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Failover strategy for fault tolerance in cloud
computing environment

Bashir Mohammed*,†, Mariam Kiran, Kabiru M. Maiyama, Mumtaz M. Kamala
and Irfan-Ullah Awan

School of Electrical Engineering & Computer Science, University of Bradford, Bradford, UK

SUMMARY

Cloud fault tolerance is an important issue in cloud computing platforms and applications. In the event of an
unexpected system failure or malfunction, a robust fault-tolerant design may allow the cloud to continue
functioning correctly possibly at a reduced level instead of failing completely. To ensure high availability
of critical cloud services, the application execution, and hardware performance, various fault-tolerant
techniques exist for building self-autonomous cloud systems. In comparison with current approaches, this
paper proposes a more robust and reliable architecture using optimal checkpointing strategy to ensure high
system availability and reduced system task service finish time. Using pass rates and virtualized
mechanisms, the proposed smart failover strategy (SFS) scheme uses components such as cloud fault
manager, cloud controller, cloud load balancer, and a selection mechanism, providing fault tolerance via
redundancy, optimized selection, and checkpointing. In our approach, the cloud fault manager repairs faults
generated before the task time deadline is reached, blocking unrecoverable faulty nodes as well as their
virtual nodes. This scheme is also able to remove temporary software faults from recoverable faulty nodes,
thereby making them available for future request. We argue that the proposed SFS algorithm makes the
system highly fault tolerant by considering forward and backward recovery using diverse software tools.
Compared with existing approaches, preliminary experiment of the SFS algorithm indicates an increase in
pass rates and a consequent decrease in failure rates, showing an overall good performance in task
allocations. We present these results using experimental validation tools with comparison with other
techniques, laying a foundation for a fully fault-tolerant infrastructure as a service cloud environment.
Copyright © 2017 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Cloud computing is a popular paradigm and an attractive model for providing computing, informa-
tion technology infrastructure, network, and storage to end users in both large and small business
enterprises [1]. The surge in cloud popularity is mainly driven by its promise of on-demand
flexibility and scalability, without committing any upfront investment in implementation, with
reduction in operating costs of infrastructure and data centers [2]. Cloud ecosystems can be public,
private, hybrid, or even community depending on the networking model used in delivering services
[19, 22, 3]. Cloud computing relies on sharing resources to accomplish scale, sharing services, and
infrastructure, as its delivery models. To maintain reliability and availability, fault tolerance (FT) in
cloud becomes an important property, allowing the system to continue functioning properly in
events of failure. Embedding a fault-tolerant design in cloud architecture allows the system to
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continue its intended operation, even at a reduced level, preventing it from breaking down
completely when unexpected failure events occur [5, 6].
In real-time high-performance large-scale systems with complex and dynamic cloud services, the

system sometimes fails because of varying execution environments, removal and addition of system
components, or intensive workload on the servers [1, 6]. Failures cost cloud vendors not only their
businesses and clients but also their reputation. To prevent these, steps need to be taken to handle
possible failures emerging within cloud infrastructures. These FT techniques are designed around
the concepts of fault-finding principles, such as predicting and evaluating possible future failures,
allowing the system to continue its functions at satisfactory levels [1]. Having a reliable fault-
tolerant cloud infrastructure prevents the system from breaking down completely.

• A number of fault-tolerant strategies have been realized in research over the years based on
fault-tree analysis, checkpointing, and prediction models. However, only a fraction of these
have been applied to cloud computing systems bearing in mind that the risk of failure is in-
creasing as the complexity of tasks increases in a typical cloud environment. This paper argues
a new integrated virtualized optimal checkpointing FT approach for cloud data centers, using
intelligent selection mechanisms based on pass rates (PRs) of computing virtual nodes with
a fault manager. This smart failover strategy (SFS) FT approach results in an optimized
infrastructure for infrastructure as a service (IaaS) cloud platforms, showing a considerable
improvement in current research of cloud FT.

Along with analyzing current cloud FT approaches, the main contributions of this paper include
the following:

• Providing high availability depending on cloud user requests to successful virtual machines
(VMs) using the SFS algorithm.

• Develop an integrated virtualized failover strategy for cloud data centers, overall reducing the
system service time.

• Prove the viability of the SFS approach through quantitative analysis and compare
performance with existing methods. We validate the method using simulation to give details
of successful performance in failure situations.

The paper has been organized as follows: Section 2 presents the problem definition and
techniques currently being used to explore the problem of failure recovery in cloud environments.
This is elaborated in Section 3 presenting the related background in FT for standard real-time cloud
computing systems. Section 4 presents our FT architecture, use case scenarios, computation
algorithm, and working model of the proposed approach using mathematical analysis and its
implementation details with cloud infrastructures. These implementation details are expanded in
Section 5 by presenting an experimental setup as well as performance comparison of results with
existing approaches. Discussion of results is given in Section 6, and finally, Section 7 presents
conclusions and future work of the approach.

2. PROBLEM DEFINITION

Cloud computing relies on sharing resources to accomplish scale of services and infrastructure. As
cloud complexity grows, failures of virtual nodes providing the services increase and become
difficult to predict, particularly with system components being constantly upgraded, intensive work-
load on cloud servers, and sometimes deploying faulty software. Achieving high availability of
VMs always is a huge challenge because of the sheer number of virtual and physical machines
involved, increasing the probability and risk of failure.
It is imperative to prevent failures emerging within the cloud infrastructures to prevent business

and financial losses. In 2011, Microsoft cloud service outage lasted for 2.5 h [30], with Google
Docs service outage lasting for 1 h. These were because of memory leaks due to a software update
[42], costing both businesses millions of dollars. Similar reports were witnessed by Gmail services
down for about 50 min and Amazon Web services for 6 h, while Facebook’s photos and ‘likes’
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services were down costing customer dissatisfaction. Multiple businesses hosting their websites,
such as with GoDaddy, suffered 4 h downtime affecting five million websites [30].
A growing number of data center resources increase the global complexity of Information and

Communications Technology (ICT) services, where cloud users use them to handle business-
critical and high-computing processes [7]. As a result, it is of vital importance to ensure high
reliability and availability to prevent resource failure. One of the most common challenges in cloud
is failure to deliver its function, either by software or hardware failures [8, 9]. The service tasks
executing over the cloud VMs have large time spans of a few days or months, running long tasks
or jobs. Failure on these long or medium running jobs brings threats to fulfillment of service-level
agreement contracts and delays in job completion times to perform computational processes [1, 10].
An example of such a failure occurred when a 20% revenue loss was reported by Google, as an
experiment caused an additional delay of 500 ms in response time [11]. In another example,
millions of customers were left without Internet access for 3 days when there was a core switch
failure in BlackBerry’s network. Another example is when one of UK’s top cellular companies
failed for 3 days, affecting seven million subscribed customers [11, 12].
There are three levels of essential services offered by cloud computing: IaaS, platform as a

service (PaaS), and software as a service. Each level of service handles FT at different levels of
complexity.

• IaaS is the most basic and important cloud service model under which VMs, load balancers, FT,
firewalls, and networking services are provided. The client or cloud user is provided with capa-
bility to provision processing, storage, networks, and other fundamental computing resources,
to deploy and run arbitrary software such as operating system and applications. Common
examples of these services include Rackspace, GoGrid, EC2, and Amazon cloud [13].

• Under the PaaS model, a computing platform including APIs, operating system, and develop-
ment environments is provided as well as programming language execution environment and
web servers. The client maintains the applications, while the cloud provider maintains the
service run times, databases, server software, integrated server-oriented architectures, and
storage networks. Various types of PaaS vendors offerings can include complete application
hosting, development, testing, and extensive integrated services that include scalability and
maintenance. Some key players include Microsoft Windows Azure and Google Apps engine.
The main benefits of these services include focusing on high-value software rather than infra-
structure, leveraging economies of scale, and providing scalable go-to-market capability [2].

• Software as a service provides clients the capability to use provider application executing on a
cloud infrastructure. An entire application is available remotely and accessible from multiple
client devices through thin client interfaces such as web browsers. A cloud user does not
manage or control the underlying cloud infrastructure [2], but providers install and operate
the application software. Example providers for this service include Salesforce, Facebook,
and Google Apps [2, 14, 15].

The main objective of a computational cloud platform is to execute user applications or jobs,
where users submit their jobs to the service provider (SP) along with their quality of service
(QoS) requirements. These requirements may include job deadlines, required resources for the
job, and the needed platform. The SP submits a task to the cloud controller (CC), and the scheduler
allocates each job with suitable resources.
Depending on the type of fault and FT policies, several FT techniques can be used [16, 20, 21]

such as reactive FT policy, which reduces failure effects when they occur on application execution,
and proactive FT policy, which avoids fault recovery by predicting and proactively replacing the
suspected faulty components. In case of a fault-free scenario, results of successful jobs are returned
to users after job completion. If there are failures during the job execution, then the cloud fault
manager (CFM) is informed, and the job is rescheduled on another VM resource to re-execute
the job from the last successful checkpoint. This results in more time consumed for the job than
expected, risking the QoS not being satisfied.
Many FT strategies have been designed to reduce fault effects, but in this paper, we propose an

optimized FT strategy in real-time cloud computing environment to increase system availability,
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reduce the service time, and enhance rapid and efficient recovery from faults. Our SFS approach is
applied to the IaaS delivery layer, utilizing computing hardware resources and the virtualization
hypervisor to manage VM instances running on physical servers.
To address the problem of job completion time, we integrated the PR-optimized selection tech-

nique with a job checkpointing mechanism in the SFS approach. Here, we restore the partially com-
pleted job from the last successful saved checkpoint rather than restarting the job. This greatly
decreases the system re-computing time. However, we recognize a few drawbacks of checkpointing
mechanism, such as performing identical processes regardless of stable resources, higher check-
point overhead to store the entire system running states, and inappropriate checkpointing that causes
delay in job execution. Commonly used checkpointing mechanisms are discussed in [17]; however,
in real-time computational cloud environments, there are cases where resources satisfy QoS require-
ments (partial pass scenario) but are not selected because the load balancers assign tasks to VMs
based on highest PR in job execution. To address these problems, our optimized selection technique
selects only VMs with successful status check and successful task time limit checker (TTLC).
Further components such as load balancers, FT engine, firewalls, and networking services are
utilized by cloud data centers to help manage and regulate FT strategies in the cloud model [2, 18].

3. RELATED WORK

There are many approaches proposed to deal with FT in cloud, and recent studies have analyzed FT
in cloud and grid computing [19–29] [9, 10, 30–37,20] and more broadly in the area of FT for
standard real-time systems [6, 33, 38, 4, 31, 39–43,26, 27], [44], but very few works have addressed
issues of optimized FT strategies in cloud environment in relation to high system availability.
Various researchers have provided FT solutions specific to certain cloud delivery models by
focusing on either high availability frameworks, using virtual nodes for fault prediction or using
user-defined APIs to help optimize cloud performance in faulty situations.
Focusing on certain framework and delivery models, Tchana et al. [32] analyzed the implemen-

tation of FT by focusing on autonomic repair. They proved that in most current FT approaches,
faults are exclusively handled by the provider or the customer who leads to partial or inefficient
solutions, while collaborative solutions are much more promising. They demonstrated this with
experiments on collaborative FT solutions by implementing an autonomic prototype cloud
infrastructure. Maloney and Goscinski [24] reviewed issues relating to providing FT for long-
running applications. They investigated several FT approaches where they found that rollback
recovery provides a favorable approach for user applications in cluster systems. They further
explained that two facilities can provide FT using rollback recovery: checkpointing and recovery.
They concluded that the problems associated with providing recovery include providing transparent
and autonomic recovery, by selecting appropriate recovery computers and maintaining consistent
observable behavior when applications fail. Using the technique of record and playback, Kim
et al. [43] proposed a two-node selection scheme, namely, playback node first and playback node
first with prefetching, that can be used for a service migration-based fault-tolerant streaming
service. Their proposed scheme demonstrated that the failure probability of a node currently being
served is lower than that of a node not being served.
Addressing software bugs, Chen et al. [21] presented a lightweight-software fault-tolerance

system in cloud, called SHelp, which can effectively recover programs from many types of software
bugs in the cloud environment. They proposed a ‘weighted’ rescue point technique that effectively
survives software failures through bypassing the faulty path. Their idea was that, in order to share
error-handling information for multiple application instances running on different VM, a three-level
storage hierarchy with several comprehensive cache-updating algorithms for rescue points manage-
ment is adopted. Their experimental results showed that SHelp can recover server applications from
these bugs in just a few seconds with modest performance overhead.
However, focusing on checkpointing, Qiang et al. [45] presented a multi-level fault-tolerant

system for distributed applications in cloud named distributed application-oriented multi-level
checkpoint/restart for cloud. The system backs up complete application states periodically as a
snapshot-based-distributed checkpointing protocol, including file system state. The authors
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proposed a multi-level recovery strategy, which includes process-level recovery, VM recreation,
and host rescheduling, enabling comprehensive and efficient FT for different components in cloud.
Alshareef and Grigoras [25] introduced a checkpoint technique to capture session progress. The
authors claimed the technique is an additional service to their cloud management of the Mobile
ad hoc network (MANET). Their experimental results showed that the model is feasible and robust
and saves time and energy if session breaks occur frequently. Additionally, Agbaria and Friedman
[46] proposed a VM-based heterogeneous checkpointing mechanism, where they explored how to
construct a mechanism at VM level rather than dumping the entire state of the application process.
The mechanism dumps the state of application as maintained by a VM and during restart, and the
saved state is loaded as a new copy of the VM, to continue running from here. The authors reported
on main issues encountered in building such a mechanism and design choices made. They
concluded by presenting a performance evaluation and ideas for extending the work to a native code
O Caml and Java.
In other approaches, Kaur et al. [31] examined the implementation of FT in a complex cloud

computing environment with a focus on first come first serve and shortest job first along with misses
per instruction (MPI) on large method with FT property. Their proposed algorithm works for
reactive FT among the servers and reallocates the faulty servers’ task to the new server, which
has a minimum load at the instant of the fault cloud infrastructure that we prototyped. It also
includes algorithm comparison between MPI and MPI on large.
Further works by Singh et al. [47] presented an approach for providing high availability to the

requests of cloud clients by proposing failover strategies for cloud computing using integrated
checkpointing algorithms and implemented the strategies by developing a cloud simulation
environment, which can provide high availability to clients in case of failure/recovery of service
nodes. They conducted a comparison of developed simulator with existing methods and concluded
that the purposed failover strategy will work on application layer and provide high availability for
PaaS architectures. Kong et al. [39] analyzed the performance, fault tolerance, and scalability of
virtual infrastructure management systems with three typical structures, including centralized,
hierarchical, and peer-to-peer structures, giving a mathematical definition of the evaluation metrics
using quantitative analysis for enhancing performance, fault tolerance, and scalability.
Addressing high availability, Jung et al. [48] provided an enhanced solution to this classical

problem of ensuring high availability by maintaining performance and by regenerating software
components to restore the redundancy of a system whenever failures occur. The authors achieved
an improved availability by smartly controlling component placement and resource allocation using
information about application control flow and performance predictions from queuing models,
ensuring that the resulting performance degradation is minimized. The authors concluded that their
proposed approach provided a better availability and significantly lower degradation of system
response times compared with traditional approaches. An alternate approach by Shen et al. [7]
proposed a mechanism called availability on demand, which consisted of an API that allowed data
center users to specify availability requirements and use an availability-aware scheduler that can
dynamically manage computing resources based on user-specified requirements. Their mechanism
operates at a level of individual service instance, thus enabling fine-grained control of availability.
While the authors argued that availability-on-demand mechanism can achieve high availability with
low cost, the approach is extremely high in resource intensive. Another similar approach of
dynamically adapting based on parameters, Chtepen et al. [49] introduced several information units
on grid status, to provide high-job throughput in the presence of failure while reducing the system
overhead. They presented a novel fault-tolerant algorithm combining checkpointing and replication
and evaluated it in a grid simulation environment called dynamic scheduling in distributed environ-
ments. From their obtained experimental results, it was concluded that the adaptive approach can
considerably improve system performance, while the solutions depend on system characteristics,
such as load, job submission patterns, and failure frequency. Das et al. [50] proposed a
virtualization and FT technique to reduce the service time and increase the system availability.
The authors used a cloud manager module and a decision-maker in their scheme to manage
virtualization and load balancing and also handle faults. By performing virtualization and load
balancing, FT was achieved by redundancy and fault handlers. Their technique was mainly
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designed to provide a reactive FT where the fault handler prevents the unrecoverable faulty nodes
from having an adverse effect.
Addressing optimization methodologies in fault situations, Elliott et al. [51] proposed a model

and analyzed the benefit of C/R in coordination with redundancy at different degrees to mini-
mize the total wall clock time and resources utilization of high-performance computing (HPC)
applications. They carried out an experiment with an implementation of redundancy within the
MPI layer on a cluster, and the results confirmed the benefit of dual and triple redundancy
showing a close fit to the model. Yanagisawa et al. [52] proposed a mixed integer programming
approach that considered the fluctuations of resource demands for optimal and dependable
allocation of VMs by allocating VMs successfully in a cloud computing environment. Israel
et al. [53] modelled an offline optimization problem and presented a bi-criteria approximation
algorithm by presenting a much simpler and practical heuristic based on a greedy algorithm.
They evaluated the performance of this heuristic over real data center parameters and showed
that it performs well in terms of scale, hierarchical faults, and variant costs. Their results
indicated that their scheme can reduce the overall recovery costs by 10–15%, compared with
currently used approaches, by showing that the cost-aware VM placement may further help in
reducing expected recovery costs, as it reduces the backup machine activation costs. Parveen
et al. [33] proposed a model called high-adaptive FT in real-time cloud computing, based on
computing the reliabilities of the VMs based on cloudlets, using million instructions per second
(mips), RAM, and bandwidth. In this approach, if there are two VMs, both having the same
reliabilities values, then the winning machine is chosen based on the priority assigned to them.
Using parameters for optimizing behavior, Malik et al. [6] proposed an FT model for real-time
cloud computing, where the system would tolerate the faults and then make the decision on the
basis of reliability of the processing nodes or VMs. They presented a metric model for the
reliability assessment where they assessed the number of times a decrease in reliability occurred
compared with the number of times an increase happened. This proposed technique was based
on the execution of design diverse variants on multiple VMs, and by assigning reliability to
the results-produced variants. The main essence of their proposed technique is the adaptive
behavior of the reliability weights assigned to each processing node by adding and removing
nodes on the basis of reliability.
Further work by Egwutuoha et al. [38] presented a proactive FT approach to HPC systems in the

cloud to reduce the wall clock execution time in the presence of faults. Their algorithm did not rely
on a spare node for failure prediction and their experimental results, obtained from a real cloud
execution environment, and showed that the wall clock execution time of the computation-intensive
applications can be reduced by as much as 30% with the frequency of checkpointing reduced to
50% compared with current FT approaches. Further work by the authors [54] presented an FT
framework using a process level redundancy technique to reduce the wall clock time of the
execution of computational intensive applications. Other researchers such as Okorafor [40] also
used HPC on the cloud by using message-passing interface and using checkpointing for VMs.
Using simulations shows that the proposed approach compares favorably with the native cluster
MPI implementations.
Following from various traditional approaches, this paper proposed a new model based on a

smart FT approach in real-time cloud applications for running VMs. Using the techniques based
on parameters being optimized, we apply a selection rate process approach, where a VM or node
is selected for computation on the basis of its previous PR and overall task service time. If the VM
does not show good performance, it can be deselected from the list of available VMs. This
technique does not need to have a record and playback strategy because the guarantee of success-
ful service completion is given by the initial decisions made at deployments of the service in VMs.
This technique of using integrated virtualized failover strategy has been validated through quanti-
tative and experimental results by simulations for testing performance for success in four scenarios
– partial and full pass, and partial and full fail situations for FT in cloud environments. These
results have been analyzed against the traditional approaches to see how well the cloud environ-
ment repairs and manages to fulfill the service completion tasks. The next section discusses the
details of the approach.
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4. SMART FAULT TOLERANCE IN CLOUD – THE VISION

The overall vision of FT in cloud computing is to provide high availability to fulfill the client
requests on service performance and completion time as defined by the service-level agreement.
An FT service is an essential part of the service-level objective; therefore, an FT function in a cloud
environment is extremely crucial. This section presents a working model of the strategy and a
mathematical relationship that represents the FT model for our cloud computing system using the
FT checkpoint scheme. The FT checkpoint uses a reward renewal process, which denotes that after
each failure occurrence in the system, a backward recovery is performed and the VM is immediately
restarted and recovered from the last successful checkpoint. Based on the FT system architecture
consisting of four zones, the approach has been analyzed in relation to some extreme use cases to
analyze how the CC would perform as presented in the next section.
We define a mathematical representation of the FT model for a cloud computing system, present-

ing a working model of integrated virtualized FT approach. The FT system architecture shown in
Figure 1 consists of four zones, namely,

• The client zone: One or more clients can access service of cloud on demand at any given time.
• The virtualization zone: One or more VMs instances can be started up, terminated, and
migrated within the data center, also acting as a link between client and FT cloud environment.

• The FT zone: Here, the hypervisor and virtual machine monitor (VMM) exist to support high-
availability cloud service level and service-level objectives.

• The hardware zone: One or more distributed data centers in different locations with each data
center consisting of numerous physical servers, providing hardware infrastructure for starting-
up VMs instances [7].

Using the variables defined in Table I, let the FT model (FTm) of a cloud computing system be
represented by a finite-ordered list of elements or a sequence of five elements:

Figure 1. Fault tolerance architecture.
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FTm ¼ C;DC;FTs;OBJ f ;PRA
� �

; (1)

OBJ f ¼ max FTLð Þ;
s:t FTL ∈ 0; 1½ �;

Chk Optð Þ;

8><
>: (2)

where PRA is an algorithm that selects the optimal PR, C={c0, c1, c3, … , cn� 1} represents a set
of n-clients that may request services separately, FTL represents a set of FT service levels avail-
able by the cloud SP, OBJf is the cloud FT optimizing objective function as given in (1), and
DC={dc0,dc1,dc3, … ,dcn� 1} represents a data center set that is made up of dcn data
centers, where dci ¼ ps0; ps1; ps3;…; psidci�1

� �
and psik 0 ≤ k < dcið Þ is the kth physical server

of the ith data center dci.

4.1. Working of the model

The technique aims at providing a high-availability system in presence of faults, achieved by using
the selection rate process technique, where a VM or node is selected for computation on the basis of
its previous PR. This node can be detached from the selection list if it does not operate well.
According to the model, a set of nodes are created by requests from the resources of the host ma-
chine or the physical server. This is achieved by the VM monitor (or possibly the hypervisor) that
is either software, hardware, or firmware that creates and runs VMs. The host machine is the server
where the VMM or hypervisor runs guest VMs. The VMM presents the guest operating systems
with virtual operating platforms and also manages the execution of these guest operating systems.
The VMM retains records of all virtual nodes created from the different host servers. In addition,

it retains and manages records during the process when a load balancer mechanism assigns a job to
a virtual node of a specific host server in order to evaluate the PR. The model is made up of the
following modules as shown (Figure 2):

• SP – It is responsible for forwarding the task submitted by clients to the CC. It also returns
results obtained from the CC to the cloud user.

• CFM – It is one of the most critical modules in the model as it keeps the system in operation
and prevents breakdown. In a scenario where a virtual node develops a fault, as a result of some
transient faults that occurred in remote host server of corresponding virtual node or due to some
recoverable temporary software faults present in CC, here, the CFM takes responsibility and
updates the cloud information service (CIS) record table. In other words, during this time, if
there is no executing virtual node on the host server, the CFM module will remotely and
automatically restart the server. At this particular point in time, the cloud load balancer
(CLB) module is informed not to assign any further tasks to the virtual nodes of the concerned
server. During this process, there might be a slight delay in the system restarting and jobs

Table I. Parameters of our architectural model

Parameters Meaning

FTm FT model of a cloud computing system
C A client set composed of n users
DC Data center
FTs A set of defined FT service levels
OBJf Objective function for optimizing an FT cloud
PRA Pass rate algorithm
FTL Fault tolerance level
Chk(Opt) Checkpoint optimization strategy

FT, fault tolerance.
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waiting to be processed. However, the algorithm tries to recover quickly by minimizing the
system service time and not losing any job during the process. It might also apply some fault
detection strategy and successful recovery technique thereby making the virtual node of that
host or physical server available for future request.

• CC – This is directly linked to the SP and is part of the cloud architecture. Virtualization is
performed using the hypervisor, which provides system resources access to VMs and creates
a virtual environment. In addition, it keeps record of virtual nodes and their corresponding
physical nodes each time a virtual node is created. The virtual node IDs, server IDs, and PR
are contained in the CIS, which helps to identify the virtual nodes and keeps record of tasks
assigned to virtual nodes of a particular host or physical server.

Figure 2. Proposed system model. [Colour figure can be viewed at wileyonlinelibrary.com]
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• CLB – The CIS is also available to the CLB and distributes the loads based on the information
it gets from the record of physical systems used for virtualization. The CLB will assign a task
to virtual nodes whose corresponding physical servers have a high PR.

• Status checker (SC) –This is the first submodule under the selection mechanism module. It
checks the status of each virtual node either it passes or fails.

• CIS record table – This is a performance record table that contains server IDs, virtual nodes
IDs, and PR values to identify corresponding virtual nodes.

• TTLC –The task time deadline of each task assigned is checked by the TTLC in the selection
mechanism module. It also checks to see if the assigned task is completed within an agreed
time limit.

• Selection module – This module provides the crucial process and is made up of the SC, TTLC,
CIS record table, FT check pointer, and the final selection mechanism. Here, SC checks the
status of each virtual node, and if the status is pass, then the task deadline time is checked
by the TTLC. If both SC and TTLC are pass, then PR of corresponding node is increased
and forwarded to the decision mechanism module for final selection process. But if both SC
or TTLC fail, then the corresponding VM is not forwarded for final selection, and instead,
the node is forwarded to the CFM for fault detection and recovery. In a scenario where SC
is a success but the task is not completed within the time limit, the PR in the CIS record table
of that particular node is decreased and that node is not forwarded to the final decision
mechanism submodule. Table II present these rules in detail.

In addition, the final selection mechanism contains all virtual nodes that successfully passed the
SC and TTLC module. After this point, the node with the highest PR value is selected, and
checkpoint is made. But if all nodes failed, a backward recovery is carried out with help of the last
successful checkpoint. Also, if there exist more than one node with same PR values, then a node
will be selected at random.

4.2. Use case scenarios

In the aforementioned scheme, all virtual nodes run a different algorithm resulting in different
scenarios of pass and fail rates, representing diversification in software and timing constraints.
Table II below shows the rules of the system while Figure 3 presents the use case scenarios. The
following are some scenarios that could occur:

• Full pass scenario – The entire algorithm on each virtual node produces a successful outcome.
Here, the SC and TTLC are also pass because the task is completed within the stipulated time
limit. The PR of the corresponding node is then increased, and it goes to the selection mecha-
nism for the final decision-making. The selection module contains all the virtual nodes that
have successfully completed and passed the SC and TTLC module. The final selection module
selects the node with the highest PR value and performs a checkpoint before sending back to
the SP. However, in this case, no failure is recorded in any of the VMs.

Table II. Rules of the system

Rules Condition Decision

1 If (SC status == pass) &&
(TTLC status ==pass)

Increase PR and forward to selection module
for decision and selection.

2 If (SC status == pass) &&
(TTLC status ==fail)

Update database in cloud information service
module, decrease PR, and correspond virtual
machine not sent to selection module.

3 If (SC status == fail) &&
(TTLC status == pass)

Decrease PR and node sent to CFM for
identification, detection, and recovery.

4 If (SC status == fail) &&
(TTLC status ==fail)

Decrease PR and node also sent to
CFM for detection and recovery.

PR, pass rate; CFM, cloud fault manager.
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• Partial pass scenario – All VMs produce successful results where some of the results are
generated within the time limit and some after the time. If the status check of a node is pass
but the task is not completed within the agreed time limit, then the system is said to be in a
partially pass state, and the node is not considered for a further decision by the final selection
mechanism. The success rate for that particular node is also decreased, and an error signal is
not generated for a failed VM. However, in this scenario, the system will continue to operate
with forward recovery, and the selection mechanism will select the output from the nodes that
have produced a good PR within the time limit.

• Full failure scenario – If the status check is failed, then automatically, the task limit check is
also failed, and all the faulty nodes are sent to the CFM for fault detection and recovery. In this
scenario, all nodes fail completely, and with the aid of the last successful checkpoint, a
backward recovery is performed.

• Partial failure scenario – If either the SC or task limit time checker is failed, then the corre-
sponding VM is not considered or forwarded to the final selection module. However, some
VMs produce some pass results only when the SC is pass and the results are produced within
the time limit, thereby sending the VM to the selection module and increasing the success rate
of that node in the CIS record table. Here, error signals will be generated for failed VMs, and
the corresponding node will not be sent to the final selection module. The system will continue
to operate with forward recovery, and the last decision mechanism will only select the output
from the nodes that have produced a pass result.

The definitions of PR and failure rate are as follows:

• PR is defined as the fraction or percentage of successful virtual nodes in the system after
executing a complete computing cycle.

• Failure rate is defined as the level or rate at which the virtual node of the system fails. The fail-
ure rate of the system depends on time, status check, and TTLC. Details of this are presented
mathematically in the next section.

4.3. Fault tolerance using checkpointing mechanism

Checkpointing strategies have drawn a significant attention over the last couple of years in the
context of FT research in cloud computing [55].They have been explored for a large-scale cloud
environment. Checkpointing mechanism is the process of saving a system state periodically to a sta-
ble storage during failure-free execution. Being the most common mechanism for FT in a cloud

Figure 3. Use case scenario for pass and fail. [Colour figure can be viewed at wileyonlinelibrary.com]
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environment, we integrate it with the PR-optimized selection technique and have focused on it in
this paper. Overall, it can be classified into two main types, namely, full checkpointing mechanism,
which saves the entire system running state periodically to a storage platform, and the incremental
checkpointing mechanism whose first checkpoint contains the running state of the complete system,
while the subsequent checkpoint only saves pages that have been modified since the previous
checkpoint [9].
In order to realize a high level of FT in cloud and to achieve an optimal level of cloud service-

ability and cloud service-level agreement, we present a mathematical proof for FT strategy based
on our model (Figure 4). Table III presents the key parameters of the model.
According to Figure 4, the time interval between consecutive checkpointsΔJ is a critical factor to

trade off checkpointing overhead TOV and FT overhead, which relates to the checkpointing over-
head during the longest failure-free time interval of the consecutive checkpoints, rollback time
TRol, and the time interval between the failure point and the last successful checkpoint after system
recovery TRec. So the failure density function (FDF) is given as f tð Þ, while the checkpoint density
function is given as ρ tð Þ:
The scheme uses a checkpoint model that follows a reward renewal process, where after each

failure occurring in the system, backward recovery is performed and the application is immediately
restarted and recovered from the last successful checkpoint. In summary, the fault generated is
repaired before the last task time deadline is reached, and after each node failure occurrence in

Figure 4. Full checkpointing strategy failure cycle.

Table III. Parameters of the fault tolerance model

Ωi The cycle between failure i and failure(i + 1)

Jn Time of the nth checkpoint
TRol Rollback failure time between TF and the last successful Jn checkpoint
Rp Restart point
TRec Recovery point/time or fault tolerance overhead
TF Failure occurrence point/time
Tcy Total time interval of a complete failure cycle
TOV Checkpoint overhead
ΔJ Time interval between consecutive checkpoint
CDF Continuous density function
F(t) Failure distribution function
f(t) Failure density function
TOVFF Longest failure-free checkpoint overhead
ρ(t) Checkpoint density function
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the system, the application will be restarted from the last successful checkpoint. The following
assumptions were made.

Assumption 1

Let (Tov , Trec,TRol) of each cycle be a sequence of independent identically random variable (L1,
L2,L3), which is dependent on any point when time failure occurs in the system Ω, which stands for
the kth time between failures in each computing cycle.

E Tov½ � < ∞: (3)

To improve the checkpoint mechanism in our system, we looked at how to determine checkpoint
intervals that decrease the time delay because a checkpoint should not be carried out too regularly to
balance Tov and rollback time of our application.
Therefore, the time delay can be expressed as follows:

Lt ¼ ∑xt
i¼0Ti; (4)

where xt = sup{n : Jn ≤ t}= max {n∈ (1, 2, 3 ... .)|xt ≤ t}.
And Jn refers to the kth failure time of intervals [Jn , Jn + 1 ], which is also called the renewal

intervals, which is defined as follows:

Jn ¼ ∑n
i¼1Ti; (5)

Equation (4) is called the renewal reward process where Lt depends on (Tov ,Trec,TRol).
The renewal function is defined as the expected value of the number of failures observed up to a

given time t:

f xð Þ ¼ E X t½ �: (6)

So the renewal function satisfies

lim
t→∞

1
t
f xð Þ ¼ 1

Ε Ω1½ � : (7)

Substituting (6) into (7) gives

lim
t→∞

X t

t
¼ 1

Ε Ω1½ � : (8)

Proving the elementary renewal theorem, it is sufficient to show that for an elementary renewal
theorem for renewal reward processes, the reward function is given as follows:

g xð Þ ¼ Ε Lt½ �: (9)

The reward function thereby satisfies

lim
t→∞

1
t
g xð Þ ¼ Ε L1½ �

Ε Ω1½ � : (10)
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Substituting (9) into (10) gives

lim
t→∞

E Lt½ �
t

¼ E L1½ �
E Ω1½ � : (11)

From Equation (4),

Lt ¼ ∑xt
i¼0Ti: (12)

Then Equation (11) becomes

lim
t→∞

E ∑xt
i¼0Ti

� �
t

¼ E L1½ �
E Ω1½ � : (13)

Therefore,

Lt ¼ E L1½ �
E Ω1½ � ; (14)

where Lt is called the renewal reward process as derived in [56, 57]. Conversely, there is an addi-
tional time to save the system application states, which is called the checkpoint overhead. In order
to improve the checkpoint mechanism, checkpoints should not be performed too frequently in order
to achieve balancing between the checkpoint overhead, recovery time, and application re-
computing time as derived in [58, 59, 55], [60].

Assumption 2

In the proposed model, we assume that failures occur rarely and randomly to the system, rather than
being an integral part of the system. The checkpointing mechanism is able to recognize and isolate
faults when they occur to ensure the overall system performance is not affected.

Assumption 3

We assume that failure will be detected as soon as possible after the occurrence and the time
between failures follows a similar probability density function in cloud systems. At the same time
during system recovery period, failure will not happen.

Assumption 4

The system is failure free during system recovery period.

Assumption 5

The time between failures follows the same probability density function in a cloud environment.

Assumption 6

That ΔJ is constant, which implies that TRol<ΔJ always.
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Assumption 7

TOV is constant in a cloud environment.

Assumption 8

The failed system can always be recovered from the last successful checkpoint, which implies that
Trec<ΔJ always.
From the figure previously, TovFF is defined as the checkpointing overhead during the longest

failure-free time interval of consecutive checkpoint, and it is associated with the Tov.
So

TovFF ¼ Ω1 � TRol: (15)

We define a continuous density function (CDF) of a continuous checkpoint as a function that
describes the probability for a checkpointing interval ΔJ to occur at a particular time t:

CDF ¼ ρ tð Þ ¼ 1
Δ J

; (16)

where Njx:jy is the number of checkpoints to fall within a particular interval [jx , jy], which is given by
the integral of CDF over time interval [jx , jy].
Therefore, integrating (16) becomes

∫ jyjxρ tð Þ dτ ¼ ∫ jyjx
1
Δ J

dτ ¼ Njx:jy : (17)

Because Njx:jy is the number of checkpoints to fall within an interval [jx , jy], then Njn�1:jn is the
number of checkpoints to fall within an interval [jn� 1 , jn].
From (17), we have

∫ jnjn�1
ρ tð Þ dτ ¼ ∫ jnjn�1

1
Δ J

dτ ¼ ∫ jnjn�1

1
jn � jn�1

dτ ¼ Njn�1:jn ¼ 1 : (18)

So from the figure previously, we calculate the total checkpoint overhead during the longest
failure-free time interval as follows:

TovFF ¼ Tov� Nj0:jn ; (19)

TovFF ¼ Tov� ∫ jnj0 ρ tð Þ dτ: (20)

Because TRol is connected to TF and in reality, TF is unknown until failure occurs, therefore, we
use failure expectation distribution value E(TRol) as the fault overhead.
If f(t) represents the FDF of a continuous failure whose function describes the relative probability

for the failure to occur at a particular time t, then we define the FDF as follows:

f tð Þ ¼ F
0
tð Þ ¼ dF tð Þ

dt
: (21)

Such that f(t)≥0 and F(t) represent the failure distribution function, which is connected to the
FDF. We now have

∫þ∞
�∞ f τð Þdτ ¼ 1: (22)
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If F(t) of a continuous failure is defined as a function that describes random variable t with a
given FDF f(t), where f(t)≤ t, then

F tð Þ ¼ P �∞≤ tð Þ ¼ ∫ t�∞ f τð Þdτ: (23)

Simplifying Equation (23) gives

P �∞≤ tð Þ ¼ 1� F tð Þ ¼ ∫�∞
t f τð Þdτ: (24)

So

P tx < t≤ ty
� � ¼ F ty

� �� F txð Þ: (25)

Equation (25) now gives

¼ ∫ tytx f τð Þdτ;Where lim
t→∞

F tð Þ ¼ 0 and lim
t→þ∞

F tð Þ ¼ 1: (26)

Recall that because TRol is connected to TF and in reality, TF is unknown until failure occurs,
therefore, we use failure expectation distribution value E(TRol) as the fault overhead. We then
calculate the failure expectation value as follows:

E tð Þ ¼ ∫þ∞
�∞ τ:f τð Þdτ; (27)

where E(t) is defined as the failure distribution value of a continuous failure that describes the
weighted average of all values of all possible failures that accept probability density function.
Because (FTOV) is associated with TF, and TF falls within time interval [ Jn,Jn , + 1], therefore, we

can simply calculate TF and Jn as well as the rollback failure time between TF and the last successful
Jn checkpoint, which is given as follows:

TRol ¼ TFi � Jn: (28)

From our checkpoint model, the checkpointing time interval in a cycle falls within an interval
[J1,Jn , + 1]; breaking it down further gives [J1,J2,J3,… , Jn , + 1] and [ Jn,Jn , + 1] where TF falls
between time interval [Jn,Jn , + 1].
So let (Jn<TF≤ Jn + 1=X).
Therefore, from (27), the failure expectation distribution value gives

E TRoljXð Þ ¼ 1
2�ρ tð Þ : (29)

Substituting X into (29) gives

E TRoljJn < TF ≤ J nþ1ð Þ Þ ¼ 1
2�ρ tð Þ : (30)

Because TF falls within time interval [Jn,Jn , + 1], which implies that Jn<TF,≤ Jn , + 1, and t falls
within [Jn ,TF ], the failure expectation value by substituting (28) gives us the following:

E TRoljJn < TF ≤ Jnþ1ð Þ ¼ E TFi � JnjJn < TF ≤ Jnþ1ð Þ: (31)

From (27), integrating gives

E TRoljJn < TF ≤ Jnþ1ð Þ ¼ ∫ J nþ1�Jn
0 P τ > TFi � JnjJn < TFi≤ J nþ1ð Þdτ: (32)
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Simplifying (32) gives

E TFi � JnjJn < TF ≤ Jnþ1ð Þ ¼ ∫ Jnþ1�Jn
0

P τ > TFi � Jn; Jn < TFi≤ Jnþ1ð Þ
P Jn < TFi≤ Jnþ1ð Þ dτ; (33)

E TFi � JnjJn < TF ≤ Jnþ1ð Þ ¼ ∫ Jnþ1�Jn
0

F Jn þ τð Þ � F Jnð Þ
F Jn þ 1ð Þ � F Jnð Þ dτ; (34)

E TFi � J njJn < TF ≤ Jnþ1ð Þ ¼ ∫ Jnþ1�Jn
0

∫ Jnþτ
Jn f xð Þdx
∫ Jnþ1
Jn f xð Þdx dτ: (35)

Failure rate is the frequency with which an engineered system or component fails, expressed in
failures per unit of time. It can be defined with the aid of the reliability function, also called the
survival function R(t), the probability of no failure before time t.

λ tð Þ ¼ f tð Þ
R tð Þ ; (36)

where f(t) is the FDF of a continuous failure, which is related to the failure rate λ and not to time,
because the system failure rate λ does not change in the time interval [Jn,Jn , + 1], and

R tð Þ ¼ 1� f tð Þ: (35)

Note that the λ tð Þ function is a conditional probability of the FDF. The condition is that the failure
has not occurred at time t.
Hence, Equation (35) becomes

E TFi � JnjJn < TF ≤ Jnþ1ð Þ ¼ ∫ Jnþ1�J n
0

∫ Jnþτ
Jn f tð Þdx
∫ J nþ1
J n f tð Þdx dτ: (38)

Simplifying further gives

E TFi � JnjJ n < TF ≤ Jnþ1ð Þ ¼ ∫ Jnþ1�Jn
0

Jn þ τ � Jnð Þ�f tð Þ
J nþ1 � Jnð Þ�f tð Þ dτ; (39)

E TFi � JnjJn < TF ≤ Jnþ1ð Þ ¼ ∫ Jnþ1�Jn
0

τ
Jnþ1 � Jnð Þ dτ: (40)

Factoring out and integrating wrt to τ give

E TFi � JnjJn < TF ≤ Jnþ1ð Þ ¼ ∫ Jnþ1�Jn
0

τ
Jnþ1 � Jnð Þ dτ; (41)

E TFi � JnjJn < TF ≤ Jnþ1ð Þ ¼ 1
Jnþ1 � Jnð Þ ∫

Jnþ1�Jn
0 τdτ; (42)

¼ 1
Jnþ1 � Jnð Þ �

Jnþ1 � Jnð Þ2
2

¼ Jnþ1 � J nð Þ
2

: (43)

Therefore,

E TRoljJn < TFi≤ Jnþ1ð Þ ¼ Jnþ1 � J nð Þ
2

: (44)
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Substituting ΔJ= (Jn + 1� Jn) into (44) gives

E TRoljJn < TFi≤ J nþ1ð Þ ¼ Jnþ1 � Jnð Þ
2

¼ Δ J
2

: (45)

Substituting (16) into (45) gives

E TRoljJn < TFi≤ Jnþ1ð Þ ¼ 1
2�ρ tð Þ : (46)

From Figure 4 previously, the total overhead time interval of the complete failure cycle can be
calculated as follows:

Tcy ¼ TOVFF þ TRol þ Trec; (47)

where

Trec ¼ TRol þ TOV : (48)

Substituting (30) into (48) gives

Trec ¼ 1þ 2�ρ tð Þ�TOV

2�ρ tð Þ ¼ 1
2�ρ tð Þ þ TOV : (49)

Substituting (20), (46), and (49) into (47) gives

Tcy ¼ Tov� ∫ jnj0 ρ tð Þ dτ þ 1
2�ρ tð Þ þ

1
2�ρ tð Þ þ TOV : (50)

Simplifying (50) and factoring out TOV give

Tcy ¼ Tov� 1þ ∫ jnj0 ρ τð Þ dτ
� 	

þ 1
ρ tð Þ : (51)

The failure expectation distribution value E(Tcy) can be calculated because the time interval in our
failure circle is [J0,Jn , + 1], and f(t) and F(t) are the FDF and failure distribution function,
respectively. So

E Tcy
� � ¼ ∫þ∞

0 Tcy�f tð Þ dt: (52)

Integrating wrt t and substituting (51) into (52) give

E Tcy
� � ¼ ∫þ∞

0 Tcy� 1þ ∫ jj0 ρ τð Þ dτ
� 	

þ 1
ρ tð Þ


 �
�f tð Þ dt; (53)

where E(Tcy) is the failure expectation distribution value.
Minimizing the value of E(Tcy) from Equation (51), ρ(t) can be obtained thereby optimizing ΔJ,

which is the checkpoint interval.
So ρ(t) is obtained as follows:

¼ 1
Tov

� f tð Þ
1� F tð Þð Þ


 �1
2

: (54)

And ΔJ is obtained as follows:

¼ Tov� 1� F tð Þð Þ
f tð Þ


 �1
2

: (55)
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Therefore, minimizing (minE(Tcy)) is equivalent to

¼ Tcy� 1þ ∫ jj0 ρ τð Þ dτ
� 	

þ 1
ρ tð Þ


 �
�f tð Þ dt


 �
: (56)

The sequence of interactions between components of the cloud using our proposed strategy as
shown in Figure 5 is as follows:

1. At the start, users submit a task with user QoS requirements to the SP and dispatch tasks to the
CC.

2. CC sends request to the CIS to get a list of available resources for each task.
3. CIS responds to this query by sending a list of registered resources that are suitable for

executing the job and their information (CIS table).
4. After receiving the available list of resources, the CC performs the following:

(a) Performs virtualization with the help of a hypervisor.
(b) VMs (nodes) are created from the available resources of the physical server.
(c) A CIS table containing the server IDs, virtual nodes, and PRs is made available to the load

balancer. This table is maintained to identify the virtual nodes and to keep record of the num-
ber of times jobs are assigned and to also obtain the PR from those successful virtual nodes.

5. The load balancer distributes the task based on the information obtained from the CIS table,
by assigning a task to those virtual nodes whose corresponding physical servers are having
a good PR.

6. If the job is successfully completed then.

(a) Both the SC and TTLC are a success.
(b) The PR of corresponding node is increased and forwarded to the final decision mechanism

module.
(c) The decision mechanism delivers the result of a successful job to the SP, which is then

dispatched or returned to the client.

7. If it fails to complete the job then,

(a) Both SC and TTLC fail.
(b) Either SC or TTLC fails, and the corresponding VM is not sent to the decision mechanism.

Figure 5. A sequence diagram for the interaction between the proposed system components.
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(c) The corresponding VM is sent to fault manager for fault detection and recovery. If all nodes
fail, then the backward recovery is performed with the help of the last checkpoint.

Algorithm 1: Cloud Controller Computation Algorithm

Step 1: Start
Step 2: Output “Most Viable Node for operation with highest PR"
Step 3: Input “highestPassRate =1"
Step 4: Input PR=0.5 , x1= 1 , x2 =2.
Step 5: If (nodeStatus =Pass), /SC and TTLC module for that node is Pass/

{x1=x1+1, x2= x2+1, PR=x1/x2
Update CIS record table} else,

Step 6: If (nodeStatus=Fail), /SC or TTLC module for that node or both is Fail/
{x2=x2+1, PR=x1/x2Update CIS record table}

Step 7: If (PassRate> =highestPassRate)
{PassRate =highestPassRate}

Step 8: If(PassRate< =0)
{Inform CLB not to assign task to the node, remove the node and CC will be informed to add

a new node}
Step 9: Stop

Algorithm 2: Cloud Load Balancer Algorithm

Step 1: Start
Step 2: Input initial PR=0.5, x1=1, x2=2. (0<PR≤1)
Step 3: Input “highestPassRate ¼ 1}; PR ¼ x1

x2
x1 =Number of times the virtual node of particular physical server gives a succesfull result
x2 =Number of times the CLB of the CC assigns a task to a particular servers virtual node

Step 4: If (if SC Status= =Pass)& & (TTLC status = =Pass)
Select the node

If (if SC Status= =Pass)& & (TTLC status = =Fail)
Select the node with the highest PR

If (if SC Status= =Fail)& & (TTLC status = =Pass)
Don’t select the node if enough nodes are available

If (if SC Status = =Fail)& &(TTLC status = =Fail)
inform the CC and forward to CFM to perform recovery with the last successful

checkpoint
Step 5: Stop

Algorithm 3: Final Selection Technique Algorithm

Step 1: Start
Step 2: Output “Select best Node with highest PR and minimum finish time"
Step 3: Input from TTLC: node PassRate, x1= is the number of nodes with successful SC and
TTLC results.
Step 4: Input PR=0.5,
Step 5: Input highestPassRate
Step 6: if (x1==0), then {Status = fail, Conduct a backward recovery with the help of the last suc-
cessful checkpoint} else, {Status=Pass, bestPassRate=PassRate of the node with maximum
PassRate and send outcome to the Service provide and perform checkpoint}
Step 7: Stop
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4.4. Pass rate and fail rate assessment analysis

We considered 200 computing cycles and present a metric analysis to evaluate the pass and fail sce-
narios of six virtual nodes, respectively. As part of our initial conditions, we assumed the following:

(i) Pass rate = 0.5, where x1 represents the number of times a VM of host produces a pass outcome
and x2 represents the time the CC’s load balancer designates a task to a virtual node.

(ii) Each VM belongs to a different host or physical server.

A comparison analysis performed for 200 computing cycles between the pass and failure
scenarios is presented. We observe that scenario 1 continuously increased and passed success-
fully, while scenario 2 continuously decreased as shown in Figure 6. Scenario 3 passed and
succeeded for the first 100 cycles and then decreased for the remaining cycles, while scenario 4
failed for the first 100 cycles and then succeeded for the remaining 100 cycles. The increase in
PR after 200 computing cycles is 0.978 for scenario 1, whereas the decrease in PR for scenario
2 is 0.579, with the increase in PR for scenarios 3 and 4 being 0.38. This shows that the increase
in PR is greater than the decrease, and the convergence towards decrement in reliability is much
higher, displaying a good performance of algorithm. Further scenarios in a more complex
environment contain a higher number of VMs and were tested for validation of result. This is
discussed is Section 5.

5. EXPERIMENTAL SETUP AND RESULTS

The experiments were conducted using CloudSim [61–64] where 100 virtual nodes were created
for performance comparison and scalability validation. We started by running the integrated
virtualized optimal checkpointing algorithm using 10 computing cycles and created six virtual
nodes with every individual node executing a series of tasks at a time. While these tasks are
executed in one computing cycle, every virtual node runs a diverse algorithm. We then
compared our results with existing approaches by creating three virtual nodes with 10 computing
cycles as depicted in Section 5.1. To analyze the algorithm’s performance in a larger and
complex environment, we created 100 virtual nodes. Details of the simulation results are presented
in the next section.
As earlier stated, the different pass and failure scenarios obtained from this experiment are a re-

sult of diversity in software and timing constraints. The selection or decision mechanism is respon-
sible for receiving results obtained from the VMs before returning the result of the successful job to
the client via the SP. At the SP level, the selection or decision mechanism is integrated with the CC
module. In a situation where a failure occurs in one of the nodes, the system will automatically
adapt a failover strategy and continue operating using the remaining nodes. The system will

Figure 6. Pass/pass⤇fail and fail/fail⤇pass shifting plots. [Colour figure can be viewed at
wileyonlinelibrary.com]
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maintain and continue its operation in a steady state until all nodes have failed. A node is then se-
lected, and a checkpoint of the last successful saved point is made to keep the status of the system
for future recovery. This is performed after a successful completion of one computing or instruction
cycle. The approach assumes that the value of x1, x2 PR, virtual node ID, and corresponding server
ID is available. The task deadlines are taken as input with initial values x1 = 1, x2¼ 2 , and PR = 0.5

Figure 7. Experimental result from six virtual machines. [Colour figure can be viewed at
wileyonlinelibrary.com]

Figure 8. Performance comparison of virtualization and fault tolerance approach (VFT), adaptive fault tol-
erance approach (AFT), and our proposed strategy. [Colour figure can be viewed at wileyonlinelibrary.com]
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considered for every node. Figure 7 shows some experimental results obtained from six VMs for
pass and failure rate analysis.

5.1. Performance comparison of results

Figure 8 presents results obtained from the performance comparison of our proposed strategy with
other existing approaches where we observed that our proposed strategy has a better performance
compared with the existing approaches, as the increase in PR for virtual nodes 1, 2, and 3 is higher
than decrease in failure rate.

1. Virtualization and FT approach (VFT) – Das et al. [50] proposed a virtualization and FT
technique to reduce the service time and increase the system availability. In their proposed
approach, cloud manager and decision maker modules was introduced which they used to
manage virtualization and load balancing as well as fault handling in the system. By
performing virtualization and load balancing, FT was achieved by redundancy and fault
handlers. Their technique was mainly designed to provide a reactive FT where the fault
handler prevents the unrecoverable faulty nodes from having an adverse effect.

2. Adaptive FT approach (AFT) – Malik et al. [6] proposed an adaptive FT in time cloud
computing where the main essence of their proposed technique was an adaptive behavior of
the reliability weights assigned to each processing node and adding and removing of nodes
on the basis of reliability.

3. Our proposed approach – For the purpose of evaluation, we compared our proposed strategy
with the VFT [50] and AFT strategies [6] where we use results obtained from our proposed
strategy as the measured parameter, while that of VFT and AFT are referred to as calculated
parameters, respectively.

Comparing the three models, we first obtain the relative error xre, and then we calculated the
actual error xi as the difference between the calculated and measured result. These are expressed
as (57) and (58), respectively.

xre ¼ qiCalculated � qiMeasured

qiMeasured


 �
� 100; (57)

xi ¼ qiCalculated � qiMeasured; (58)

e1 ¼ 1
N

XN
i¼1

xre

" #
: (59)

A performance evaluation of VFT and AFT strategies with our proposed model was carried out
using the parameters in Table IV.

Table IV. Parameters

Parameter Meaning

xre Relative error
xi Actual error
e1 Average percentage relative error
e2 Average absolute percentage relative error
e3 Standard deviation
e4 Average actual error
e5 Average absolute actual error
e6 Standard deviation about average actual error
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Equations (59)–(64) give the mathematical definition of these parameters, and Table 5 presents
the experimental results.

e2 ¼ 1
N

∑
N

i¼1
xrej j

� 
; (60)

e3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑N

i¼1 xre � e1ð Þ2
N � 1

s
; (61)

e4 ¼ 1
N

∑
N

i¼1
xi; (62)

e5 ¼ 1
N

∑
N

i¼1
xij j; (63)

e6 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑N

i¼1 xi � e4ð Þ2
N � 1

s
: (64)

Figure 9(a) shows the mean error comparison, pass, and failure rate analysis between our pro-
posed approach and existing approaches as well as the error bar plot for some of the virtual nodes.
Under VM-1, the PR mean value of our proposed strategy was 0.85, while that of VFT and AFT are
0.75 and 0.46, respectively. It was observed that VFT performed better than AFT, which could be
attributed to a better algorithm used by VFT. This also shows this limitation of the AFT algorithm.
In VM-2, the difference between the mean value obtained for both VFT and AFT is less significant
because VFT is slightly higher than the later. But our proposed strategy under this VMs displayed
an improved performance. While in VM-3, AFT is slightly higher than VFT even though the result
obtained is less significant, but most importantly, our proposed strategy shows a better result.

Figure 9. Mean error value comparison and error bars plot. VFT, virtualization and fault tolerance
approach; AFT, adaptive fault tolerance approach. [Colour figure can be viewed at wileyonlinelibrary.com]

1266 B. MOHAMMED ET AL.

Copyright © 2017 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2017; 47:1243–1274
DOI: 10.1002/spe

http://wileyonlinelibrary.com


Figure 10. Success rate analysis of virtual machines. VFT, virtualization and fault tolerance approach; AFT,
adaptive fault tolerance approach.

Table V. Virtual node 1 performance comparison of VFT and AFT with our proposed strategy

Virtual node 1 comparison metrics
Data sources ε1(%) ε2(%) ε3(%) ε4(%) ε5(%) ε6(%)

VFT �11.0812 11.08117 25.83521 �0.10103 0.101032 0.308417
AFT �43.4512 43.45116 60.19807 �0.39175 0.391750 0.297314

VFT, virtualization and fault tolerance approach; AFT, adaptive fault tolerance approach.

Figure 11. Mean rank of pass and failure rate with standard deviation (error bars). VFT, virtualization and
fault tolerance approach; AFT, adaptive fault tolerance approach.
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Overall, this indicates that our proposed strategy has a better output and improved performance
compared with the existing approaches (Figure 10).
Based on the performance comparison analysis in Table V, the standard deviation for virtual node 1

under the VFT and AFT strategies was estimated to be 25.835 and 60.19807, respectively, while that
of VM-2 was estimated to be 20.438 and 45.078. A further deviation of strategies was also noticed in
VM-3. This shows the degree of deviation of the calculated result from the measured result. For the
VFT algorithm, our results have shown that the calculated PR is lesser compared with the measured
PR of our proposed strategy. While for the AFT algorithm, the calculated PR is far much lesser than
both the VFT algorithm and our proposed strategy. Details of this model can be found in [50, 6].
A mean rank of success and failure rate of the VFT, AFT, and our proposed strategy was

conducted, and the results are presented in Figure 11. We observed that in Figure 11(a), (b), and
(c), there is no overlap between our proposed strategy and VFT, which shows the significance of
errors that exist between our proposed model and the current existing approach.

6. DISCUSSIONS

We conducted experiments using three VMs for performance comparison with other existing
approaches (as shown in Figure 8), Table V–VII also presents a virtual node comparison using 3
VMs then we performed another experiment using six VMs after which we then performed the
experiment using 100 VMs, which are both on a larger scale compared with the initial setup. In
the first cycle, VM-1, VM-2, VM-3, VM-4, VM-5, and VM-6 have the same PR, but the result of
VM-1 (node 1) has been selected because it has a lower task finish service time of 1700. In the same
cycle, VM-5 did not pass the status check, and the time task limit check also automatically failed.
The VM-2 output was selected by the decision mechanism in the second cycle because it has the
highest PR of 0.87, while from cycles 3 to 4, the output of VM-1 was selected, as it has the highest
PR among the competing VMs. (Details of some experimental details are presented in Table VIII.)
From cycles 5 to 7, the output of VM-5 (node 5) was selected because it has the highest PR among

all other nodes. In cycle 5, VM-4 and VM-6 do not pass the status check, and the time task limit check
also failed, with the same occurring in cycle 6 under VM-6 and cycle 10 under VM-4. Lastly, the
output of VM-1 was selected from cycles 8 to 10 because it has the highest PR (Table VIII).
In a similar scenario, cycles 5 and 6, where SC and TTLC failed or only SC failed, an error signal

is generated and sent to the fault manager of the CC module and to the TTLC. Here, it is received
before the time limit, but because no result was produced, TTLC status is also failed. The fault
manager then tries to repair the fault generated by performing checkpoint. As stated earlier, the

Table VI. Virtual node 2 performance comparison of VFT and AFT with our proposed strategy

Virtual node 2 comparison metrics
Data sources ε1(%) ε2(%) ε3(%) ε4(%) ε5(%) ε6(%)

VFT �10.8510 10.85229 20.43801 �0.08423 0.08423 0.27140
AFT �30.2022 30.20222 45.07832 �0.23141 0.23141 0.19480

VFT, virtualization and fault tolerance approach; AFT, adaptive fault tolerance approach.

Table VII. Virtual node 3 performance comparison of VFT and AFT with our proposed strategy

Virtual node 3 comparison metrics
Data sources ε1(%) ε2(%) ε3(%) ε4(%) ε5(%) ε6(%)

VFT �15.6587 16.5941 16.83521 �0.09576 0.09918 0.107865
AFT �10.6525 19.8363 25.19807 �0.08409 0.11959 0.021855

VFT, virtualization and fault tolerance approach; AFT, adaptive fault tolerance approach.
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Figure 12. Simulation plots for 100 virtual nodes (VM-1 to VM-100) with error bars. [Colour figure can be
viewed at wileyonlinelibrary.com]
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result of our simulations is presented in Figure 7 where we saw that the increase in PR is more than
the decrease; hence, we can achieve a good performance of our algorithm.
Having assumed at the beginning that PR is 0.5, Figure 7(a) shows the PR analysis in VM-1,

where a steady increase was observed from 0.5 to 0.778 and a further increase to 0.922 in cycle
4. A slight decrease was noticed from 0.922 to 0.874 and then a continuous increase from 0.874
to 0.994, which shows we can achieve a good performance overall on VM-1 because the increase
in PR is more than the decrease.
In Figure 7(b), a steady increase from 0.5 to 0.87 was noticed, and from cycles 2 to 9, there was a

decrease and increase in PR and a final increase from 0.721 to 0.888, which also shows that the
increase in PR is greater than the decrease; hence, a good performance can be achieved from this
VM. Similar scenarios occur from VM-3 to VM-6 where there was a combination of both decrease
and increase in PR, but overall, we can see that the increase in PR is greater than the decrease in PR
in all the VMs, which indicates a favorable performance of our integrated approach, because de-
crease in failure rate is less than the increase in PR.
Additionally, we performed an experiment using 100 VMs and 10 computing cycles, where we

studied the success and failure rate patterns across the 100 nodes, as well as a performance
comparison across the nodes. We plotted the error bars for VM-1 to 100 against the PR to enable
us to observe the overlap and access the level of significance among the VMs.
From Figure 12(a), VM-9, VM-6, VM-4, and VM-2 have an excellent high PR followed by

VM-1, VM-3, VM-5, and VM-8, which have high PR and are good compared with less PR. This
implies that only VM-10 has a low PR, which indicates a good performance for the first 10 nodes.
In a similar scenario presented in Figure 12(b), it was observed that VM-12 to VM-20 had high

success rate, which implies that the VMs across that range have a lesser tendency to fail; that is, the
PRs are higher than the failure rates. Similar success and failure patterns were observed from
Figure 12(c) to (j), which shows the reliability across the nodes.
Based on the results obtained, the following observations were made:

1. Overall, from VM1-100, the nodes have high PRs compared with the failure rates, which
implies that the failure tendency across the entire 100 virtual node infrastructures is lesser.
(Details of the results are presented in Figure 12.)

2. The error bars plotted across the 100 nodes show an overlap across each other, which
indicates that the difference in error bars is not significant across the entire infrastructure.

Figure 13 shows the overall average selected best VM with high PR and less failure rate. This
was selected by computing the output obtained from the group of 10 × 10 VMs after each
computing cycle across 100 nodes.

Figure 13. Average selected best virtual machine from 1 to 100 virtual machines (VMs). [Colour figure can
be viewed at wileyonlinelibrary.com]
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7. CONCLUSION

This paper presented an optimized FT approach for real-time computing on the cloud infrastructure.
The proposed strategy uses the PR of computing virtual nodes with a fault manager using the
checkpoint/replay technique, applying the reward renewal process theorem. It repairs faults
generated before the deadline as an FT mechanism. Our results have shown that the scheme is
highly fault tolerant because it brings all advantages of forward and backward recovery, which
the system takes advantage of diverse software tools. Our algorithm integrates concepts of FT based
on high PR of computing nodes and less service task finish time, increasing the system availability.
Six VMs were used in parallel with integrated virtualized checkpointing FT based on high PR of

computing nodes and less task finish time. Additional experiments used 100 VMs in parallel and
analyzed the pass and failure rates across them. Analyzing the pass and fail rate with performance
of existing approaches, we found that our proposed FT scheme gives an improved performance.
This is represented in Figures 7–10 as shown. Compared with adaptive and virtualized FT methods,
our nodes showed higher PR and lesser failure rate. The average mean plots with standard deviation
are able to verify these results statically. The error bars show an overlap across each other, indicat-
ing that the difference in error bars is not significant across the entire infrastructure.
In the future, we will extend the SFS algorithm to a more complex and large-scale high-

performance environment, as well as in a real-life scenario by simulating them over an OpenStack
IaaS. Designing a highly dependable and failure-free system requires a good understanding of
failure characteristics. Here, we will study and analyze real-time cloud failure data, including the
root cause of failures and statistics by applying machine-learning techniques such as clustering
and anomaly finding. This will aid in re-examining other current algorithms and techniques for
fault-tolerant cloud system, creating realistic benchmarks and test beds for FT testing.
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