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Abstract

The Fenwick tree [3] is a classical implicit data structure that stores an array in such a
way that modifying an element, accessing an element, computing a prefix sum and performing
a predecessor search on prefix sums all take logarithmic time. We introduce a number of
variants which improve the classical implementation of the tree: in particular, we can reduce
its size when an upper bound on the array element is known, and we can perform much faster
predecessor searches. Our aim is to use our variants to implement an efficient dynamic bit
vector : our structure is able to perform updates, ranking and selection in logarithmic time,
with a space overhead in the order of a few percents, outperforming existing data structures
with the same purpose. Along the way, we highlight the pernicious interplay between the
arithmetic behind the Fenwick tree and the structure of current CPU caches, suggesting simple
solutions that improve performance significantly.

1 Introduction

The problem of building static data structures which perform rank and select operations on vectors
of n bits in constant time using additional o(n) bits has received a great deal of attention in the
last two decades starting form Jacobson’s seminal work on succinct data structures. [7] The rank
operator takes a position in the bit vector and returns the number of preceding ones. The select
operation returns the position of the k-th one in the vector, given k. These two operations are at
the core of most existing succinct static data structure, as those representing sets, trees, and so on.
Another line of research studies analogous compact structures that are more practical, but they use
cn additional bits, for a usually small constant c.[15]

A much less studied problem is that of implementing dynamic rank and select operators. In
this case we have again an underlying bit vector, which however is dynamic, and it is possible to
change its size and its content. Known lower bounds [1] tell us that dynamic ranking and selection
cannot be performed faster than Ω(lg n/ lgw), where w is the word size. Some theoretical data
structures match this bound, but they are too complex to be implemented in practice (e.g., they
have unpredictable tests or memory-access patterns which are not cache-friendly).

It is a trivial observation that by keeping track in counters of the number of ones in blocks of
q words rank and selection can be performed first on the counters and then locally in each block.
In particular, any dynamic data structure that can keep track of such blocks and quickly provides
prefix sums and predecessor search in the prefix sums (i.e., find the last block whose prefix sum is
less than a given bound) can be used to implement dynamic ranking and selection.

In this paper we consider the Fenwick tree, [3] an implicit data structure that was devised to
store a sequence of integers, providing logarithmic-time updates, computation of prefix sums, and
predecessor searches (into the prefix sums). Its original goal was efficient dynamic maintenance of
the numerosity of the symbols seen in a stream for the purpose of performing arithmetic compression.
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Our aim is to improve the Fenwick tree in general, keeping in mind the idea of using it to
implement a dynamic bit vector. To this purpose, first we will show how to compress the tree, using
additional knowledge we might have on the values stored in the tree, and introduce a complemented
search operation that is necessary to implement selection on zeros; then, we propose a different,
level-order layout for the tree. The layout is very efficient (cachewise) for predecessor search (and
thus for selection), whereas the classical Fenwick layout is more efficient for prefix sums (and thus
for ranking).

We then discuss the best way to use a Fenwick tree to support a dynamic bit vector, and argue
that due to the current CPU structure the tree should keep track approximately of the number of
ones in one or two cache lines, as ranking and selection in a cache line can be performed at a very
high speed using specialized CPU instructions. Finally, we perform a wide range of experiments
showing the effectiveness of our approach, and compare it with previous implementations.

All the code used in this paper is available from the authors under the GNU Lesser General
Public License, version 3 or later, as part of the Sux project (http://sux.di.unimi.it/).

2 Notation

We use w to denote the machine word size, lg for the binary logarithm, &, | and ⊕ to denote
bitwise and, or and xor on integers, � and � for right and left shifting, and an overline for bitwise
negation (as in x̄). Following Knuth,[11, 7.1.3] we use ρx to denote the ruler function of x, that
is, the index (starting from zero) of the lowest bit set (ρ0 = ∞), λx for the index of the highest
bit set (i.e., λx = blg xc; λx is undefined when x ≤ 0), and νx for the sideways sum of x ≥ 0, that
is, the number of bits set to one in the binary representation of x. Note the easy mnemonics: ρx
is the position of the rightmost one, λx is the position of the leftmost one, and νx is the number
of ones in the binary representation of x. Alternative common names for these functions are LSB,
MSB and population count, respectively.

Let v =
〈
v1, vn, . . . , vn

〉
be a vector of n natural numbers indexed from one. We define the

operations

prefixv(p) =

p∑
i=1

vi 0 ≤ p ≤ n (1)

findv(x) = max
{
p | prefixv(p) ≤ x

}
x ∈ N (2)

that is, the sum of the prefix of length p of v and the length of the longest prefix with sum less
than or equal to x.

Finally, let b =
〈
b0, b1, . . . , bn−1

〉
be an array of n bits indexed from zero. We define

rankb(p) =
∣∣{i ∈ [0 . . p) | bi = 1

}∣∣ 0 ≤ p ≤ n
selectb(k) = max

{
p ∈ [0 . . n) | rankb(p) ≤ k

}
0 ≤ k < rankb(n)

Thus, rankb(p) counts the number of ones up to position p (excluded), while selectb(k) returns the
position of the k-th one, indexed starting from zero.

We remark that our choice of indexing is driven by the data structures we will describe: the
Fenwick tree is easiest to describe using vectors indexed from one, whereas ranking and selection
are much simpler to work with when the underlying bit vector is indexed from zero.

3 Related Work

Several papers in the area of succinct data structures discuss the Searchable Prefix Sum problem,
which is the same problem solved by the Fenwick tree.[14, 12, 6] However, as we discussed in the
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Figure 1: A Fenwick tree represented as a sideways heap with 11 nodes: note that we need to
add an implicit node 12 to provide a parent for node 10. The dashed arrows show the parent
relationship of the interrogation tree (omitting the root 0), while the dotted arrows show the parent
relationship of the update tree (omitting the parent arrows with target larger than 11). The vector
v contains the original values, whereas the vector f represents implicitly the Fenwick tree: every
value is associated with the node above it.

introduction, these solutions, while providing strong theoretical guarantees, do not yield practical
improvements. Bille et al. [2] is the work in spirit most similar to ours, in that they study succinct
representations of Fenwick trees, extending moreover the construction beyond the binary case: in
particular, they study, as we do, level-order layouts. However, also in this case the authors aim at
asymptotic bounds, rather than dealing with the practicalities of a tuned implementation.

4 The Fenwick tree

The Fenwick tree [3] is an implicit dynamic data structure that represents a list of n natural
numbers and provides logarithmic-time prefix and find operations; also updating an element of the
list by adding a constant takes logarithmic time. There is an implicit operation that retrieves the
k-th value by computing prefix(k) − prefix(k − 1), but Fenwick notes that this operation can be
implemented more efficiently (on average).

Strictly speaking, the Fenwick tree is not a tree; that is, it cannot be univocally described as a set
of nodes tied up by a single parent relationship. There are three different parent-child relationships
(on the same set of nodes) that are useful for different primitives (see Figure 1).

More precisely, for a vector v of n values the content of the nodes of a Fenwick tree are gathered
in a vector of partial sums f , again of size n, storing in position j ∈ [1 . . n] the sum of values in v
with index in

(
j − 2ρj . . j

]
. In particular, for odd j we have fj = vj .

We are going now to describe the three different parent-child relationships. In doing so, we
show an interesting duality law and introduce new rules to perform prefix queries and updates in a
descending fashion, as opposed to the original ascending technique described by Fenwick.

4.1 The search tree

The search tree is actually a sideways heap, a data structure which had been introduced previously
by Dov Harel, [5] unknown to Fenwick. A detailed description is given by Knuth,[11, 7.1.3] who
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1: function find(k)
2: p← 0
3: q ← 1� λn
4: while q 6= 0 do
5: if p+ q ≤ n then
6: m← f [p+ q]
7: if k ≥ m then
8: p← p+ q
9: k ← k −m

10: end if
11: end if
12: q ← q� 1
13: end while
14: return 〈p, k〉
15: end function
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Figure 2: Pseudocode for find, and a sample execution on the tree of Figure 1: we are looking for
the rightmost position with prefix sum at most 7. We highlight the visited nodes and the associated
elements in the vector f representing the tree. The test is against the element of f associated with
the node. The returned pair is 〈3, 1〉.

describes sideways heaps using an infinite set of nodes: here we extend this description to the
Fenwick tree, as it highlights a number of beautiful symmetries and dualities. The finite structure
of a Fenwick tree of n nodes is then obtained essentially by considering only the parent-child
relationships between the nodes [1 . . n].

The infinite sideways heap has an infinite number of leaves given by the odd numbers. The
parents of the leaves are the odd multiples of 2 (i.e., even numbers not divisible by 4); their
grandparents are the odd multiples of 4, and so on. Node j is exactly ρj levels above the leaf level.

More precisely, the parent of node j is given by(
j − (1� ρj)

)
|
(
1� (ρj + 1)

)
,

which in two’s complement notation can be computed by(
j − (j &−j)

)
|
(
(j &−j)� 1

)
=
(
j & (j − 1)

)
|
(
(j &−j)� 1

)
.

The children of node j are j±
(
1�(ρj−1)

)
, which in two’s complement notation is j±

(
(j&−j)�1

)
.

The infinite sideways heap has no root, so it is not technically a binary tree, but if we restrict
ourselves to a finite number n of the form 2k−1 we obtain a perfect binary tree with root 1�λn =
2λn. Otherwise, we have to add (implicitly) some nodes beyond n to connect the nodes

[
2λn+1 . . n

]
to the root: for example, in Figure 1 we show (continuous lines) a sideways heap with n = 11, but
we have to add node 12 to connect the three-node right subtree to the root. When discussing the
height or depth of a node of a Fenwick tree we will always refer to the associated sideways heap.
Note that the heap has height λn.

In terms of partial sums, a node j at height h stores the sum of a subsequence of 2h values of
v that correspond exactly to node j plus its left subtree. Nodes with index larger than n do not
store any partial sum, and indeed they are represented only implicitly.

The findf (x) operation is now simply a standard search on the sideways heap: we start at the
root λn, thus knowing the sum of the first 2λn values, and then move to the left or right child
depending on whether x is smaller or greater than that sum. Note that when we move to the left
child x remains unchanged, but when we move to the right child we have to subtract from x the
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1: function prefix(j)
2: p← 0
3: while j 6= 0 do
4: p← p+ f [j]
5: j ← j & (j − 1)
6: end while
7: return p
8: end function
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Figure 3: Pseudocode for prefix, and two sample executions on the tree of Figure 1: on the left the
nodes traversed computing the sum of the first three elements, and on the right the nodes traversed
computing the sum of the first eleven (i.e., all) elements. The value returned is the sum of the
elements of f associated with the visited nodes. Note how the sequence of node indices is obtained
by deleting the lowest bit set.

partial sum stored in the current node. Non-existing nodes are simply ignored (we follow their left
child; see line 5 of Figure 2).

Fenwick shows that findf (x) = findv(x). Figure 2 illustrates with an example the sequences of
nodes traversed by a find operation.

4.2 The interrogation tree

To compute a prefix sum on v we use the interrogation tree. The tree has an implicit root 0. The
parent of node j is

int(j) = j − (1� ρj) = j & (j − 1),

that is, j with the lowest one cleared; note that the resulting tree is not a binary tree (in fact, the
root has infinite degree). The primitive prefixf (j) accumulates partial sums on the path from node
j to the root (excluded), and Fenwick shows that prefixf (p) = prefixv(p). Figure 3 illustrates with
two examples the sequences of nodes traversed by a prefix operation.

Note that we use the same name for the abstract operation on the list and the implementation
in a Fenwick tree to avoid excessive proliferation on names. The subscript should always make the
distinction clear.

We remark that the interrogation tree can be also scanned in a top-down fashion, that is, from
the root to the leaves. The sequence of values of j that reaches the leaf p starting from the root
(i.e., j = 0) is given by the rule

j ← j |
(
1� λ(j ⊕ p)

)
.

The rule adds to j the bits sets in p one by one, from the most significant one to the least significant
one, thus selecting at each step the correct child.

4.3 The update tree

Finally, when modifying vj by adding the value c, Fenwick shows that we have to update f by
adding c to all nodes along a path going up from node j in the update tree. In this tree, the parent
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1: function add(c, j)
2: while j ≤ n do
3: f [j]← f [j] + c
4: j ← j + (j &−j)
5: end while
6: end function
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Figure 4: Pseudocode for add, and two sample executions on the tree of Figure 1: on the left the
nodes traversed when updating the third element, and on the right the nodes traversed updating
the ninth element. During the traversal, the argument c is added to all elements of f associated
with the visited nodes. Note how the sequence of node indices is obtained by adding the lowest bit
set.

of node j is
upd(j) = j + (1� ρj) = j + (j &−j).

If j is an odd multiple of 2a, that is, j = c2a with c odd, its parent is (c+ 1)2a. We stop updating
when the next node to update is beyond n. We call this operation addf (j, x). Figure 4 illustrates
with two examples the sequences of nodes traversed by a add operation.

Note that technically the update tree is a forest, but for convenience and historical reasons we
still refer to it as a tree. More precisely, as in the case of sideways heaps we could add implicit
nodes (n . . 1� (λn+ 1)] containing no partial sum which would make the forest into a tree.

It is easy to prove the following remarkable duality:

Proposition 1 int(−j) = − upd(j).

Proof. Immediate, as ρj = ρ(−j) and int(−j) = (−j)−(1� ρ(−j)) = −(j+(1� ρj)) = − upd(j).

The equation above can be used to provide a top-down scanning towards the leaf p, analogously
to the case of int. The rule is simply

j ← −
(
−j ⊕ (1� λ(−j ⊕−p))

)
,

starting from j = n &
(
−1 � λ

(
n ⊕ p ⊕ (1 � ρp)

)
, which in two’s complement arithmetic can

be written as n & (−1 � λ
(
n ⊕ (p & (p − 1))

)
. Alternatively, using the convention that λ0 = −1

and that negative shifts are shifts in the opposite direction one can express the starting node as
j = n&

(
−1� λ(n⊕ p)

)
.

While apparently the top-down rule for upd requires many more operations, we can in fact
perform the whole scan using negative indices: once the initial node has been set up in this way,
the only difference between the two algorithms is that we have to remember to negate the result of
the update rule to obtain the actual node of the tree.
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4.4 Bounded lists and complemented find

Departing from the original definition, we will also assume the existence of an upper bound B on
the values in the list represented by the tree (i.e., vi ≤ B). Note that this is a not bound on the
partial sums, as they are sums of such values, but it is easy to see that the upper bound for the
partial sum of index j will be 2ρjB, so one needs

⌈
lg
(
2ρjB + 1

)⌉
bits to store it.

Using the bound B, we now define an additional operation, complemented find, by

findv(x) = max
{
p | pB − prefixv(p) ≤ x

}
x ∈ N.

This operation is not relevant when using a Fenwick tree to keep track of prefix sums, but will be
essential to implement selection on zeros.

An implementation of complemented find is given in algorithm 1. Note that the only difference
with a standard find (Figure 2) happens at line 6: instead of considering the value of a node, we
compute the difference with the maximum possible value stored at the node.

For both versions of find, we actually consider two return values: the length of the longest prefix
with (complemented) sum less than or equal x, and the excess with respect to said (complemented)
prefix sum. Once again, in the case the Fenwick tree is used just to keep track of prefix sums the
excess is not particularly useful, but it will be fundamental in implementing selection primitives.

Algorithm 1 Complemented find for a Fenwick tree f with bound B.

1: function find(k)
2: p← 0
3: q ← 1� λn
4: while q 6= 0 do
5: if p+ q ≤ n then
6: m← B2ρ(p+q) − f [p+ q]
7: if k ≥ m then
8: p← p+ q
9: k ← k −m

10: end if
11: end if
12: q ← q� 1
13: end while
14: return 〈p, k〉
15: end function

5 Compression and layout

Recent computer hardware features a growing performance gap between processor and memory
speed. Keeping most of the computation into the cache can increase significantly the performance
of data structure. Thus, compressed, compact or succinct data structures may require more complex
operation for queries and updates, but, at the same time, by storing information more compactly
they make it possible to increase performance by using the cache more efficiently.

We have explored several different forms of compression in order to balance the trade-off between
the time required to retrieve uncompressed information and the time required to access to such
data from the physical memory. After an experimental analysis we are reporting here the two most
relevant ones.
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Figure 5: The bit-compressed Fenwick layout. Each box contains the index j of the associated
node, and the width in bits of each box is S + ρj.

5.1 Bit compression

As we explained in Section 4, we assume to have a bound B on the values vi represented by the
tree; let S = dlg(B + 1)e. In our implementation, we use S bits for the leaves, S + 1 bits for the
nodes at level one, and so on. In general, we use S + ρj bits to store the partial sum at node j
(which is slightly redundant, in particular when B is a power of two).

To be able to fully exploit bit compression, we need to lay out all partial sums consecutively in
a bit array: an example is shown in Figure 5. A useful fact is that if we assume we can compute
in constant time sideways sums, then we can compute in constant time the sum of the bit sizes of
the first j partial sums.

Proposition 2 For 0 ≤ j ≤ n we have

j∑
i=1

(
S + ρi) = j · (S + 1)− νj.

Proof. The only part that needs proof is
∑j
i=1 ρi = j − νj, which is noted by Knuth. [11, 7.1.3]

Note that the number of possible configurations of the tree is (B + 1)n, so the information-
theoretical lower bound to store the tree is dn lg(B + 1)e bits. Adding up on all nodes, similarly to
Proposition 2 we obtain

n∑
i=1

(S + ρi) = nS + n− νn < n(1 + S) = n(1 + dlg(B + 1)e) ≤ 2n lg(B + 1) ≤ 2dn lg(B + 1)e.

Thus, our bit-compressed Fenwick tree qualifies as a compact data structure—one that uses space
that is a constant number of times the information-theoretical lower bound.

For B = 1 and n a power of two our bound is tight, but for larger values of B it is rather
rough: for example, when B = 63 we use less than 7n bits, whereas the information-theoretical
lower bound is 6n. In fact, for B > 3 a better bound is

n∑
i=1

(S + ρi) ≤ n(1 + dlg(B + 1)e) ≤ 2n+ dn lg(B + 1)e,

which shows that we are actually losing at most two bits per element with respect to the lower
bound; this bound is tight when B is a sufficiently large power of 2.

5.1.1 Byte compression

Another possibility, trading (in principle) space for speed, is to round up the size of each node to
its closer byte. In this setting, the partial sum for node j requires

⌈(
ρj +S

)
/8
⌉

bytes and starts at
byte

w/8∑
k=1

i

⌈
S

8k

⌉
.
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The main problem of this approach is that we cannot provide a closed-form formula like that given
in Proposition 2. To compute the starting byte of node j we need to establish how many nodes
using at least k bytes appear before j.

To overcome this issue, we suggest an even looser compression strategy: instead of rounding up
the space required by each node to the next byte, one can use just three byte sizes for partial sums:
d(lg(B + 1))/8e, d(lg(B + 1))/8e+ 1 or full size (no compression). Let b = d(lg(B + 1))/8e and let
d = 8b− dlg(B + 1)e; the sum of the byte size of the first j partial sums is

at least b bytes for each node︷︸︸︷
jb +

nodes with at least one additional byte︷ ︸︸ ︷
(j� d) +

uncompressed nodes multiplied by their additional space︷ ︸︸ ︷
(j� (d+ 8)) · (w/8− b+ 1).

(3)
In this way, one provides a byte-sized optimal compression for the lower nodes of the tree, and leave
uncompressed everything above. This simplification has practically no impact on the overall space
used by the Fenwick tree, as just a very small fraction of nodes will be represented in uncompressed
form. For example, even in trees with height 64 (the worst-case scenario if you want to store each
node in a single word of a 64-bit processor) only about the 0.026% of the nodes reside in the third
(uncompressed) partial sum.

As we will see in our experimental analysis, this looser byte compression mechanism happens to
offer often faster access to the partial sums than the bit compression scheme.

5.2 The level-order layout

Compression is not the only way to improve cache efficiency. Another important aspect is prefetch-
ing : instead of fetching the data when it is needed, a prefetcher works by guessing what the next
requested data will be and fetching it in advance. If the prefetching succeeds—that is, if the fetched
data will be actually used in the near future—a cache miss is prevented and the execution will be
faster. If the prefetcher makes the wrong guess, however, a cache line will be replaced with useless
information and the prefetching might cause additional cache misses. Both hardware and software
prefetchers exists, and the key to take advantage of their capabilities is to dispose the data in a way
that the accesses made by the most frequent operations follow a simple and well defined pattern.

To find a predecessor, the Fenwick tree needs in the worst case (and also in the average case) to
query the value of a logarithmic number of nodes. At each step, one of the children of the current
node will be selected to continue the search, and the distance between two children of a node of
height h is 2h−1: one of the children, and we cannot predict which, will be reached in the next
iteration. For h enough large so that the two children lie in different cache lines the prefetcher can
either make a guess and succeed with a probability of 1/2, or it can prefetch both of them, wasting
a cache line and doubling the required number of memory accesses.

To help cache prefetchers in making the correct guess every time we might modify the layout
of the partial sums, and proceed in level order : first the root, then the children of the root, and
so on. At that point, each pair of children would be at distance one, and thus much likely on the
same cache line.1

Of course this change of disposition does not come for free. If we lay out the levels in a single
array, with pointers locating the start of each level, it will become very difficult to increase the
number of nodes of the tree: this solution is thus restricted to Fenwick trees with immutable size.
The alternative is to add a level of indirection, and thus to have an array of pointers, each to a
different level. As a small advantage, since each level is compressed in the same way, once we locate
the start of a level it is easier to find a node than in the case of a Fenwick layout.

We will use always such an implementation; as a consequence, every node in the level-order
layout will be identified by two integers: its level ` and its zero-based index k in its level. Nodes

1Bille et al. [2] have proposed the same layout with completely different motivations.
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with ` = 0 are the leaves. This representation and the classic Fenwick representation are connected
by the following easily proved proposition:

Proposition 3 A node with index j in the classical Fenwick layout has level ρj and index j�(1+ρj)
in the level-order layout. A node with level ` and index k in the level-order layout has index
(2k + 1)� ` in the classical Fenwick layout.

This bijection induces parent-children relationship on the level-order layout: in particular, it is
easy to show that:

• for ` > 0, the children of node 〈`, k〉 in the sideways heap are 〈` − 1, 2k〉 and 〈` − 1, 2k + 1〉
(but note that the second child might not exist);

• for 0 < k ≤ n� (`+ 1), the parent of node 〈`, k〉 in the interrogation tree is 〈`+ 1 + ρk, k�
(1 + ρk)〉;

• for 0 ≤ k < n�(`+1), the parent of node 〈`, k〉 in the update tree is
〈
`+1+ρk̄, k�

(
1+ρk̄

)〉
.

6 Alignment problems

The Fenwick tree in Fenwick layout is extremely sensitive to the alignment of the partial sums. In
our experiments, alignment problems can cause a severe underperformance of the primitives, which
can be up to three times slower in the case of the bit-compressed tree.

6.1 Misalignment

To understand why this can happen, consider a standard technique for reading a sequence of bits
which starts at position p when p is not byte-aligned (i.e., a multiple of eight): one uses an unaligned
word read at byte position bp/8c, and then one suitably shifts and masks the result (note, however,
that this method does not allow in general to read bit blocks of length close to w, as they might
span multiple words).

Consider now a bit-compressed tree of n nodes, with n larger than the size M of a memory
page in bits, which we assume to be a power of two. As it is easy to see from the nature of the
parent-child relationship of the three implicit trees described in Section 4, in all operations the
partial sums whose indices have a large number of trailing zeros in binary representation (i.e., ρj is
large, where j is the index) are the ones more frequently accessed.

Let as assume that the memory containing the partial sums is aligned with a memory page (e.g.,
if mmap() is used to allocate memory), and let us look at the bit position in memory of the partial
sum of index 1� λn. Using Proposition 2 it is immediate to see that it will be

(1� λn) · (S + 1)− 1− S − ρ(1� λn).

Thus, if S+1+ρ(1� λn) = S+1+λn ≤ w−8, reading the partial sum as above will cause a word
read across memory pages, which will access to two distinct memory pages and usually generate
two cache misses.

As shown in Figure 6, the same argument applies to any node whose index j is such that 2ρj is a
multiple of M (so the partial sum is stored at the very end of a memory page) and 1+S+ρj ≤ w−8
(so we read an across-page word). As we mentioned, this high number of across-page read/write
operation can slow down the data structure by a factor of three, because it affects the nodes that
are accessed more frequently.2

To work around this problem, we note the following property:

2The reader might be tempted to suggest to read partial sums backwards, that is, performing an unaligned access
using as reference the last byte occupied by the partial sum, but this would simply make the problem appear when
the tree is in a different memory position, that is, a word after the start of a memory page.
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j(S + 1)w

�jS + �j

Figure 6: An example of misalignment: rectangles are word-aligned words, and j(S + 1) is on the
border of a memory page. By Proposition 2 the partial sum of node j is stored in the highlighted
block of S+ρj bits starting at j(S+1)−νj− (S+ρj), but using unaligned reads we would actually
access the w bits indicated by the double arrow, thus accessing two distinct memory pages. Due to
the layout of the Fenwick tree, these kind of reads are very frequent.

Proposition 4 If j · (S+1) is a multiple of w, and the memory representation of the tree is shifted
by one bit to the right, the partial sum of index j is contained in a word-aligned word.

Proof. Due to the one-bit shift, the partial sum of index j will start at position j · (S + 1)− νj −
(S + ρj) + 1 (included) and end at position j · (S + 1)− νj + 1 (excluded). However,

νj + ρj ≤ λj + 1 for 1 ≤ j ≤ n,

because νj is the number of ones in the binary representation of j, whereas ρj is bounded by the
number of zeros, so

νj − 1 + S + ρj ≤ S + λj ≤ w,

because the largest size in bits of a partial sum cannot exceed w. Thus, the partial sum of index j
is contained in the word of (zero-based) index j · (S + 1)/w − 1.

As a consequence, we can read frequently accessed partial sums (which have a large ρj, so
j · (S + 1) is a multiple of w) using word-aligned words (i.e., if the partial sum starts at position
p, we read the word of index bp/wc and then suitably shift and mask). The proposition will work
also when j · (S + 1) is a multiple of eight, albeit the word containing the partial sum will be just
byte-aligned. When j · (S+ 1) is not a multiple of eight, if we want to guarantee that a single word
access will retrieve correctly the partial sum we have to make some assumption: in particular, the
largest partial sums we might read, which will be made of S + 2 bits (as ρj < 3), must be at most
w − 7 bits long, that is, S ≤ w − 9. In practice, on 64-bit architectures we have to require S ≤ 55,
that is, B < 255− 1, which is more than sufficient for our purposes. Alternatively, one has to resort
to read one or two word-aligned words and reconstruct the partial sum from those.

Note that this bound is tight: if w = 64, S = 56 and j = 60 the last bit of the associated 58-bit
partial sum will be in position 3480, so the partial sum will span two words.

We remark that the byte-compressed Fenwick tree in Fenwick layout has no across-page access
problems, as all partial sums are byte-aligned, and if ρj is large enough all three summands of the
offset formula (3) are multiples of w.

6.2 Hyper-alignment

The second alignment problem, which is more subtle and affects even the classical version, is that
frequently accessed partial sums are stored at memory locations with the same residual modulo
2aw, for small a. This is obvious in the classical construction, as frequently accessed partial sums
have indices with a large ρj. In the bit-compressed tree, instead, this pattern is due to access being
modeled using Proposition 4. This kind of hyper-aligned access implies that all the nodes end up
being cached in the same way of the cache, as multi-way caches usually decide in which way to
store a cache line using the lowest bits of the address.

11



The solution we adopt is that of perturbing slightly the data structure so to spread the residuals
of the memory addresses of frequently accessed partial sums across the whole possible range of
values. To obtain this result, we insert w-bit sized holes at regular intervals. By making the
intervals a sufficiently large power of two, the impact on space usage is negligible3, and computing
the actual position requires just an additional shift and a sum. By making the holes w-bit wide,
all the good alignment properties of the structure (i.e., Proposition 4) are preserved. The find
operations are the one more affected: a standard Fenwick tree on a large list (i.e., 100M elements)
features 30% shorter execution times on our hardware once holes are put in place.

7 Ranking and selection

Let us now get back to problem of dynamic rank and selection. Consider a dynamic bit vector b:
that is, we are able to change the value of bi (set and clear operations) and expand or reduce the
length of b (push and pop operations).

If the vector is very short, it is possible to perform ranking and selection very quickly using
broadword programming. Modern computers are capable of computing sideways additions on a
word using a single instruction, usually called popcount (population count). With this instruction
we can easily perform ranking within a word after suitably masking. Also selection in a word can
be performed quickly,[15, 4] particular on very recent Intel architectures which provide the PDEP
instruction. In practice, since sequential memory accesses are highly amenable to cache prefetching,
a linear search is still the fastest way to perform dynamic ranking and selection on a sufficiently
small bit vector.

For larger vectors, we can split the problem into ranking and selection over blocks of q bits,
where a linear scan is sufficiently fast, and keeping track of the prefix sums of the number of ones
in each block using a Fenwick tree f . At that point, we can implement rank and select as

rankb(p) = prefixf (m) + rankb[mq ..(m+1)q)(p mod q) where m = bp/qc
selectb(k) = pq + selectb[mq ..(m+1)q)(g) where 〈p, g〉 = findf (k) and m = bp/qc

Note that this strategy allows us to compute rank and select queries on zeros too. Select on
zeroes consists in replacing find with find and flipping all the bits during linear scans: the bound B
of Section 4.4 is q. Rank on zeros is simply p− rankb(p).

We have previously assumed we are capable of computing ranking and selection within a word
using some extremely fast operations, such as dedicated assembly instruction. This assumption
suggests the choice of a fairly large q, as the bigger is q, the smaller will be additional space
required to store the Fenwick tree. However, many RISC architectures such as the widespread
ARM are not capable of performing these operations in few clock cycles. In this case, the compact
structures described in this paper might be even more relevant, as a small q implies a larger tree.

8 Experiments

In this section we present the results of our experiments, which were performed on an Intel R©
CoreTM i7-7770 CPU @3.60GHz (Kaby Lake), with 64 GiB of RAM, Linux 4.17.19 and the GNU C
compiler 8.1.1. We use transparent huge pages, a relatively new feature of the operating system that

3In our code, we use an interval of 214, so the space usage increases by less than one per thousand, and the
partial sum of index j is stored in position j + (j � 14). In the case of bit compression, we offset the starting bit by
64 · (j � 14).

12



Name Comment
bit[`] Level-order layout; bit compression
byte[`] Level-order layout; byte compression
fixed[`] Level-order layout; fixed-width representation
bit[F ] Classical Fenwick layout; bit compression
byte[F ] Classical Fenwick layout; byte compression
fixed[F ] Classical Fenwick layout; fixed-width representation

Table 1: Naming scheme for the Fenwick trees appearing in experiments. Implementations of
dynamic bit vectors have an additional number denoting the size of a block in word (i.e., bits[`]8).

makes available virtual memory pages of 2 MiB, which significantly reduce the cost of accessing the
TLB (Translation Lookaside Buffer) for large-scale data structures.

We will present two sets of experiments:

• In the first set, we examine the primitives of the Fenwick tree in isolation, exploring the effects
of layout and compression policies on speed. We generate list of values chosen uniformly at
random, and average the running time of a large number of queries at random locations.
Note that both prefix and add are data-agnostic, in the sense that the execution flow does not
depend on the content of the tree; the execution flow of find, on the contrary, depends on the
content.

• In the second set, we use a Fenwick tree to support rank and selection: in this case, beside
the way we structure the tree we also explore the effect of different block sizes; as a baseline,
we report results for Nicola Prezza’s library for dynamic bit vectors [13], which is the only
practical available implementation we are aware of.4 We generate random bit vectors with
approximately the same number of ones and zeroes, and, again, average the running time of
a large number of queries at random locations.

In both cases, we take care of potential dead-code elimination by assigning the value returned by
each test to a variable which is in the end assigned a volatile dummy variable. Moreover, to avoid
excessive and unrealistic speculative execution, in a sequence of calls to a primitive we xor the next
argument using the lowest bit of the previously returned value, as this approach creates a chain of
dependencies among successive calls.

We do not report the results for complemented find and since both its algorithm and its memory-
access pattern are very similar to that of a standard find, so their performances are very similar.
The same argument holds for ranking and selection on zeros.

Finally, we report results in two real-world applications: counting the number of transpositions
generating a permutation, and generating pseudorandom graphs following a preferential attachment
model.

8.1 Variants

We consider a number of implementations displayed in Table 1. We use three different kinds of
compression strategies, namely: no compression (dedicating 64 bits for each node), byte compression
(see Section 5.1.1) and bit compression (see Section 5.1). For each of them we consider the classical
and level-order layout.5 Since we want to use the results of this benchmark as a reference for

4We remark that Prezza’s implementation provides additional primitives for bit insertion and bit deletion, which
is not available through the Fenwick tree.

5Even though in Section 5.2 we provided parent formulas for the update and interrogation trees in terms of levels,
we found that is faster to use the standard formulas for the Fenwick layout and convert the result using Proposition 3
at each iteration.
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choosing good parameters for the rank and selection structures, we are fixing to 64 the bound B
on the leaves.

We remark that throughout our graphs a few spikes are visible: they are due to the nonlinear
behavior of the tree, as when the size reaches a power of two a new root is created, usually in a
new memory page if the tree is page-aligned, and the tree becomes as unbalanced as possible (e.g.,
updating an element will require one additional iteration). This fact can increase the number of
TLB/cache misses and the number of average accesses: as the number nodes grow, this cost is
amortized.

8.2 Fenwick trees

Figures 7-9 report the performance of several variants for the prefix, find and add operations. Note
that we do not report data about push/pop, but a pop primitive would be constant-time (just
update the size of the tree, as indices of parents in the update tree are always larger than indices
of their children), while the performance of the push primitive is essentially identical to that of add
(we will, however, give a sample application using push).

• In the performance of prefix, it is immediate evident the point in which each structure goes
out of the L3 cache. Non-compressed structures have a slight advantage initially, but they
are almost twice as slow when the compressed structures still fits in cache. After all structure
go out of the cache, the advantage of the simpler code of non-compressed structure shows
again, albeit the speedup is very marginal compared to the byte-compressed structures. The
bit-compressed structure have significantly more complex code, and in particular a test that
decides whether to align access to bytes or words, and this cost increases logarithmically.

• The graphs of find are somehow smoother, due to the more regular cache usage. What
is evident here is the bad performance of the classical Fenwick tree, and that the fastest
structure (except for very small scale) is the level-order byte-compressed version. Note that a
find operation requires always lg n accesses, whereas in the other cases, as noted by Fenwick [3],
assuming a perfect sideways heap only (1 + lg n)/2 are required on average.

• The graphs for add show a behavior similar to that of prefix, but with less pronounced differ-
ences in performance. In particular, the Fenwick and the level-order performances are much
closer.

Note that the advantage of compressed trees in underestimated by our benchmarks, as the
cache will be shared with other parts of the code. Benchmarking different kind of trees inside a
specific application is the most reliable way to determine which variant is the most efficient for the
application at hand.

8.3 Dynamic bit vectors

The graphs for operations on dynamic bit vectors, show in Figures 10-12, are somewhat smoother
than those for the Fenwick trees, because of the much smaller size (a small fraction of the size of the
bit vector). We report experiment with trivial, one-word blocks, and with blocks make of 16 words.
Table 3 reports a space-time tradeoff plot for the same variants at three different sizes.6 We did
not implement a push/pop primitive, as its performance would be essentially constant-time, in case
the underlying Fenwick tree does not change, or identical to push/pop operations on the tree. For
these experiments we are comparing the performance of our implementations with Prezza’s library
for dynamic bit vectors.

6Note that the same plot is valid for the underlying Fenwick tree, modulo some constant offset.

14



105 106 107 108 109

Size

20

40

60

80

100

120

140

160

T
im

e
(n

s)

fixed[F]

fixed[`]

byte[F]

byte[`]

bit[F]

bit[`]

Figure 7: Performance of prefix.
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Figure 8: Performance of find.
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Figure 9: Performance of add.
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Figure 10: Performance of rank.
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Figure 11: Performance of select.
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Figure 12: Performance of bit updates.
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fixed/1 byte/1 bit/1 fixed/16 byte/16 bit/16 Prezza
bits 2.00 1.16 1.12 1.06 1.02 1.01 1.13

Table 2: Average space used per bit on a 109 bit vector. In our case, space depends on the block
size and on the compression type. Prezza’s data structure average space is claimed to be around
1.2n bits [13], but we are reporting a better result obtained by inserting every element at the end
(as it would happen in our case).

• When ranking, one-word blocks have a very small advantage at small size (about 5 ns), due
to the simpler code, but the performance penalty on large bit vector is very significant. The
performance of the underlying Fenwick tree follows closely the results for prefix.

• When selecting, lever-order trees with byte and bit compression are the fastest. In this case,
blocks reduce significantly the number of level of the tree, bringing bit compression close to
the performance of byte compression.

• Updates are the only operation in which fixed-width Fenwick trees win, albeit by a very small
margin, on the corresponding byte-compressed variant.

Table 2 reports the space usage per bit. With one-word blocks, a fixed-size Fenwick tree uses the
same space of the bit vector, increasing space usage twofold. Bit or byte compression bring down
the space increase to 12% and 16%, respectively. With 16-word blocks, any Fenwick tree requires
a space that is only a few percent of the bit vector. Prezza’s implementation uses 13% additional
space.

8.4 Counting transpositions

In this application, we use our data structures in a classical task: given a permutation π, count the
number of transposition (e.g., exchanges of two elements) that are necessary to generate π. This
computation is a fundamental step in computing Kemeny’s distance [9] (the number of transpo-
sitions that are necessary to transform a permutation in another), Kendall’s τ [10] (a statistical
correlation index), etc. One starts from a permutation π on n elements, computes the inverse π−1,
initializes a bit vector containing n ones, and then scans π−1 (seen as a list of numbers): for each
element x, one computes the rank at x, and then clears the bit of index x. In this way, every rank
represents the number of elements that x would be exchanged with in a bubble sort of π; the sum
of these ranks is exactly the number of transposition generating π.

In Figure 13, we report the time per element to count transpositions using a standard Fenwick
tree, as it happens in SciPy’s code, [8] using Prezza’s library and using a fixed-size and a byte-
compressed implementation of our dynamic ranking structure. To maximize the difference between
each structure, we generated π−1 implicitly using a suitable linear congruential pseudorandom
number generator with power-of-two modulus7 Besides the evident speed increase, our structures
(and Prezza’s) are more than fifty times smaller than SciPy’s.

8.5 Generating graphs by preferential attachment

A simple, classical model of random (undirected) graphs is the preferential attachment model: one
fixes an integer d, a d0 ≥ d, and starts with d0 isolated vertices (with a self-loop). Then, at each
iteration a vertex of degree d is added to the graph, and connected to d vertices chosen among the
ones already generated in a way that is proportional to their degree. If enough memory is available,

7We applied a bijection to the output of the generator to prevent the short period of the low bits to influence the
results.
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Figure 14: Generating preferential-attachment pseudorandom graphs with a million vertices and
average degree d using Fenwick trees. Level-order layout has a clear advantage.

a simple way to sample vertices proportionally to the degree is to maintain a list of vertices in which
each vertex is repeated as many times as its degree, and then just sample from the list. For large
graphs, however, the list becomes unmanageable.

The Fenwick tree offers a simple solution: one maintains a tree representing a list v containing
the degree of each vertex, and at that point a find operation on a uniform random sample in the
integer interval [0 . . 2m), where m is the current number of edges of the graph, samples vertices
proportionally to their degree. Thus, we alternate find operations, to find vertices with which to
connect, add operations, to update their degree, and push operations, one for each new vertex.

In Figure 14, we report the time necessary to generate a graph of a million vertices using four
variants of our data structures for increasing d. The level-order layout is a clear winner, as predicted
by the better cache behavior of find. Note that the byte-compressed version is slower of the fixed-
size version, but it uses much less memory, as B = dn. This fact is apparently in contradiction
with Figure 8: however, in the sampling process the nodes traversed by find operations are strongly
biased towards nodes that lead to vertices of high degree, so the advantage of the simpler code of
the fixed-size version outweighs its larger memory footprint.

9 Conclusions

We have presented improved, cache-friendly and prediction-friendly variants of the classical Fenwick
tree. Besides maintaining a prefix-sum data structure, the tree can be used to provide an efficient
dynamic bit vector with selection and ranking with a very small space overhead, albeit size can be
changed only by adding or removing a bit at the end, rather than at an arbitrary position.

The first takeaway lesson from our study is that it is fundamental to perturb the structure of
a Fenwick tree in classical Fenwick layout so that it does not interfere with the inner working of
multi-way caches: while this phenomenon has never been reported before, the interference can lead
to a severe underperformance of the data structure.

The second lesson is that, in spite of its elegance, the Fenwick layout is advantageous only if the
find primitive is never used (e.g., when counting transpositions). In all other cases, a level-order
layout is preferable.

Bit-compressed versions are extremely tight, but the higher access time makes them palat-
able only when memory is really scarce: otherwise, byte-compressed versions provide often similar
occupancy, but a much faster access. In particular, the faster find results we report are for a
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byte-compressed, level-ordered tree.
For what matter dynamic bit vectors, for the sizes we consider the best solution is a block large

as one or two cache lines; the consideration made for Fenwick order vs. level order and compression
are valid also in this case.

Albeit not reported in the paper, we also experimented with the idea of hybrid trees, which
upper levels are level ordered, but lower lever have a Fenwick layout. In some architectures, and in
particular if only small memory pages are available, they offer a performance that is intermediate
between that of Fenwick layout and level-order layout. In general, for the upper levels one can
always use a fixed-width Fenwick tree, as the number of nodes involved is very small, whereas lower
levels benefit from compression.

Finally, we remark once again that due to the highly nonlinear effect of cache architecture, and
to conflicting cache usage, benchmarking a target application with different variants is the best way
to choose the variant that better suits the application.
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