
Cold Object Identification in the Java Virtual

Machine

Kim T. Briggs∗, Baoguo Zhou†, Gerhard W. Dueck‡

October 8, 2018

Abstract

Many Java applications instantiate objects within the Java heap that
are persistent but seldom if ever referenced by the application. Examples
include strings, such as error messages, and collections of value objects
that are preloaded for fast access but they may include objects that are
seldom referenced. This paper describes a stack-based framework for de-
tecting these “cold” objects at runtime, with a view to marshaling and
sequestering them in designated regions of the heap where they may be
preferentially paged out to a backing store, thereby freeing physical mem-
ory pages for occupation by more active objects. Furthermore, we evaluate
the correctness and efficiency of stack-based approach with an Access Bar-
rier. The experimental results from a series of SPECjvm2008 benchmarks
are presented.

For submission to ‘Software: Practice and Experience’

1 Introduction

Long-running Java applications [7], such as web servers and network security
monitors, may preload and retain large numbers of objects within the Java
heap [10] in order to allow fast application access at runtime. In many cases,
some of these objects are infrequently referenced by the application. We refer
to these objects, which are persistent in the Java heap but seldom referenced,
as cold objects.

The presence of cold objects in the heap is problematic insofar as they may be
collocated in virtual memory [12] with more active objects. Any page of virtual
memory that contains all or part of a cold object may also contain parts of more
active objects, and application references to the active objects will prevent the

∗IBM Canada, 770 Palladium Drive, Ottawa, ON, Canada, E-mail: briggs@ca.ibm.com
†Faculty of Computer Science, University of New Brunswick, Fredericton, E3B 5A3, N.B.,

Canada, E-mail: barry.zhou@unb.ca
‡Faculty of Computer Science, University of New Brunswick, Fredericton, E3B 5A3, N.B.,

Canada, E-mail: gdueck@unb.ca

1

ar
X

iv
:1

50
8.

04
75

3v
1 

 [
cs

.P
L

] 
 1

8 
A

ug
 2

01
5



page from being swapped out of virtual memory. As a result, large applications
that commit most or all of the available physical memory may experience undue
memory pressure. Additionally, active objects and cold objects are co-located,
when active objects are accessed, both active objects and cold objects might be
loaded into cache at the same time, actually cold objects will not be accessed.
Therefore, cold objects will degrade the cache-hit performance.

If cold objects are collected and moved to cold regions, both page fault and
cache-miss performance could be decreased. Furthermore, cold regions can be
excluded from Garbage Collection (GC) [10], if they contain only leaf objects
and primitive arrays. Therefore, pause times caused by the GC can be reduced
as well.

As the cold area becomes populated with cold objects, operating system
primitives such as madvise() [11] may be used to inform the operating system
that pages mapped to the cold area may preferentially be swapped out of resi-
dent memory, thereby freeing those pages for occupation by more active objects.
The cold area can then be monitored, for example, with continuous reference
sampling and periodic calls to mincore(), to detect when presumed cold objects
become active and to take appropriate action.

Management of cold objects is most relevant in the context of long-running
applications with large heap requirements. For that reason, the balanced garbage
collection [2, 1, 15] (GC) framework was selected as a basis for investigating cold
object management. The balanced collector improves application performance
by partitioning the heap into a large number of regions of equal size and limiting
the number of regions that are included for collection in partial GC cycles. This
reduces the frequency of more time-consuming global GC cycles, which involve
all heap regions.

In this paper, we present a stack-based framework to identify cold ob-
jects. Cold objects have been identified and harvested successfully in many
SPECjvm2008 [16, 17] applications. At the same time, we evaluate the cor-
rectness and efficiency of stack-based solution with an Access Barrier mecha-
nism [14]. All experiments are performed on IBM’s J9 Virtual Machine (JVM) [3].

2 Stack-Based Cold Object Identification Frame-
work

A stack-based framework is used to identify and harvest cold objects. The
framework supports identification and collection of cold objects. The main idea
of the measurement of cold objects is to periodically walk thread-local stacks
and mark active references. Whenever a Java method is invoked, a new stack
frame will be generated. Since local variables and passed arguments [7] will be
stored in the stack frame, object references corresponding to local variables and
passed arguments in the current stack frame are considered to be active. After
a period of time when no new active objects are being discovered, subtraction
of the collection of objects found to be active from the collection of live objects

2



reveals the collection of live, inactive (cold) objects. Once they have been iden-
tified, cold objects can be harvested form the main heap and sequestered in a
designated cold area.

2.1 Cold Region Reservation and Instrumentation

When the JVM [10] starts, a preset number of contiguous regions are reserved
for the cold area. Cold regions are excluded from copy forward and compaction
during partial GC [15] cycles, except to receive objects that have been identified
as cold and copied from pinned regions, as described below.

In order to preclude the need to traverse cold regions during mark/sweep [9,
18] actions, only arrays of primitive data (eg, char[]) and leaf objects (objects
with no reference-valued fields) are considered as collectible cold objects. This
constraint, in conjunction with the leaf object optimization feature available in
the IBM Java virtual machine [3], ensures that objects within cold regions can
be correctly marked but not touched by the marking scheme. This constraint
can be relaxed to include Java objects that contain only primitive-valued fields.

Objects that have been sequestered in cold regions are monitored for refer-
ence activity. To that end, each cold region is instrumented with an activity
map containing one bit per potential object location within the region, as for
the collector’s mark map. The stacks of all mutator threads are periodically
walked to collect active heap references. Any mutator reference to an object
within a cold region is marked by setting the corresponding bit in the activity
map.

The number and total size of objects that are sequestered in the cold area
and the incidence of activity involving these objects are the main outcomes of
interest for this paper.

2.2 Pinned Region Selection and Instrumentation

When marking active objects on the heap, since objects might be moved by copy-
forward or compaction [5] of the GC, some regions are selected to be pinned.
Pinned regions are excluded from partial GC collection sets [10] sets. That
means objects in the pinned region will not move, which facilitates tracking and
marking active objects.

The balanced garbage collector [1] assigns a logical age to each heap region,
which reflects the number of GC cycles that the contained objects have survived.
Allocations of new objects occur in the youngest regions (age 0), and persistent
objects are progressively copied forward into increasingly older regions until
they are copied into tenured regions (age 24). In the balanced GC, tenured
regions are excluded from partial GC collection sets.

In order to enable detection of cold objects, a number of tenured regions
are first pinned so that they are excluded from partial GC collection sets [15]
cycles. This ensures that objects contained within pinned regions maintain
a fixed location within the mutator address space. Pinned regions are also
instrumented with activity maps to record which objects have been sampled

3



from mutator stacks. Cold objects can be identified within a pinned region,
after a preset amount of time Tcold has elapsed since the most recent setting (0
→ 1) of an activity bit, by subtracting the activity map from the mark map.

2.2.1 Pinned Region Selection.

The region pinning framework partitions the regions of the balanced GC heap
into four collections:

1. Young regions (age < 24)

2. Unpinned regions (age 24, not pinned)

3. Pinned regions (age 24, pinned)

4. Cold regions (the cold area)

Unpinned regions are considered for pinning at the end of each partial GC
cycle. They are selectable if they have an allocation density d (ratio of allocated
bytes to region size R) exceeding a preset threshold Dhi. Additionally, the
total size of potentially collectible cold objects contained in the region must be
greater than 0.01R. Selectable regions are ranked at the end of each partial GC
cycle according to the region pinning metric value P that reflects the volume of
activity in each region:

P = mma(r) ∗ d (1)

where r is the number of mutator references to contained objects since the end
of the previous partial GC cycle, r reflects the object activity in the region since
any reference that is found on the stack frame is considered to be active. The
mma(r) is the modified moving average of r with a smoothing factor of 0.875:

mma(r0) = 0;mma(rn) =
(7 ∗mma(rn−1) + rn)

8
, n > 0 (2)

The maximum number of regions that may be pinned at any time is deter-
mined by a preset parameter Pmax. At the end of every partial GC cycle, if the
number of currently pinned regions n is less than Pmax, up to Pmax n selectable
regions may be pinned.

Two strategies for selecting regions for pinning were implemented. The
pinning strategy is determined by a JVM parameter that is interpreted when the
JVM starts and remains fixed while the mutator runs. With selective pinning,
only the most active selectable regions are pinned. An active selectable region
must satisfy mma(r) > r > 0 and sum(r) > R, where sum(r) is the sum of
r over all previous partial GC cycles. The average pinning metric value Pavg

from the collection of all selectable regions with non-zero pinning metric value is
computed and only regions satisfying P > Pavg are selectable for pinning. The
activity maps for these regions should converge more quickly and cold object
identification should be more accurate after a period (Tcold) of quiescence.

4



The alternative pinning strategy, unselective pinning, pins in decreasing or-
der of pinned metric value selectable tenured regions up to a preset maximum
(Pmax). Cold objects will be found only in tenured regions that persist in the
heap. Unselective pinning should converge to a pinned region collection that
contains all of these regions.

In either case, pinned regions are unpinned, at the end of every partial GC
cycle, if their density falls below a preset low density threshold Dlo, the total
mass of eligible objects (primitive arrays) falls below 0.01R, or they survive a
period of inactivity > Tcold and the contained collectible cold objects are moved
into the cold area.

All pinned regions are unpinned at the start of a global GC cycle, or when
the cold area becomes full. Pinning is resumed after the global GC completes
or when space becomes available in the cold area.

2.2.2 Pinned Region Instrumentation.

When a region is pinned, it is instrumented with an activity map to track
reference activity within the region. The activity map contains an activity bit
for each mark bit. Activity bits are initially 0 and are set when a reference to the
corresponding object is sampled. The region is also walked to assess the number
of marked objects nmarked, the number of marked collectible objects ncollectible,
and the respective total sizes mmarked and mcollectible of these collections.

Three timestamps are maintained to record the time tpinned at which the
region was pinned, the time tinactive of the most recent setting of an activity bit,
and the time twalked that the region was most recently walked. Pinned regions
are walked, and twalked is updated to the current time t, whenever t− twalked >
Tcold/4. Current values for nmarked, mcollectible, mmarked, mcollectible, and d are
obtained each time the region is walked.

Over time, the rate at which activity bits are set will diminish, until a period
of time > Tcold has elapsed with no new activity bits set. The collectible cold
objects in this region can then be identified and copied into the cold area.

2.2.3 Mutator Thread Instrumentation.

The primary sources for reference collection are the mutator stacks, which are
periodically walked down from the top-most frame until a frame that has not
been active since the most recent stack walk. Frame equality is determined on
the basis of the frame base pointer and a hash of the stack contents between
the frame base and stack pointers. Each mutator thread is instrumented with a
fixed-length buffer for reference collection and two arrays of stack frame traces–
one to hold traces from the most recent stack walk and one to hold traces from
the current stack walk.

References from each active frame are added to the mutator’s reference
buffer. Stack walks are discontinued if the reference buffer overflows (collected
references are retained for activity map updates). If the stack frame buffer for
the current stack overflows, the mutator continues to walk the stack and collect

5



references while matching current frame base pointer and hash against the pre-
vious stack until a match is found. The next previous stack is then composed
from the head of the current stack and the tail of the previous stack. Any miss-
ing frames between these stack segments are of little consequence–if the next
stack walk continues past the end of the head segment it will fall through to
the tail segment and eventually find a match, and setting the activity bits for
redundant samples collected from frames with missing traces is idempotent.

In addition, two timestamps wstart and wend are maintained for each mu-
tator thread to record the start and end times of the most recent stack walk.
References collected from stack walks started before the most recent GC cycle
are discarded.

2.2.4 Activity Sampling Daemon.

When the JVM is initialized, a thread activity sampling daemon is started to
control reference activity sampling when mutator threads are executing and to
harvest references collected by mutator threads.

The daemon thread remains in a paused state during GC cycles. Between
GC cycles the daemon interacts with mutator threads by polling each active
mutator thread at approximately 1 millisecond intervals. During each polling
cycle, the daemon instruments each previously uninstrumented mutator thread
and signals it to start a stack walk. It harvests collected reference samples from
previously instrumented mutator threads that have completed a stack walk and
signals these threads to start a new stack walk. Mutator threads receive these
signals and commence the stack walk at their safe point [8].

For each harvested reference sample the daemon increments the reference
activity counter r for the containing region (young, pinned, unpinned, or cold).
Additionally, if the referenced object is contained in a pinned or cold region,
the daemon sets the corresponding bit in the region’s activity map. No explicit
synchronization is required to set or test the activity bits, since they are set
only on the daemon thread and tested only on the master GC thread, and these
threads never access region activity maps concurrently.

2.2.5 Cold Object Collection.

The region pinning framework attempts to pin a collection of tenured regions
that contains as much of the mutator’s active working set as possible. This
may seem counterintuitive, given that we are attempting to identify persistent
objects that are almost never in the working set. Cold object identification is
like looking for shadows in a windowless room—they are easier to see when the
lights are turned on. Pinning the most active regions is expected to reduce the
likelihood of identifying as cold objects that are actually just dormant in the
context of current mutator activity. For pinned regions that are receiving few
active references all or most objects would be identified as cold under a fixed
Tcold threshold.

6



In the presence of high reference activity, the activity map of a pinned region
can be expected to converge more quickly to a stable state where no new activity
bits are being set. After a fixed time Tcold has elapsed since the last change
to the state of the activity map, the pinned region will be included in the copy
forward collection set for the next partial GC cycle, if the pinned region has an
accurate remembered set card list and no critical regions in use. When a pinned
region is included in the copy forward collection set, collectible cold objects are
copied into the next available cold region while all other objects are copied into
other unpinned regions. After all objects have been copied out the region is
unpinned.

Cold regions are instrumented as for pinned regions in order to allow ref-
erence activity to be tracked. At present, all objects that are copied to cold
regions remain in the cold area, without compaction or copying, until they are
collected as garbage or the mutator terminates.

3 JVM PROFILING CONFIGURATIONS

All JVMs were compiled with gcc version 4.4.7 with optimization enabled (-O3).
Two JVMs were produced for profiling:

1. linux: generic JVM with no reference sampling.

2. ssd-stack: stack sampling enabled.

The JVM run configurations are shown in (Table 1).

Table 1: Running parameters

JVM Pinning strategy JIT Run time(s) Tcold(s)

linux none enabled 9600 x 2 900
ssd-stack selective enabled 9600 x 2 900
ssd-stack unselective enabled 9600 x 2 900

The linux and ssd-stack JVMs were each run twice with the Just-in-Time [4,
6] compiler (JIT) enabled. The only data of interest from the second runs were
the SPECjvm2008 benchmark scores, which were the basis for comparison of
overall performance of the linux versus ssd-stack JVMs. The ssd stack JVM
was run in two modes – selective or unselective pinning – in order to permit
comparison of cold object identification between these region pinning strategies.

Four SPECjvm2008 [16] benchmarks (compiler.compiler, derby, xml.transform,
xml.validation) were selected for profiling. The linux JVM was executed twice
for each benchmark. The ssd-stack JVMs ran each benchmark twice with selec-
tive pinning and twice with unselective pinning. Each profiling run executed a
single iteration of one benchmark for 9600 seconds. Sampling interval is 1 ms,
and Tcold is 15 minutes.

7



All profiling runs were performed on a 1.8GHz 8 Core/16 Thread (Xeon)
server running CentOS version 6.4. No other user applications were active
during any of the profiling runs.

4 RESULTS

The first three JVM run configurations from Table 1 (linux, ssd-stack/selective
pinning, ssd-stack/unselective pinning) were used to determine the runtime heap
characteristics of each SPECjvm2008 benchmark and to allow performance com-
parisons between the linux and ssd-stack JVMs. Heap characteristics most
salient to cold object identification with activity tracking are the numbers of
tenured regions and the distributions of mutator activity within young, un-
pinned, and pinned regions.

4.1 SPECjvm2008 Scores versus Linux

Runtime performance of the ssd-stack JVMs (selective and unselective pin-
ning) versus the linux JVM was assessed using SPECjvm2008 [16] scores for
two runs of each benchmark: compiler.compiler, derby, xml.transform, and
xml.validation. The resulting benchmark scores are plotted in Figure 1.

(a) Compiler.compiler score (b) Derby score

(c) xml.transform score (d) xml.validate score

Figure 1: Running performance of the ssd-stack JVMs

Performance degradation was calculated as the ratio of the difference be-
tween the linux and ssd-stack scores to the linux score. The overall average
performance degradation for the ssd stack JVMs was 0.04 (4%). Performance

8



degradation ratios versus linux for all runs of the ssd stack JVMs are listed in
Table 2.

Table 2: Overhead caused by the feature of cold objects

Pinning strategy selective unselective

Benchmark run 1 2 1 2

compiler.compiler 0.02 0.05 0.02 0.06

derby 0.04 0.02 0.03 0.03

xml.transform 0.06 0.06 0.05 0.07

xml.validation 0.04 0.03 0.06 0.03

4.2 Garbage Collection Metrics versus Linux

Summary garbage collector metrics are shown in Table 3 for all benchmark
runs with the linux JVM and the ssd-stack JVM with unselective and selective
pinning. Compaction times were significantly lower for all of the ssd-stack JVM
runs with the compiler.compiler benchmark. Considering the average total GC
times for each pair of runs, compiler.compiler had slightly better total GC times
for ssd-stack unselective and selective pinning compared to linux (4% and 2%
lower, respectively), as did xml.transform (4% and 5%). Average total GC times
were slightly worse for derby (4% and <1% higher than linux) and xml.validation
(2%, 2%). Much of the ssd stack GC overhead is incurred in compiling pinned
region and cold collection statistics and streaming them to a printable log file.
These statistics are informative only and can be suppressed to reduce overhead.

4.3 Region Age and Activity

Figures 2a-2b represent the relative region counts (greyscale, left axis, percent-
age of total marked region count) and reference counts (colored lines, right axis,
proportion of total reference count) for the young, unpinned, and pinned parts
of the heap after each partial GC cycle. Plots are presented for unselective and
selective pinning for each benchmark executed with the ssd stack JVM, using
data collected from the first of two runs. Partial GC cycle counts are represented
on the horizontal axes.

The compiler.compiler benchmark (Figures 2a, 2b) was atypical in that it
showed a predominance of young regions (over 90% of marked regions) that
receive a relatively high proportion (almost 0.2) of reference activity. The other
benchmarks (Figures 3a − 5b) all showed a predominance of unpinned and
pinned regions that receive almost all reference activity. Regardless of pinning
strategy, they also showed a tendency for an initially high concentration of
reference activity within pinned regions that diminished over time. This is
not surprising since both pinning strategies favor selection of regions receiving
high reference activity. The activity maps of pinned regions with high reference
activity tend to converge relatively quickly. Most regions are pinned early in the
mutator lifecycle and remain pinned until they are cold collected, their contents

9



Table 3: GC metrics (in ms)

compile.compile Compact Copyforward Glb. mrk Incr. mark Sweep Total

linux-r1 244 3,517,715 33 1,166,619 54,731 4,739,401
linux-r2 339 3,442,073 38 1,157,656 55,105 4,655,271
unselective-r1 31 3,401,260 35 1,112,495 52,078 4,565,965
unselective-r2 99 3,314,364 31 1,088,048 51,770 4,454,374
selective-r1 35 3,445,347 38 1,128,614 52,869 4,626,962
selective-r2 37 3,405,924 33 1,112,630 51,835 4,570,519
derby Compact Copyforward Glb. mrk Incr. mark Sweep Total

linux-r1 12,147 587,707 40 2,884 2,552 605,641
linux-r2 8,252 581,722 35 2,916 2,051 595,282
unselective-r1 12,998 608,385 36 2,856 2,569 627,179
unselective-r2 13,222 598,226 34 2,768 2,507 617,069
selective-r1 10,879 570,283 38 3,030 2,483 587,038
selective-r2 10,000 598,301 44 2,860 2,217 613,744
xml.transform Compact Copyforward Glb. mrk Incr. Sweep Total

linux-r1 37 375,820 40 761 342 377,126
linux-r2 31 376,827 39 773 327 378,127
unselective-r1 30 362,166 35 799 328 363,486
unselective-r2 31 357,149 32 814 360 358,513
selective-r1 31 359,097 32 847 362 360,498
ssd-selective-r2 39 353,823 34 813 372 355,211
xml.validation Compact Copyforward Glb. mrk Incr. mark Sweep Total

linux-r1 35 707,832 33 872 283 709,135
linux-r2 97 726,825 38 952 306 728,299
unselective-r1 33 742,721 41 611 236 743,722
unselective-r2 36 725,050 29 786 269 726,251
selective-r1 30 730,070 39 958 292 731,468
selective-r2 35 725,577 36 907 274 726,909

become dereferenced, or the mutator ends. When they are cold collected the
remaining objects, active or not collectible, are redistributed to other unpinned
regions, so that active objects tend to become more diffusely scattered over
time.

Most of the abrupt drops in reference activity in Figures 3a and 3b coincide
with cold collection, while increases tend to be associated with region pinning
events. For the compiler.compiler benchmark most of the variability in region
counts involved young regions. For the other benchmarks most of the variability
involved unpinned regions. For all benchmarks the pinned region count was
relatively stable, although more replacement occurred with unselective pinning.

Ideally, pinned regions selection should result in a higher proportion of ref-
erence activity within pinned regions. Also, this should be realized by pinning
as few regions as possible. By that measure, selective pinning outperformed un-
selective pinning for the compiler.compiler and xml.validation benchmarks and
slightly underperformed for derby and xml.transform.

The compiler.compiler workload mainly involves younger regions. It pro-

10



(a) Compiler.compiler, Unselective
Pinning

(b) Compiler.compiler, Selective Pin-
ning

Figure 2: Compiler.compiler Activity

duced on average about 49 tenured regions, and most of these persisted for the
duration of the run. With unselective pinning (Figure 2a) about 32 regions were
typically pinned and they received about 33% of reference activity on average.
With selective pinning (Figure 2b) only 2 regions were typically pinned and they
received about 45% of reference activity on average.

(a) Derby, Unselective Pinning (b) Derby, Selective Pinning

Figure 3: Derby Activity

The derby benchmark produced a greater and more stable population of
tenured regions, with a large number (>500) persisting over the course of the
run. This is not surprising since derby loads an entire database into the heap
before the benchmarking iteration starts and retains these objects for the du-
ration of the run. With unselective pinning (Figure 3a) the maximum number
Pmax of regions (256) were typically pinned at any time and they received about
69% of reference activity on average. With selective pinning (Figure 3b) only
5 - 6 regions were typically pinned and they received about 53% of reference

11



activity on average. If the Pmax limit had been removed for unselective pinning
the number of pinned region would have risen to include more of the regions
containing portions of the derby database content. This in turn would have re-
duced the number of unpinned regions available for compaction and tail filling,
forcing allocation of new regions to receive aging heap objects. Selective pinning
performed almost as well for derby with at most 6 pinned regions.

(a) xml.transform, Unselective Pinning (b) xml.transform, Selective Pinning

Figure 4: xml.transform Activity

The xml.transform benchmark used an average of about 290 tenured regions,
of which only about 40 persisted throughout the run. With unselective pinning
(Figure 4a) about 23 regions were pinned, on average, and they received about
38% of reference activity on average. With selective pinning (Figure 4b) only 6
regions were typically pinned and they received about 31% of reference activity
on average.

(a) xml.validate, Unselective Pinning (b) xml.validate, Selective Pinning

Figure 5: xml.validate Activity

The xml.validation benchmark used about 200 tenured regions, with about

12



13 persisting for the duration of the run. With unselective pinning (Figure 5a)
only about 7 regions were pinned at any time, and they received about 72%
of reference activity on average. With selective pinning (Figure 5b) only 2
regions were typically pinned and they received about 78% of reference activity
on average.

4.4 Cold Object Collection

Cold objects are collected into the cold area when their containing pinned regions
pass a time (Tcold) where no new references into the region are sampled. The
number and total size of cold objects collected into the cold area, and the
number of references into the cold area, are summarized in Table 4 for all runs
of each SPECjvm2008 [16] benchmark profiled. The statistics for cold references
include the total reference count and the number of distinct objects referenced.
For all benchmark runs unselective pinning produced the greatest collection of
cold objects, but it also tended to result in a higher count of references into
the cold area, especially for xml.transform. In all cases, the number of distinct
objects referenced was small, regardless of pinning strategy.

Table 4: The number and the size of cold objects

Cold Objects Cold Bytes Cold References

compiler.compiler
unselective, run1 24,452 4,498,952 3 2
unselective, run2 15,717 8,009,752 0
selective, run1 0 0 0
selective, run2 0 0 0
derby
unselective, run1 79,383 6,868,440 0
unselective, run2 40,861 10,958,816 1 1
selective, run1 9,039 1,379,888 0
selective, run2 3,284 279,736 0
xml.transform
unselective, run1 27,603 16,749,392 716,850 3
unselective, run2 29,995 17,394,688 635,768 2
selective, run1 14,486 8,928,248 0
selective, run2 12,961 5,734,144 0
xml.validation
unselective, run1 16,188 2,910,520 0
unselective, run2 14,926 2,733,280 0
selective, run1 3,698 474,904 0
selective, run2 4,889 582,880 16 3

Figures 6a- 6b show the cold collections for the first runs with unselective

13



and selective pinning for each benchmark. The left axes represent total byte
count; the right axes represent object count. Partial GC cycle counts at the
time of cold collection are represented on the horizontal axes.

(a) Compiler.compiler, Unselective
Pinning

(b) Compiler.compiler, Selective Pin-
ning

Figure 6: Compiler.compiler, Cold objects

Unselective pinning for compiler.compiler resulted in a collection of over 30
pinned regions, six of which were cold collected. Three references to two cold
objects were subsequently sampled. Selective pinning resulted in two regions
that remained pinned for most of the compiler.compiler benchmark run. One
of these went cold (no new activity for > Tcold seconds) about halfway through
the run and remained cold until the end but was not collectible because it’s
remembered card set was in a persistent overflow state.

(a) Derby, Unselective Pinning (b) Derby, Selective Pinning

Figure 7: Derby, Cold objects

Unselective pinning for derby resulted in a maximal collection of pinned
regions (256 regions) and 15 cold collections. No activity was recorded in the
cold area. Selective pinning pinned only six very active regions, two of which
were cold collected early in the run. There was no activity in the cold area.

Unselective pinning for xml.transform resulted in a collection of about 23
pinned regions, 19 of which were cold collected. However, there were a high
number of references to three objects in the cold area. Selective pinning pinned
at most six active regions at any time but eight regions were cold collected.
There was no subsequent activity in the cold area.

14



(a) xml.transform, Unselective Pinning (b) xml.transform, Selective Pinning

Figure 8: xml.transform, Cold objects

(a) xml.validate, Unselective Pinning (b) xml.validate, Selective Pinning

Figure 9: xml.validate, Cold objects

Unselective pinning for xml.validation resulted in a collection of about seven
pinned regions, five of which were cold collected. There were no references to
objects in the cold area. Selective pinning pinned at most two active regions at
any time and cold collected one region. There was no subsequent activity in the
cold area.

5 Evaluation of the Stack-Based Solution with
an Access Barrier

Since stack sampling is intermittent, with each mutator thread walking its stack
about once per millisecond, and can only occur at safe points only, there is a
concern that the reference sampling rate may not be high enough to support
reliable cold object identification. An Access Barrier can capture all read/write
access operations when Java runs interpreting mode. Since the Access Barrier
does not miss any access information, it will be used as benchmark to evaluate
the correctness and efficiency of stack-based solution.

5.1 Evaluation Metrics

Two key metrics are used to evaluate stack-based solution. FalseInactivity is
used to verify the reliability of stack-based solution. ConvergenceT ime is used

15



to evaluate the efficiency of stack-based solution.

• FalseInactivity is the number of objects that are considered inactive with
the stack-based solution, but are marked active with the Access Barrier.
For example, because of non-continuous sampling, the stack-based solution
misses some objects’ activities, and these objects are considered to be
inactive. However, these objects’ activities are captured by the Access
Barrier. The FalseInactivity reflects the missing of some active objects.
Smaller values mean better stack-based solutions. The FalseInactivity is
a ratio described in the following formula.

FalseInactivity =
Numbers of false inactive objects

Numbers of all inactive objects
(3)

• ConvergenceT ime is the time span that a region is pinned before it is
determined to have identified all active objects. ConvergenceT ime re-
flects the speed that a pinned region is found to collect cold objects. The
lower the ConvergenceT ime is, the more efficient the identification of cold
objects is.

5.2 Experiments

Two evaluation experiments are performed with Java executing in interpreting
mode instead of Just-in-Time mode.

5.3 Case 1 - SPECjvm2008 Derby

Running parameters are as follows.

1. Running period: 60 hours

2. Cold threshold: 6 hours

3. Sampling interval: 100 ms

Benchmark Derby was run for 60 hours, active objects were identified with
stack-based and Access Barrier at the same time. Experimental results are
presented in Table 5. It is not surprising that the Access Barrier can harvest
more cold objects than the stack-based solution, because the Access Barrier can
capture all read/write access to objects, while stack sampling is intermittent.
For example, the number of collectible pinned regions in Access Barrier is 5
times larger than in stack-based solution; the number of cold objects in Access
Barrier is 11.78 times larger than that in stack-based solution; and the size of
cold objects is 10.42 times larger in Access Barrier than that in stack-based
solution.

16



Table 5: Evaluation with SPECjvm2008 Derby

Items AccessBarrier stack-based Ratio

Collectible pinned regions 85 17 5 : 1
CovergenceTime(in Second) 27,721.62 69,497.71 1:2.50
All Objects 1,485,531 72,290
Active Objects 673,272 3,350
Cold Objects 812,259 68,940 11.78:1
Size of All Objects(in Byte) 172,021,784 32,882,056
Size of Active Objects(in Byte) 129,221,416 28,773,560
Size of Cold Objects(in Byte) 42,800,368 4,108,496 10.42:1

5.3.1 Reliability of the stack-based solution.

The FalseInactivity ratio is 1.62% (see Table 4), which is quite low. It reflects
the fact that there are few objects that are incorrectly classified as cold. The
data supports the hypothesis that cold objects can be identified by the stack-
based approach, which is encouraging.

Table 6: FalseInactivity Results

Inactive objects FalseInactivity Objects FalseInactivity Ratio

68,940 1,117 1.62%

5.3.2 Efficiency of the stack-based marking approach.

The Access Barrier has found 85 collectible pinned regions, while the stack-
based solution has 17 collectible pinned regions. Although the Access Barrier
has more collectible pinned regions than the stack-based solution, 17 collectible
pinned regions in the stack-based solution are completely included in the Access
Barrier collectible pinned regions.

Figure 10 shows a convergence time comparison between stack-based so-
lution and the Access Barrier. The X-axis represents 17 common collectible
pinned regions, the Y-axis represents convergence time. In the Access Barrier,
the maximum convergence time is less than 500 minutes, while in stack-based
solution, the maximum convergence time reaches more than 2500 minutes.

5.4 Case 2 - SPECjvm2008 Compiler.compiler

Running parameters are as follows.

1. Running period: 12 hours

17



Figure 10: Convergence time in Derby

2. Cold threshold: 72 minutes

3. Sampling interval: 15 ms

After Compiler.compiler has run by 12 hours, the results shown in Table
7 are obtained. The Access Barrier still harvests more cold objects than the
stack-based solution.

Table 7: Evaluation with Compiler.compiler

Items AccessBarrier stack-based Ratio

Collectible pinned regions 64 28 2.29 : 1
AverageColdDuration (in Seconds) 4440.64 6311.96 1 : 1.42
All Objects 1,390,739 376,824
Active Objects 141,772 279
Cold Objects 1,248,967 376,545 3.32 : 1
Size of All Object (in Bytes) 3.32 53,923,840
Size of Active Object (in Bytes) 20,090,576 1,280,616
Size of Cold Object (in Bytes) 109,475,216 52,643,224 2.08 : 1

5.4.1 Reliability of stack-based solution.

The falseInactivity ratio is 0.32% (see Table 8), which is still quite low. The
data confirms that cold objects can be identified by the stack-based approach.

18



Table 8: FalseInactivity

Inactive objects FalseInactivity Objects falseInactivity Ratio

376,545 1,191 0.32%

5.4.2 Convergence time analysis.

The Access Barrier has 64 collectible pinned regions. The stack-based solu-
tion has 28 collectible pinned regions. Although the Access Barrier has more
collectible pinned regions than the stack-based solution, 28 collectible pinned
regions in the stack-based solution are completely included in the Barrier-based
collectible pinned regions.

Figure 11 shows a convergence time comparison between stack-based solution
and Access Barrier. In the Access Barrier, the maximum convergence time is
less than 100 minutes. While in stack-based solution, the convergence time in
the majority of collectible pinned regions is less than 100 minutes as well, only
3 collectible pinned regions have a high convergence time.

Figure 11: Convergence time in Compiler.compiler

6 DISCUSSION

During the ssd-stack JVM benchmarking runs, mutator threads walked their
stacks to harvest heap references once every 1-2 ms on average. For cold object
identification to be reliable and effective, the rate of reference sampling must be
such that any active object within a pinned region is likely to appear on a mu-
tator stack at a stack walking safe point at least once while the region is pinned.
The FalseInactivity experimental results in Derby and Compiler.compiler show

19



that the sampling frequency with 1-2 ms can satisfy the requirement of cold ob-
ject identification.

A very small number of cold objects were referenced during any of the ssd-
stack JVM runs, and with the exception of xml.transform cold objects were
referenced very infrequently. Most benchmark runs collected a few tens of thou-
sands of cold objects. In the exceptional case of compiller.compiler with selective
pinning, one pinned region went cold after 1,757 partial GC cycles but was not
collectible due to a persistently overflowed remembered set; none of the 3,354
objects that were cold at that point received references for the remainder of the
benchmark run (for 8,055 subsequent partial GC cycles).

The ssd-stack JVM, with selective or unselective pinning, consistently re-
sulted in increased memory pressure, timeslicing, and kernel CPU usage com-
pared to the linux JVM. The singleton thread activity sampling daemon min-
imizes writes to pinned region activity maps but must test the activity bit for
every sampled reference into a pinned region, making activity maps high running
candidates for available cache lines. Although cache misses were not profiled for
these runs, it is likely that high frequency access to pinned region activity maps
from the thread activity sampling daemon had a significant effect on memory
bandwidth. Since the daemon thread is bound to a specific node this effect may
be limited, especially in larger multicore systems. However, the daemon does
present a multicore scalability problem since it must handle proportionately
larger loads as the number of available cores increases.

Most of the ssd-stack benchmarking runs yielded a few tens of megabytes in
the cold area and consumed 4-6% of the available CPU bandwidth, which is a
relatively high price to pay for the amount of cold data collected. In this paper,
only primitive arrays and leaf objects are considered as cold objects. If cold
objects are not limited to primitive arrays and leaf objects, the amount of cold
data collected should be increased, but the possibility of object references from
cold objects to active objects would then require that marking should traverse
into the cold area, which is undesirable.

The region pinning framework attempts to pin the most active regions be-
cause they highlight mutator activity and allow cold objects to be identified
more quickly and with greater confidence. Selective pinning sets a high bar on
the activity metric for selectable regions and tends to pin only a few regions,
without replacement. It tended to collect a relatively small but very stable set
of cold objects. Unselective pinning attempts to maximize the number of pinned
regions and selects the most active regions in batches, but tends to unpin and
replace these over time. This strategy produced more substantial cold collec-
tions and the cold area typically received a small amount of reference activity
that was confined to a small number of distinct objects.

7 CONCLUSION

In this paper, we show the stack-based cold object identification framework,
which samples the mutator thread stack, marks the active objects, and harvests

20



the cold objects. stack-based reference sampling was effective in identifying in-
active objects for the SPECjvm2008 [16] benchmarks studied here, as evidenced
by the stability of the cold areas established during the benchmark runs. A few
tens of megabytes of cold objects have been identified and harvested into cold
regions. Furthermore, we evaluate the correctness and efficiency of stack-based
solution with an Access barrier implementation, the results support that the
stack-based solution is an acceptable cold object identification approach.

The runtime overhead for walking mutator stacks and maintaining pinned
activity maps offset any gains that accrued from establishing the cold area and
marshalling cold objects out of resident memory, but there is still space to reduce
overhead by optimization.

8 FUTURE WORK

The focus of this effort so far has been on cold object identification and se-
questration. If further development is extended, a mechanism for managing
frequently active objects in the cold area should be developed. For example, if
madvise() [13] is used to sequester pages in the cold area, pages containing parts
of active objects can be excluded. This would be effective if these objects are
relatively rare and simpler than providing specialized methods to copy active
cold objects back into tenured regions.

Only limited amount of work has been done to verify that the JVM and GC
do not reference objects in the cold area. Some JIT and GC (concurrent mark)
activity in cold areas was detected by erecting a partial memory protection
(read/write) barrier around the cold area between GC cycles. A similar mecha-
nism can be used to detect GC incursions into the cold area during GC cycles,
but this has not been investigated to date. The sources of these incursions will
need to be modified to suppress activity in the cold area. For example, objects
being marked in the root set, where the leaf marking optimization is not avail-
able, can be tested for inclusion in cold regions and treated as leaf objects in
that case. The JIT peeks into cold regions to determine the length of arrays but
it may be possible to apply defaults or forego optimizations for arrays located
within the cold area.

Acknowledgement

The authors would like to acknowledge the funding support provided by IBM
and the Atlantic Canada Opportunities Agency (ACOA) through the Atlantic
Innovation Fund (AIF) program. Furthermore, we would also like to thank the
New Brunswick Innovation Fund for contributing to this project. Finally, we
would like to thank the Centre for Advanced Studies - Atlantic for access to the
resources for conducting our research.

21



References

[1] Balanced garbage collection policy. http://www-01.ibm.com/support/

knowledgecenter/SSYKE2_7.0.0/com.ibm.java.aix.70.doc/diag/

understanding/mm_gc_balanced.html. Accessed: 2015-05-12.

[2] IBM Garbage Collection policies. http://www-01.ibm.com/support/

knowledgecenter/SSYKE2_7.0.0/com.ibm.java.zos.71.doc/diag/

appendixes/cmdline/xgcpolicy.html?lang=en. Accessed date: 2015-
05-12.

[3] J9 Virtual Machine (JVM). https://www-01.ibm.com/support/

knowledgecenter/#!/SSYKE2_7.0.0/com.ibm.java.win.70.doc/user/

java_jvm.html. Accessed: 2015-05-12.

[4] JIT compiler overview. https://www-01.ibm.com/support/

knowledgecenter/#!/SSYKE2_7.0.0/com.ibm.java.lnx.70.doc/diag/

understanding/jit_overview.html. Accessed: 2015-05-12.

[5] Diab Abuaiadh, Yoav Ossia, Erez Petrank, and Uri Silbershtein. An ef-
ficient parallel heap compaction algorithm. In OOPSLA, pages 224–236,
2004.

[6] Ali-Reza Adl-Tabatabai, Micha lCierniak, Guei-Yuan Lueh, Vishesh M.
Parikh, and James M. Stichnoth. Fast, effective code generation in a just-
in-time java compiler. SIGPLAN Not., 33(5):280–290, May 1998.

[7] James Gosling, Bill Joy, Guy L. Steele, Jr., Gilad Bracha, and Alex Buck-
ley. The Java Language Specification, Java SE 7 Edition. Addison-Wesley
Professional, 1st edition, 2013.

[8] Richard E. Jones and Andy C. King. A fast analysis for thread-local
garbage collection with dynamic class loading. In 5th IEEE International
Workshop on Source Code Analysis and Manipulation (SCAM), pages 129–
138, Budapest, September 2005.

[9] Toshiaki Kurokawa. A new fast and safe marking algorithm. Lisp Bull.,
(3):9–35, December 1979.

[10] Tim Lindholm and Frank Yellin. Java Virtual Machine Specification.
Addison-Wesley Longman Publishing Co., Inc., 1999.

[11] Robert Love. Linux System Programming: Talking Directly to the Kernel
and C Library. O’Reilly Media, Inc., 2007.

[12] Jeremy Manson, William Pugh, and Sarita V. Adve. The java memory
model. SIGPLAN Not., 40(1):378–391, January 2005.

[13] Marshall Kirk Mckusick and Michael J. Karels. A new virtual memory
implementation for Berkeley UNIX. In EUUG Conference Proceedings,
pages 451–458, 1986.

22

http://www-01.ibm.com/support/knowledgecenter/SSYKE2_7.0.0/com.ibm.java.aix.70.doc/diag/understanding/mm_gc_balanced.html
http://www-01.ibm.com/support/knowledgecenter/SSYKE2_7.0.0/com.ibm.java.aix.70.doc/diag/understanding/mm_gc_balanced.html
http://www-01.ibm.com/support/knowledgecenter/SSYKE2_7.0.0/com.ibm.java.aix.70.doc/diag/understanding/mm_gc_balanced.html
http://www-01.ibm.com/support/knowledgecenter/SSYKE2_7.0.0/com.ibm.java.zos.71.doc/diag/appendixes/cmdline/xgcpolicy.html?lang=en
http://www-01.ibm.com/support/knowledgecenter/SSYKE2_7.0.0/com.ibm.java.zos.71.doc/diag/appendixes/cmdline/xgcpolicy.html?lang=en
http://www-01.ibm.com/support/knowledgecenter/SSYKE2_7.0.0/com.ibm.java.zos.71.doc/diag/appendixes/cmdline/xgcpolicy.html?lang=en
https://www-01.ibm.com/support/knowledgecenter/#!/SSYKE2_7.0.0/com.ibm.java.win.70.doc/user/java_jvm.html
https://www-01.ibm.com/support/knowledgecenter/#!/SSYKE2_7.0.0/com.ibm.java.win.70.doc/user/java_jvm.html
https://www-01.ibm.com/support/knowledgecenter/#!/SSYKE2_7.0.0/com.ibm.java.win.70.doc/user/java_jvm.html
https://www-01.ibm.com/support/knowledgecenter/#!/SSYKE2_7.0.0/com.ibm.java.lnx.70.doc/diag/understanding/jit_overview.html
https://www-01.ibm.com/support/knowledgecenter/#!/SSYKE2_7.0.0/com.ibm.java.lnx.70.doc/diag/understanding/jit_overview.html
https://www-01.ibm.com/support/knowledgecenter/#!/SSYKE2_7.0.0/com.ibm.java.lnx.70.doc/diag/understanding/jit_overview.html


[14] Pekka P. Pirinen. Barrier techniques for incremental tracing. SIGPLAN
Not., 34(3):20–25, October 1998.

[15] Ryan Sciampacone, Peter Burka, and Aleksandar Micic. Garbage collection
in websphere application server v8, part 2: Balanced garbage collection as
a new option. In IBM WebSphere Developer Technical Journal., 2011.

[16] Kumar Shiv, Kingsum Chow, Yanping Wang, and Dmitry Petrochenko.
Specjvm2008 performance characterization. In Proceedings of the 2009
SPEC Benchmark Workshop on Computer Performance Evaluation and
Benchmarking, pages 17–35, 2009.

[17] Kumar Shiv, Kingsum Chow, Yanping Wang, and Dmitry Petrochenko.
Specjvm2008 performance characterization. In Proceedings of the 2009
SPEC Benchmark Workshop on Computer Performance Evaluation and
Benchmarking, pages 17–35, Berlin, Heidelberg, 2009. Springer-Verlag.

[18] David Ungar. Generation scavenging: A non-disruptive high performance
storage reclamation algorithm. SIGSOFT Softw. Eng. Notes, 9(3):157–167,
April 1984.

23


	1 Introduction
	2 Stack-Based Cold Object Identification Framework
	2.1 Cold Region Reservation and Instrumentation
	2.2 Pinned Region Selection and Instrumentation
	2.2.1 Pinned Region Selection.
	2.2.2 Pinned Region Instrumentation.
	2.2.3 Mutator Thread Instrumentation.
	2.2.4 Activity Sampling Daemon.
	2.2.5 Cold Object Collection.


	3 JVM PROFILING CONFIGURATIONS
	4 RESULTS
	4.1 SPECjvm2008 Scores versus Linux
	4.2 Garbage Collection Metrics versus Linux
	4.3 Region Age and Activity
	4.4 Cold Object Collection

	5 Evaluation of the Stack-Based Solution with an Access Barrier
	5.1 Evaluation Metrics
	5.2 Experiments
	5.3 Case 1 - SPECjvm2008 Derby
	5.3.1 Reliability of the stack-based solution.
	5.3.2 Efficiency of the stack-based marking approach.

	5.4 Case 2 - SPECjvm2008 Compiler.compiler
	5.4.1 Reliability of stack-based solution.
	5.4.2 Convergence time analysis.


	6 DISCUSSION
	7 CONCLUSION
	8 FUTURE WORK

