
SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. Exper. 2010; 00:1–21
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/spe

Spectral Based Fault Localization Using Hyperbolic Function

Neelofar*, Lee Naish and Kotagiri Ramamohanarao

Department of Computing and Information Systems, University of Melbourne, Melbourne, Australia

SUMMARY

Debugging is crucial for producing reliable software. One of the effective bug localization techniques is
Spectral-Based Fault Localization (SBFL). It tries to locate a buggy statement by applying an evaluation
metric to program spectra and ranking program components on the basis of the score it computes. Here, we
propose a restricted class of “hyperbolic” metrics, with a small number of numeric parameters. This class
of functions is based on past theoretical and empirical results. We show that optimization methods such as
genetic programming and simulated annealing can reliably discover effective metrics over a wide range of
datasets of program spectra. We evaluate the performance for both real programs and model programs with
single bugs, multiple bugs, “deterministic” bugs and non-deterministic bugs and find that the proposed class
of metrics performs as well or better than the previous best performing metrics over a broad range of data.
Copyright © 2010 John Wiley & Sons, Ltd.

Received . . .

KEY WORDS: spectral debugging, dynamic analysis, fault localization, deterministic bugs, non-
deterministic bugs, optimization methods

1. INTRODUCTION

Debugging software is a very important and resource intensive task in software engineering, with
50% to 80% of software development and maintenance costs attributed to bug fixes [1]. Debugging
requires fault localization at the initial stage. This is a tedious process, requiring substantial manual
work. Therefore, automatic fault localization techniques that can guide developers to a fault location
are in high demand. Due to this demand many unique and creative techniques and processes have
been proposed and automatic fault localization is an active field of research in academia and
industry.

There are many techniques proposed for fault localization and debugging in the literature [2].
Spectral based fault localization (SBFL) techniques [3][4][5][6] have gained much popularity in
the last few years due to their simplicity. These methods extract program spectra, that is execution
profiles of program components (statements, predicates, functions etc.) and information on whether
tests pass or fail. The data is used with “risk evaluation” metrics to rank the program components
according to how likely they are to be buggy.

SBFL is not only of research interest but has potentially many practical applications in industry
[7][8]. For instance, Tarantula (a tool developed by the Spider Lab at University of California, uses
the pass/fail statuses of test cases and the events that occurred during execution of each test case to
offer the developer recommendations of what faults may be causing test-case failures [3]), GZoltar
(a framework for automating the testing and debugging phases of the software development life-
cycle. The framework is provided as a library for developers and researchers and as an Eclipse plug-
in that integrates seamlessly with JUnit tests [9]), The Cooperative Bug Isolation (CBI) (collects a

∗Correspondence to: Neelofar, Department of Computing and Information Systems, University of Melbourne,
Melbourne, Australia

Copyright © 2010 John Wiley & Sons, Ltd.
Prepared using speauth.cls [Version: 2010/05/13 v3.00]

This article is protected by copyright. All rights reserved.

This is the author manuscript accepted for publication and has undergone full peer review but
has not been through the copyediting, typesetting, pagination and proofreading process, which
may lead to differences between this version and the Version of Record. Please cite this article
as doi: 10.1002/spe.2527

http://dx.doi.org/10.1002/spe.2527
http://dx.doi.org/10.1002/spe.2527

2

form of program spectra using low-overhead sampling, making it feasible for end users of programs
to help collect information that is later used for debugging [10]) and Ample (provided as an Eclipse
plug-in to identify faulty classes in Java programs [11]) etc.

Performance of SBFL methods critically depend on the metrics used. Over one hundred metrics
have been developed manually and evaluated for SBFL [12]. More recently, genetic programming
has been used to automatically develop metrics [13] [14], resulting in many thousands being
evaluated. For programs with a single bug, SBFL is relatively easy and we now have a good
theoretical understanding [6][15][16]. The same is true for locating bugs which are “deterministic”
(cause test case to fail whenever they are executed) [17]. However, the general case which is
studied in this research, where there are multiple bugs that may not be deterministic is much more
challenging. Most SBFL research to date has had a strong bias towards single bug programs, partly
due to the available datasets used for evaluation, and tackling the general case is an important
priority. We propose a new class of “hyperbolic” metrics which have a small number of numeric
parameters whose values can be adjusted to vary the behaviour. Depending on the parameter values,
hyperbolic metrics can be optimal for single bugs, optimal for deterministic bugs or similar to other
metrics known to perform well for some multiple non-deterministic bug benchmarks.

This paper is a substantial extension of our previous work [18] with the following additions:

• In our previous work, we used the Siemens Test Suite (STS) [19] and Model data [6] for
our experiments. STS contains seeded bugs and size of programs are very small. In order to
further validate our results, we have extended our experiments to larger datasets including
Space, Flex, Grep, Sed, and Gzip.

• We use multiple optimization methods for learning parameter values for our hyperbolic class
of metrics. Although metrics learned by different methods are similar, learning time with
various methods can vary greatly and we show a significant improvement over previous work.

• We introduce a statement pruning technique which decreases the size of training data,
resulting in decreasing the learning time considerably with little or no decrease in
performance, thus scaling the technique to large programs.

• In order to keep scores computed by a metric within a certain range, scaling or normalization
of input values is required. Scaling affects overall performance of hyperbolic metrics. Here
we discuss different scaling methods and their performance effects.

• The class of metrics introduced in our previous work did not perform as well as expected
on some model programs due to the difficulty of choosing appropriate parameter values[6].
We introduce a new class of hyperbolic metrics that is equivalent to the previous class but it
designed to make learning easier, improving its performance.

The rest of the paper is structured as follows. Section 2 provides background information on SBFL
(some material is based on [17] without additional citation), including theoretical results which
motivate our approach, and gives the definitions of selected metrics from the literature that we use
for comparison purpose. Section 3 motivates and defines the class of hyperbolic metrics and Section
4 briefly describes how we use different optimization methods to learn parameter values. Section
6 describes experiments and their results, using spectral data from both model programs and real
programs while Section 7 discusses statistical significance of these results. Section 5 describes the
statement pruning method we used with machine learning to improve learning time of hyperbolic
metrics. Section 9 briefly reviews some additional related work, Section 10 suggests some future
directions, and Section 11 concludes.

2. DEFINITIONS AND NOTATIONS

SBFL methods use a set of tests, each classified as failed or passed; this can be represented
as a binary vector, where 1 indicates failed and 0 indicates passed. For statement spectra
[5, 6, 15, 17, 20, 21, 22] which we use here, we gather data on whether each statement is executed
or not for each test. This can be represented as a binary matrix with a row for each statement and
a column for each test; 1 means executed and 0 means not executed. For each statement, four aij

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

This article is protected by copyright. All rights reserved.

3

Table I. Statement spectra with tests T1 . . . T5

T1 T2 T3 T4 T5 ef ep
S1 1 0 0 1 0 1 1
S2 1 1 0 1 0 2 1
S3 1 1 1 0 1 2 2

...
Res. 1 1 0 0 0 F = 2 P = 3

values are ultimately produced, i ∈ {n, e} and j ∈ {p, f}. They are the number of passed/failed test
cases in which the statement was/wasn’t executed — 〈ef, ep, nf, np〉, where the first letter indicates
whether the statement was executed (e) or not (n) and the second indicates whether the test passed
(p) or failed (f). We use F and P to denote the total number of tests which fail and pass, respectively
while E is number of times a statement is executed. Clearly, nf = F − ef and np = P − ep and it
is sometimes convenient to use F , P , ef (or nf) and ep (or np) rather than all four {n, e} × {p, f}
values. For fixed F and P there are just two degrees of freedom. Table I gives an example binary
matrix of execution data and binary vector containing the test results. This data allows us to compute
F , P and all the {n, e} × {p, f} values.

Metrics, which are numeric functions, can be used to rank the statements. Most commonly they
are defined in terms of the four {n, e} × {p, f} values. Statements with the highest metric values
are considered the most likely to be buggy. We would expect buggy statements to generally have
relatively high ef values and relatively low ep. Table II gives definitions of the established metrics
used here and cites where they were first used for SBFL. More than 150 metrics are evaluated in
[23]; our chosen selection is justified in section 6.1.2.

We refer three types of bugs in this work – single, deterministic and multiple. Single bug program
is where all the failures are caused by just one bug. Whenever a test case fails, buggy statement
should have executed in that test case. Sometimes bugs are in preprocessor directives (#define)
which are called at multiple places in the program. Such programs wouldn’t be single bug according
to the single bug definition in [6], which we follow here. Deterministic bugs are defined as “Bugs
which cause test case to fail whenever they are executed” in [17]. There are some other aspects
of determinism in literature like non-deterministic behaviour of programs and intermittent bugs as
discussed in [16], however we use the definition of deterministic bugs in [17] in this work. Multiple
bug situation is when there are more than one bugs causing program to fail and failure of different
test cases can be due to different bugs.

Programmers searching for a bug are expected to examine statements, starting from the highest-
ranked statement, until a buggy statement is found. In reality, programmers may well modify the
ranking due to other considerations, and checking correctness generally cannot be done by a single
statement at a time. Evaluation of different ranking methods generally ignores such refinement and
just depends on where the bug(s) appear in the ranking. Here we use two common measures for the
evaluation of our technique: “Rank Percentage” and “Successful Diagnosis”. Rank percentage is
the rank of the top-ranked bug, expressed as a percentage of the program size. Results are averaged
over all buggy programs in the benchmark set. Successful Diagnosis is the number of bugs which
are detected by analyzing top n% of code [27][28]. We have evaluated our technique at 1%, 2%,
5%, 10%, 20% and 50% of code. Statements which are not executed in any test are ignored.

3. THE HYPERBOLIC METRIC CLASS

This section motivates and defines the class of “hyperbolic” metrics we propose. Rather than a fixed
formula, we use a parametrized hyperbolic metric (equation 1). The general idea is to be able to
choose parameter values so the resulting formula performs well for the chosen dataset. Later we

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

This article is protected by copyright. All rights reserved.

4

Op [6] ef − ep
ep+np+1

Od [17] ep− ef
ef+nf+1

Zoltar [24] ef

ef+nf+ep+ 10000nf×ep
ef

Kulczynski1 [22] aef
anf+aep

Kulczynski2 [22] 1
2

(
ef

ef+nf
+ ef

ef+ep

)
Ochiai [5] ef√

(ef+nf)(ef+ep)

Ample [25] | ef
ef×ep −

ep
ep×np |

Wong1 [21] ef
Wong2 [21] ef − ep
Tarantula [3]

ef
ef+nf

ef
ef+nf + ep

ep+np

Hyperbolic [18] 1
K1+

nf
nf+ef

+ K3

K2+
ep

ep+ef

GP13 [14] ef(1 + 1
2ep+ef

)

Information Gain [26]

(−F logF − P logP)

−(ef + ep)× (− ef
ef+ep

log ef
ef+ep

− ep
ef+ep

log ep
ef+ep

)

−(nf + np)× (− nf
nf+np

log nf
nf+np

− np
nf+np

log np
nf+np

)

Table II. Formulas for several risk evaluation metrics

a

ep
0 20 40 60 80 100

nf

0

10

20

30

40

50

60

70

80

90

100 b

ep
0 20 40 60 80 100

nf

0

10

20

30

40

50

60

70

80

90

100
c

ep
0 20 40 60 80 100

nf

0

10

20

30

40

50

60

70

80

90

100

Figure 1. Contour plots for Op (a), Od(b) and (Hyperbola) 1
nf + 1

ep (c).

describe how we use optimization methods to choose the parameter values. Recent research uses
genetic programming to construct metrics [14]. However, we failed to reproduce the results reliably
in our experiments and found that it is significantly harder to generate metrics which perform well
in general. However, using machine learning to find a small number of numeric parameters rather
than a complete formula makes the learning task much simpler, efficient and reliable.

3.1. Motivation for Hyperbolic Metrics

Most evaluation of SBFL has a strong bias to programs with a single bug. This problem is now
reasonably well understood [16] [6] [17]. Op was proposed in [6] and proven optimal with respect
to a single bug “model” program. This optimality result was strengthened in [15] to arbitrary single
bug programs and test sets by restricting attention to “strictly rational” metrics, which are those
whose value strictly increases in ef when ep is fixed and strictly decreases in ep (or increases in np)
when ef is fixed. Metrics such as Op which rank statements primarily on their ef value and use np
to break ties when the ef values are equal are single bug optimal. In [17] it was shown that metrics
such as Od which rank statement primarily on np and break ties using ef are optimal for programs
with only deterministic bugs (which cause failure whenever they are executed).

Between these two extreme cases we may have multiple bugs, some of which are not
deterministic, which is the case in large software systems. There is a little theoretical understanding

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

This article is protected by copyright. All rights reserved.

5

0.09090.182

0.273

0.364

0.455

0.455

0.545

0.636

0.727

0.818

0.909

a

ep
0 20 40 60 80 100

nf

0

10

20

30

40

50

60

70

80

90

100

0.09090.182

0.273

0.364

0.455

0.545

0.636

0.727

0.818

0.909

b

ep
0 20 40 60 80 100

nf

0

10

20

30

40

50

60

70

80

90

100

0.0220.02202

0.02204

0.02207

0.02209

0.02209

0.02211

0.02213

0.02216

0.02218

0.0222

c

ep
0 20 40 60 80 100

nf

0

10

20

30

40

50

60

70

80

90

100

Figure 2. Contour plots for Kulczynski2 (a), Ochiai (b) and hyperbolic metrics(c).

of this more general case and constructing metrics which perform well is a challenging problem.
Any given bug is not always executed in all failed tests and not all tests in which it is executed
will fail. Thus, no strong relationship between a particular fault and a failure can be established.
Metrics which are derived for or perform well for the single bug (or deterministic bug) case often
do not perform well in the general case. Although we can not find any metric in literature which is
considered as optimal for multi-bug datasets, there are two metrics (Ochiai and Kulczynski2) which
are shown to perform better than other metrics on few multi-bug datasets in [22].

In [17] it was noted that plotting the contours of a metric over a rectangular domain (F × P) gives
useful insights. There is a one to one relationship between contours and the rankings produced by
a metric. If we plot metric contours using ep and nf as the axes then strictly rational metrics have
contours with finite strictly negative gradients, with the contours close to (0, 0) corresponding to the
highest metric values. If all gradients are sufficiently close to zero the metric is single bug optminal,
like Op, whereas if all gradients are sufficiently large negative numbers the metric is deterministic
bug optminal, like Od — see Figure 1a and Figure 1b which are the contour plots of Op and Od

respectively with ep as x-axis and nf as Y-axis. Figure 2a and Figure 2b show the similar contours
for Ochiai and Kulczynski2. Unlike Op and Od, these contours are curvy.

We believe that any metric having contours a combination of all three of Op, Od and
Ochiai/Kulczynski2 would perform well for all the above mentioned cases. Figure 1(c) shows
contours which are hyperbolas (1

nf
+ 1

ep
) with negative gradients. The contours at the bottom right

of this plot are like those of Op whereas those at the top left are like those of Od. Thus by selecting
part of the domain, hyperbolas can adopt to either of the extremes. Between these extremes, the
gradients of the hyperbolic contours increase (get closer to zero from negative value) as ep increases.
At the bottom left there is a very sharp increase and as we proceed up and right the increase is
more gradual. Ochiai and Kulczynski2 also have similar trend for selected parts of the domain —
see Figure 2a, Figure 2b and Figure 2c. Thus the motivation for using metrics with hyperbolic
contours is they can be optimal in the two extreme cases we have theoretical results for, and similar
to the best metrics we know of in other cases. The hyperbolic formula shown in Figure 1(c) is a
specific instance of hyperbolic metrics shown in equation 1. The parameters in Equation 1 allows
adjustments according to the data (the typical number of bugs and how deterministic they are).
Details are given in next section.

3.2. Hyperbolic Metrics

We now define the parametrized hyperbolic function. There are four adjustments that we make
to the simple formula of 1

nf
+ 1

ep
of Figure 1(c) to have desired properties. The first is to scale

both nf and ep values to the range 0–1. The aim of this is to help limit the range of values for the
parameters introduced in the next steps. Different forms of scaling which we used in our experiments
are discussed in section 3.3. The second adjustment is to add a parameter K1 to the scaled nf
value. A positive K1 makes contours steeper as in Figure 1(a) and a large enough value results in a
deterministic bug optimal metric if other things remain unchanged. The third adjustment is to add
a parameter K2 to the scaled ep value. A positive K2 makes contours flatter as in Figure 1(b) and
a large enough value results in a single bug optimal metric if other things remain unchanged (that

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

This article is protected by copyright. All rights reserved.

6

Figure 3. Different scaling examples for hyperbolic metrics. (a) nf → nf
F , ep→ ep

P (b) nf → nf
T ,

ep→ ep
T (c) nf → nf

F , ep→ ep
E

a

ep
0 20 40 60 80 100

nf

0

10

20

30

40

50

60

70

80

90

100
b

ep
0 20 40 60 80 100

nf

0

10

20

30

40

50

60

70

80

90

100
c

ep
0 20 40 60 80 100

nf

0

10

20

30

40

50

60

70

80

90

100

Table III. Average Rank Percentages of various scaling forms of Hyperbolic Metrics on different datasets

1
K1+

nf
F

+ K3

K2+
ep
P

1
K1+

nf
T

+ K3

K2+
ep
T

1
K1+

nf
F

+ K3

K2+
ep
E

Siemens Test Suite 20.23 23.83 20.32
Space 5.48 9.74 2.50
Flex, Gzip, Grep, Sed 6.37 6.05 5.98

is, K1 is relatively small). If K1 and K2 are small, contour gradients change abruptly whereas if
they are both large the gradients change slowly. Lastly, we multiply the ep term by parameter K3.
This allows us to effectively stretch or compress the contours in a horizontal direction. With large
identical K1 and K2 values the contours are close to straight lines, but their gradient can be adjusted
using K3. In short, the first adjustment is for scaling, while the second, third and fourth are for
making contours flatter or steeper like single bug optimal or deterministic bug optimal respectively.
The overall formula for our class of hyperbolic metrics is as follows:

1

K1 +
nf
F

+
K3

K2 +
ep
E

(1)

3.3. Scaling

As stated above, scaling is required to limit the range of possible values for input to the hyperbolic
metrics. There are several ways scaling can be done. In our experiments we used hyperbolic metrics
with three forms of scaled versions. The first is to divide nf and ep by F and P respectively—Figure
3a. This results in metrics for which the number of passed and failed tests can be scaled separately
without affecting the ranking, called “general scalable” in [12]. The second scaling method is to
divide both nf and ep by total number of test cases T = F + P—Figure 3b; this is also general
scalable. The third scaling method that we used in our experiments is to divide nf by F and ep by
E (number of times a statement is executed i.e ef + ep) —Figure 3c. This form of scaling produces
“uniform scalable” metrics, [12] for which the scaling of passed and failed tests must be the same in
order to ensure the same ranking. The class still has the desired properties (a combination of single
bug optimal, deterministic bug optimal and Ochiai or Kulczynski2 like contours). We experimented
with all the three scaling methods on different datasets and found that the third (only uniform
scalable) form of hyperbolic metrics perform consistently better than other forms as shown in Table
III. Although difference between ep

E
and ep

P
forms is not very obvious in the Siemens Test Suite,

for other datasets this difference is quite noticeable. Thus our choice of scaling method is based on
performance for datasets and inspiration from other metrics like Kulczynski2 and Ochiai which uses
same scaling rather than theoretical analysis.

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

This article is protected by copyright. All rights reserved.

7

Siemens Test Suite
1 2 3 4 5 6 7 8 9 10

E
xe

cu
ti

o
n

 T
im

e(
se

co
n

d
s)

0

50

100

150

200

250

Simulated Annealing
Genetic Programming

Space
1 2 3 4 5 6 7 8 9 10

E
xe

cu
ti

o
n

 T
im

e(
se

co
n

d
s)

0

500

1000

1500

2000

2500

Simulated Annealing
Genetic Programming

Flex, Grep, Gzip, Sed
1 2 3 4 5 6 7 8 9 10

E
xe

cu
ti

o
n

 T
im

e(
se

co
n

d
s)

0

200

400

600

800

1000

1200

1400

Simulated Annealing
Genetic Programming

Figure 4. Comparison of Execution Time of Genetic Programming and Simulated Annealing on Different
Datasets.

4. FINDING PARAMETER VALUES USING OPTIMIZATION METHODS

We use different optimization methods such as Genetic Programming and Simulated Annealing to
find parameter values for hyperbolic metrics. The details are given in sections below.

4.1. Finding Parameter Values Using Genetic Programming

Yoo el al. propose to use genetic programming to generate metrics directly from spectral data [14].
In our efforts to reproduce the results, we found that the results are not consistently good, especially
in the case of multiple bugs. The search space is huge and the choice of GP operators often makes
it hard to gradually improve the metrics. For example, subtracting a good metric from another good
metric can often results in a very bad metric. Even our attempts to constrain the search to more
sensible metrics, such as those which are strictly rational [15], were not particularly successful.
In contrast, learning three numeric parameter values is a much simpler task, and a small change
in parameter values generally results in a relatively small change in metric performance — the
objective function is more “smooth” in some sense. We used the genetic programming software to
learn the hyperbolic metric parameter values K1, K2 and K3 from training data and applied the
resulting metric to localize bugs.

4.2. Parameter Values using Simulated Annealing

Genetic Programming is a complex technique, starting with a huge population and selecting the best
solution from different generations. It is very costly in terms of time for a complex data like program
spectra. As our goal is not to find different metrics from spectral data, but finding the best parameter
values, comparatively simpler optimization methods could perform equally well. We computed K1,
K2 and K3 values using simulated annealing and found that results are as good as with genetic
programming but requiring substantial less computing time.

As stated earlier, although Genetic Programming and Simulate Annealing learn metric parameters
equally effectively in our experiments, Simulated Annealing computes results much faster than
Genetic Programming. A comparison of execution time of both of these methods on different
datasets is given in Figure 4. Except for a few runs in the Space experiments, simulated annealing
took much less time to learn parameter values as compared to genetic programming. The difference
is huge (about six times less) for Flex, Grep, Gzip, Sed and most runs of Space. We further reduce
the training time taken by simulated annealing to learn parameter values by introducing a statement
pruning technique. Details are provided in section 5.

4.3. Time Complexity

Our technique consists of algorithm learning using training data and actual fault localization using
trained algorithm. Time complexity of the training depends on the optimization algorithm used.
We have used simulated annealing and genetic programming in our experiments. Testing/actual
fault localization consists of two phases. First is to compute the score of each statement using
hyperbolic metrics. We are assuming that test data have the execution frequency of the statements

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

This article is protected by copyright. All rights reserved.

8

i.e ep, ef, np, nf values. Let’s suppose there are M statements in the program, the cost of giving
score to every statement isO(M). These statements are then sorted in ascending orderO(M.logM).
Thus overall complexity of the fault localization phase is O(M +MlogM).

5. SIMULATED ANNEALING WITH STATEMENT PRUNING

There are many fault localization techniques available in literature using machine learning methods
like clustering [29] [30], decision trees [31], frequent pattern mining [32], support vector machine
[33], and genetic programming [14][13]. Compared to using fault localization metrics directly to
localize faults, these approaches are time intensive and require training of optimization method using
training data. For smaller datasets like the Siemens Test Suite, this time is reasonable depending on
the optimization technique used, however, for larger datasets like Space, Flex, Grep, Gzip or Sed
having more than 10,000 statements on average, training is much more time consuming. Although
in all the studies cited above, comparison in terms of improvement in the performance is given, they
do not discuss extra time required in training of their algorithms. We use Simulated Annealing and
Genetic Programming to find hyperbolic metrics parameter values, and acknowledge that training
phase takes much more time than actual fault localization.

Fault localization metrics rank statements on the basis of higher ef and lower ep. It constitutes
the bottom left area in Figure 2a, Figure 2b and Figure 2c. These statements correspond to the top
of the ranking and are thus the most important for performance of a metric. On the other hand,
statements having very low ef or very high ep are ranked at bottom and thus play a minimum role
in localizing faults. There are huge number of such statements and contribute a substantial amount
of time in training. By removing these statements from training data, training can be done more
efficiently. We propose a Statement Pruning technique that removes a particular percentage of low
ranked statements having minimum or no impact on fault localization during learning phase, thus
decreasing the size of training data. Our technique is explained in algorithm 1, where low ranked
statements are pruned in different iterations of simulated annealing. The algorithm is standard
simulated annealing with an addition of Statement Pruning method called at line 14. Variables
are initialized from line 1 to 6 and explained in comments. No pruning is performed in initial
phases of learning to allow initial burn-in of the algorithm. Once algorithm achieves stability
in terms of finding better values for parameters that lowers the rank percentage, bottom ranked
statements are pruned (Line 19). The pruning is performed in lines 20 – 24. It removes bottom n%
statements and replaces current training data with pruned data. The process continues until pruning
percentage is less than maximum pruning percentage allowed. Thus only in first few iterations of
simulated annealing, algorithm would use whole dataset for training. Later on, every time pruning
is performed, size of training data decreases for further iterations.

Table IV shows the affect of statements pruning on execution time and performance of hyperbolic
metrics on various datasets. The first column of the table shows the percentage of code removed by
pruning, while the first row shows different datasets on which the pruning technique is applied. The
“Performance” column under each dataset shows the percentage decrease in performance in terms
of rank percentage while “Exec-Time” shows percentage decrease in execution time.

Execution time nearly always decreases with a decrease in number of statements except in case of
20% code reduction for Flex/Grep/Gzip/Sed data. The reason why pruning statements can increase
in execution time is explained next. The pruning method is called many times in the algorithm
until the pruning size reaches the maximum allowed pruning percentage, as shown at line 13 of
algorithm 1. In each pruning round, all the statements are sorted again on the basis of their scores,
the bottom n% statements are pruned and the new pruned data replaces old data. These operations
take time, particularly sorting statements when there are a large number of them such as in Flex,
with more than 10,000 statements. This additional work can outweigh the time saved elsewhere.
However, with a larger percentage of statements pruned, the additional time required for sorting is
much lower compared to the time saved in learning and the total time is decreased by almost half or
more.

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

This article is protected by copyright. All rights reserved.

9

One may expect performance to either decrease or remain constant with statement pruning but we
can see exceptions in table IV due to degree of randomness in learning. For space and the Siemens
Test Suite, execution time decreases more than 7.5% and 4.5% respectively with only 1.2% and
0.2% decrease in performance. By pruning almost 70% of the bottom ranked statements, execution
time decreases by half on average, with a reduction of only 1.1%, 3.6% and 0.7% performance
for Flex/Grep/Gzip/Sed, Space and the Siemens Test Suite respectively. Thus, with a very little
compromise with the performance, our pruning method decreases execution time noticeably.

Algorithm 1 Finding Hyperbolic Metrics Using Simulated Annealing with Statement Pruning
Input: Training Data
Output: Best Parameter Values for Hyperbolic Metrics(k1, k2, k3)

1: procedure Anneal(training data)
2: initial data size← init size . number of statements in training data
3: initial temperature← init t . starting annealing temperature
4: minimum temperature← min t . minimum annealing temperature
5: maximum pruning allowed← max pruning . %age of statements allowed to be pruned
6: initial burnin iterations← init burnin . minimum number of annealing iterations

only after which pruning is allowed
7: while initial temperature ≥ minimum temperature do
8: compute k1, k2, k3 values using optimisation method
9: if temperature iteration > initial burnin iterations then

10: current data size← count total number of statements in training data
11: statements pruned← initial data size− current data size

12: pruning percentage applied← 100− (statements pruned
initial data size × 100)

13: if pruning percentage applied < pruning percentage allowed then
14: pruneBottomStmts(training data) . calling of statement pruning method
15: end if
16: end if
17: end while
18: decrease initial temperature by a fixed value
19: end procedure

. Prune bottom ranked statements if pruning percentage is less than maximum pruning percentage
allowed

20: procedure pruneBottomStmts(statements list)
21: Get list of statements and sort in descending order of their scores
22: Remove bottom n% of statements
23: Replace training data with pruned data
24: end procedure

Table IV. Decrease in Execution Time of Hyperbolic Learning with Statements Pruning

Flex, Grep, Gzip, Sed Space STS
%age code
removed Performance Exec-Time Performance Exec-Time Performance Exec-Time

20 0.11 -7.82 -1.26 7.69 -0.26 4.76
43 -0.15 22.18 1.07 34.25 -0.13 24.26
55 -0.87 39.17 0.18 47.01 -1.73 37.50
70 -1.11 52.73 -3.66 62.06 -0.78 48.99

6. EXPERIMENTAL SETUP AND RESULTS

6.1. Experimental Setup

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

This article is protected by copyright. All rights reserved.

10

6.1.1. Dataset To evaluate our technique, we used data from model programs as described in [6]
and real data from Software-artifact Infrastructure Repositories (SIR)[19].

Model/synthetic data have many advantages in using for spectral fault localization study: we
can control the number of passed/failed test cases, change the bug consistency and thus generate
deterministic bug data for which no real benchmark dataset is available, control number of bugs and
generate as much as needed. Furthermore, [6] shows quite a good fit between model data and the
Siemens Test Suite as far as various metrics’ performance is concerned.

SIR is a repository of software-related artifacts meant to support experimentation with program
analysis and software testing techniques. Benchmark datasets used in our experiments are the
Siemens Test Suite, Space, Flex, Gzip, Grep and Sed. The Siemens Test Suite contains 7 programs in
total: Printtokens, Printtokens2, Tcas, Replace, Totinfo, Schedule and Schedule2. For Printtokens2
and Schedule2, there are very few versions available in repository and most contain bugs introduced
either by deletion of a statement or commenting a statement. SBFL uses execution profiles of
statements to localize bugs. As deleted or commented statements are not executed, there is no
associated spectra. One way to evaluate a SBFL method for such programs is to replace the statement
by an empty/non-operational statement, but due to very limited number of versions, we ignored these
programs instead of editing and using them.

The Siemens Test Suite contains small programs having 563, 411, 173, 406 and 563 lines of code
in Replace, Schedule, Tcas, Totinfo and Printtokens, respectively. While Space, Flex, Grep, Gzip
and Sed are larger programs having 9126, 11784, 10929, 6357 and 8059 statements, respectively.
SIR contains single bug versions for all the programs. In order to generate two or multiple bug
versions, we combined two or more single bug versions and tested the resulting program against the
provided test suite to generate spectra. We generated 545 two bug versions of Siemens Test Suite
programs, 248 two bug versions of space, 92 single bug version of Flex, Grep, Gzip and Sed and
93 single bug versions of Siemens Test Suite programs. Any version having a buggy statement that
is not executed by any failed test case is ignored. We use ten-fold cross validation for training and
testing purposes.

6.1.2. Fault Localization Metrics Used In our experiments here we include optimal metrics for the
two extreme cases, Op and Od. Zoltar is close to optimal for single bug programs and also performs
well for multiple bug programs [22]. GP13 produces the same ranking for single bug programs as
Op [14]. Kulczynski2 and Ochiai perform extremely well for the multiple-bug datasets of [22] which
we use here. A version of Ochiai is proved to be the best based on benchmarks from the Software-
artefact Infrastructure Repository(SIR) [23]. Information Gain is shown to outperform Ochiai for
some datasets [26]. Tarantula was the first metric used for SBFL and though it performs relatively
poorly for many datasets, a small adjustment makes it optimal for deterministic bugs [17]. Some
other known metrics like Wong1, Wong2 and Ample are also included to study their effectiveness
in bug localization.

6.1.3. Genetic Programming and Simulated Annealing Configuration For genetic programming
experiments, we used JGAP — an open source Java based framework. There are many ways in
which the learning can be adjusted. For the results presented here, we use a population size of 1000
and stop after 100 generations. GP is configured with a mutation operator with the rate of 0.9.

The three parameters of the hyperbolic metrics are used as terminal symbols and we fix the range
of K1 and K2 to be 0–100 and K3 to be 0–2. The GP operators increase and decrease the parameters
within these ranges. We found that for different runs on the same data there is quite a wide variation
of parameter values found, though the ratio of K1 and K2 remains stable.

For Simulated Annealing results presented in this paper, we use the temperature cooling range
from 1.0 to 0.00001, with a decrement rate of α. Starting initially with a large α, we decrease its
value with each temperature iteration to search more extensively around the best solution found so
far in the current iteration. Like genetic programming, we fixed the range of K1 and K2 to be 0–100
and K3 to be 0–2.

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

This article is protected by copyright. All rights reserved.

11

Table V. Average Rank Percentages for Models With Different Bug Consistencies

of
bugs Con* Op Od Ochiai Zoltar Kulc2 Ample Wong1 Wong2 Tarantula Hyp**
1 20% 26.130 48.854 26.641 26.130 26.204 29.736 26.468 35.361 30.220 26.130
2 20% 28.968 34.933 29.000 28.968 28.968 33.373 31.326 32.353 30.129 28.963
2 40% 28.483 30.357 28.119 28.433 28.363 31.003 31.609 29.464 28.307 27.981
2 60% 28.062 27.040 27.080 27.837 27.601 28.714 31.982 27.365 26.769 26.510
2 80% 27.913 25.573 26.011 27.011 26.500 26.843 32.434 26.417 25.822 25.568
2 100% 29.530 26.736 26.746 26.745 26.746 26.954 33.003 26.738 30.500 26.736

*Bug Consistency
**Hyperbolic Metrics

6.2. Experimental Results

6.2.1. Model program experiments The model-based approach is explained in detail in [6]. An
advantage of using models is that large synthetic datasets with precisely controlled parameters
can be generated. Here we use six different model programs, each with four statements, where
execution of correct statements is statistically independent of test case failure but execution of buggy
statements is correlated to varying degrees. In the first model, only the first statement is a bug (soOp

is optimal) and execution of the bug leads to test case failure 20% of the time. In models 2–6 the first
two statements are buggy, each of which cause failure in 20%, 40%, 60%, 80% and 100% of cases
where they are executed, respectively (thus the last model has only deterministic bugs and Od is
optimal). The first two statements are modelled using ten execution paths, five of which execute the
statement and a number of those lead to failure, dependent on the model. The other two statements
are each modelled using just two execution paths, one of which executes the statement. The models
are designed so the relative discrimination of ef versus ep drops as we go from model 1–6, and this
affects what metric is best to use for each of these models. For our experiments we used 10,000,000
test sets, each with 15 passed and 5 failed tests. Learning was done on 100,000 instances.

Table V shows the comparison of average rank percentage for learned hyperbolic metrics and
previously established metrics on model data described above. The class of hyperbolic metrics
introduced in our previous work [18] did not perform as well as the best existing metrics for bug
consistencies of 20% and 80%. For the results in Table V, we introduce a new form of hyperbolic
metrics which is equivalent to the previous class, but modified to make learning easier (equation
2). In this new form there is a single parameter K1, with range (0–1), that can control the overall
gradient of the contours, from single bug optimal (almost horizontal contours) to deterministic bug
optimal (almost vertical contours).

1

K1 ×K2 +
nf
F

+
K3

(1−K1)×K2 +
ep
E

(2)

The best results for each bug consistency are shown in bold. As expected, Op and Od perform
best for the first and last models, respectively — these are known to be optimal. The hyperbolic
metrics match this optimal performance. They also do better than all other metrics evaluated for the
models with 20%, 40%, 60% and 80% bug consistencies. The previous less than best performance
for 20% and 80% cases was due to the difficulty of learning an optimal combination of the three
parameter values. We believe learning is made easier by having a single parameter that has the main
influence on performance, with the other two parameters allowing refinements.

6.2.2. Single Bug Experiments We use single bug data from Siemens Test Suite, Space, Flex, Grep,
Gzip and Sed. Tables VI, VII and VIII show comparison of average rank percentages of various
metrics on single bug data using Genetic Programming and Simulated Annealing.
Op has been theoretically and empirically proven to be the best metric for single bug data [6]

while [14] shows that GP13 is equivalent to Op for such programs. As shown in Table VI, these
two metrics have lowest average rank percentage for single bug Siemens Test Suite while hyperbolic
metrics perform almost equivalent to them on average.

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

This article is protected by copyright. All rights reserved.

12

For Space, we have only eighteen single bug versions available which are not quite enough
for learning. However, using these limited number of versions, Table VIII shows that hyperbolic
performs almost as good as Op and GP13. We believe that using more training data, the slight
difference of rank percentage between single bug best performing metrics and hyperbolic will
vanish.

Unlike STS and Space, Table VII shows that hyperbolic performs better than Op for data
containing single bug versions of Flex, Grep, Gzip and Sed. The reason behind less than best
performance of Op for this dataset is explained next.

We have generated data for Siemens Test Suite by taking program versions and test cases from
SIR and made sure that only those program versions are included which satisfy ”Single Bug”
definition according to [6]. For example, if a bug is introduced by #define in any program version, it
will not be considered single bug if this definition is used multiple times in the program. However,
most of the versions of Flex, Grep, Gzip and Sed in SIR do not satisfy above mentioned single bug
definition and thus performance of Op is slightly lower than hyperbolic.

Tables IX, XI and X show performance of various metrics in terms of successful diagnosis using
1%, 2%, 5%, 10%, 20% and 50% of code. Results show that hyperbolic performs as either the best
or one of the best metric in most of the cases. By analyzing only 10% of the source code, hyperbolic
along with Op and GP13 diagnose 54.29% of bugs in STS. For space, this percentage is slightly
lower than Op and GP13 due to limited number of data for learning. For Flex, Grep, Gzip and Sed
hyperbolic diagnoses 68.78% of bugs which is better than Op and GP13 for the reason explained
earlier.

In [16] it is shown that Barinel – a combination of spectral based and model based debugging – is
better than Tarantula and Ochiai for single bug STS. The comparison is made based on successful
diagnosis. By analyzing 10% of source code, Barinel detects 8% more bugs than Ochiai while 12%
more than Tarantula on single bug STS. Although we haven’t directly compared the performance
of our technique with Barinel, Table IX shows that hyperbolic detects 8% and 14% more bugs than
Ochiai and Tarantula respectively on single bug STS by analyzing only 10% of source code. We
thus believe that hyperbolic metrics is as effective in single bug fault localization as Barinel.

In Summary, hyperbolic metrics perform as good as best performing metrics in single bug domain.
Last column of these tables (p-value) is explained in detail in Section 7.

6.2.3. MultiBug Experiments Tables XII, XIII and XIV show comparison of average rank
percentages of various metrics on multi bug data from Siemens Test Suite, Space, Grep, Flex, Gzip
and Sed. The comparison includes hyperbolic metrics learnt by genetic programming as well as
simulated annealing. Hyperbolic metrics have lowest average rank percentage for the STS and a
combination of Flex, Grep, Gzip and Sed data. Although Ample is the best performing metric for
Space, Average Rank Percentage of hyperbolic is quite close to it (5.69 vs. 5.99). Note that [22]
evaluated performance of over 80 metrics for two and three bug versions of the Siemens test suite
and Unix benchmarks and showed that Kulczynski2 and Ochiai are the best performing metrics. It
can be noted that hyperbolic outperforms these two metrics in many cross validation runs as well
as on average, which is an impressive achievement. On datasets where hyperbolic is not the best
performing metric, p-value shows that the difference between the rank percentage of hyperbolic
and best performing metric is not statistically significant that means hyperbolic is neither better nor
worse in performance compared to these metrics.

Tables XV, XVI and XVII show percentage of successful bug diagnosis of various metrics by
analyzing 1%, 2%, 5%, 10%, 20% and 50% code. It can be seen that hyperbolic metrics detect more
than 45% of bugs by analyzing less than 10% of source code. Although it does not perform the best
for all the percentages of code analyzed, it out performs all other metrics in most of the cases. In
other cases, its performance is quite close to the best performing metrics.

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

This article is protected by copyright. All rights reserved.

13
Ta

bl
e

V
I.

C
om

pa
ri

so
n

of
A

ve
ra

ge
R

an
k

Pe
rc

en
ta

ge
s

of
va

ri
ou

s
m

et
ri

cs
fo

rs
in

gl
e

bu
g

Si
em

en
s

Te
st

Su
ite

R
un

#
O

d
Ta

ra
nt

ul
a

H
yp

sa
H

yp
gp

O
p

O
ch

ia
i

Z
ol

ta
r

K
ul

2
K

ul
1

W
on

g1
W

on
g2

A
m

pl
e

G
P1

3
In

fo
rm

at
io

n
G

ai
n

1
47

.6
2

25
.2

1
17

.3
9

17
.3

8
17

.3
9

21
.9

3
17

.3
9

17
.5

8
25

.1
5

27
.9

8
47

.3
0

40
.4

6
17

.3
9

36
.9

8
2

37
.8

7
17

.6
1

11
.8

5
11

.8
5

11
.8

5
13

.6
8

11
.8

5
11

.8
5

16
.2

0
30

.3
0

37
.4

4
17

.7
7

11
.8

5
38

.1
0

3
35

.5
5

23
.4

5
15

.5
2

15
.5

2
15

.5
2

20
.0

0
15

.7
3

15
.7

3
23

.0
2

33
.1

2
34

.9
9

21
.9

6
15

.5
2

38
.3

6
4

41
.1

4
14

.2
8

9.
09

8.
67

8.
67

10
.6

7
8.

67
9.

09
12

.6
1

28
.9

2
38

.6
7

12
.4

6
8.

67
34

.5
0

5
50

.4
0

28
.3

9
18

.3
7

18
.3

7
18

.3
7

24
.2

9
18

.5
8

18
.9

8
27

.1
5

27
.7

1
49

.5
4

36
.8

9
18

.3
7

35
.5

4
6

43
.9

2
23

.2
7

15
.3

6
15

.3
7

15
.3

6
19

.4
7

15
.3

6
15

.5
5

22
.6

4
32

.2
1

43
.9

2
21

.7
2

15
.3

6
35

.7
9

7
31

.3
6

12
.4

9
8.

66
8.

66
8.

66
10

.8
5

8.
66

8.
66

12
.2

7
31

.3
1

30
.7

5
16

.9
8

8.
66

38
.5

5
8

39
.1

3
31

.2
3

25
.3

6
25

.3
5

25
.3

6
27

.8
7

25
.3

6
25

.3
6

30
.9

3
38

.1
9

38
.5

2
25

.6
5

25
.3

6
47

.4
4

9
44

.3
6

26
.9

3
17

.4
1

17
.4

0
17

.4
1

21
.5

5
17

.4
1

19
.0

6
26

.2
6

31
.9

7
42

.0
2

28
.3

7
17

.4
1

36
.8

8
10

56
.5

7
19

.6
5

15
.0

0
14

.9
9

15
.0

0
17

.8
0

15
.0

0
15

.4
3

18
.5

1
24

.2
5

55
.6

5
39

.6
1

15
.0

0
35

.1
7

A
ve

ra
ge

42
.7

9
22

.2
5

15
.4

0
15

.3
6

15
.3

6
18

.8
1

15
.3

9
15

.7
3

21
.4

7
30

.5
9

41
.8

8
26

.1
9

15
.3

6
37

.7
3

p-
va

lu
e

0.
00

2
0.

00
2

–
–

1.
00

0
0.

00
2

1.
00

0
0.

03
1

0.
00

2
0.

00
2

0.
00

2
0.

00
2

1.
00

0
0.

00
2

C
on

fid
en

ce
In

te
rv

al
10

.1
0

–
44

.6
8

2.
53

–
11

.1
8

–
–

–
1.

26
–

5.
56

–
-0

.0
4

–
0.

70
-0

.8
2

–
12

.9
7

5.
60

–
24

.7
9

9.
77

–
43

.1
9

3.
98

–
17

.6
0

–
8.

24
–

36
.4

3

Ta
bl

e
V

II
.C

om
pa

ri
so

n
of

A
ve

ra
ge

R
an

k
Pe

rc
en

ta
ge

s
of

va
ri

ou
s

m
et

ri
cs

fo
rs

in
gl

e
bu

g
Fl

ex
,G

re
p,

G
zi

p,
Se

d

R
un

#
O

d
Ta

ra
nt

ul
a

H
yp

sa
H

yp
gp

O
p

O
ch

ia
i

Z
ol

ta
r

K
ul

2
K

ul
1

W
on

g1
W

on
g2

A
m

pl
e

G
P1

3
In

fo
rm

at
io

n
G

ai
n

1
17

.4
1

11
.5

9
9.

85
9.

97
21

.0
7

15
.1

0
12

.7
8

14
.2

6
15

.3
7

21
.1

5
17

.5
2

17
.5

8
21

.0
7

41
.9

5
2

42
.1

4
24

.1
3

20
.5

4
18

.2
3

24
.2

1
24

.8
8

24
.3

8
24

.9
7

25
.3

6
24

.9
2

30
.3

4
39

.6
3

24
.2

1
41

.2
4

3
54

.8
4

7.
39

7.
36

7.
40

12
.9

9
25

.4
7

25
.4

7
25

.4
7

25
.4

7
31

.5
3

20
.5

8
45

.2
8

31
.1

1
40

.4
0

4
38

.2
3

13
.6

6
11

.2
2

11
.2

1
19

.6
2

20
.2

1
19

.5
6

19
.5

6
22

.0
5

36
.0

4
21

.5
8

39
.4

0
28

.0
2

40
.2

4
5

44
.0

5
17

.1
6

16
.6

4
16

.6
4

21
.9

5
16

.5
6

16
.5

8
16

.6
3

16
.7

3
19

.3
7

43
.3

9
33

.7
5

21
.9

5
43

.7
6

6
39

.7
7

1.
68

1.
49

1.
49

14
.3

6
24

.4
1

24
.4

1
24

.4
1

24
.4

1
44

.7
8

4.
22

36
.9

5
38

.4
5

32
.5

7
7

36
.9

7
26

.1
1

20
.5

4
20

.3
3

25
.6

9
20

.1
5

22
.5

8
19

.9
0

20
.5

4
29

.2
8

31
.6

4
20

.7
6

25
.9

0
45

.9
4

8
46

.6
5

15
.8

2
11

.5
8

11
.5

8
17

.0
6

24
.5

6
24

.2
3

24
.3

1
24

.9
5

34
.9

7
27

.4
0

37
.5

9
30

.3
6

34
.1

3
9

22
.7

3
8.

96
9.

86
9.

22
34

.4
9

16
.0

1
16

.4
2

16
.2

0
16

.3
5

38
.3

8
15

.9
8

14
.9

5
34

.4
9

36
.2

7
10

62
.6

3
25

.3
3

17
.7

1
16

.6
1

23
.9

8
37

.0
5

31
.2

6
35

.0
5

38
.4

2
36

.7
1

33
.8

3
48

.9
3

37
.2

5
36

.6
1

A
ve

ra
ge

40
.5

4
15

.1
8

12
.6

8
12

.2
7

21
.5

4
22

.4
4

21
.7

7
22

.0
7

22
.9

7
31

.7
1

24
.6

5
33

.4
8

29
.2

8
39

.3
1

p-
va

lu
e

0.
00

2
0.

01
4

–
–

0.
00

2
0.

01
0

0.
00

4
0.

01
0

0.
00

2
0.

00
2

0.
00

2
0.

00
2

0.
00

2
0.

00
2

C
on

fid
en

ce
In

te
rv

al
10

.2
8

–
45

.4
5

0.
51

–
4.

50
–

–
3.

27
–

14
.4

6
2.

36
–

17
.1

7
2.

92
–

15
.2

5
2.

27
–

16
.5

2
3.

79
–

16
.7

8
7.

02
–

31
.0

5
4.

41
–

19
.5

2
7.

67
–

33
.9

3
6.

12
–

27
.0

8
9.

82
–

43
.4

4

Ta
bl

e
V

II
I.

C
om

pa
ri

so
n

of
A

ve
ra

ge
R

an
k

Pe
rc

en
ta

ge
s

of
va

ri
ou

s
m

et
ri

cs
fo

rs
in

gl
e

bu
g

Sp
ac

e

R
un

#
O

d
Ta

ra
nt

ul
a

H
yp

sa
H

yp
gp

O
p

O
ch

ia
i

Z
ol

ta
r

K
ul

2
K

ul
1

W
on

g1
W

on
g2

A
m

pl
e

G
P1

3
In

fo
rm

at
io

n
G

ai
n

1
69

.2
0

8.
44

1.
11

1.
11

1.
11

1.
69

1.
37

1.
41

3.
99

12
.8

1
62

.0
5

21
.6

9
1.

11
35

.3
6

2
10

.2
3

2.
60

2.
60

2.
60

2.
60

2.
60

2.
60

2.
60

2.
60

25
.6

9
2.

60
3.

27
2.

60
41

.6
9

3
14

.0
8

4.
26

2.
56

2.
55

2.
54

2.
79

2.
54

2.
57

3.
48

14
.9

1
12

.0
8

11
.4

4
2.

54
42

.8
9

4
31

.3
5

8.
50

1.
83

1.
83

1.
37

2.
09

1.
57

2.
01

2.
15

20
.7

8
5.

31
2.

29
1.

37
32

.9
4

5
34

.2
1

3.
95

1.
38

1.
66

1.
38

1.
66

1.
38

1.
66

1.
66

18
.6

3
3.

29
1.

66
1.

38
30

.4
5

6
30

.4
6

2.
39

0.
81

0.
81

0.
81

0.
89

0.
81

0.
89

0.
90

18
.5

9
5.

19
0.

89
0.

81
31

.2
7

7
47

.2
7

11
.4

3
4.

12
4.

12
3.

49
5.

63
4.

07
5.

41
5.

83
18

.4
4

15
.3

1
6.

23
3.

49
27

.5
9

8
36

.6
1

12
.1

7
7.

38
7.

34
7.

32
8.

07
7.

32
7.

42
10

.1
3

15
.9

3
35

.9
4

34
.0

3
7.

32
40

.3
7

9
24

.4
5

1.
56

1.
56

1.
56

1.
56

1.
56

1.
56

1.
56

1.
56

14
.6

8
1.

56
3.

58
1.

56
47

.1
8

10
55

.4
6

5.
02

1.
17

1.
17

1.
17

1.
39

1.
26

1.
27

2.
49

15
.6

4
51

.2
6

12
.9

6
1.

17
39

.1
6

A
ve

ra
ge

35
.3

3
6.

03
2.

45
2.

47
2.

33
2.

84
2.

45
2.

68
3.

48
17

.6
1

19
.4

6
9.

80
2.

33
36

.8
9

p-
va

lu
e

0.
00

1
0.

00
4

–
–

0.
06

3
0.

00
4

0.
81

3
0.

00
4

0.
00

4
0.

00
1

0.
00

4
0.

00
1

0.
06

3
0.

00
1

C
on

fid
en

ce
In

te
rv

al
13

.4
1

–
52

.3
5

1.
15

–
6.

01
–

–
-0

.2
4

–
0.

01
0.

12
–

0.
65

-0
.0

3
–

0.
02

0.
07

–
0.

39
0.

33
–1

.7
3

6.
18

–2
4.

13
5.

47
–2

8.
54

3.
00

–1
1.

70
-0

.2
4

–0
.0

1
14

.0
5–

54
.8

3

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

This article is protected by copyright. All rights reserved.

14

Table IX. Percentage of Successful Diagnosis for Single Bug Siemens Test Suite

Code Examined 1 % 2 % 5 % 10 % 20 % 50 %
Ample 7.68 12.86 34.82 40.00 56.96 77.68
DOP 1.25 3.93 7.68 11.43 26.07 65.89
GP13 9.11 19.46 47.86 54.29 72.68 93.21
Hyperbolic 9.11 19.46 47.86 54.29 72.68 93.21
Info Gain 0.00 0.00 0.00 0.00 7.86 75.18
Kul1 6.43 10.36 33.75 41.43 55.71 85.36
Kul2 7.68 16.79 46.61 51.61 72.68 93.21
Ochiai 7.68 12.86 37.50 46.61 61.07 85.36
Optimal 9.11 19.46 47.86 54.29 72.68 93.21
Tarantula 6.43 10.36 33.75 40.00 54.46 84.11
Wong1 0.00 0.00 0.00 5.36 16.96 98.57
Wong2 5.18 5.18 8.93 11.43 27.32 68.57
Zoltar 9.11 19.46 46.61 54.29 72.68 93.21

Table X. Percentage of Successful Diagnosis for Single Bug Flex, Grep, Gzip, Sed

Code Examined 1 % 2 % 5 % 10 % 20 % 50 %
Ample 30.95 37.83 44.97 50.53 53.97 70.63
Od 30.95 34.13 37.83 39.42 48.41 66.93
GP13 21.96 30.69 34.13 35.98 39.68 74.34
Hyperbolic 47.62 56.35 61.90 68.78 68.78 94.71
Info Gain 0.00 0.00 0.00 1.85 5.56 69.05
Kul1 38.36 47.09 54.23 56.08 56.08 76.19
Kul2 40.21 48.94 54.23 56.08 56.08 78.04
Ochiai 40.21 47.09 54.23 56.08 56.08 78.04
Op 33.07 41.80 45.24 47.09 50.79 87.30
Tarantula 43.92 50.79 58.20 66.93 70.63 89.15
Wong1 0.00 1.85 7.14 15.61 32.28 78.04
Wong2 45.77 48.94 57.94 59.79 65.08 79.89
Zoltar 38.36 47.09 54.23 56.08 57.94 77.78

Table XI. Percentage of Successful Diagnosis for Single Bug Space

Code Examined 1 % 2 % 5 % 10 % 20 % 50 %
Ample 49.46 49.46 75.00 80.00 90.00 95.00
DOP 10.00 10.00 20.00 25.00 34.11 69.46
GP13 54.46 74.46 90.00 95.00 100.00 100.00
Hyperbolic 54.46 74.46 90.00 90.00 100.00 100.00
Info Gain 0.00 0.00 0.00 0.00 0.00 100.00
Kul1 49.46 64.46 85.00 90.00 95.00 100.00
Kul2 49.46 74.46 90.00 90.00 100.00 100.00
Ochiai 49.46 69.46 90.00 90.00 95.00 100.00
Optimal 54.46 74.46 90.00 95.00 100.00 100.00
Tarantula 29.11 54.46 64.46 80.00 90.00 100.00
Wong1 0.00 0.00 0.00 20.00 60.89 100.00
Wong2 34.29 44.29 59.82 59.82 70.00 85.00
Zoltar 49.46 74.46 90.00 90.00 100.00 100.00

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

This article is protected by copyright. All rights reserved.

15
Ta

bl
e

X
II

.T
en

Fo
ld

N
ew

–C
om

pa
ri

so
n

of
A

ve
ra

ge
R

an
k

Pe
rc

en
ta

ge
s

of
va

ri
ou

s
m

et
ri

cs
fo

rm
ul

ti
bu

g
ST

S

R
un

#
O

d
Ta

ra
nt

ul
a

H
yp

sa
H

yp
gp

O
p

O
ch

ia
i

Z
ol

ta
r

K
ul

2
K

ul
1

W
on

g1
W

on
g2

A
m

pl
e

G
P1

3
In

fo
rm

at
io

n
G

ai
n

1
42

.8
8

24
.8

7
23

.4
0

23
.0

8
24

.1
0

24
.0

4
27

.9
4

23
.5

1
25

.0
7

31
.2

1
37

.9
9

30
.0

5
25

.9
0

35
.6

6
2

39
.3

3
21

.0
1

19
.4

6
19

.4
7

25
.0

6
22

.4
2

25
.8

3
21

.9
8

22
.7

7
35

.1
1

34
.2

3
29

.1
7

28
.7

5
34

.8
7

3
34

.7
6

18
.4

2
12

.9
4

12
.9

7
22

.1
1

20
.1

6
23

.1
8

18
.9

0
21

.3
8

34
.6

1
28

.0
6

27
.3

9
25

.8
1

35
.4

0
4

32
.9

9
19

.9
2

14
.8

4
14

.8
4

23
.8

7
16

.0
4

22
.4

5
18

.0
2

19
.0

6
34

.3
9

30
.9

0
25

.0
8

23
.8

7
38

.4
6

5
37

.3
7

19
.7

2
20

.4
7

20
.0

4
25

.9
0

23
.9

7
30

.2
4

28
.3

3
24

.2
3

39
.2

1
28

.3
5

28
.2

5
31

.6
9

37
.8

1
6

31
.5

2
23

.3
3

21
.0

1
21

.0
9

25
.6

3
21

.5
7

21
.8

2
20

.6
5

21
.8

5
34

.6
2

30
.7

2
22

.8
1

25
.6

3
39

.2
6

7
35

.9
4

25
.2

5
23

.8
3

23
.7

3
32

.6
3

22
.8

9
30

.1
0

23
.2

4
23

.7
9

36
.2

7
34

.7
9

33
.0

2
32

.6
3

40
.0

7
8

35
.0

7
22

.1
2

19
.0

4
19

.0
0

25
.1

5
18

.8
6

26
.3

9
23

.3
6

21
.5

1
35

.4
4

32
.3

8
22

.3
5

26
.4

9
35

.4
9

9
32

.4
4

20
.1

4
14

.7
3

14
.7

6
26

.0
0

15
.4

4
23

.0
3

15
.2

1
18

.5
2

34
.6

1
30

.8
0

21
.1

1
26

.4
7

37
.5

4
10

37
.0

0
21

.7
3

17
.4

4
17

.4
2

26
.2

9
19

.6
9

28
.2

0
19

.8
5

21
.2

7
34

.5
5

34
.1

4
27

.3
1

28
.0

4
39

.0
3

A
ve

ra
ge

35
.9

3
21

.6
5

18
.7

2
18

.6
4

25
.6

7
20

.5
1

25
.9

2
21

.3
0

21
.9

5
35

.0
0

32
.2

4
26

.6
6

27
.5

3
37

.3
6

p-
va

lu
e

0.
00

2
0.

00
4

–
–

0.
00

2
0.

02
7

0.
00

2
0.

02
7

0.
00

4
0.

00
2

0.
00

2
0.

00
2

0.
00

2
0.

00
2

C
on

fid
en

ce
In

te
rv

al
6.

35
–

28
.0

8
0.

94
–

4.
93

–
–

2.
57

–
11

.3
5

0.
20

–
3.

39
2.

66
–

11
.7

5
-1

.6
4

–
6.

82
-1

.6
2

–
8.

09
6.

01
–

26
.5

6
4.

99
–

22
.0

6
2.

93
–

12
.9

5
3.

25
–

14
.3

7
6.

88
–

30
.4

1

Ta
bl

e
X

II
I.

Te
n

Fo
ld

N
ew

–C
om

pa
ri

so
n

of
A

ve
ra

ge
R

an
k

Pe
rc

en
ta

ge
s

of
va

ri
ou

s
m

et
ri

cs
fo

rm
ul

ti
bu

g
Sp

ac
e

R
un

#
O

d
Ta

ra
nt

ul
a

H
yp

sa
H

yp
gp

O
p

O
ch

ia
i

Z
ol

ta
r

K
ul

2
K

ul
1

W
on

g1
W

on
g2

A
m

pl
e

G
P1

3
In

fo
rm

at
io

n
G

ai
n

1
34

.6
5

15
.2

1
9.

87
9.

62
18

.4
5

12
.8

6
20

.0
9

13
.2

3
13

.0
0

29
.9

4
14

.9
4

5.
26

21
.8

9
40

.9
3

2
25

.3
2

12
.0

9
10

.8
9

10
.7

5
21

.9
4

11
.2

9
20

.2
1

11
.3

5
11

.5
8

27
.7

9
17

.5
0

5.
92

21
.1

9
42

.7
6

3
18

.7
3

8.
81

6.
83

6.
77

20
.3

6
10

.2
9

17
.4

5
9.

91
10

.7
5

30
.6

0
9.

99
8.

17
22

.7
7

39
.8

4
4

18
.2

9
5.

51
1.

90
1.

95
9.

01
3.

41
8.

10
3.

39
3.

43
23

.2
5

1.
45

2.
42

11
.0

1
36

.7
1

5
21

.5
1

7.
38

3.
66

3.
82

11
.3

1
5.

07
11

.0
1

5.
03

5.
10

24
.0

6
3.

03
3.

95
13

.3
1

40
.4

5
6

29
.0

5
10

.3
5

3.
73

3.
58

11
.6

9
7.

65
13

.9
2

7.
72

7.
89

26
.6

9
8.

60
4.

50
16

.3
4

38
.4

9
7

26
.6

0
8.

19
5.

38
5.

66
14

.4
2

5.
06

11
.4

9
5.

05
5.

31
24

.8
6

7.
90

6.
99

15
.0

7
36

.1
8

8
29

.0
5

11
.7

4
8.

90
8.

79
20

.3
0

10
.9

6
19

.3
4

10
.9

8
11

.1
9

29
.0

9
14

.1
7

5.
35

21
.4

7
39

.1
7

9
23

.4
8

7.
85

5.
63

5.
47

10
.3

6
6.

36
11

.2
1

6.
29

6.
40

23
.4

2
8.

65
7.

86
11

.3
1

38
.6

8
10

32
.3

1
12

.0
2

3.
07

3.
59

8.
84

9.
02

13
.0

2
8.

87
9.

56
25

.1
2

4.
65

6.
53

15
.0

9
38

.2
7

A
ve

ra
ge

25
.9

0
9.

92
5.

99
6.

00
14

.6
7

8.
20

14
.5

9
8.

18
8.

42
26

.4
8

9.
09

5.
69

16
.9

4
39

.1
5

p-
va

lu
e

0.
00

2
0.

00
2

–
–

0.
00

2
0.

00
4

0.
00

2
0.

00
2

0.
00

2
0.

00
2

0.
01

0
1.

00
0

0.
00

2
0.

00
2

C
on

fid
en

ce
In

te
rv

al
7.

34
–

32
.4

8
1.

45
–

6.
41

–
–

3.
20

–
14

.1
6

0.
71

–
3.

71
3.

17
–

14
.0

3
0.

81
–

3.
58

0.
90

–
3.

97
7.

56
–

33
.4

3
0.

75
–

5.
46

–
4.

04
–

17
.8

7
12

.2
3

–
54

.0
9

Ta
bl

e
X

IV
.T

en
Fo

ld
N

ew
–C

om
pa

ri
so

n
of

A
ve

ra
ge

R
an

k
Pe

rc
en

ta
ge

s
of

va
ri

ou
s

m
et

ri
cs

fo
rm

ul
ti

bu
g

Fl
ex

,G
re

p,
Se

d,
G

zi
p

O
d

Ta
ra

nt
ul

a
H

yp
sa

H
yp

gp
O

p
O

ch
ia

i
Z

ol
ta

r
K

ul
2

K
ul

1
W

on
g1

W
on

g2
A

m
pl

e
G

P1
3

In
fo

rm
at

io
n

G
ai

n
1

20
.3

0
15

.5
2

8.
46

8.
55

17
.6

6
7.

04
9.

22
7.

04
6.

96
19

.9
8

7.
14

12
.2

6
17

.6
6

28
.3

8
2

20
.5

7
14

.7
3

5.
04

4.
91

17
.9

5
4.

91
5.

45
4.

91
4.

91
25

.6
3

4.
93

3.
88

17
.9

5
30

.6
6

3
27

.6
1

16
.2

3
8.

43
8.

59
24

.4
8

11
.9

2
13

.0
5

11
.3

0
12

.3
0

25
.5

8
12

.1
5

12
.0

8
24

.4
8

32
.8

4
4

24
.4

6
12

.1
7

11
.4

1
11

.4
8

29
.8

4
16

.0
5

12
.9

6
16

.0
8

16
.1

4
34

.8
0

19
.5

4
15

.3
9

29
.8

4
34

.0
2

5
8.

88
8.

93
5.

91
5.

99
26

.8
7

12
.8

2
10

.3
0

12
.2

0
13

.3
6

27
.0

0
5.

82
11

.4
8

26
.8

7
27

.6
9

6
25

.1
1

18
.8

2
10

.1
8

10
.1

1
24

.2
9

13
.6

0
10

.6
2

12
.7

8
15

.2
4

25
.3

2
15

.8
6

16
.5

5
24

.2
9

26
.5

3
7

16
.5

6
16

.6
1

18
.3

1
18

.3
2

29
.9

3
22

.8
2

23
.9

9
22

.2
4

23
.2

4
30

.2
2

18
.4

8
12

.6
7

29
.9

3
33

.0
6

8
33

.0
7

22
.0

0
9.

20
9.

01
25

.2
9

14
.7

7
15

.5
3

13
.5

1
16

.3
5

27
.5

6
22

.6
3

18
.2

9
25

.2
9

28
.3

8
9

11
.2

2
9.

32
3.

91
4.

24
12

.2
3

2.
75

2.
72

2.
75

2.
75

18
.2

7
2.

77
5.

07
12

.2
3

26
.8

2
10

26
.4

5
15

.4
0

6.
40

6.
30

17
.7

1
5.

94
6.

33
5.

53
7.

19
22

.7
6

17
.5

5
13

.8
9

17
.7

1
31

.6
9

A
ve

ra
ge

21
.4

2
14

.9
7

8.
72

8.
75

22
.6

2
11

.2
6

11
.0

2
10

.8
3

11
.8

4
25

.7
1

12
.6

9
12

.1
6

22
.6

2
30

.0
1

p-
va

lu
e

0.
00

4
0.

00
6

–
–

0.
00

2
0.

08
4

0.
02

7
0.

08
3

0.
04

8
0.

00
2

0.
13

1
0.

06
4

0.
00

2
0.

00
2

C
on

fid
en

ce
In

te
rv

al
4.

08
–

21
.3

1
1.

81
–

10
.6

9
–

–
5.

13
–

22
.6

8
-0

.3
4

–
5.

42
0.

25
–

4.
33

0.
78

–
3.

44
1.

15
–

5.
09

6.
27

–
27

.7
1

-1
.1

8
–

9.
10

-0
.2

1
–

7.
08

5.
13

–
22

.6
8

7.
85

–
34

.7
1

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

This article is protected by copyright. All rights reserved.

16

Table XV. Percentage of Successful Diagnosis for multi Bug Siemens Test Suite

Code Examined 1 % 2 % 5 % 10 % 20 % 50 %
Ample 3.96 8.68 33.40 39.81 57.17 78.30
Od 1.13 6.04 13.02 20.00 37.74 72.26
GP13 8.49 11.70 23.21 34.15 53.21 79.06
Hyperbolic 9.81 13.96 39.06 46.98 68.49 89.06
Info Gain 0.00 0.00 2.08 5.47 21.89 83.40
Kul1 6.42 9.81 36.79 43.58 57.17 84.53
Kul2 7.36 10.38 34.34 41.51 65.09 87.55
Ochiai 5.85 10.57 37.92 46.23 63.77 84.53
Op 10.38 13.58 25.09 36.04 55.09 81.32
Tarantula 9.81 13.02 38.49 45.47 55.66 83.02
Wong1 0.75 0.75 3.58 5.85 24.15 81.13
Wong2 9.06 9.43 20.19 22.83 43.40 78.30
Zoltar 9.25 12.64 24.72 36.60 56.23 82.45

Table XVI. Percentage of Successful Diagnosis for multi bug Space

Code Examined 1 % 2 % 5 % 10 % 20 % 50 %
Ample 51.98 55.22 75.43 83.05 93.53 99.17
Od 16.13 18.57 34.68 41.12 51.55 81.45
GP13 36.67 39.53 49.25 55.73 65.40 88.32
Hyperbolic 48.37 59.27 81.87 85.88 91.57 96.00
Info Gain 0.00 0.00 0.00 0.00 2.82 77.47
Kul1 51.15 62.45 76.60 80.23 87.12 88.32
Kul2 49.55 63.28 79.03 79.43 87.52 88.32
Ochiai 50.75 62.45 79.43 80.23 87.12 88.32
Op 41.52 44.38 54.10 60.58 70.25 95.60
Tarantula 29.02 44.75 66.93 70.97 83.05 89.12
Wong1 0.00 0.00 0.00 12.52 39.97 88.32
Wong2 47.13 59.63 74.60 75.40 84.68 93.20
Zoltar 40.30 45.17 56.08 56.08 69.82 88.32

Table XVII. Percentage of Successful Diagnosis for multi bug Flex, Grep, Gzip, Sed

Code Examined 1 % 2 % 5 % 10 % 20 % 50 %
Ample 37.00 39.00 50.33 70.67 72.67 93.78
Od 35.89 36.89 47.00 3.11 62.44 83.67
GP13 11.44 13.44 18.56 69.67 46.22 92.00
Hyperbolic 41.22 41.22 54.33 71.67 80.78 100.00
Info Gain 0.00 0.00 0.00 3.00 16.22 93.89
Kul1 45.33 48.33 57.44 62.44 70.67 93.00
Kul2 45.33 48.33 56.44 40.00 73.78 94.00
Ochiai 45.33 48.33 57.44 49.22 73.78 94.00
Op 11.44 13.44 18.56 70.67 46.22 92.00
Tarantula 35.89 36.89 51.00 71.67 68.44 89.89
Wong1 2.11 2.11 2.11 40.00 58.33 92.00
Wong2 45.33 49.33 57.44 72.67 73.67 92.78
Zoltar 39.22 41.22 52.33 68.67 70.78 97.00

7. STATISTICAL SIGNIFICANCE

In order to find that the difference in the average rank percentage computed by hyperbolic metrics
are significant as compared to other metrics, we use Wilcoxon signed rank test at 5% significance

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

This article is protected by copyright. All rights reserved.

17

level [24]. We establish an alternative hypothesis; the bug localization performance using hyperbolic
metrics is better than other metrics. The null hypothesis is that there is no difference between the
rank percentages computed by the hyperbolic and other metrics.

The “p-value” column in tables VI, VII, VIII , XII, XIII and XIV show the p-value computed
by Wilcoxon signed rank test on single and multi-bug data sets of the STS, Space, Flex, Grep,
Gzip and Sed. p-value of 0.05 is a normal standard for statistical significance. It can be seen from
above mentioned tables that p-value of the most of the metrics is lower than 0.05 showing that
the decrease in average rank percentage by hyperbolic metrics is statistically significant. Average
Rank Percentage of hyperbolic metrics (column “Average”) is lower than all other metrics except
for single bug space and multi bug space. However, even for these two datasets, p-value of best
performing metrics is greater than 0.05 showing that performance of hyperbolic metrics is neither
inferior nor superior to these metrics. In other words, hyperbolic is as good in performance as these
metrics.

There are some situations where average rank percentage of hyperbolic metrics is lower than
other metrics but the difference is not statistically significant. For example, p-value of Kulczynski2
and Ochiai in Table XIV is 0.083 and 0.084 respectively showing that the difference in performance
of these metrics is not significant. However, Hyperbolic metrics still have an edge over other metrics
due their adapting nature i.e. they adjust themselves for single bug, multiple bug and deterministic
bug datasets and performs as good as or better than the best performing metrics for these datasets.

In order to find the range of improvement obtained by hyperbolic metrics, we have shown 95%
confidence intervals for all the instances where p-value is less than 1. Both for single and multi bug
datasets, highest improvement range is achieved over information gain for Space.

To conclude, Hyperbolic metrics perform better or atleast as good as the known best performing
metrics for single bug, multiple bug and deterministic bug datasets. p-values show that improvement
is statistically significant while confidence intervals show that range of improvement is quite high
as compared to the most of the metrics.

8. THREATS TO VALIDITY

The accuracy of a fault localization metric to localize fault is influenced by the granularity level
under consideration (e.g. statement, basic block, predicate or method). We have used statement
as basic block in this study, however results may vary using method, predicate or other levels of
granularity.

We have chosen a wide spectrum of metrics to compare with our proposed class of metrics; best
performing metric on single bug benchmarks (Op), deterministic bug benchmarks (Od), multiple
bug benchmarks (Ochiai and Kulczynski2) and many others. Although we have not reported all
SBFL functions (over 150 of them) we believe our results will hold good for any SBFL function
as long as the statistical properties of training data and test data are very similar, as performance
of hyperbolic metrics depends on effective learning. Furthermore, in order to compare hyperbolic
metrics with other metrics, we have coded all these metrics. Although another check is performed
to make sure that there is no bug in the code, human error is still possible.

We have used a combination of small and large sized datasets for evaluation of our proposed
metrics. The Siemens Test Suite contains small programs having manually induced bugs, Flex,
Grep and Gzip are larger programs having manually induced bugs, Sed is a large program having
a combination of real and synthetic bugs while Space is a large program having real bugs.
Experimental results on all of these programs show that hyperbolic metrics performs better or atleast
equal to best performing metrics for different types of bugs. However, to further consolidate the
claims, experiments on other datasets would be beneficial and we are endeavouring to collect such
datasets.

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

This article is protected by copyright. All rights reserved.

18

9. OTHER RELATED WORK

Landsberg et al. [23] evaluate 157 different similarity metrics from the literature for SBFL and
show how many are equivalent for ranking purposes. The Pattern-Similarity metric, and a simpler
equivalent metric, PattSim2 =−nf × ep, have hyperbolic contours identical to those in Figure 1(c).
Furthermore, in all these metrics small “prior constants” are added to the spectral values to avoid
division by zero etc. These are not needed for PattSim2 since there is no division, but the resulting
metric is of the form −(nf +K1)(ep+K2). These two constants effectively translate the contours
vertically and horizontally in the same way as K1 and K2 in our hyperbolic metrics, and make the
metric strictly rational. By manually selecting the two constant values, this metric was found to
perform better than all others from the literature for a benchmark set which included the Siemens
programs plus several significantly larger programs with multiple bugs. Our work differs in that we
have three parameters rather than two, we scale the spectral values to the range 0–1 and we find
the constants automatically, using machine learning techniques. Landsberg et al. also experimented
with adapting metrics so they are single bug optimal, in the same way as proposed in [15]. The
single bug optimal version of Ochiai performed the best of all metrics considered. Lucia et al.
[34]use data fusion method to fuse various fault localization metrics which are more effective in
wide spectrum of data. Unlike the work presented in this paper, their technique is bug specific in
which the set of techniques to be fused are adaptively selected for each buggy program based on its
spectra. Furthermore, it doesn’t require any training data.

Most of the formulas or metrics used in Spectral based fault localization are not designed
specifically for debugging. Jaccard for example used for biological classification for the first time
and Ochiai used in marine zoology [35]. Tarantula was the first metric designed for spectral
debugging [20]. Few other widely used metrics are Ample [25], Zoltar [24], Wong [21] etc.

Naish et al. propose optimal metrics for single bug [6] and deterministic bug programs [17] which
are empirically proved to be the best metrics in these areas. They, however, do not perform equally
well on multiple bug data.

There are few techniques available in literature for multiple bug problem which are combination
of spectral based with machine learning or model based approaches. Some of these are given below.

James et al. present a clustering approach for debugging in parallel in presence of multiple bugs.
Using fault localization information from program execution and behaviour models, they develop a
technique that automatically partitions the failing test cases into clusters that target different faults.
These clusters are called fault focusing clusters. Each fault focusing cluster is then combined with
all the passing test cases to get a specialized test suite that targets a single fault. These specialized
test suits can then be assigned to different developers who can work in parallel for debugging and
localizing bugs [29].

Abreu el al. present a multi fault localization technique called BARINEL by combining spectral
based fault localization and model based reasoning. Model based approaches are more accurate
as compared to spectral fault localization but due to their computational complexity they are very
expensive for large applications. BARINEL, however, uses effective candidate selection process that
reduces it’s complexity and make it better candidate for large programs as well [16].

Wong et al. propose a crosstab-based statistical fault localization technique(CBT). The technique
uses statement based coverage information. A comparison has been made between CBT and
Tarantula and results prove CBT better then tarantula. The technique is claimed to be effectively
applicable for multiple bug programs [36].

Slicing and Dicing are considered as one of the oldest techniques in debugging and fault
localization. Slicing refers to the piece of program code that affects the value of any variable while
dicing is the part of program, which appears in one slice but not in another. These approaches
narrow down the program part, which is more likely to be buggy so that developer can concentrate
on a small part of the code for fault localization [22][37].

Mutant based fault localization (MUSE) identifies the fault or bug by utilizing the information
obtained by mutating the faulty and correct statement [38]. The technique uses the intuition that if a
faulty statement is mutated, it will cause more tests to pass than average and if a correct statement

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

This article is protected by copyright. All rights reserved.

19

is mutated, it will cause more tests to fail then average. These intuitions are the basis of MUSE
[39][40][41].

State based approaches aim to localize the bugs by observing the changing state of the program
and identifying the failure inducing circumstances [42][43][44]. Failure Inducing Circumstances
refer to the input to the test cases which causes it to fail e.g. program input (particular URL input
fails the web browser), User Interaction (keystroke of the user causing the program to fail) and
changes to the program code.

There are many studies found that test reduction and test selection could help in improving the
performance of fault localization technique [45][46]. Recently, many machine learning, data mining,
static analysis and Information Retrieval Based approaches are proposed in this area which can be
used together with spectra-based approaches[29][47][31] [48][49][50] [51][52][53].

10. FUTURE WORK

We plan to analyse different scaling forms to better understand why some forms of scaling perform
better than others. Furthermore, we are working to device other set of classes having similar
properties and which can perform even better with simple learning. Using other datasets like
Defects4J having real bugs would also be helpful in further validating our results. We also plan
to develop a practical fault localization tool using the technique we discuss in this study.

11. CONCLUSION

Performance of Spectral Based Fault Localization is strongly influenced by the choice of metric
used to estimate the likelihood that a given program component is buggy. We have proposed the
class of “hyperbolic” metrics, to efficiently locate single, deterministic and multiple bugs. The class
has a small number of numeric parameters; the parameter values can be determined by using training
data. We have shown that learned hyperbolic metrics can perform as well or better than previously
discovered metrics in a wide range of situations. Using both synthetic and real programs we have
demonstrated that these metrics can achieve best performance for programs with a single bug and
with deterministic bugs (where bug execution always leads to test case failure) — the two extreme
cases we have theoretical results for. In a range of other model programs, with two bugs which
cause failure with varying consistency, hyperbolic metrics performed best on average. Using data
from small real programs seeded with two bugs and large real programs with real software bugs the
learned hyperbolic metrics out-performed the best previously know metrics on average.

REFERENCES

1. Collofello JS, Woodfield SN. Evaluating the effectiveness of reliability-assurance techniques. Journal of systems
and software 1989; 9(3):191–195.

2. Wong WE, Gao R, Li Y, Abreu R, Wotawa F. A survey on software fault localization. IEEE Transactions on
Software Engineering 2016; 42(8):707–740.

3. Jones JA, Harrold MJ, Stasko J. Visualization of test information to assist fault localization. Proceedings of the 24th
international conference on Software engineering, ACM, 2002; 467–477.

4. Liblit B. Cooperative Bug Isolation. PhD Thesis, University of California 2004.
5. Abreu R, Zoeteweij P, van Gemund A. An evaluation of similarity coefficients for software fault localization.

PRDC’06 2006; :39–46.
6. Naish L, Lee HJ, Kotagiri R. A model for spectra-based software diagnosis. ACM Transactions on software

engineering and methodology (TOSEM) August 2011; 20(3).
7. Kochhar PS, Xia X, Lo D, Li S. Practitioners’ expectations on automated fault localization. Proceedings of the 25th

International Symposium on Software Testing and Analysis, ACM, 2016; 165–176.
8. Xia X, Bao L, Lo D, Li S. automated debugging considered harmful considered harmful: A user study revisiting

the usefulness of spectra-based fault localization techniques with professionals using real bugs from large systems.
Software Maintenance and Evolution (ICSME), 2016 IEEE International Conference on, IEEE, 2016; 267–278.

9. Campos J, Riboira A, Perez A, Abreu R. Gzoltar: an eclipse plug-in for testing and debugging. Proceedings of the
27th IEEE/ACM International Conference on Automated Software Engineering, ACM, 2012; 378–381.

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

This article is protected by copyright. All rights reserved.

20

10. Liblit B. Cooperative bug isolation: Winning thesis of the 2005 acm doctoral dissertation competition, volume 4440
of lecture notes in computer science 2007.

11. Abreu R, Zoeteweij P, van Gemund A. On the Accuracy of Spectrum-based Fault Localization. TAICPART-Mutation
2007, IEEE Computer Society: Windsor,UK, 2007; 89–98.

12. Naish L. Similarity to a single set january 2016, doi:10.7287/peerj.preprints.1713v1.
13. Wang S, Lo D, Jiang L, Lau HC, et al.. Search-based fault localization. Proceedings of the 2011 26th IEEE/ACM

International Conference on Automated Software Engineering, IEEE Computer Society, 2011; 556–559.
14. Yoo S. Evolving human competitive spectra-based fault localisation techniques. Search Based Software

Engineering. Springer, 2012; 244–258.
15. Naish L, Lee HJ, Kotagiri R. Spectral debugging: How much better can we do? 35th Australasian Computer Science

Conference (ACSC 2012), CRPIT Vol. 122, CRPIT, 2012.
16. Abreu R, Zoeteweij P, Van Gemund AJ. Spectrum-based multiple fault localization. Automated Software

Engineering, 2009. ASE’09. 24th IEEE/ACM International Conference on, IEEE, 2009; 88–99.
17. Naish L, Lee HJ. Duals in spectral fault localization. Proceedings of ASWEC 2013, IEEE Press, 2013.
18. Naish L, Ramamohanarao K, et al.. Multiple bug spectral fault localization using genetic programming. Software

Engineering Conference (ASWEC), 2015 24th Australasian, IEEE, 2015; 11–17.
19. Do H, Elbaum SG, Rothermel G. Supporting controlled experimentation with testing techniques: An infrastructure

and its potential impact. Empirical Software Engineering: An International Journal 2005; 10(4):405–435.
20. Jones J, Harrold M. Empirical evaluation of the Tarantula automatic fault-localization technique. Proceedings of

the 20th ASE 2005; :273–282.
21. Wong WE, Qi Y, Zhao L, Cai K. Effective Fault Localization using Code Coverage. Proceedings of the 31st Annual

IEEE Computer Software and Applications Conference 2007; :449–456.
22. Lee HJ. Software Debugging Using Program Spectra. PhD Thesis, University of Melbourne 2011.
23. Landsberg D, Chockler H, Kroening D, Lewis M. Evaluation of measures for statistical fault localisation and an

optimising scheme. Fundamental Approaches to Software Engineering. Springer, 2015; 115–129.
24. Gonzalez A. Automatic Error Detection Techniques based on Dynamic Invariants. Master’s Thesis, Delft University

of Technology, The Netherlands 2007.
25. Dallmeier V, Lindig C, Zeller A. Lightweight bug localization with ample. Proceedings of the sixth international

symposium on Automated analysis-driven debugging, ACM, 2005; 99–104.
26. Lo D, Jiang L, Budi A, et al.. Comprehensive evaluation of association measures for fault localization. Software

Maintenance (ICSM), 2010 IEEE International Conference on, IEEE, 2010; 1–10.
27. Parnin C, Orso A. Are automated debugging techniques actually helping programmers? Proceedings of the 2011

international symposium on software testing and analysis, ACM, 2011; 199–209.
28. Pearson S, Campos J, Just R, Fraser G, Abreu R, Ernst MD, Pang D, Keller B. Evaluating and improving fault

localization. Proceedings of the 39th International Conference on Software Engineering, IEEE Press, 2017; 609–
620.

29. Jones J, Bowring J, Harrold M. Debugging in parallel. Proceedings of the ISSTA 2007; :16–26.
30. Dickinson W, Leon D, Podgurski A. Finding failures by cluster analysis of execution profiles. Proceedings of the

23rd international conference on Software engineering, IEEE Computer Society, 2001; 339–348.
31. Briand LC, Labiche Y, Liu X. Using machine learning to support debugging with tarantula. Software Reliability,

2007. ISSRE’07. The 18th IEEE International Symposium on, IEEE, 2007; 137–146.
32. Di Fatta G, Leue S, Stegantova E. Discriminative pattern mining in software fault detection. Proceedings of the 3rd

international workshop on Software quality assurance, ACM, 2006; 62–69.
33. Jiang L, Su Z. Automatic isolation of cause-effect chains with machine learning. Technical Report, Tech. rep.,

Technical Report CSE-2005-32, University of California, Davis 2005.
34. Lo D, Xia X, et al.. Fusion fault localizers. Proceedings of the 29th ACM/IEEE international conference on

Automated software engineering, ACM, 2014; 127–138.
35. Ochiai A. Zoogeographic studies on the soleoid fishes found in japan and its neighbouring regions. Bull. Jpn. Soc.

Sci. Fish 1957; 22(9):526–530.
36. Wong WE, Debroy V, Xu D. Towards better fault localization: A crosstab-based statistical approach. Systems, Man,

and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on 2012; 42(3):378–396.
37. Agrawal H, Horgan J, London S, Wong W. Fault localization using execution slices and dataflow tests. Software

Reliability Engineering 1995; :143–151.
38. Moon S, Kim Y, Kim M, Yoo S. Ask the mutants: Mutating faulty programs for fault localization. Software Testing,

Verification and Validation (ICST), 2014 IEEE Seventh International Conference on, IEEE, 2014; 153–162.
39. Papadakis M, Le Traon Y. Using mutants to locate” unknown” faults. Software Testing, Verification and Validation

(ICST), 2012 IEEE Fifth International Conference on, IEEE, 2012; 691–700.
40. Debroy V, Wong WE. Combining mutation and fault localization for automated program debugging. Journal of

Systems and Software 2014; 90:45–60.
41. Papadakis M, Le Traon Y. Effective fault localization via mutation analysis: a selective mutation approach.

Proceedings of the 29th Annual ACM Symposium on Applied Computing, ACM, 2014; 1293–1300.
42. Zeller A. Isolating cause-effect chains from computer programs. ACM SIGSOFT Software Engineering Notes 2002;

27(6):10.
43. Zeller A, Hildebrandt R. Simplifying and isolating failure-inducing input. Software Engineering, IEEE Transactions

on 2002; 28(2):183–200.
44. Zhang X, Gupta N, Gupta R. Locating faults through automated predicate switching. Proceedings of the 28th

international conference on Software engineering, ACM, 2006; 272–281.
45. Xia X, Gong L, Le TDB, Lo D, Jiang L, Zhang H. Diversity maximization speedup for localizing faults in single-

fault and multi-fault programs. Automated Software Engineering 2016; 23(1):43–75.
46. Xuan J, Monperrus M. Test case purification for improving fault localization. Proceedings of the 22nd ACM

SIGSOFT International Symposium on Foundations of Software Engineering, ACM, 2014; 52–63.

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

This article is protected by copyright. All rights reserved.

21

47. Hsu H, Jones J, Orso A. RAPID: Identifying bug signatures to support debugging activities. 23rd IEEE/ACM
International Conference on Automated Software Enginering, 2008. ASE 2008, 2008; 439–442.

48. B Le TD, Lo D, Le Goues C, Grunske L. A learning-to-rank based fault localization approach using likely
invariants. Proceedings of the 25th International Symposium on Software Testing and Analysis, ACM, 2016; 177–
188.

49. Xuan J, Monperrus M. Learning to combine multiple ranking metrics for fault localization. Software Maintenance
and Evolution (ICSME), 2014 IEEE International Conference on, IEEE, 2014; 191–200.

50. Le TDB, Lo D, Thung F. Should i follow this fault localization tools output? Empirical Software Engineering 2015;
20(5):1237–1274.

51. Le TDB, Lo D, Li M. Constrained feature selection for localizing faults. Software Maintenance and Evolution
(ICSME), 2015 IEEE International Conference on, IEEE, 2015; 501–505.

52. Le TDB, Oentaryo RJ, Lo D. Information retrieval and spectrum based bug localization: better together.
Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering, ACM, 2015; 579–590.

53. Neelofar N, Naish L, Lee J, Ramamohanarao K. Improving spectral-based fault localization using static analysis.
Software: Practice and Experience 2017; .

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

This article is protected by copyright. All rights reserved.

Minerva Access is the Institutional Repository of The University of Melbourne

Author/s:
Neelofar, N;Naish, L;Ramamohanarao, K

Title:
Spectral-based fault localization using hyperbolic function

Date:
2018-03

Citation:
Neelofar, N., Naish, L. & Ramamohanarao, K. (2018). Spectral-based fault localization using
hyperbolic function. SOFTWARE-PRACTICE & EXPERIENCE, 48 (3), pp.641-664. https://
doi.org/10.1002/spe.2527.

Persistent Link:
http://hdl.handle.net/11343/293479

http://hdl.handle.net/11343/293479

	1 Introduction
	2 Definitions and Notations
	3 The Hyperbolic Metric Class
	3.1 Motivation for Hyperbolic Metrics
	3.2 Hyperbolic Metrics
	3.3 Scaling

	4 Finding Parameter Values Using Optimization Methods
	4.1 Finding Parameter Values Using Genetic Programming
	4.2 Parameter Values using Simulated Annealing
	4.3 Time Complexity

	5 Simulated Annealing with Statement Pruning
	6 Experimental Setup And Results
	6.1 Experimental Setup
	6.1.1 Dataset
	6.1.2 Fault Localization Metrics Used
	6.1.3 Genetic Programming and Simulated Annealing Configuration

	6.2 Experimental Results
	6.2.1 Model program experiments
	6.2.2 Single Bug Experiments
	6.2.3 MultiBug Experiments

	7 Statistical Significance
	8 Threats to Validity
	9 Other Related Work
	10 Future Work
	11 Conclusion

