA, 2006.

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2013)
DOI: 10.1002/spe

T. F. BISSYANDÉ ET AL.

31. Baars AI, Swierstra SD. Typing dynamic typing. Proceedings of the Seventh ACM Sigplan International Conference
on Functional Programming, ICFP ’02, Pittsburgh, PA, USA, 2002; 157–166.

32. Baars AI, Swierstra SD. Type-safe, self inspecting code. Proceedings of the 2004 ACM Sigplan Workshop on Haskell,
Haskell ’04, Snowbird, Utah, USA, 2004; 69–79.

33. Baars AI, Löh A, Swierstra SD. Functional pearl: parsing permutation phrases (functional pearl). Journal of
Functional Programming 2004; 14(06):635–646.

34. Baars AI, Swierstra SD, Viera M. Typed transformations of typed abstract syntax. Proceedings of the 4th Inter-
national Workshop on Types in Language Design and Implementation, TLDI ’09, Savannah, GA, USA, 2009;
15–26.

35. Baars A, Doaitse Swierstra S, Viera M. Typed transformations of typed grammars: the left corner transform.
Electronic Notes in Theoretical Computer Science September 2010; 253(7):51–64.

36. Di Pietro DA, Veneziani A. Expression templates implementation of continuous and discontinuous galerkin methods.
Computing and Visualization in Science September 2009; 12:421–436.

37. Tratt L. Domain specific language implementation via compile-time meta-programming. ACM Transactions on
Programming Languages and Systems October 2008; 30(6):31:1–31:40.

38. Renggli L, Gîrba T, Nierstrasz O. Embedding languages without breaking tools. Proceedings of the 24th European
Conference on Object-Oriented Programming, ECOOP’10, Maribor, Slovenia, 2010; 380–404.

39. Hofer C, Ostermann K, Rendel T, Moors A. Polymorphic embedding of DSLS. Proceedings of the 7th Interna-
tional Conference on Generative Programming and Component Engineering, GPCE ’08, Nashville, TN, USA, 2008;
137–148.

40. Hyde RL. The RATC v3.0 domain specific embedded language for C/C++ programmers.
41. Consel C, Latry F, Réveillère L, Cointe P. A generative programming approach to developing DSL compilers. Fourth

International Conference on Generative Programming and Component Engineering (GPCE), Tallinn, Estonia, 2005;
29–46.

42. Guyer S, Lin C. Broadway: a compiler for exploiting the domain-specific semantics of software libraries. Proceedings
of the IEEE February 2005; 93(2):342–357.

43. van den Brand MGJ, Deursen Av, Heering J, Jong HAd, Jonge Md, Kuipers T, Klint P, Moonen L, Olivier PA,
Scheerder J, Vinju JJ, Visser E, Visser J. The ASF+SDF meta-environment: a component-based language develop-
ment environment. Proceedings of the 10th International Conference on Compiler Construction, CC ’01, Genova,
Italy, 2001; 365–370.

44. Batory D, Lofaso B, Smaragdakis Y. JTS: tools for implementing domain-specific languages. Proceedings of the
Fifth International Conference on Software Reuse, Victoria, BC, Canada, June 1998; 143 –153.

45. Baxter ID, Pidgeon C, Mehlich M. DMS : program transformations for practical scalable software evolution.
Proceedings of the 26th International Conference on Software Engineering, ICSE ’04, Scotland, UK, 2004; 625–634.

46. Visser E. Stratego: A language for program transformation based on rewriting strategies. system description of
stratego 0.5. In Rewriting techniques and applications (RTA’01), Vol. 2051, Middeldorp A (ed.), Lecture Notes
in Computer Science. Springer-Verlag: Utrecht, The Netherlands, 2001; 357–361.

47. Hemel Z, Kats LCL, Visser E. Code generation by model transformation. Proceedings of the 1st International
Conference on Theory and Practice of Model Transformations, ICMT ’08, Zurich, Switzerland, 2008; 183–198.

48. Groenewegen DM, Hemel Z, Kats LC, Visser E. WebDSL: a domain-specific language for dynamic web applica-
tions. Companion to the 23rd ACM Sigplan Conference on Object-Oriented Programming Systems Languages and
Applications, OOPSLA Companion ’08, Nashville, TN, USA, 2008; 779–780.

49. Peyton Jones SL, Santos ALM. A transformation-based optimiser for Haskell. Science of Computer Programming
September 1998; 32:3–47.

50. Sarkar D, Waddell O, Dybvig RK. A nanopass infrastructure for compiler education. Proceedings of the Ninth ACM
SIGPLAN International Conference on Functional Programming, ICFP ’04, Snow Bird, UT, USA, September 2004;
201–212.

51. Lacey D, Jones ND, Van Wyk E, Frederiksen CC. Proving correctness of compiler optimizations by temporal logic.
POPL, Portland, Oregon, USA, 2002; 283–294.

Copyright © 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2013)
DOI: 10.1002/spe

