arXiv:1803.02500v1 [cs.DC] 7 Mar 2018

Towards a Data-driven [oT Software Architecture
for Smart City Utilities !

Yogesh Simmhan 72, Pushkara Ravindra ', Shilpa Chaturvedi T,
Malati Hegde * and Rashmi Ballamajalu *

T Department of Computational and Data Sciences,
* Department of Electronics and Communications Engineering,
Indian Institute of Science, Bangalore, India

IPre-print of article to appear in Software: Practice and Experience, Wiley, 2018
2Corresponding author. Email: mailto:simmhan@iisc.ac.in

mailto:simmhan@iisc.ac.in

Abstract

The Internet of Things (IoT) is emerging as the next big wave of digital presence
for billions of devices on the Internet. Smart Cities are practical manifestation
of IoT, with the goal of efficient, reliable and safe delivery of city utilities like
water, power and transport to residents, through their intelligent management.
A data-driven IoT Software Platform is essential for realizing manageable and
sustainable Smart Utilities, and for novel applications to be developed upon
them. Here, we propose such a service-oriented software architecture to address
two key operational activities in a Smart Utility — the IoT fabric for resource
management, and the data and application platform for decision making. Our
design uses open web standards and evolving network protocols, Cloud and edge
resources, and streaming Big Data platforms. We motivate our design require-
ments using the smart water management domain; some of these requirements
are unique to developing nations. We also validate the architecture within a
campus-scale IoT testbed at the Indian Institute of Science (IISc), Bangalore,
and present our experiences. Our architecture is scalable to a township or city,
while also generalizable to other Smart Utility domains. Our experiences serves
as a template for other similar efforts, particularly in emerging markets, and
highlights the gaps and opportunities for a data-driven IoT Software architec-
ture for smart cities.

1 Introduction

The rapid emergence and deployment of Internet of Things (IoT) is causing
millions of devices and sensors to come online as part of public and private
networks [38]. This marks a convergence of cheap sensing hardware, pervasive
wireless and wired communication networks, and the democratization of com-
puting capacity through Clouds. It also reflects the growing need to leverage
automation to enhance the efficiency of public systems and quality of life for so-
ciety. While consumer devices such as smart-phones and fitness bands highlight
the ubiquity of IoT in a digitally immersed lifestyle, of equal (arguably, greater)
importance is the role of IoT in managing infrastructure such as city utilities
and industrial manufacturing [59, 31]. Smart Cities and Industrial IoT deploy
sensing and actuation capabilities as part of physical systems such as power and
water grids, road networks, manufacturing equipment, etc. This enables the use
of data-driven approaches to efficiently and reliably manage the operations of
such vital Cyber Physical Systems (CPS) [43, 41, 45].

As the number of IoT devices soon reach the billions, it is essential to have
a distributed software architecture that facilitates the sustainable management
of these physical devices and communication networks, and access to their data
streams and controls for developing innovative IoT applications. Three syn-
ergistic concepts come together to enable this. Service-Oriented Architectures
(SOA) [42, 26] offer standard mechanisms and protocols for discovery, address-
ing, access control, invocation and composition of services that are available
on the World Wide Web (WWW), by leveraging and extending web-based pro-
tocols such as HTTP and open representation models like XML [51]. Cloud
computing is a manifestation of this paradigm where infrastructure, platform
and software resources are available “as a service” (IaaS, Paas and SaaS), of-
ten served from geographically distributed data centers world-wide. These offer
economies of scale and enable access to elastic resources using a pay-as-you-go
model [25]. Such commodity clusters on the Cloud have also enabled the growth
of Big Data platforms that allow data-driven applications to be composed and
scaled on tens or hundreds of Virtual Machines (VMs), and deal both with data
volume and velocity, among other dimensions [66].

Unlike traditional enterprise or scientific applications, however, the IoT do-
main is distinct in the way these technologies converge to support emerging ap-
plications. (1) IoT integrates hardware, communication, software and analytics,
and links the physical and the digital world. Hence infrastructure management,
including of Cloud, Fog and Edge devices, is an intrinsic part of the software
architecture [64]. (2) These devices and services may not always be on the
WWW, and instead connect within private networks or the public Internet (not
WWW). Hence, network heterogeneity is also a concern. (3) The communica-
tion connectivity and indeed even their hardware availability may not be reliable,
with transient network and hardware faults being common in wide-area deploy-
ments. (4) The scale of the IoT infrastructure services (and micro-services) is
likely to be orders of magnitude more than traditional business and eCommerce
services, eventually reaching billions. (5) Lastly, the potential applications that
will be built on top of IoT is not yet well-defined and the scope of innovation is
vast — provided that the software architecture is open and extensible.

These necessitate a software architecture that encompasses a management
fabric and a data-driven middleware that can leverage SOA, Clouds and Big

Data platforms in a meaningful manner to support the needs of IoT applications.
One can envision convergence onto a core set of interoperable, open standards —
an approach that contributed to the success of the WWW using HTTP, HTML,
URL, etc. specifications from IETF, or they may fragment into vertical silos
pushed by proprietary consortia, such as seen in public Clouds from Amazon
AWS and Microsoft Azure (who themselves are evolving for IoT). Both can
prove to be successful, but we argue the need for the former. The few major
public Cloud providers have large customer bases. Hence, custom APIs that
they offer based on web standards will have a captive market. On the other
hand, IoT will need to leverage open web and Internet standards, both existing
and emerging, to allow interoperability and reuse of existing tools and software
stacks. This is particularly of concern to developing countries with mega-cities
that are transitioning to Smart Cities. Such an open-approach will also catalyze
the development of novel applications for consuming the data and application
services exposed by the city utility.

Contributions. In this article, we propose a service-oriented and data-
driven software architecture for Smart City utilities. This is motivated by rep-
resentative applications for smart water management and validated for manag-
ing the infrastructure and applications within a Smart Campus IoT testbed at
the Indian Institute of Science (IISc), Bangalore. We make the following spe-
cific contributions. (1) We characterize the requirements of an IoT fabric and
application middleware to support innovative Smart City applications. (2) We
develop a service-oriented software architecture, based on open protocols, stan-
dards and software, to meet these requirements while leveraging Cloud and Big
Data platforms. This includes a novel bootstrapping mechanism to on-board
new devices, and support for streaming synchronous and batch asynchronous
analytics. (3) We integrate these technology blocks together within a real IoT
field deployment at the IISc campus testbed, that spans sensing, communica-
tion, data integrating and analytics, to validate our design.

Organization.The rest of the article is organized as follows. First, in § 2, we
offer a background of the IISc Smart Campus project and highlight the unique
requirements of Smart City deployments in emerging nations like India. In § 3—
6, we discuss different aspects of our proposed scalable, data-centric, service-
oriented software architecture for the Smart Campus. This includes sensing and
communication (§ 3); management fabric for the devices and the network (§ 4);
data platforms for data acquisition (§ 5); and Cloud and edge-based analytics
for decision-making (§ 6). We contrast our work against related efforts globally
in § 7, and finally offer our conclusions and discuss future directions in § 8.

2 Background

We present an overview of the Smart Campus project at IISc that is developing
an IoT management fabric and application platform for smart utility manage-
ment. We use this, as well as our prior experience with the Los Angeles Smart
Grid project [59], to motivate the unique needs of a Smart City software archi-
tecture.

() Distribution { 2 : " LV

Zn 4 = cae — \ Y
‘7 Zone bl w Mpus Boyp, W v
= Y :
?ve{ Head | . B, =
anl
l S U=
Ground A sy
&P Level |
Reservoir = A=
- Inlet from § 28)
’ City Utility Lz &=

C)

[E © OpenstreetMap Contributors

Figure 1: IISc Campus Map and Water Infrastructure

2.1 IISc Smart Campus project

The Government of India is undertaking a mission to upgrade 100 cities into
Smart Cities ' over the next several years, at a cost of about USD 14 billion.
While the exact characteristics of a “Smart City” are loosely defined, smart
energy, water and waste management, urban mobility, and digital services for
citizens are some of the thematic areas. Several township-scale and community-
scale research and deployment projects have been initiated to understand the
unique aspects of smart city management in a developing country like India,
and the role of open technology in realizing this vision.

The Smart Campus project > at the Indian Institute of Science, the top
graduate school in India, is one such effort to design, develop and validate a
campus-wide IoT fabric. This “living laboratory” will offer a platform to try
novel IoT technologies and Smart City services, with a captive base of about
10,000 students, faculty, staff and family who largely reside on campus. The
gated campus spread across 1.8 km? has over 50 departments and centers, and
about 100 buildings which host offices, lecture halls, research labs, supercom-
puting facility, hostels, staff housing, restaurants, health center, grocery stores,
and so on (Fig. 1). This is representative of large communities and towns in
India, and offers a unique real-world ecosystem to validate IoT technologies for
Smart Cities.

ISmart Cities Mission, Government of India, http://smartcities.gov.in/
21ISc Smart Campus Project, http://smartx.cds.iisc.ac.in

http://smartcities.gov.in/
http://smartx.cds.iisc.ac.in

The project aims to design, develop and deploy a reference IoT architecture
as a horizontal platform that can support various vertical utilities such as smart
power, water and transportation management, with smart water management
serving as the initial domain for validation of the fabric. In effect, the effort for
this project is in sifting through and selecting the best-practices and standards
in the public domain across various layers of the IoT stack, integrating them to
work seamlessly, and validating them for one canonical domain at the campus
scale. By its very nature, this limits de novo blue-sky architectures that work in
a lab setup but are infeasible, impractical, costly or do not scale. At the same
time, the architecture also offers an open platform for research into sensing,
networking, Cloud and Big Data platforms, and analytics.

I1Sc owns and manages the water distribution network within the campus,
and in Bangalore, like other cities in India, water supply from the city utility
is not 24 x 7 but rather periodic. As a result, there are under-ground reser-
voirs (ground-level reservoirs, GLR) to buffer the water from the city’s inlets,
large overhead tanks (OHT) where water is pumped up to from the GLRs, and
rooftop tanks at the building-level where water is routed to from these OHTs
using gravity. About 4 city inlets, 13 GLRs, 8 OHTSs, and over 50 rooftop tanks
form the campus water distribution network, and support an average daily con-
sumption of 4 Million em? of water. Fig. 1 shows these inlets, GLR and OHTs.
The campus also consumes 10 MW of electricity, a tangible fraction of which
goes to moving water between the storages.

The goal for smart water management is to leverage the IoT stack to: (1)
assure the quality of water that is distributed, (2) ensure the reliability of supply,
(3) avoid wastage of water, (4) pro-actively and responsively maintain the water
infrastructure, (5) reduce the costs of water and electricity used for pumping,
and (6) engage consumers in water conservation. All of these will be achieved
through domain-driven analytics over the rich and real-time data that will be
available on the water network from the IoT infrastructure.

The campus has 14 water distribution zones that are grouped into 4 logical
regions for deploying and managing the network operations, as shown in Fig. 1.
Each region requires approximately 30 wireless motes that transmit values sam-
pled from sensors they are connected to. A gateway connects clusters of these
nodes, and transmits the data to the Cloud through the campus network back-
haul. A combination of water level and quality sensors, flowmeters, and smart
power meters are used to sense the water network, with actuators for valve and
pump controls planned. As we discuss later, the design of the ad hoc wireless
network is a key operational challenge. At the same time, we need to ease the
deployment, monitoring and management overheads of the IoT infrastructure.

These make for a unique validation environment for smart urban utility sys-
tems, with distinctive local challenges for observation, analytics and actuation,
compared to developed nations. In contrast, a similar smart campus effort
by the lead author at the University of Southern California (USC), Los Ange-
les, addressed challenges of demand-response optimization for Smart Grids [59].
There, power was assured 24 X 7 by the Los Angeles Department of Water and
Power (LA DWP) but the goal was to change the campus energy use profile,
on-demand, to reduce the load on the city power grid as more intermittent
renewable sources are included within their energy portfolio. Also, the entire
campus was instrumented using proprietary Smart Meters from Honeywell that
worked off reliable wired LAN, could be centrally monitored and controlled using

} Decision Making

\ Data Analytics & Visualization

Data Acquisition & Curation

Privacy & Trust
Security & Audit

Networking & Communication

Sensing & Actuation

Figure 2: Functional IoT Architecture

juawaSeue|y 321N0SdY
3ununody ¥ saijod

their custom software, had adequate bandwidth to push all data and analytics
to the Cloud, and also carried a comparably high price tag for the solution —
such high-cost and proprietary solutions are impractical for emerging nations.

2.2 Desiderata

Fig. 2 illustrates the functional layers of an IoT software architecture, spanning
sensors and communication, to data acquisition and analytics. We distinguish
two parts to the IoT architecture. One, the IoT fabric that manages the hard-
ware and communication infrastructure and offers core resource management
and networking. The other is the application platform that acquires the data,
and enables analytics and decision making that is fed-back to the infrastructure.

There are several guiding principles and high-level requirements for the soft-
ware architecture [49].

1. Scalablity. Scalability of the architecture is paramount. The design
should not have any intrinsic limitations or assumptions that prevent it
from scaling city-wide even as the validation is for a township scale. The
system should weakly scale with the number of sensors, devices and motes
that are part of the IoT infrastructure, the rate at which data is acquired,
the number of domains and analytics, and the number of users of the sys-
tem. This recognizes the need to validate the design at small and medium
scales to de-risk it before expanding to large scale urban environments,
without fundamentally changing the model.

2. Generalizability. The design should be generalizable enough to include
additional utility domains such as smart power or waste management.
While the sensors and analytics themselves can be domain dependent (or
optionally shared across domains), the enabling fabric and platform lay-
ers must remain common across domains — either conceptually or using
different implementations or configurations.

3. Modular Manageability. The architecture should allow new sensors,
devices, data sources and applications to be included over time with lim-
ited overheads. The interface boundaries should be clearly defined to allow
minimal configuration overheads. Support must be present for both static
and transient devices, edge and Cloud resources, and for physical and
crowd-sourced data collection and actuation.

4. Reliability and Accessibility. The architecture should monitor and
ensure the health of the sensing, communication and computation layers,
with autonomous actions where possible. Depending on the application
domain, the QoS for data collection, decision making and enactment may
be mission-critical or a best effort. Resource usage should be sensitive to
current computing, networking and energy capacities.

5. Open Standards. The architecture should use open protocols and stan-
dards, supported by standardization bodies and community efforts, as
opposed to proprietary technologies or closed consortia. It will leverage
existing open source Big Data platforms and tooling, and contribute to
them to facilitate their growth. It should balance the benefits of emerging
ToT standards, and the reliability of mature ones, even if repurposed from
other fields. It should be extensible and incorporate standards as they
evolve.

6. Cost Effectiveness. The design process will consider the costs for pur-
chasing, developing, integrating, deploying and managing the architecture.
These include hardware, software and service costs, as well as human cap-
ital to configure and maintain the IoT fabric, in the context of emerging
nations (where human cost may be lower but technology costs higher). It
should leverage commodity and open source technologies where possible.
This recognizes that technology is a means to a sustainable end, rather
than the end in itself. Designing such low-cost, innovative and sustainable
technologies is locally termed as Jugaad [53].

7. Security and Auditing. The access to devices, data, analytics, and
actuation services should be secured to prevent unauthorized access over
the network, or even if the physical device is compromised. An audit
trail must be established, and provenance must ensure data ownership
and trust. Mechanisms for open data sharing and crowd-sourcing should
be exposed, with a possible micro-payment model.

3 Sensing and Communication

Sensing, actuation and communication are integral to the physical IoT fabric.
The service-oriented software platform must be cognizant of their characteristics
to allow for fabric management. Here, we discuss the capabilities and constraints
of the edge and networking devices in the Smart Campus project for the water
domain, which can be generalized to other utilities.

3.1 Sensing and Actuation

There are several types of physical sensors that are deployed for collecting real-
time observations on the state of the water distribution network within the
campus, and to perform demand-supply water balance studies. Flow meters
use electromagnetic induction to measure the volume of water flowing through
the pipes in the distribution network, and pressure pads observe the water pres-
sure at various points in the network. These help us understand the flow of
water through the major distribution lines across campus, and ensure sufficient

E NITRATE | NITRITE TOTAL TOTAL TOTAL E

(NO7) | (NO) PH {ARDNESS CHLORINE ALKALINITY g‘g g .
[
H] [7
0 EEN O
B EEEEE 0

m | Q |
Dip the strip in water for 1 second and wait for 60 seconds “‘
E Align the strip with the white boxes, with tail towards the right E

T

(a) Water Quality Card
4 © o
(b) SmartWater Reporting App

Figure 3: Crowd-sourced data collection of water quality

pressure is available to deliver water. They are typically placed between the
city inlet, the GLR and the OHT. Smart power meters at pumping stations let
us know the energy usage for actively moving water between the various tanks,
and can be correlated with the flow meters and pressure pads. In addition, wa-
ter level meters measure the depth of water in the OHT, GLR and the rooftop
tanks continuously using ultrasonic signals to estimate the range from the top
of these tanks to the water surface [65]. By knowing the dimensions of the wa-
ter tanks and when the pumps are operating, we can estimate the supply and
the demand of water in individual buildings. These meters also record ambient
temperature.

The water level sensors can also serve as actuators that control the pumps
and the valves in the future. Physical actuators will automate the enactment
of pumping and distribution decisions, in the absence of which, an SMS sent to
a cell phone present with the pump operator can serve as a manual feedback
control. Another form of actuation is to control the fabric itself. For example,
the duty cycles of wireless motes and sampling rates for the various sensors and
observation types can be controlled on the fly based on decision made by the
management and analytics layers using information on the network, energy and
computation resources, and the current application requirements.

Another important class of sensing and actuation within IoT is through
crowd-sourcing to supplement physical devices [27]. Typically, crowd-sourcing
can be used when the costs for deploying physical devices is high, or to engage
the community through citizen science. Physical water quality sensors that can
measure chemical properties are costly, and the number of potable water dis-
pensers on campus is large. So we leverage the IISc residents in collecting quality
measurements from dispensers that are distributed across buildings. Reagent
strips available for US$0.25 can be dipped in the water sample, placed against
a water quality color card (Fig. 3a), and our Android smart phone app (Fig. 3b)
used to photograph and capture the color changes to the strip after normalizing
for ambient light using the quality card [12]. This reports water quality param-
eters such as nitrates, chlorine, hardness, pH, etc. The app can also be used

€ > Wireless Pump House’

. £
S T 6LOWPAN ;

Network

Overhead Tank

" Wireless Mote
Big Data (Relay)

Platform on

Cloud

2
- ’ Wireless Mote
= ﬁ ., (Sensor)
"0y - Water Level Meter

Campus LAN Rooftop Tank

Raspberry Pi 3 |-
(Gateway) Wireless Mote
(Border Router)

Ground Level Reservoir

Figure 4: Wireless Sensor Network Deployment at I1Sc

to report maintenance issues such as water leakage and drips, water overflow
or underflow in buildings, etc. Such participatory sensing engages the campus
users in their own health, and instills a community value.

3.2 Networking and Communication
3.2.1 Network Protocols and Infrastructure

Communication networks are required to evacuate data from the sensors to the
data platform or to trigger the actuators based on control decisions. Gateway
devices and backend computing infrastructure hosting the platform, such as
Cloud VMs, are on public or private infrastructure networks such as wired or
wireless LAN. Accessing the sensors and edge devices becomes less challenging if
such infrastructure networks are available within their vicinity, or if 2G/3G/4G
connectivity can be made use of. However, field deployments may not be within
range of LAN or WLAN, cellular connectivity may be costly, or devices that
use these communication protocols may consume higher energy, which will be
a constraint if they are powered by battery or solar renewable.

As an alternative, ad hoc and peer to peer (P2P) network protocols are
popular for IoT deployments. There are multiple standards that can be lever-
aged here. Bluetooth Low Energy (BLE) has gained popularity for Personal
Area Networks (PAN) due to their ubiquity in smart phones. It is designed
for P2P communication between proximate devices, such as smart phones and
IoT beacons, within 10’s of feet of each other, and supports 10’s of kbytes/sec
bandwidth.

Alternatively, IEEE 802.15.4 specifies the physical (PHY) and media ac-
cess control (MAC) protocol layers for PANs [6]. It operates in the unlicensed
Industrial, Scientific and Medical (ISM) radio bands, typically 2.4 GHz, and
forms the basis for ZigBee. It has been extended specifically for IoT usage as
well. IFEFE 802.15.4g was proposed for P2P communications and for smart util-
ity networks like gas, water and power metering. The Thread Group, including
consortium members Samsung, Google Nest, Qualcomm and ARM, also use this
standard for an IPv6-addressable Thread protocol for smart home automation.

CoAP, SmartConnect

UDP

TRANSPORT
NETWORK APPLICATION

LinkPeek

IPv6, RPL

6LoWPAN

DATA LINK

IEEE 802.15.4 MAC

IEEE 802.15.4 PHY/868 MHz

PHYSICAL

Figure 5: Network Protocol Stack of the IoT Fabric

More broadly, IETF’s IPv6 over Low power Wireless Personal Area Networks
(6LoWPAN) extends IPv6 support for IEEE 802.15.4 on low power devices [3].
A single TPv6 packet has a Maximum Transmission Unit (MTU) of 1280 bytes
which fits in traditional Ethernet links having an MTU of 1500 bytes. But IEEE
802.15.4 only has an MTU of 127 bytes, and 6LoWPAN acts as an adaptation
layer to allow IPv6 packets to be fragmented and reassembled at this data link
layer. It also enables IPv6 link-local auto-addressing and provides datagram
compression.

The range and bandwidth of wireless networks depend on the transmission
power, size of antenna, and the terrain. Typically, two of the three dimensions
— high bandwidth, low power, and long range — are achievable. PANs choose
a lower range in favor of higher speed and lower power. E.g., ZigBee with
2.4 GHz offers a range of 10 — 100 meters, line of sight, and a bandwidth of
~ 30 kbytes/sec. Using the sub-GHz spectrum offers a longer range for Wide
Area Networks (WAN), due to low attenuation of the low-frequency waves, but
also a lower speed of ~ 5 kbytes/sec. While IEEE 802.15.4g supports this
frequency, LoRaWAN technology has been developed specifically for such long
ranges of a kilometer using, say, 868 M H z sub-GHz radio in the IoT context [9].
LoRa uses a star-of-stars topology, and is well suited for applications with low
data-rate of 0.25 ~ 5 kbytes/sec, but the current implementation lacks support
for the IP stack and uses a proprietary chipset.

For the Smart Campus network fabric, the buildings have W/LAN access,
and devices within WiFi range can use the backbone network. However, many
of the OHT, GLR and pump houses are not in WiFi range. Hence, we deploy an
ad hoc 6LoWPAN Wireless Sensor Network (WSN) for such field devices (Fig. 4
and 5). We use Zolertia’s RE-Mote [70] wireless hardware platform which has
a dual-radio of a 2.4 GHz IEEE 802.15.4 and a sub-GHz 868/915 M Hz RF
transceiver. It runs an ARM Cortex-M3 CPU at 32 M Hz clock speed, with
512 KB of programmable flash and 32 KB of RAM. These motes connect to
the sensors to acquire data and pass control signals, act as WSN relays, or are
the border router connected to the gateway device.

A Raspberry Pi 8 serves as the gateway that connects to the border router
through a USB interface. Besides connecting the WSN to the campus backbone
network, the Pi also acts as a proxy between the IPv6 WSN and the IPv4 campus
network using the tunslip utility. Thus, all motes are IP addressable, with

end-to-end IP-based connectivity across the campus. The use of such diverse
network protocols coordinated through a gateway is generalized as an Area
Sensor Network (ASN) that serve as a bridging layer for composable regions of
sensor networks that can scale to a city in a federated manner [50].

A novel use of crowd-sourcing uses people as data sherpas when sensors
require many WSN hops to reach a building W/LAN but where human footfall
is high [49]. Here, data from the sensor is broadcast using a BLE beacon, which
is picked up by the Smart Campus app on users’ phones and pushed to our data
platform through 3G/WiFi. Lastly, small scale experiments using LoRaWAN is
also being investigated. While they may be adequate for periodic water level or
flow meter data, their bandwidth will limit the reuse of the network fabric for
other data-heavy IoT domains.

3.2.2 Network Deployment Design

The WSN need to be designed and deployed across regions of the campus to en-
sure robust quality of service (QoS), and avoid data loss due to packet collisions
and scattering of waves by dense buildings. SmartConnect [24] is an in-house
tool for designing IEEE 802.15.4 networks. When given the sensor locations,
their expected data traffic, the required QoS, and possible locations for relays,
it identifies the lowest-cost relay placement with a given path redundancy in
the multi-hop WSN. SmartConnect uses two field measurements for pairwise
placement of the motes at each candidate relay location: (1) the minimum Re-
ceived Signal Strength Indicator (RSSI) for which the Packet Error Rate (PER)
is consistently < 2%, and (2) the maximum radio reception distance, R4z, for
which the packet delivery rate is > 95%.

Fig. 6 captures the results of several experiments with the Sub-GHz WSN
deployed at different regions of campus to plan the deployment. Fig. 6a shows
the result of conducting wired back-to-back testing of motes to determine the
optimal operation characteristics under ideal conditions. This offers a best-case
baseline on the PER as we increase the signal strength, i.e., when inter-mote
distance is not a concern. After calibrating the devices with the minimum
RSSI, controlled experiments were conducted to obtain the practical operating
distance range between motes for the required QoS as shown in Fig. 6b. Here,
P,,; indicates the upper bound of PER while Py, is the probability of a link
having a PER worse than P,,:, as the link distance is varied. Based on this,
a minimum RSSI of —97 dBm and a maximum range of R,,,, = 400 m were
chosen for the field deployments. These were further validated on the field
to capture the effect of topological characteristics on the network range, such
as open spaces, buildings, tree cover, etc. [55]. Fig. 6¢ shows the heatmap of
the signal strength and ranges. Here, R3 is in a wooded area and R4 is near
dormitory buildings, and both show higher signal attenuation. R5 is measured
near the recreational center with open spaces, and has a higher signal strength.

Based on these experiments, for a QoS delay of 200 msec, potential loca-
tions were suggested by SmartConnect for relay placement. These targeted
experiments and analytical planning avoid having to actually deploy different
permutations of the relays at every possible field location to determine the op-
timal placement for a reliable WSN.

Once the motes are deployed, we implement the Routing Protocol for Low
power lossy networks (RPL) [4] for the formation and maintenance of the WSN

10

A Pout [o0.005 WMo0.004 [o0.003 [Mo0.002 [[]o.001

i

o
s

0.001 " WREEEE

Packet Error Rate (PER)
)
)
2
>
szd
o

A~ 0.1
Il | | Il | | | 1 Il |
0.0001 0 T | | ! 1 I] 1
2110 -108 -106 -104 -102 -100 -98 -96 -94 -92 -90 75 150 225 300 375 450 525 600 €75 750
RSS! (dBm) Range (m)
a) PER vs. RSSI b) Fraction of links Py,q with outage probability >
ge p Y

P, at different distance ranges.

Region 1 ! — i [LS
ois (m)Rs1 Vi e MBS Boupg D
| 50 -955 = o = 3
100 997) o 4 v
150-1097
W

200 -llﬂﬁ
_250-1187

Region 2
Dist (m) RSS!

250 780 ¢
500 -93.8
750-105.1

© OpenstreetMap Contributors

(c) Heatmap of RSSI Range at different locations on cam-
pus

Figure 6: Network characteristics for RE-Mote on the field.

(Fig. 5). RPL maintains a Destination Oriented Directed Acyclic Graph (DODAG)
among the motes, with every node having one or more multi-hop path(s) to the
root, which is the border router. This supports multipoint-to-point (MP2P),
point-to-multipoint (P2MP), and point-to-point (P2P) communication patterns.
Packets traversing through such a multi-hop Low-power and Lossy Network
(LLN) may get lost in transit due to various link outages at intermediate relay
nodes. To ensure high Packet Delivery Ratio (PDR) in the LLNs running RPL,
we include a lightweight functionality, LinkPeek [48], to the network layer’s
packet forwarding task. Here, the forwarding node iteratively retransmits the
packet to its next best parent in the same DODAG whenever a preset MAC
layer retransmission count for the current best parent is exceeded.

11

Decision Making

Decision Making ‘

Data Analytics

Privacy, Security & Trust

Encryption

SmMopoys
$311|0d 8 1UAWRABRUR)Y IIGR4 10|

pel
M
3
= <
g Cspark | [sparkal [Welal]
= Data Processing & Curation Q
= Y
< = | B
miL__ L B
§ Data Acquisition \ ©
Y (s}
O Q 2
52 CJSON SenML = 2
=
Y] S O S
SIS (R OTE| RESTD
Q| Q| Networking
S x
€
S| 6LOWPAN LAN/WAN me
S SUbGHz/LORA ~ BLE ZigBee s
oq | %9
[0}
1%

Sensing & Actuation

Figure 7: Protocols and standards used in the IoT architecture

4 IoT Fabric Management

A high level protocol stack for the entire software architecture is shown in Fig. 7.
In this, fabric management deals with the health and life-cycle of devices present
in the IoT deployment. The primary devices that require this management are
the sensors, actuators, motes and gateway devices that are physically deployed
in the field. The fabric also ensures that endpoints are available to manage
the devices and to acquire data or send signals. Here, we describe the service-
oriented fabric management architecture for the IISc Smart Campus.

4.1 Service Protocols for Lifecycle and Discovery

IETE’s Constrained RESTful Environments working group (CoRE WG) [14] is
developing standards for frameworks that manage resource-oriented applications
in constrained environments such as [oT. It is intended to align with existing
web standards like REST and HTTP, as well as emerging [oT network standards
for IPv6. This makes it well suited for designing a standards-compliant service-
oriented IoT architecture, and we leverage several specifications from CoRE.

Fig. 8 shows an interaction diagram of various service components that en-
able fabric management (orange boxes and arrows). We adopt a stateful resource
model, similar to REST, for managing devices as services in the IoT deployment.
These go beyond just the domain sensors and actuators, and also include net-
work devices and gateways. Each device exposes one or more resources through
a service endpoint, each of which are either an observable entity that can be
sensed, or a controllable entity that can be changed and the setup updated.
E.g., a resource can represent domain observations, such as the water level or
pump state, fabric telemetry, such as battery level of a mote, or a device setup
state, such as sampling interval.

Two key services for the lifecycle management and discovery are the Light-
weight Directory Access Protocol (LDAP) [1] and the CoRE Resource Directory

12

o Resource Azure VM Azure VM \ a
2 Directory Service ‘ LDAP ‘ ‘ MQTT ‘

g |

2 jcoar] | T Servnce Broker

s H2C Cleanup

o

o Prox (1) RegisterMetadata

B I (ii) Subscribe [MQTT]

& (i) RD Lookup [HTTP] Public HTTP

Client

o (4) RD Lookup [HTTP]

o n

2 3b) Register (7) Publish Private
E Résot)lrceg[HTTP] marT] E‘Eﬁt
z | (2b) Bootstrap CoAP (i) Req./Resp.

3 [HTTP] Client [HTTP]

s C2H 7 v

w Proxy Pi Gateway H2C

g 7y (\ (i) Req./Resp. Proxy

g (3a) Register LDAP Auto [CoAP]

Resource [CoAP] Lookup Observe

............................. (Publish . IPv4 & IPV6 Proxy
~ (2a) Bootstrap

s [CoAP] é_?e;ou(ce

2 — ndpoints

'§ (5) Subscribe Req. == Req./Resp. [CoAP]
© [CorP] aae

= (6) Subscribe Resp.

w [CoAP]

s

e 6l0WPAN IPv6 WSN ’ —— Fabric ~ — Data Platform l

Figure 8: Interactions between architecture components for fabric management
and data acquisition

(RD) [15]. Both of these are standards-compliant directory services, but play
distinct roles in our design. LDAP is used to store static metadata about vari-
ous devices and resources that are, or can be, present in the IoT fabric. We use
it as a bootstrapping mechanism for devices to update their initial state during
deployment. This reduces the overhead of deployment and configuration of the
devices on the field, which may be done by a non-technical person, and instead
have the device pull its configuration from the LDAP once it is online. RD,
on the other hand, is responsible for maintaining the state and endpoint of re-
sources that are currently active, and is used for dynamic discovery of resources
and interacting with them. RD supports frequent updates, and importantly,
a lifetime capability that automatically removes a service entry if it does not
renew its lease within the interval specified when registering. This allows an
eventually consistent set of active devices to be maintained in the RD, even if
the devices do not cleanly de-register. Both these services are hosted on Cloud
VMs to allow discovery by external clients, and sharing across private networks.

We adopt CoAP (Constrained Application Protocol) [5], part of the CoRE
specifications, as our service invocation protocol. CoAP is designed as the
equivalent of REST over HTTP for constrained devices and well-suited for
our 6LOWPAN network. CoAP has compact specification of service messages,
uses UDP by default, has direct mappings to/from stateless HTTP protocol,
and support Datagram TLS (DTLS) security. It has both request/response
and observe/notify models of interaction, and offers differential reliability using
confirmable /non-confirmable message types. We use CoAP as the default ser-
vice protocol for all our devices on campus, including motes on the WSN and
gateways like the Pi on the LAN.

13

CoAP is an asynchronous protocol where requests and responses are sent as
independent messages correlated by a token. It requires both the service and
the client to be network addressable and accessible to each other — this may not
be possible for devices that are behind a firewall on a private network or data
center. At the same time, while CoAP’s use of UDP makes it light-weight within
the private network, it can be lossy when operating over the public Internet. To
address these two limitations, we switch from CoAP to traditional REST/HTTP
over TCP/IP when interacting with services and clients on the public Internet
from the campus LAN. Two proxy services present at the campus DMZ, CoAP
to HTTP (C2H) and HTTP to CoAP (H2C), enable this translation. Similarly,
within the Cloud data center, we use an H2C proxy to switch back to CoAP in
the private network to access the RD that is based on CoAP.

While devices in the WSN are IP addressable and their CoAP service end-
points accessible by clients, they operate as an IPv6 network on 6LoWPAN.
Hence, yet another proxy is present at the gateway device to translate be-
tween IPv4 used in the campus and the public network to IPv6 used within the
WSN. One of the advantages of leveraging emerging IoT standards from IETF
and IEEE is that these protocol translations are well-defined, transparent and
seamless.

These various services are shown in Fig. 8, and implemented using open
source software, either used as is or extended by us to reflect recent evolutions
of the specifications. We use the Eclipse Californium (Cf) CoAP framework [16]
for the CoRE services such as Resource Directory, CoAP clients and services,
and the C2H and H2C proxies on non-constrained devices that can run Java,
such as the Pi and Cloud VMs. We also use the Erbium (Er) CoAP service and
client implementation for the ContikiOS running on the embedded mote plat-
forms [46]. The Eclipse Copper (Cu) plugin for Firefox provides an interactive
client to invoke CoAP services and browse the RD. Apache Directory Service
serves as our LDAP implementation.

4.2 Device Bootstrapping and Discovery

Each IoT device that comes online needs to determine its endpoint, the resources
it hosts, and their metadata. Some are static to the device, while others depend
on where the device’s spatial placement. This device configuration during on-
boarding has to be autonomic to allow manual deployment of the last-mile field
devices by non-technical personnel. We propose such an automated process
for the bootstrapping using the LDAP for device initialization, and the RD for
device discovery.

Fig. 9 shows the sequence diagram of messages for a device that comes online
and connects to its gateway as part of the WSN — a subset of these messages
hold for devices not part of a WSN. Fig. 8 shows the corresponding high level
interactions. All TP-addressable devices in the deployment are considered as
endpoints that contain resources which are logically grouped. These have to be
auto-discovered based on minimal a priori information. Each device is assigned,
and will be aware of, just a globally unique UUID, and a “well-known” LDAP
URL. Separately, an administrator registers the UUID and its metadata for all
devices that will be deployed on the field in the LDAP directory information
tree (DIT). The DIT is organized by domain, location, sensor type, etc. to allow
group updates ((1) in Fig. 8).

14

[
Gateway m

GET coap://BorderRouterlPv6/
getproperties?moteid=motel

¥ Search Idap://smartx.cloudapp.net

“mid=motel,du=water,d=smartx” | E
e
<
-
« S
LDAP 36 : Success o
< dn: mid=motel,du=water,d=smartx
CoAP Res: 2.05 Content objectClass: mote
gp: ap/water
{“gp”:“ap/water,sp/43p,fn/waterlevel”, | gp: sp/43p
“et”:“mote”, gp: fn/waterlevel
“c2h”:“coap://aaaa::0001:5680/ et: mote
coap2http”, cn: Re-Mote
“rd”:“http://smartx1.cloudapp.net/ c2h: coap://aaaa::0001:5680/coap2http
proxy/coap://127.0.0.1:5683/rd”, rd: http://smartx1.cloudapp.net/
“h2c”: “http://aaaa::0001:8080/ proxy/coap://127.0.0.1:5683/rd
?tthcoap” h2c: http://aaaa::0001:8080/http2coap

Figure 9: Sequence to bootstrap a device from LDAP.

When a device connects to the campus IoT network, it does an HTTP query
by UUID to the LDAP service for its metadata. Constrained motes, instead,
perform a CoAP GET on an LDAP lookup service running on the gateway Pi,
whose IP address matches the border gateway of the WSN. The Pi lookup service
translates this to an LDAP HTTP query (Fig. 9; (2) in Fig. 8). The response,
optionally mapped from HTTP/LDIF to CoAP/JSON at the Pi, returns the
entity type, its group(s), Distinguished Name (DN), spatial location, etc., and
global URLs for the proxy services, RD, MQTT broker, etc. (Fig. 9). We use
a well-defined rule to generate unique URI paths for resources at this endpoint
based on their metadata, which combines the spatial location, device and sensor
type, and observation type, as shown below.

After a device is bootstrapped, it needs to register the resources available
at its endpoint (ep) with the RD so that users or Machine-to-Machine (M2M)
clients can discover their existence. The RD uses the CoRE link format [2],
based on HT'TP Web Linking standard, for this resource metadata. Each CoRE
link contains the URI of the resource — the optional endpoint hostname/TP:port,
and the URI path — along with the resource type (rt), the interface type (if),
and the mazimum size (sz) of a GET response on this resource. Further, the
RD also allows specifying the content type (ct) such as JSON, the groups (gp)
the resource belongs to, and if the resource is observable (obs), i.e., can be
subscribed to for notifications [7]. Lastly, we use the extensibility of CoRE links
to include an MQTT topic (mt) parameter for observable resources which will
publish their state changes to this topic at a publish-subscribe broker (§ 5.1.2).

Below is a sample CoRE link for an endpoint path ‘grid/43p/motel/sensor2/waterlevel’
with an observable ‘waterlevel’ resource from ‘sensor2’ that is attached to
‘motel’ placed at UTM grid location ‘43p’ and returning JSON content type
(‘ct=50").

<grid/43p/motel/sensor2/waterlevel>;ct=50;rt="waterlevel";
if="sensor";obs;gp="ap/water sp/43p fn/waterlevel";
mt="water/43p/waterlevel"

Fig. 10 shows the sequence of operations for the device to register its re-
source(s) with the RD. Note the use of the C2H and H2C proxies to translate

15

C2H H2C
Proxy Proxy “

POST coap:// C2HIPv6:PORT N
Proxy-URI: http://H2CIPv4/ POST http://H2CIPv4/coap:/ »
coap://RdIPv4/ /RdIPva/ POST coap://RdIPv4/
]
(]
{Core Links} {Core Links} {Core Links} 2.
<grid/43p/motel/sensor2/waterl | <grid/43p/motel/sensor2/waterl | <grid/43p/motel/sensor2/waterl §
evel>;ct=50;rt="waterlevel";if="se | evel>;ct=50;rt="waterlevel";if="se | evel>ct=50;rt="waterlevel";if="se | =
nsor";obs;gp="ap/water sp/43p nsor";obs;gp="ap/water sp/43p nsor";obs;gp="ap/water sp/43p 2
fn/waterlevel”;mt="water/43p/w | fn/waterlevel";mt="water/43p/w | fn/waterlevel”;mt="water/43p/w “
aterlevel”,... aterlevel",... aterlevel",...
le) CoAP Res: 2.01 Created
) HTTP Res: 201
CoAP Res: 2.01 Created
Before lifetime elapses
POST coap:// C2HIPv6:PORT b
Proxy-URI: http://H2CIPv4/ POST http://H2CIPv4/coap:/ »

coap://RdIPv4/ RdIPv4/ POST coap://RdIPv4/
Figure 10: Sequence to register resources with RD & renew lifetime.

from CoAP within campus to HT'TP on the public Internet, and back to CoAP
within the VM hosting the RD. Registrations with the RD should also include
a lifetime (It) for the entry in seconds, with the default being 24 hours. If the
resource does not renew this within this lifetime, the RD removes this entry
and the resources are presumed to be unavailable. Clients can browse the RD
(Fig. 11), or query it using its CoAP or HTTP REST proxy API to discover
resources of interest, and subsequently interact with the resource endpoint using
CoAP.

4.3 Monitoring and Control

We make use of service endpoints to monitor the health and manage the con-
figuration of devices such as motes and gateways as well. All motes expose
CoAP resources to monitor their telemetry such as battery voltage, link cost
with parent, and frames dropped, while gateway Pis report their CPU, memory
and network usage statistics. These go beyond the liveliness that RD reports,
and is in real-time. They help monitor the health of the network and device fab-
ric, and take preventive or corrective actions, say, if a mote exhibits sustained
packet drops or a Pi’s memory usage becomes high. While some issues may
require personnel on the field to fix things, others may be resolved remotely
using control endpoints, such as restarting a mote or changing the sampling
interval to reduce battery usage cost or packet drops. The analytics platforms,
introduced later, that support the domain applications are also leveraged for
such decision-making to optimize the IoT infrastructure.

5 Data Acquisition and Storage

One of the characteristics of IoT applications is the need to acquire data about
the system in real-time and make decisions. Given an operational IoT de-

16

Resource Directory

Smartx
ace
- 4pi
1532d78a-Oce6-11e6-80f5-T6304decTeb?
mate
aTc22636-0ce1-11e6-8015- 76304 decTeb?
water
network
aTc26510-9ce1-11e6-8015-T6304decTeb?
water
natwork
alc23144-8001-11e6-8015-7T6304decTeb?
water
waterlevel_sim

natwork

miyparent

Figure 11: Portal displaying RD entries for the ECE building. 1 Pi and 3 mote
endpoints each have multiple resources.

ployment and the ability to discover resources for observable and controllable
devices, the next step is to acquire data about the utility infrastructure, and
pre-process and persist them for downstream analytics. Data acquisition from
100 — 1000’s of sensors has to happen at scale and with low latency, and from
constrained devices. Once acquired, these streams of observations have to be
transformed and validated at fast rates to ensure data quality. We make a design
choice to integrate all observation streams in the Cloud to allow us to utilize
scalable VMs and platform services, and collocate real-time data with historic
data in the data-center on which analytics are performed. Next, we discuss
our approach of using publish-subscribe mechanisms and fast data platforms
for these needs.

5.1 Asynchronous Access to Publish-Subscribe Observa-
tions

The transient nature of sensor resources and the diverse applications and clients
that may be interested in their observations means that using a synchronous
request-response model to poll the resource state will not scale. Further, the
rate at which the observations change may be infrequent for many sensors (e.g.,
the water level, or even battery level, gradually drains) and repetitive polling is
inefficient. Rather, an asynchronous service invocation based on a subscription
pattern is better suited. Here, the client registers interest in a resource, and is
notified when its state changes.

We explore two mechanisms for such asynchronous observations of sensors,
leveraging the native capabilities of CoAP and the scalable features of MQTT

17

message brokers that are designed for IoT.

5.1.1 CoAP’s Observe Pattern

CoAP services have an intrinsic ability to transmit data by subscription to
clients interested in changes to the resource state [7]. CoAP resources that
indicate in their CoRE link format as being observable allow this capability,
and it complements the request-response model. Clients (observers) can register
interest in a resource (subject), and the service then notifies the client of their
updated state when it changes. The resource can also be parameterized to offer
flexibility in terms of what constitutes a “change”, say, by passing a query that
observes changes to a moving average of the resource’s state, or when a certain
time goes by since the last update. The service maintains a list of observers and
notifies them of their state change, but is designed to be eventually consistent
rather than perfectly up to date. This ensures that the CoAP service is not
frequently polled, making it amenable to the compute and network constrained
environments like 6LoOWPAN.

All our motes expose this capability for their fabric resources and the sensor
resources that they are connected to. This model, however, does have its limi-
tations. It requires the service to maintain the list of observers, which can grow
large and unmanageable for constrained devices. Further, this is a point-to-point
model and each observer has to be individually invoked to send the notification,
duplicating the overhead. Also, current open-source software support for CoAP
is limited to only resource state changes without any parameterization, though
this is expected to change.

5.1.2 MQTT Broker

Publish-subscribe (or pub-sub) [32] is a messaging pattern that is asynchronous,
and uses a hub-and-spoke rather than point-to-point communication. Here,
the source of the message (publisher) is not directly accessed by the message
consumer(s) (subscriber(s)). Instead, the messages are sent by the publisher(s)
to an intermediate broker service, which forwards a copy of the message to
interested subscribers. The message routing may be based on topics (like a
shared mailbox), or the type or content of the message. The pub-sub pattern
is highly scalable for IoT since the publishers and subscribers are agnostic to
each other. This ensures loose coupling in the distributed environment while
reducing their management overheads. Also, we drop from m X n messages set
between m publishers and n subscribers to m+mn messages, avoiding duplication.
The publishers and subscribers can also be on different private networks, and
use the public broker for message exchange.

We use the Message Queue Telemetry Transport (MQTT) ISO standard
which was developed as a light-weight pub-sub protocol for IoT [11]. Publishers
can publish messages to a topic in the broker, and subscribers can subscribe
to one or more topics, including wildcards, to receive the messages. The topics
have a hierarchical structure, allowing us to embed semantics into the topic
names. Clients initiate the connection to the broker and keep it alive, allowing
them to stay behind firewalls as long as the broker is accessible. The control
payload is light-weight. The last published message to a topic may optionally
be retained for future subscribers to access. It also supports a “last will and

18

Data Ve Pi Auto

I
GET
ip:port/sen2/waterlevel
MSG ID : 0x974
— | Token: Ox4a
Subscribe Observe: 0
/sen2/waterlevel)
4¢——————Res: 2.05 Content o
4——————— Publish MSG ID : 0x978 o
Notify /sen2/waterlevel /sen2/waterlevel Token: Ox4a Qo
[{“URL “: “mote-IPv6”} | [{“URL”:“mote-IPv6”}, |Observe:9 3 %
{“n” =“waterlevel”, {“n”="waterlevel”, {6.56} a0
“v"=6.56}] “v"=6.56}] 35
=
@

4————————————Res: 2.05 Content

4———————— Publish MSG ID : 0x988
Notify /sen2/waterlevel /sen2/waterlevel Token: Ox4a
[{“URL”:“mote-IPv6”}, | [{“URL”:“mote-IPv6”}, |Observe: 10
{“n” =“waterlevel”, {“n”="waterlevel”, {7.56}
“v’=7.56}] “v’=7.56}]

Figure 12: Sequence for data acquisition from sensors using AOP. The gateway
initiates a CoAP observe and auto-publishes SenML values to MQTT. Clients
can subscribe to the MQTT topic.

testament” message that is published to the will topic if the client connection is
killed, letting subscribers know of departing publishers. Three different delivery
QoS (and costs) are supported — at most once (best effort), at least once, and
exactly once.

We use the Apache Apollo MQTT broker implementation hosted in a VM in
the Cloud as part of our IoT platform stack. It supports client authentication
and TLS security. Topics are created for observable resources in the Smart
Campus based on a production rule over the resource metadata, including the
domain, spatial location, device and observation types, and the UUID for the
device. This allows wild-card subscriptions, say, to all waterlevel messages or
all messages from the ECE building. The MQTT topic is present in the CoRE
link registered with the RD, allowing the discovery and subscription to these
topics.

Non-constrained devices like the Pi gateways and devices on the public net-
work, such as the Android App, publish their resource state changes and ob-
servations to the MQTT broker. For reasons we explain next, constrained de-
vices do not directly publish to the broker. We adopt IETF’s Sensor Markup
Language (SenML) for publishing observations to topics [10]. This offers a self-
descriptive format for time-series observations, single and multiple data points,
delta values, simple aggregations like sum, and built-in SI units. It also has
well-defined serializations to JSON, CBOR, XML and EXI. Clients interested
in the real-time sensor streams, such as our data acquisition platform, Smart
Campus portal (Fig. 14), and the Smart Phone app, subscribe to these topics
and can visualize or process the SenML observations.

5.1.3 Automated Observe and Publish from Gateway

Publishing directly to the MQTT broker is still heavyweight for our constrained
devices and WSN for several reasons. One, is the overhead to initiate and

19

keep the network connection open to the broker. Two, is the memory footprint
for the MQTT client library on these embedded platforms, besides the CoAP
service. Third, our choice to publish SenML causes a payload much larger than
the native observations.

In order to offer the transparency of the pub-sub architecture while keeping
with the limitations of the devices and WSN, we develop an Automated Observe
and Publish (AOP) service at the Pi gateway that couples the CoAP Observe
capability with the MQTT publisher design. This is illustrated in Fig. 8, and the
sequence of operations is shown in Fig. 12. This service on the Pi periodically
queries the RD for new resources registered in the WSN group it belongs to
((4) in Fig. 8; Fig. 12). If discovered, the AOP service registers an observe
request with the service endpoint for all new resources ((5) in Fig. 8). When
the endpoint notifies AOP of an updated resource state ((6) in Fig. 8), AOP
maps them to SenML/JSON and, as a data proxy, publishes them to the MQTT
topic for that resource as listed in its CoRE link in the RD ((7) in Fig. 8).

This design has the additional benefit of allowing clients that are interested
in the observation to subscribe to the MQTT broker on the Cloud VM rather
than the CoAP service on the constrained device. Consumers in the private
network that are latency sensitive can always use the CoAP observe feature, or
poll the service directly, and avoid the round trip time to the MQTT broker.
E.g., Figs. 15a and 15b show the round trip latency and the bandwidth of pairs of
Pi’s within the campus backbone network, and between the Pi gateway devices
on campus and the Azure VMs at Microsoft’s Singapore Cloud data center.
These violin plot distributions are sampled over a 24 hour period, and indicate
the Edge-to-Edge and Edge-to-Cloud network profiles [36]. We see substantial
latency benefits in subscribing to the event streams from within the campus
network, which has a median value of 10 ms (green bar), compared to 153 ms
when publishing to the Cloud. However, some regions of the campus have to go
through multiple network switches and their latencies approach that of moving
to the Cloud, as shown by the higher mean value (red bar). The bandwidth
within campus is also 50% faster and tighter, compared to between campus and
Cloud. Our IoT middleware offers multiple means of accessing the observation
streams to allow applications to choose the most appropriate one based on their
presence in the network topology.

5.2 Fast Data Processing and Persistence

Once data is published to the MQTT broker in the Cloud, there is a multitude
of Big Data platforms that can be leveraged for processing the sensor streams
in the Cloud data center. We take an approach similar to our earlier work [59],
but with contemporary data platforms and updated domain logic relevant to
the IISc Smart Campus.

Data published to MQTT needs to be subscribed to and persisted as other-
wise these transient sensors streams are lost forever. At the same time, the data
arriving from heterogeneous sensors have to be validated before they are used
for analytics and decision making, such as turning off pumps or notifying users
of a water quality issue. Hence, the cleaned observations should be available
with limited delay. Distributed Stream Processing Systems (DSPS) are Big Data
platforms tailored for applications that need to process continuous data streams
at high velocity within low latency on commodity cluster and Cloud VMs [54].

20

DECIDE: Predictions & Decisions
STATS: Aggregate Observations

ETL: Cleaned Observations

‘ ETL o } HDFS
"] Data Validation & Store & o
‘ng obs,Normalization Interpolation Publish HBase

MQTT,
1
- > Aggregation S ization Visualization
i Cleaned
' S.
] Fetch Trained Models
| : v
o N Time-Series Classifi- Event Decision
Cle%ned Predictions cation Patterns Making
Obs.

Read Historic Observations

Store Trained Models

Fetch Historic Train Models —— Store Models

Data

A0 e
L » P —
User App Portal

Figure 13: Interactions between streaming data acquisition and analytics
dataflows in the data platform hosted on the Cloud

DSPS allow users to compose persistent applications as a dataflow graph, where
task vertices have user logic, and edges stream messages between the tasks.

There are several contemporary DSPS such as Apache Storm, Flink, Spark
Streaming, Azure HDInsight, etc. We choose to use the Apache Storm DSPS [63]
from Twitter due to its maturity and active open-source support, and its abil-
ity to compose a Directed Acyclic Graph (DAG) of modular user-defined tasks,
rather than just higher order primitives. Storm is used as our data acquisition
platform for executing several streaming dataflow pipelines on sensor observa-
tions published to the MQTT broker (Fig. 13). Two important and common
classes of dataflows are Extract-Transform-Load (ETL) and Statistical Summa-
rization (STATS) [58].

The ETL pipeline helps address data format changes and quality issues be-
fore storing the observations. The input to ETL is by subscribing to wild-card
topics in the MQTT broker by sensor type, which allows all observation types
supported by this pipeline to be acquired. Care is taken to cover all relevant
topics so that no observation stream is lost; alternatively, it can query the RD
to subscribe to specific topics in the broker, or use a special advertisement topic
when new devices are on-boarded. The incoming messages may arrive from het-
erogeneous sources in different measurement units and formats, though SenML
is preferred. Tasks like parsing, format and unit conversion help normalize these
observations. There can also be missing or invalid values, say, due to network
packet drop or sensor error. For example, we see the water level sensor report
incorrect depths due to perturbation in the water surface or sunlight reflect-
ing into the ultra-sonic detector. Range filters, smoothing and interpolation
tasks perform such basic validation, quality checks and corrections. Lastly, the
raw and validated data will need to be stored for future reference and batch
analytics. We use Hadoop Distributed File System (HDFS) to store the raw
observations from MQTT and the HBase NoSQL database [13] to store the

21

1ISc Smart Campus - Google Chrome

= NScSmartCampus x ¥ & lIScSmartCampus X Y = lIScSmartCampus x Y\ = lIScSmartCampus x ¥ & lScSmart Campus X

C | ® smartx.cdsiiscacin,

i Apps For quick access, place your bookmarks here on the bookmarks bar. Import bookmarks now...

nnnnnn

UUID : a7c23144-9cel-
11e6-8015-76304dec7eb?

Resource
linkcostwithparent

Type : mote

Location : ece

Figure 14: Real-time visualization of published observations

cleaned time-series data for batch analytics. The ETL dataflow also publishes
the resulting cleaned sensor event stream to an MQTT topic which then can be
subscribed to by downstream applications.

Basic statistical analyses are performed over the cleaned data to offer a
summarized view of the state of the IoT system. These are used for moni-
toring the domain or the IoT fabric, information dissemination across campus
users, or for human decision making. The STATS streaming dataflow (Fig. 13)
performs operations like statistical aggregation, moving window averages, prob-
ability distributions, and basic plotting using libraries like XChart. Our STATS
pipeline subscribes to the MQTT topic to which ETL publishes the cleaned ob-
servation streams. The statistical aggregates generated by STATS are likewise
published to MQTT from which, e.g., the portal can plot realtime visualizations
like Fig. 14, while the plotted files are pushed to file store which can then be
embedded in static webpages or reports.

Earlier, we have developed the RIoTBench benchmark that has composable
ToT logic blocks and generic IoT dataflows that are used for evaluating DSPS
platforms [58]. We customize and configure these dataflow pipelines for the
Smart Campus and the water management domain. As a validation of the scal-
ability of the proposed solution, we have shown that Apache Storm can support
event rates of over 1000/ sec for many classes of tasks, as illustrated in Fig. 15¢,
when operating on an Azure Cloud VM. The tasks that were benchmarked
span different IoT business logic categories such as parsing sensor payloads, fil-
tering and quality checks, statistical and predictive analytics, and Cloud I/0
operations. These are then assembled together and customized for the domain
processing analytics, such as smart water management.

While we use Storm as our preferred DSPS in our software stack, it can
be transparently replaced by any other DSPS that can compose these dataflow
pipelines. The tasks we leverage from RIoTBench are designed as Java libraries,
and hence many stream processing systems can incorporate them directly for

22

modular composition. Since the interaction between these pipelines is through
the MQTT pub-sub broker, it offers loose coupling between the dataflows and
the platform components. In fact, multiple DSPS can co-exist if need be, say, to
support higher-order queries using Spark or a lambda-architecture over stream-
ing and static data using Flink. Even our Apollo MQTT broker can be replaced
by Cloud-based pub-sub platforms like Azure IoT Hub that uses the MQTT
protocol. Likewise, our choice of HBase can be replaced by other NoSQL plat-
forms or Cloud Storage like Azure Tables as well. As we note next in § 6, the
HDFS or NoSQL store plays a similar role of loose coupling between Big Data
batch processing platforms that need to operate on archived data.

6 Data Analytics and Decision Making

There are several types of analytics that can help with manual and auto-
mated decision-making about the water domain, and the IoT fabric manage-
ment as well. Similar to the stream processing pipelines for data acquisition
above, streaming dataflows can perform analytics and decision making as well.
Fig. 13 shows such online analytics and decision making pipeline (DECIDE)
that consumes cleaned observation streams from MQTT and can perform time-
series analysis using auto-regressive models for, say, water demand prediction.
Feature-based analytics, such as decision tree, can be embedded to correlate
environmental observations with specific outcomes, such as days of the week
with the water footprint in buildings. The figure also shows how such predictive
models can be trained using streaming or batch dataflows from historic data
(TRAIN), and the updated models feed into the online predictions, periodi-
cally. We use logic blocks from the Weka library [40] within the Apache Storm
dataflow for such online predictive analytics, and several are made available as
part of RIoTBench.

One of the most intuitive analytics for utility management is through the
detection of event patterns. Complex Event Processing (CEP) enables a form
of reactive analytics by allowing us to specify patterns over event streams, and
identify situations of interest [30]. It uses a query model similar to SQL that
executes continuously over the event stream, and specifically allows window ag-
gregations and sequence matching. The former applies an aggregation function
over count or time windows, in a batch or sliding manner, while the latter al-
lows a sequence of events matching specific predicates to be detected. E.g.,
these queries can detect when the moving average of water pressure goes above
a certain threshold, or when the water level in a tank drops by > 5% over suc-
cessive events spread over 10 mins. The former may indicate a blockage in the
water distribution network, while the latter may identify rapid water leakage in
building [37].

We use WSO2 Siddhi [62] as our CEP engine for such “fast data” event-
analytics and validate its scalability both on gateway devices such as a Rasp-
berry Pi 2 for edge-computing, as well as on an Azure VM for Cloud comput-
ing [36]. Fig. 16 shows prior results for 21 representative queries that perform
sequence and pattern matching, filtering and aggregation, etc. over water level
streams on the Pi. As we can see, these event queries are light-weight and can
support rates of over 25,000 events/sec even on a Pi, with the corresponding
Azure benchmarks showing a 3x improvement (Figs. 16a and 16b). We can

23

60 10
o .
>0 Q80
()
5 1
%)
g40 3
c = 6 T
c S —
>30 =
|9} |
c ‘ =
3 20 \ o 4 B
© 2
= ©
— c R
© IR
10 m
E2E E2C E2E E2C
(a) Round Trip Latency (b) Network Bandwidth
| Parse Filter Stats. Pred. 10 Visua.|
PLT ‘ I
RZP | ’
LZP |
MQS | | |
MQP
ATR"
ATL |
AT |
ABU
R85
SLR
MLT | | | |
MLR |
INP
g}'cf | | |
somF | |
KAL -
DAC |
AVG ¢
ACC i i | i
RGF | | | | |
BLF
XML
SML |
C2s |
. T Vs 3 7 5
10° 10 10 10 10 10

Peak Rate (msg/sec) [log scale]
(c) Peak task input rate on an Azure VM [58].

Figure 15: (a) Network latency and (b) Bandwidth distribution within Campus
edge LAN (E2E) and from Campus to Cloud WAN (E2C). (c¢) Peak input stream
rate supported for each Apache Storm DSPS task.

also infer the per-event query latency from these peak throughputs (Figs. 16¢
and 16d), and most execute in < 0.04 ms on the Pi and in < 0.005 ms on
the Cloud. There is limited variability in the execution latency or the through-
put. While the execution on the Cloud is much faster, when coupled with the
Edge-to-Cloud latency for transferring the event from a sensor on campus to
the Cloud (Fig. 15a), execution on the Pi has a lower makespan. These validate
the use of event analytics for both edge and Cloud computing.

These analytics can provide trends, classifications, patterns, etc. that can
then be used by humans to manually take decisions, or for rule-based systems to
automatically enact controls. These actions can include automatically turning
water-pumps on and off based on the water level, notifying users of contami-
nation in a spatial water network region, reporting leaking pipes and taps to
maintenance crew, etc. These strategies are currently being investigated as a

24

w
o
o
=}

0151
0.103
0151
0.104
0634
0.462
0631
0.439

N
u
[
1=}

N
=3
N
o
s}

=
o
N
=}

u
i
U

)
-
o

Throughput (1000 events/sec)
G

Throughput (1000 events/sec)
w
o

2INOoNoonNoonNooNoo99o o099 >N omnoomnoomnoono
MODﬁDOHOOHOOﬁOOg%ngg “0ocHooHooHo0ocH0c9g338933g
R R R RO R R R R R R CZEQRQRoeI0nene2aslnd
V0V UQQOOOOO00 55050 V00O QOLDOOD0 550500
(=2 j= =2
< < < <
(a) Peak Query Throughput on Pi (b) Peak Query Throughput on Azure
" M © ®
0.0 L[R 0.00 B o BT
- &
0.005
3 &
mOAO =
£ £ 0.004 3 5
£ £
>0.02 >0.003
< L+ c
2 2
© © 0.002
—0.01 -
+ TT 0.001
0.0 Mo omnoomnoomnNoono [E=-E=-E=E=E=] 0.00 TNoomnNoomnNoomnNoomnNooooooo
HOoaooaooaooaoo:ggﬁgg HSodHdoocHdoocHoocH0CcY3389Y38
=== === @)
CETQRRLeeunoonnladlns ECEZgRRs0erooeoniastas
VOV DRIFTOOOO0O0 5520 50 V0O QQPPOOO0 550 50
nuvuunununun < oo OO nununununun < oo OO
<o <O <o <O
< < < <
(¢) Query Latency on Pi (d) Query Latency on Azure

Figure 16: Peak Throughput and respective Query Latency for various CEP
queries on Pi and Azure VM [30]

meaningful corpus of water distribution and usage data within the campus is
accumulated. Computational and network models that leverage these sensed
data are being developed by our collaborators as well [20].

In addition, these data streams and analytics help more immediately with
understanding and managing the IoT fabric, particularly during the develop-
ment and deployment phase of the infrastructure. They help identify, say, when
the WSN is unable to form a tree or has high packet drops, when the sensors
and motes are going to drain their battery, or when gateways go offline (e.g.,
due to wild monkeys fiddling with the devices, as we have seen!). It also helps
validate the performance of network algorithms like RPL, and build a repository
of network signal strengths at different parts of campus, over time.

Often, these exploratory analyses are performed on historic data collected
over days and months within our data platform. We leverage the Apache
Spark [68] distributed data processing engine for such batch analytics. Spark al-
lows fast, in-memory iterative computations and has been shown to out-perform
traditional Hadoop MapReduce platforms. It also offers intuitive programming
models such as SparkQL for easy specification of analytics requirements. Spark
uses HBase, where we archive the cleansed sensor data, as its distributed data
source. It can also be used to train predictive models in batch using its Machine
Learning libraries (MLLib). While we currently perform periodic model train-
ing using a Storm dataflow for convenience (TRAIN in Fig. 13), we propose to
switch to Spark in the near future.

25

User

(o) Fetch and display results
l &7

User issues query Batch
Browser Analytics
Call returns with Rest API results to

2, ¢ !
7% | file service

.l‘ MQTT Broker

Figure 17: Workflow for Asynchronous Batch Analytics Service

We expose a Batch Analytics REST Service wrapper around Spark to ease
the execution of simple analytics from the Smart Campus web portal. This
allows temporal and sensor-based filtering, and aggregation and transformation
operations over the observational datasets to be mapped as parameterized Spark
jobs that run on Cloud VMs. The Spark jobs can run for several minutes to
hours, depending on the complexity of the analysis and source data size, and
generate KB to GB of data. Hence, a synchronous REST call from the portal
will timeout. Instead, we define an asynchronous service pattern based on the
existing architectural components, as shown in Fig. 17.

When the user submits an analytics query from their browser, the REST
service first creates a unique MQTT topic for this session, and then invokes a
Spark job by populating its parameters, including this topic. The REST service
returns this topic to the browser, which subscribes to the topic with the broker.
The Spark engine fetches the source data from HBase, runs the analysis, and
writes the output to a Cloud file storage. It then publishes the URL of this result
file to the unique topic in the broker. The browser gets notified of this URL
and can use it to either stream and visualize the results, or allow the user to
download it. This exhibits the flexibility of our service-oriented architecture to
easily compose complex data management and analytics operations. In future,
this REST API and asynchronous execution pattern can be easily extended to
allow ad hoc Spark SQL queries to be directly submitted for execution. This
will allow developers to construct more powerful exploratory analytics, besides
the user-oriented query template that is currently supported.

Lastly, we also support several types of visual analytics that are exposed
through the Smart Campus portal. The portal itself was developed as part of
this project, and includes a dashboard for displaying real-time and temporal
analytics (Fig. 14) using JavaScript plugins like D3. js and Rickshaw, and also
multi-layered geo-spatial visualizations of the IoT network on the IISc Campus

26

M

Figure 18: Geo-spatial visualization of Smart Campus water infrastructure,
motes and sensors

using Open Street Maps (Fig. 18). These leverage the self-describing SenML
format used by the sensors for publishing observation streams, allowing plots to
be automatically formatted for arbitrary sensors. These help with information
dissemination to the end-users on campus, as well as simple visualization for
resource managers. The portal also serves as a way for the campus managers
to monitor the state of the IoT infrastructure using the RD, and potentially
initiate actuation signals for enactment.

As before for the choice DSPS, we can also replace Siddhi with other CEP en-
gines like Apache Edgent, and Spark with platforms like Apache Pig or Hadoop.
Our architectural design is agnostic to the specific platform, and the presence of
pub-sub brokers and NoSQL data stores enable loose-coupling between diverse
platforms that interface through them. Our selection of these specific platforms
are indicative of what is adequate for the needs of the Smart Campus, and
bounded by the scalability experiments that we have performed and reported.
Other deployments may pick contemporary alternatives that are appropriate for
their needs.

7 Related Work

There has been heightened interest recently in designing software fabrics and
data platforms to manage IoT infrastructure, and data and applications within
them, with even a special issue dedicated to such software systems [28]. These
are emerging from standards bodies (IETF CoRE, W3C Web of Things, ITU-

27

T, ISO), industry and consortia (Azure IoT, AWS Greengrass, Threads Group,
OneM2M, AliSeen Alliance, FIWARE, LoRa), and academia (IERC, IoT-A,
OpenloT), with implementations by the open source community (Californium,
Kura, Sentilo, Kaa). While some of these, like MQTT, have gained traction,
others are competing for mind-share and market share. However, we are at an
early evolutionary stage and there is a lack of clarity on what would be the most
suitable technical solutions, and what would gain popular acceptance (these be-
ing two different factors). In this context, having a practical implementation
and validation of an integrated IoT architecture on the field using these func-
tional designs and protocols, as we have presented in this article, will better
inform these conceptual exercises and reference designs. While we make spe-
cific service-oriented design, protocol and implementation choices for the Smart
Campus project, driven by Smart Utility needs in India, there are other nu-
merous relevant efforts and alternatives, and we discuss a representative sample
here.

7.1 Community Specifications

The concept of a Web of Things (WoT) was proposed several years back by
W3C but did not translate to proactive standardization efforts like IETF’s [39].
Recently, the W3C WoT working group has begun developing a formal WoT
architecture for IoT [44]. It leverages simplified forms of Web standards like
HTTP, REST and JSON to support use-cases on Smart Homes, Smart Factory
and Connected Cars. In this evolving draft, device, gateway (edge) and cloud
are seen as first-class building blocks, similar to our own differentiation, and
supported environments include browser, smart phones, edge hubs and cloud
VMs. They also propose a servient software stack to design and deploy applica-
tions built using a scripting framework, and protocol bindings to more popular
ToT standards such as MQTT and CoAP. These bindings ensure that our own
design that leverages existing standards is likely to be able to be able to inter-
face with a WoT stack in the future. The COMPOSE API for IoT [52] takes
a similar WoT view and defines REST operations and JSON payloads on Ser-
vice Objects that wrap physical things. Applications can be composed across
multiple physical devices using these APIs. While these are still early days for
WoT, it is likely to find wider industry support given the past history of W3C
standards.

OneM2M is a broad-based effort to develop open specifications for a horizon-
tal IoT middleware that will enable inter-operability for M2M communications.
It proposes comprehensive service specifications for device identification, REST-
ful resource and container management, and synchronous and asynchronous
information flows, with mappings to open protocols like CoAP, MQTT and
HTTP [8]. This is targeted at large-sale IoT deployments with complex devices
and use-cases, and multiple vendors. This effort is driven by major telecom
providers and government agencies such as US NIST and India’s Department of
Telecommunication, and is expected to gain traction once the standards are for-
malized. Our goal in this article is much more modest, and we validate a slice
of these complex interactions within the campus-scale IoT deployment, using
similar functional layers and open protocols.

28

7.2 Open Source Efforts

FIWARE [69] ? is an open IoT software standard and a platform that is gaining
recent attention, and whose features overlap with our middleware requirements.
Like us, it uses MQTT and CoAP protocols for accessing observations that
are coordinated through a context broker, supports CEP processing using IBM
PROTON for alerts, and uses HDFS and Hive for archival storage and query-
ing. It pays particular attention to capturing the device context, data models,
dashboarding and security, making it a holistic solution. However, our proposed
architecture pushes this abstraction down to the network layer, with patterns
for capturing data across public and private networks, and across embedded
and gateway devices, as discussed in § 5. We also place emphasis on the post-
processing of captured event streams by DSPS to make them ready for analytics.
These are practical needs from the field. That said, FIWARE can be used as a
base implementation that is complemented with these mechanisms we propose.

WS02 has proposed a reference architecture for an IoT platform, much like
IoT-A, as a starting point for software architects [35]. However, they focus
primarily on the data and analytics platform rather than the networking and
fabric management, which are essential on the field. They too leverage CoAP,
MQTT and HTTP for communications, but unlike us abstract away device and
communication concerns. They have their custom device management interface,
targeted more at smart phones, and identity management for users using LDAP.
They offer an open implementation of their WSO2 IoT software stack that
supports MQTT message brokering, event analytics using Siddhi engine (which
we also use), and enterprise dashboarding. Commercial software support is also
offered.

Sentilo [33] ¢ is an open source platform for managing sensors and actuators
in a smart city environment, supported by the Barcelona City Council. In their
stack, devices need to be added to a catalog using a dashboard and a pre-defined
data model to get an authentication token. Registered devices can then use their
token to publish data and alerts to a Redis in-memory data store, that also has
a pub-sub interface. Applications can register for these alerts and data changes
and perform actions, but data pre-processing and analytics platforms nor their
application logic are explicitly proposed. They also make no distinction between
registered and online resources, unlike our LDAP and RD, and this makes it
difficult to know the state of the devices without querying. They offer protocol
adapters for SCADA and Smart Meters, but their design is not inherently suited
for constrained devices. While it has similar architectural goals and functional
elements as our design, it is not as grounded in standards compliance and inter-
operability other than using RESTful APIs. However, they have deployed the
stack at multiple city locations, giving it practical validation.

7.3 Research Activities

There are multiple efforts in the European Union (EU) on defining reference
models for IoT, including IERC and AIOTI. Internet of Things-Architecture
(IoT-A) is one such EU FP7 project that proposes an application independent
model that can then be mapped to a concrete architecture and platform-specific

Shttps://www.fiware.org
4https://www.sentilo.org/

29

implementation [21]. They offer a comprehensive survey of design requirements,
and their reference architecture spans the device, communication, IoT service,
virtual entity and business process layers, with service management and security
serving as orthogonal layers. They also have a structured information model.
This has a close correlation with our functional model, with device shadows
(virtual entities) and security being gaps we need to address in the future.
Further, rather than stop at a functional design, we also make specific platform
and protocol choices for these functional entities, and deploy it in practice within
the IISc campus.

One of the key challenges of IoT networks and platforms is the plethora of
co-existing and overlapping standards, and the need to interface across them.
Aloi, et al. [17] highlight the need to operate over diverse communications tech-
nologies and network protocols as requirements for opportunistic IoT scenarios.
Specifically, they examine the use of smart phones as mobile gateways to act
as a bridge between communication protocols like ZigBee, Bluetooth, WiFi and
3G/4G. This abstracts the data access by the applications and user interface
from the underlying technologies. Such a model is well suited for generalizing
our crowd-sourced data collection using mobile apps, and offers a parallel with
the sensor data management in our Pi gateways.

Yet another dimension of large scale IoT deployments is the ability to plan
the deployment ahead of time, and with limited field explorations. Here, model-
ing and simulation environments are useful design tools [29]. While our Smart-
Connect tool [24] helps with WSN design planning, more comprehensive tools
exist to allow one to span sensing, networking, device management and data
management design within the IoT ecosystem [34]. Large scale deployments
will benefit from mapping the proposed solutions to such simulation environ-
ments to evaluate specific technologies.

A recent special journal issue focused on software systems to manage smart
city applications that deal with large datasets [28]. However, these articles fail to
take a holistic view of the entire software stack and limited themselves to specific
Big Data platforms such as Spark, or analytics techniques like Support Vector
Machines (SVM). We instead investigate the fundamental software architecture
design to support a wide variety of domain applications and analytics techniques.

7.4 Smart City Deployments

In this regard, other EU projects like OpenloT translate the IERC reference
architecture into practical implementations [61]. However, they do not pay ad-
equate attention to protocol choices for constrained devices and compatibility
with emerging standards like CoRE, and offer just a proof-of-concept valida-
tion. The Ahab framework goes further by examining the analytics stack that
is necessitated by the use of both streaming and static smart city data through
a lambda architecture [67]. However, key aspects such as interaction models
for device and sensor registration and the impact of network protocols are not
considered.

The SmartSantander testbed is one of the more progressive Smart City de-
ployments, and it offers insights on traffic and human mobility from Spain [47,
57]. They offer their design requirements, and a software architecture for manag-
ing the testbed. This includes gateway and server runtimes, registry services and
resource management. Authentication, Authorization and Accounting (AAA)

30

services, and sensor, actuator and application deployment through a service in-
terface is provided as well. They offer examples of the potential data sources
and analytics, such as environment monitoring, landscape irrigation, traffic and
parking management. Many of our requirements and architectural design ex-
hibit similarities.

8 Conclusion

In this article, we have set out the design goals for an IoT fabric and data
management platform in the context of Smart Utilities, with the IISc Campus
serving as a testbed for validation and smart water management being the mo-
tivating domain. Our functional architecture is similar to other IoT reference
models, with layers for communication, data acquisition, analytics and decision
making, and resource and device management. We also make specific protocol
and software platform choices that advance a data-driven, service-oriented de-
sign that integrates Big Data platforms and edge and Cloud computing. We
also identify interaction patterns for the integrated usage of these disparate
standards, protocols and services that are evolving independently. At the same
time, our design is generic to support other domains such as smart power grids
or intelligent transportation, and such a translation is underway as part of a
“lightpole computing” effort within the Bangalore city [19]. The experiences
from the project will help in understanding the distinctive needs of Smart City
utilities in developing countries like India.

Our performance results for the network design, as well as the Cloud-based
stream pre-processing using Storm and edge-based event-analytics using Siddhi
validate the scalability of the software stack at the IISc campus. In particular,
the platform is shown to scale to thousands of events per second for real IoT
application logic on single VMs and Pi devices. These are inherently designed
to weakly-scale, thus allowing these rates supported to further increase for city-
wide deployments by adding more VMs and edge devices. The software stack
also is available online as an open source contribution, allowing the open ar-
chitecture design and implementation to be replicated at other campuses and
communities as well.

Having a service API and standards-based IoT middleware enables the rapid
development of novel and practical applications, both for our intended goal of
smart water management and beyond. Some such applications include mobile
apps for crowd-sourced water quality reporting and user notification, with link-
ages to trouble-ticket management by the campus maintenance crew. These
data sources are also helping with water balance study and leak detection ap-
plications within campus, such as ones done by our collaborators [18, 20]. The
key distinction is the ability to perform such studies on-demand and incorpo-
rate outcomes in real-time, rather than require custom time-consuming field
experiments, as was the norm. This accelerates the translation of science into
operational benefits. Further, the same IoT stack was used for crowd-sourced
collection of WiFi signal strengths for use by the campus Information Technol-
ogy team and for an IoT Summer School hackathon, as part of campus outreach
programs [23].

The initial field trials using hundreds of sensors and devices are underway
across campus. However, to ensure that the scope of the project was kept man-

31

ageable, several additional aspects were deferred for future exploration. Key
among them are security and policy frameworks which are essential in a public
utility infrastructure [22]. Several authentication and authorization standards
already exist for the web, with billions of mobile devices and web application uti-
lizing them. Utilities however have a higher threat perception and end-to-end
security mechanisms will need to be enforced. Similarly, auditing and prove-
nance will be essential to identify the operational decision making chain, es-
pecially with automation of mission-critical systems [60]. Trust mechanisms
have to be established for using crowd-sourced data for operations, and privacy
within pervasive sensing is a concern. From a platform perspective, we are also
investigating the use of edge and fog devices to complement a Cloud-centric
data platform [64, 36, 56]. Energy aware computing and mobility of devices
also needs attention. These will find place in our future work.

9 Acknowledgments

This work was supported by grants from the Ministry of Electronics and In-
formation Technology (MeitY), Government of India; the Robert Bosch Center
for Cyber Physical Systems (RBCCPS) at IISc; Microsoft’s Azure for Research
program; and VM Ware.

The authors acknowledge the contributions of other project investigators,
M.S. Mohankumar, B. Amrutur and R. Sundaresan, to the design discussions
and deployment activities.

We also recognize the design and development efforts of other staff and
students during the course of this project, including Abhilash K., Akshay P.M.,
Anand S.V.R., Anshu S., Arun V., Ashish J., Ashutosh S., Jay W., Jayanth K.,
Lovelesh P., Nithin J., Nithya G., Parama P., Prasant M., Ranjitha P., Rajrup
G., Sieglinde P., Shashank S., Siva Prakash K.R., Tejus D.H., Vasanth R., Vikas
H., Vyshak G., and among others.

References

[1] Lightweight directory access protocol (Idap). Technical Report RFC 4510,
IETF, 2006.

[2] Constrained restful environments (core) link format. Technical Report RFC
6690, IETF, 2012.

[3] Neighbor discovery optimization for ipv6 over low-power wireless personal
area networks (6lowpans). Technical Report RFC6775, IETF, 2012.

[4] Rpl: Ipv6 routing protocol for low-power and lossy networks. Technical
Report RFC 6550, IETF, 2012.

[5] The constrained application protocol (coap). Technical Report RFC 7252,
IETF, 2014.

[6] Ieee standard for low-rate wireless networks. Technical Report IEEE Std
802.15.4-2015, IEEE Computer Society, 2015.

32

[7]

8]

[9]
[10]

[11]

[18]

[22]

Observing resources in the constrained application protocol (coap). Tech-
nical Report RFC 7641, IETF, 2015.

Functional architecture. Technical Report TS-0001-V2.10.0, ONEM2M,
2016.

Lorawan specification, v1.0.2. Technical report, LoRa Alliance, Inc., 2016.

Media types for sensor markup language (senml). Technical Report draft-
06, IETF, 2016.

Message queuing telemetry transport (mqtt) v3.1.1. Technical Re-
port ISO/IEC 20922:2016, International Organization for Standardization
(ISO), 2016.

MIT Little Devices Lab, 2016.

Apache hbase, 2017.

Constrained restful environments (core) working group, 2017.

Core resource directory. Technical Report draft-10, IETF, March 2017.
Eclipse californium, 2017.

Gianluca Aloi, Giuseppe Caliciuri, Giancarlo Fortino, Raffacle Gravina,
P Pace, Wilma Russo, and Claudio Savaglio. Enabling iot interoperabil-
ity through opportunistic smartphone-based mobile gateways. Journal of
Network and Computer Applications, 81:74-84, 2017.

B. Amrutur, M.S. Mohan Kumar, K.R. Sheetal Kumar, L. Patel, R. Sun-
daresan, and N.K. Vaidhiyan. Wateropt: A method for checking near-
feasibility of continuous water supply. In International Workshop on Cyber-
Physical Systems for Smart Water Networks, co-located with CPS Week,
2016.

Bharadwaj Amrutur, Vasanth Rajaraman, Srikrishna Acharya, Rakshit
Ramesh, Ashish Joglekar, Abhay Sharma, Yogesh Simmhan, Abhijit Lele,
Ashwin Mahesh, and Sathya Sankaran. An open smart city iot test bed
(poster abstract). In ACM/IEEE International Conference on Internet-of-
Things Design and Implementation (IoTDI), 2017.

GR Anjana, KR Sheetal Kumar, MS Mohan Kumar, Bharadwaj Amrutur,
and Murali VR Kota. Online calibration of water distribution networks
with background leaks : Case study of mandya water inflow system. In
IWA Water Loss Conference, 2016.

Alessandro Bassi, Martin Bauer, Martin Fiedler, Thorsten Kramp, Rob
van Kranenburg, Sebastian Lange, and Stefan Meissner, editors. FEnabling
Things to Talk: Designing IoT solutions with the IoT Architectural Refer-
ence Model. Springer Berlin Heidelberg, 2013.

Elisa Bertino, Kim-Kwang Raymond Choo, Dimitrios Georgakopolous, and
Surya Nepal. Internet of things (iot): Smart and secure service delivery.
ACM Trans. Internet Technol., 16(4), 2016.

33

[23]

[24]

[27]

Ranjita Bhagwan, Venkat Padmanabhan, Ramachandran Ramjee, Yogesh
Simmhan, and Manohar Swaminathan. Microsoft research india summer
school on iot, 2016.

Abhijit Bhattacharya, Sanjay Motilal Ladwa, Rachit Srivastava, Anirud-
dha Mallya, Akhila Rao, Deeksha G Rao Sahib, SVR Anand, and Anurag
Kumar. Smartconnect: A system for the design and deployment of wire-
less sensor networks. In IEEFE International Conference on Communication

Systems and Networks (COMSNETS), pages 1-10, 2013.

Alessio Botta, Walter De Donato, Valerio Persico, and Antonio Pescapé.
Integration of cloud computing and internet of things: a survey. Future
Generation Computer Systems, 56:684-700, 2016.

Athman Bouguettaya, Munindar Singh, Michael Huhns, Quan Z. Sheng,
Hai Dong, Qi Yu, Azadeh Ghari Neiat, Sajib Mistry, Boualem Benatallah,
Brahim Medjahed, Mourad Ouzzani, Fabio Casati, Xumin Liu, Hongbing
Wang, Dimitrios Georgakopoulos, Liang Chen, Surya Nepal, Zaki Malik,
Abdelkarim Erradi, Yan Wang, Brian Blake, Schahram Dustdar, Frank
Leymann, and Michael Papazoglou. A service computing manifesto: The
next 10 years. Commun. ACM, 60(4):64-72, March 2017.

Giuseppe Cardone, Luca Foschini, Paolo Bellavista, Antonio Corradi, Cris-
tian Borcea, Manoop Talasila, and Reza Curtmola. Fostering participaction
in smart cities: a geo-social crowdsensing platform. IEEE Communications
Magazine, 51(6):112-119, 2013.

Dan Chen, Lizhe Wang, and Suiping Zhou. Software systems for data-
centric smart city applications. Softw., Pract. Exper., 47(8):1043-1044,
2017.

M Chernyshev, Z Baig, O Bello, and S Zeadally. Internet of things (iot):
Research, simulators, and testbeds. IEEE Internet of Things Journal, 2017.

Gianpaolo Cugola and Alessandro Margara. Processing flows of informa-
tion: From data stream to complex event processing. ACM Computing
Surveys (CSUR), 44(3):15, 2012.

Li Da Xu, Wu He, and Shancang Li. Internet of things in industries: A
survey. IEEE Transactions on Industrial Informatics, 10(4), 2014.

Patrick Th Eugster, Pascal A Felber, Rachid Guerraoui, and Anne-Marie
Kermarrec. The many faces of publish/subscribe. ACM computing surveys
(CSUR), 35(2):114-131, 2003.

Julia Camps Farrés. Barcelona noise monitoring network. In Proceedings
of the Euronoise, pages 218-220, 2015.

Giancarlo Fortino, Raffaele Gravina, Wilma Russo, and Claudio Savaglio.
Modeling and simulating internet-of-things systems: A hybrid agent-
oriented approach. Computing in Science & FEngineering, 19(5):68-76,
2017.

34

[35]

[36]

[37]

[38]

[39]

[42]

[43]

[44]

Paul Fremantle. A reference architecture for the internet of things, v0.9.0.
Technical report, WSO2, 2015.

Rajrup Ghosh and Yogesh Simmhan. Distributed scheduling of event ana-
lytics across edge and cloud. ACM Transactions on Cyber Physical Systems
(TCPS), 2017. In press.

Nithyashri Govindarajan, Yogesh Simmhan, Nitin Jamadagni, and Prasant
Misra. Event processing across edge and the cloud for internet of things
applications. In International Conference on Management of Data (CO-
MAD), 2014.

Jayavardhana Gubbi, Rajkumar Buyya, Slaven Marusic, and Marimuthu
Palaniswami. Internet of Things (IoT): A vision, architectural elements,
and future directions. Future Generation Computer Systems, 29(7), 2013.

Dominique Guinard, Vlad Trifa, Friedemann Mattern, and Erik Wilde.
Architecting the Internet of Things, chapter From the Internet of Things
to the Web of Things: Resource-oriented Architecture and Best Practices,
pages 97-129. Springer Berlin Heidelberg, 2011.

Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter
Reutemann, and Ian H. Witten. The weka data mining software: An up-
date. ACM SIGKDD Explor. Newsl., 11(1), 2009.

Colin Harrison, Barbara Eckman, Rick Hamilton, Perry Hartswick, Jayant
Kalagnanam, Jurij Paraszczak, and Peter Williams. Foundations for
smarter cities. IBM Journal of Research and Development, 54(4), 2010.

Michael N Huhns and Munindar P Singh. Service-oriented computing: Key
concepts and principles. IEEFE Internet Computing, 9(1), 2005.

Antonio J. Jara, Dominique Genoud, and Yann Bocchi. Big data for smart
cities with KNIME a real experience in the smartsantander testbed. Softw.,
Pract. Ezper., 45(8):1145-1160, 2015.

Kazuo Kajimoto, Matthias Kovatsch, and Uday Davuluru. Web of things
(wot) architecture: W3c editor’s draft. Technical report, World Wide
Web Consortium (W3C), August 2017. https://www.w3.org/TR/wot-
architecture/.

Kyoung-Dae Kim and Panganamala R, Kumar. Cyber—physical systems: A
perspective at the centennial. Proceedings of the IEEE, 100, 2012.

Matthias Kovatsch, Simon Duquennoy, and Adam Dunkels. A low-power
coap for contiki. In IEEE International Conference on Mobile Ad-hoc and
Sensor Systems (MASS), 2011.

Jorge Lanza Calderén, Pablo Sotres Garcia, Luis Sanchez Gonzélez,
José Antonio Galache Lépez, Juan Ramén Santana Martinez, Verdnica
Gutiérrez Polidura, Luis Munoz Gutiérrez, et al. Managing large amounts
of data generated by a smart city internet of things deployment. 2016.

35

[48]

[49]

[50]

[51]

[52]

[58]

[59]

YS Lohith, T Sathya Narasimman, SVR Anand, and Malati Hedge. Link
peek: A link outage resilient ip packet forwarding mechanism for 6low-
pan/rpl based low-power and lossy networks (llns). In International Con-
ference on Mobile Services, pages 65-72. IEEE, 2015.

Prasant Misra, Yogesh Simmhan, and Jay Warrior. Towards a Practical
Architecture for Internet of Things: An India-centric View. IEEE Internet
of Things Newsletter, 2015.

B. Molina, C.E. Palau, G. Fortino, A. Guerrieri, and C. Savaglio. Empow-
ering smart cities through interoperable sensor network enablers. In IFEE
International Conference on Systems, Man, and Cybernetics, 2014.

Cesare Pautasso, Olaf Zimmermann, and Frank Leymann. Restful web
services vs. big'web services: making the right architectural decision. In
ACM World Wide Web Conference (WWW), 2008.

Juan Luis Pérez, Alvaro Villalba, David Carrera, Iker Larizgoitia, and Vlad
Trifa. The compose api for the internet of things. In ACM World Wide
Web Conference (WWW), 2014.

Navi Radjou, Jaideep Prabhu, and Simone Ahuja. Jugaad innovation:
Think frugal, be flexible, generate breakthrough growth. John Wiley & Sons,
2012.

Rajiv Ranjan. Streaming big data processing in datacenter clouds. IFEFE
Cloud Computing, 1(1):78-83, 2014.

Nihesh Rathod, Pratik Jain, Renu Subramanian, Siddhesh Yawalkar,
Mallikarjun Sunkenapally, Bharadwaj Amrutur, and Rajesh Sundaresan.
Performance analysis of wireless devices for a campus-wide iot network.

Pushkara Ravindra, Aakash Khochare, Siva Prakash Reddy, Sarthak
Sharma, Prateeksha Varshney, and Yogesh Simmhan. ECHO: An Adaptive
Orchestration Platform for Hybrid Dataflows across Cloud and Edge. In
International Conference on Service-Oriented Computing (ICSOC), 2017.

Luis Sanchez, Luis Munioz, Jose Antonio Galache, Pablo Sotres, Juan R
Santana, Veronica Gutierrez, Rajiv Ramdhany, Alex Gluhak, Srdjan Krco,
Evangelos Theodoridis, et al. Smartsantander: Iot experimentation over a
smart city testbed. Computer Networks, 61:217-238, 2014.

Anshu Shukla, Shilpa Chaturvedi, and Yogesh Simmhan. RIoTBench: An
IoT Benchmark for Distributed Stream Processing Systems. Concurrency
and Computation: Practice and Ezxperience, 2017. In press.

Yogesh Simmhan, Saima Aman, Alok Kumbhare, Rongyang Liu, Sam
Stevens, Qunzhi Zhou, and Viktor Prasanna. Cloud-based software plat-
form for data-driven smart grid management. IEEE/AIP Computing in
Science and Engineering, July /August, 2013.

Yogesh L. Simmhan, Beth Plale, and Dennis Gannon. Karma2: Prove-
nance management for data-driven workflows. International Journal of
Web Services Research (IJWSR), 5(2), 2008.

36

[61]

[62]

[63]

[64]

[65]

[70]

John Soldatos, Nikos Kefalakis, et al. Openiot: Open source internet-of-
things in the cloud. In Interoperability and open-source solutions for the
internet of things. Springer, 2015.

Sriskandarajah Suhothayan, Kasun Gajasinghe, Isuru Loku Narangoda,
Subash Chaturanga, Srinath Perera, and Vishaka Nanayakkara. Siddhi: A
second look at complex event processing architectures. In ACM Workshop
on Gateway Computing Environments (GCE), pages 43-50, 2011.

Ankit Toshniwal, Siddarth Taneja, and et al. Storm@twitter. In ACM
SIGMOD, pages 147-156, 2014.

Prateeksha Varshney and Yogesh Simmhan. Demystifying fog computing;:
Characterizing architectures, applications and abstractions. In IFEE In-
ternational Conference on Fog and Edge Computing, 2017.

Prachet Verma, Akshay Kumar, Nihesh Rathod, Pratik Jain, S Mallikarjun,
Renu Subramanian, Bharadwaj Amrutur, MS Mohan Kumar, and Rajesh
Sundaresan. Towards an iot based water management system for a campus.

In IEEE Smart Cities Conference (ISC2), pages 1-6, 2015.

Ignasi Vilajosana, Jordi Llosa, Borja Martinez, Marc Domingo-Prieto, Al-
bert Angles, and Xavier Vilajosana. Bootstrapping smart cities through
a self-sustainable model based on big data flows. IEEE Communications
Magazine, 51(6):128-134, 2013.

Michael Vogler, Johannes M. Schleicher, Christian Inzinger, and Schahram
Dustdar. Ahab: A cloud-based distributed big data analytics framework
for the internet of things. Softw., Pract. Exper., 47(3):443-454, 2017.

Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker,
and Ion Stoica. Spark: Cluster computing with working sets. In USENIX
Conference on Hot Topics in Cloud Computing, 2010.

Theodore Zahariadis, Andreas Papadakis, Federico Alvarez, Jose Gonzalez,
Fernando Lopez, Federico Facca, and Yahya Al-Hazmi. Fiware lab: manag-
ing resources and services in a cloud federation supporting future internet
applications. In Utility and Cloud Computing (UCC), 2014 IEEE/ACM
7th International Conference on, pages 792-799. IEEE, 2014.

Zolertia. Re-mote, 2017.

37

	1 Introduction
	2 Background
	2.1 IISc Smart Campus project
	2.2 Desiderata

	3 Sensing and Communication
	3.1 Sensing and Actuation
	3.2 Networking and Communication
	3.2.1 Network Protocols and Infrastructure
	3.2.2 Network Deployment Design

	4 IoT Fabric Management
	4.1 Service Protocols for Lifecycle and Discovery
	4.2 Device Bootstrapping and Discovery
	4.3 Monitoring and Control

	5 Data Acquisition and Storage
	5.1 Asynchronous Access to Publish-Subscribe Observations
	5.1.1 CoAP's Observe Pattern
	5.1.2 MQTT Broker
	5.1.3 Automated Observe and Publish from Gateway

	5.2 Fast Data Processing and Persistence

	6 Data Analytics and Decision Making
	7 Related Work
	7.1 Community Specifications
	7.2 Open Source Efforts
	7.3 Research Activities
	7.4 Smart City Deployments

	8 Conclusion
	9 Acknowledgments

