
Rodrigo Cardoso Amaral de Andrade

PRIVACY AND SECURITY CONSTRAINTS FOR CODE

CONTRIBUTIONS

Federal University of Pernambuco

posgraduacao@cin.ufpe.br

www.cin.ufpe.br/~posgraduacao

Recife
2018

www.cin.ufpe.br/~posgraduacao

Rodrigo Cardoso Amaral de Andrade

PRIVACY AND SECURITY CONSTRAINTS FOR CODE
CONTRIBUTIONS

A P.h.D Thesis presented to the Informatics Center of
Federal University of Pernambuco in partial fulfillment of
the requirements for the degree of Philosophy Doctor in
Computer Science.

Advisor: Paulo Henrique Monteiro Borba

Recife
2018

Catalogação na fonte
Bibliotecário Jefferson Luiz Alves Nazareno CRB 4-1758

A553p Andrade, Rodrigo Cardoso Amaral de.
 Privacy and security constraints for code contributions / Rodrigo

Cardoso Amaral de Andrade . – 2018.
 104 f.: fig., tab.

 Orientador: Paulo Henrique Monteiro Borba.
 Tese (Doutorado) – Universidade Federal de Pernambuco. Cin. Ciência

da Computação. Recife, 2018.
Inclui referências e apêndice.

1. Engenharia de software. 2. Segurança da informação. I. Borba,
Paulo Henrique Monteiro. (orientador). II. Título

 005.1 CDD (22. ed.) UFPE-MEI 2018-71

Rodrigo Cardoso Amaral de Andrade

Privacy and Security Constraints for Code Contributions

Tese de Doutorado apresentada ao Programa

de Pós-Graduação em Ciência da

Computação da Universidade Federal de

Pernambuco, como requisito parcial para a

obtenção do título de Doutora em Ciência da

Computação

Aprovado em: 08/03/2018.

__
Orientador: Prof. Dr. Paulo Henrique Monteiro Borba

BANCA EXAMINADORA

__

Prof. Dr. Vinicius Cardoso Garcia

Centro de Informática /UFPE

__

Prof. Dr. Marcelo Bezerra d'Amorim

Centro de Informática /UFPE

Prof. Dr. Fernando José Castor de Lima Filho

Centro de Informática / UFPE

Prof. Dr. João Arthur Brunet Monteiro
Departamento de Sistemas e Computação / UFCG

Prof. Dr. Marco Tulio de Oliveira Valente

Departamento de Computação / UFMG

Eu dedico esta tese à minha esposa, à minha mãe, ao meu

pai e ao meu irmão.

Acknowledgements

First, I would like to thank Paulo for his dedication and patience during the last years.
Not only for his Ph.D. supervision, but also for many valuable pieces of advice for my profes-
sional life. I take him as a model to be followed.

I also want to thank my family support across these tough years. Especially my wife
who wants more than me that this Ph.D. is over.

Abstract

Developers must protect privacy and security of sensitive information handled by soft-
ware systems. In collaborative software development, like GitHub’s pull-based environment,
developers submit code contributions using pull requests containing commits. These code con-
tributions might carelessly or maliciously violate sensitive information privacy and security. If
we do not appropriately detect this problem in the repository, the harmful code could remain
unnoticed for a long time. This way, developers must be concerned about how to protect sensi-
tive information from specific code c ontributions. One potential solution is to execute manual
code review. Albeit commonly necessary, it is expensive, time-consuming, and error-prone.
There are also automatic analysis tools to find violations throughout the source code. Nonethe-
less, they could be designed to work only for a specific technical domain, like Android, or they
could demand a significant effort to specify policies and c onstraints. To mitigate these issues,
we propose a new policy language named Salvum to allow the specification of constraints that
help to protect sensitive information from specific contributions. Salvum allows a non-security
specialist to define c onstraints t o s afeguard t his i nformation, a nd c onsequently avoid critical
violations. We implement a tool to automatically enforce these constraints in two different
ways. The first one allows us to check whether merged code contributions introduced viola-
tions of specified c onstraints. The second one allows us to automatically enforce constraints
before integrating code contributions into the repository. Salvum supports the specification of
constraints to determine the information that can and cannot flow to or be altered by specific
contributions for Java projects. To determine whether there are such information flows, we use
an existing set of Information Flow Control analyses called JOANA in our tool implementa-
tion. We evaluate our proposal regarding its ability to find violations of sensitive information
for real software projects. Thus, we write policies and constraints for each selected project and
execute our tool. We also investigate whether developers fix violations before merging code
contributions on GitHub and whether unmerged code contributions are related to violations of
sensitive information. We conclude that Salvum can indeed find such v iolations, mainly for
poorly-supported projects. Moreover, there is no evidence: (i) that developers solve these is-
sues before merging their contributions and (ii) that the unmerged code contributions are related
to violations of sensitive information. We also investigate whether Salvum helps to reduce the
effort of reviewing contributions to find violations. Thus, we compare the effort with and with-
out our tool based on metrics like the number of lines of code to be reviewed. We conclude that
Salvum can significantly reduce the effort to find violations of specified con straints. Further-
more, we assess the Information Flow Control analysis we use in our tool regarding precision,
recall, and accuracy to find i ssues. Our results indicate that this analysis has high r ecall, but
low precision and accuracy. Thus, the analyses could miss a few issues, but it could present
high rates of false-positives. At last, the result of our work can mitigate privacy and security
problems in the context of collaborative software development.

Keywords: Information Flow Control. Code Contribution. Policy language. Constraint.
Sensitive information.

Resumo

Desenvolvedores devem proteger a privacidade e segurança de informações sensíveis
manipuladas por sistemas de software. Em desenvolvimento colaborativo, como o ambiente
pull-based do GitHub, desenvolvedores submetem contribuição de código usando pull requests
contendo conjuntos de commits. Essas contribuições de código podem violar privacidade e
segurança de informações sensíveis acidental ou maliciosamente. Se não detectarmos ade-
quadamente esse problema, o código problemático pode permanecer indetectável por um longo
tempo. Neste contexto, desenvolvedores devem se preocupar sobre como proteger informações
sensíveis de determinadas contribuições de código. Uma solução é executar revisão manual
de código. Embora comumente necessária, ela é cara, consome muito tempo e propícia a er-
ros. Também há ferramentas de análise automática para achar violações espalhadas pelo código
fonte. Entretanto, elas podem ser concebidas para funcionar somente para domínios técnicos
específicos, como Android, ou podem requerer um esforço significante para especificar políti-
cas e restrições. Para atenuar esses problemas, nós propomos uma nova linguagem de política
nomeada Salvum para permitir a especificação de restrições que ajudem a proteger informações
sensíveis de determinadas contribuições de código. Salvum permite que um leigo em segu-
rança defina restrições para garantir a confidencialidade e integridade dessas informações. Nós
implementamos uma ferramenta para aplicar essas restrições de duas formas diferentes. A
primeira nos permite verificar s e c ontribuições d e c ódigo i ntegradas i ntroduziram violações
para restrições especificadas. A segunda forma permite aplicar as restrições automaticamente
antes de integrar contribuições no repositório. Salvum suporta a especificação d e restrições
simples para determinar a informação que pode e que não pode fluir ou ser a lterada por de-
terminadas contribuições de código em projetos Java. Para isso, nós usamos uma análise de
fluxo de informação para implementar nossa f erramenta. Nós avaliamos nossa proposta com
relação a habilidade de achar violações de informações sensíveis para projetos de software
reais. Portanto, nós escrevemos políticas e restrições para cada projeto selecionado e executa-
mos nossa ferramenta. Nós também investigamos se desenvolvedores removem violações antes
de integrar contribuições de código no GitHub e se contribuições que não integradas estão rela-
cionadas à violações de informações sensíveis. Nós concluímos que Salvum pode achar essas
violações, principalmente para projetos que são pouco suportados. Além disso, concluímos
que não há evidência: (i) que desenvolvedores resolvem esses problemas antes de integrar as
contribuições e (ii) que contribuições que não foram integradas estão relacionadas a violações
de informações sensíveis. Nós também investigamos se Salvum ajuda a reduzir o esforço de
revisar contribuições de código para achar violações. Por conseguinte, comparamos o esforço
com e sem nossa ferramenta baseados em métricas como o número de linhas de código que
um revisor tem que revisar. Nós concluímos que Salvum pode reduzir o esforço de achar vi-
olações às restrições especificadas s ignificativamente. Adicionalmente, avaliamos a análise de
controle de fluxo de informação com relação a precisão, recall e acurácia para achar problemas.

Nossa conclusão é que esta análise tem alto recall, mas baixa precisão e acurácia. Assim, o
resultado do nosso trabalho pode atenuar problemas de privacidade e segurança no contexto de
desenvolvimento colaborativo de software.

Palavras-chave: Controle de fluxo de informação. Contribuição de código. Linguage de
policy. Restrição. Informações sensíveis.

List of Figures

2.1 JOANA’s user interface . 20
2.2 Program Dependence Graph for Listing 2.3 23
2.3 SDG construction overview . 24
2.4 Java program and its corresponding call graph 26
2.5 Example of git checkout . 28

4.1 General Idea . 44
4.2 The Contribution identifier and project versions 45
4.3 noflow and noset are permissive . 50
4.4 Semantics of constructs . 52
4.5 Overview of our tool . 54
4.6 Five steps . 56
4.7 High and Low labels . 56

5.1 Metrics for Q2 . 61

A.1 Salvum grammar . 104

List of Tables

2.1 Pointer analyis options . 27

5.1 GQM to assess Salvum . 59
5.2 Selected software projects . 63
5.3 Results for violations . 67
5.4 Manually analyzed pull request messages . 70
5.5 Manually analyzed unmerged pull requests 71
5.6 Results for revisions . 73
5.7 Selected software projects . 74
5.8 Results for violations . 76
5.9 SecuriBench Micro test results . 78

Summary

141 Introduction

 2 Background 17
2.1 Manual Code Review . 17
2.2 Static Information Flow Control analysis tools 18
2.3 Confidentiality and Integrity . 20
2.4 Java Object-sensitive Analysis (JOANA) . 21

2.4.1 System Dependence Graph (SDG) 22

2.4.2 JOANA configuration 26
2.4.3 Information flow control analysis 29
2.5 Collaborative software development . 31

Git . 31

3 Problem 34
3.1 First scenario: Code contribution introducing a violation 34
3.2 Second Scenario: Sensitive information leaking through third-party classes . . 36
3.3 Third Scenario: Code contribution introducing a potential violation 38
3.4 Fourth Scenario: Untrustworthy developer introducing violations 39
3.5 40

4

Summary of existing approaches limitations

Salvum 42
4.1 General idea . 42
4.2 Language specification . 44
4.2.1 Examples . 44
4.2.2 Constructs 48
4.2.3 Representation of code contribution 48
4.2.4 Discussion 50
4.3 Language implementation . 51
4.3.1 First step - Preprocessing 53
4.3.2 Second step - Generating SDG . . 54
4.3.3 Third step - Labeling . . 55
4.3.4 Fourth step - Analyzing. 56

Fifth step - Results processing 57

5 Evaluation 58
5.1 Goal, Questions, and Metrics . 58
5.2 Assessing highly active and well-supported software projects 62

2.5.1

4.3.5

2.4.1.1SDG creation 24

5.2.1 Selected software projects 62
5.2.2 Policies and Constraints 64
5.2.3
5.3

Results 66
Assessing low active and poorly supported software projects 73

5.3.1 Selected software projects 74
5.3.2 Policies and Constraints 75
5.3.3 Results 75
5.4 JOANA evaluation . 78
5.5 Threats to validity . 81
5.5.1 Construct validity 81
5.5.2 Conclusion validity 82
5.5.3 External validity 82

Internal validity 83

6 Related Work 86
6.1 Manual code review . 86
6.2 Information Flow Control analysis tools . 86
6.3

7

Language-based Information Flow . 88

Conclusions 91
7.1 Review of main contributions . 92

7.2 Limitations . 93

7.3 94

97

Future work .

References

Appendix A - Salvum Grammar 104

5.5.4

14

1 Introduction

Many software systems handle sensitive information, such as confidential u ser data.
Thus, developers must be concerned about how to protect such information. Due to the increas-
ing popularity of collaborative software development in environments such as GitHub [1], it is
necessary to protect sensitive information from specific potentially dangerous code contribu-
tions, which consists of a set of commits (e.g., untrustworthy developer pull requests). These
code contributions might carelessly or maliciously introduce privacy and security violations [2]
of sensitive information in existing projects [3]. It may become worse when inexperienced or
untrustworthy developers are involved in the project development. Many issues related to vio-
lations introduced by code contributions can remain unnoticed for years, even in open source
projects [4]. Therefore, we need mechanisms to find violations in this c ontext. Classical ap-
proaches such as cryptography and certificates are insufficient to detect such violations because
they do not analyze source code [5]. Thus, we should also consider proposals that identify
violations at the source code level.

In collaborative software development, a common approach to do so is to manually re-
view code contributions before integrating them into the repository. Albeit necessary in many
cases, manual code review is time-consuming, error-prone, and costly [6, 7, 8]. Static analysis
tools might reduce some manual code review drawbacks [9]. However, existing ones also intro-
duce some disadvantages. Some tools are designed for specific technical domains [10, 11, 12],
such as Android, which means that we cannot use them for other technical domains without
many changes. Other existing tools might demand significant effort to execute an analysis for
each code contribution [13, 14]. Additionally, some approaches allow developers to mitigate
the significant effort issue, but they do not support code contributions [15, 16].

To reduce these problems, we propose a new policy language named Salvum1 [17] to al-
low the specification of constraints that help to protect sensitive information from specific code
contributions. For example, we can specify that a user password cannot flow to the execution
of code contributions submitted by an untrustworthy developer. We would need to write the
following constraint:
User {password} noflow Bob where Bob {c | c.author("Bob")}}

1Salvum means “secure” in Latin.

15

Additionally, Salvum allows developers to define these constraints for systems of different tech-
nical domains (e.g., Java Desktop or Java Web).

To enforce the specified constraints, we developed a tool, which automatically checks
Java source code adherence to these constraints. We implement our tool based on an existing
Information Flow Control analysis [18]. This analysis identifies whether there is an information
flow from one source code location to another.

Roughly, our proposal works as follows: a developer writes Salvum constraints speci-
fying the information and the whole code contribution. Then, she runs our tool to enforce these
constraints either before or after merging the code contribution into the repository. Our tool
provides a collection of violation warnings, which states the line of code where the potential
violation occurs and the commit that introduced it. At last, with this information, the developer
can review the code contribution to confirm the violations.

To show evidence that Salvum can indeed find relevant violations in the context of code
contributions, we conducted an experiment considering nine highly active and well-supported
software projects. Therefore, we studied their source code and wrote constraints for these
projects and executed our tool. Our results indicate that our selected projects present a few
violations (only three) of the specified constraints. However, even executing manual code re-
view, developers could not detect such violations, so they remained unnoticed for months. We
reported these violations on GitHub, and they were accepted and fixed. Additionally, to better
understand why we detected a few violations for these projects, we also manually analyzed
discussions and code commits attached to 243 pull requests on GitHub. Our first goal was to
identify violations that were fixed before being merged into the repository. Our second goal was
to establish a correlation between discarded pull requests and violations of sensitive informa-
tion. Our results show that there is no evidence that developers fix violation before integrating
code contributions for our sample. Moreover, we conclude that there is also no correlation
between discarded pull requests and violations in our context. Since we found a few issues
for well-supported software projects, we also perform an evaluation considering five low active
and poorly-supported software projects. We also write a set of constraints for these projects and
execute our tool. In contrast to the results regarding well-supported projects, we find a high
number of violations of the specified constraints.

Additionally, we conduct an experiment to determine whether Salvum helps to reduce
the effort to find violations. Therefore, we compare the lines of code and project versions that
a reviewer should consider to find the violations that we identified for the mentioned projects.
This way, we compare the effort of this task with and without Salvum (only manual code re-
view). In this assessment, we conclude that Salvum can significantly reduce both lines of code
and project version to manually analyze.

We also evaluate the Information Flow Control (IFC) analysis we use in our tool im-
plementation. Our goal was to assess it regarding precision, recall, and accuracy to find issues
for the Stanford SecuriBench Micro [19]. This benchmark provides groups of Java-written test

16

cases that we can use to identify the cases that this analysis misses information flows, which
could impact our mentioned results. We conclude that this analysis presents high recall, and
low precision and accuracy. The high recall indicates that we should not detect false-negatives,
which avoids missed violations regarding the experiments above-mentioned. On the other hand,
the low precision and accuracy might lead to a high number of false-positives. Nonetheless, we
obtained a few false-positives in our experiment. We provide all the data necessary to reproduce
this work in our online Appendix [20].

We organize the remainder of this work as follows:

� Chapter 2 reviews essential concepts used throughout this work;

� Chapter 3 discusses the problem we aim to address in this study. In particular, we
illustrate scenarios where the problem that we want to tackle occurs and we explain
limitations of existing approaches to solve it;

� Chapter 4 explains our language. It provides a general idea of Salvum as well as
details of the language specification and implementation;

� Chapter 5 presents the evaluation we perform for Salvum to answer whether it can
find relevant violations for well-supported and poorly-supported projects. More-
over, we discuss another assessment we performed to investigate whether Salvum
helps to reduce the effort to review code contributions. Besides that, we discuss the
evaluation of the Information Flow Control analysis that we use in our tool imple-
mentation. In the end of this chapter, we discuss threats to validity;

� Chapter 6 discusses related work;

� Chapter 7 presents the final considerations of this work.

17

2 Background

In this chapter, we review essential concepts explored in this work. First, we explain
manual code review in Section 2.1. Then, we discuss existing automatic analysis approaches
designed to mitigate manual code review drawbacks (Section 2.2). Furthermore, in Section 2.4,
we describe the framework we use as a basis for our language implementation; we focus on its
primary data structures and analysis. At last, we discuss collaborative software development
and the Version Control System we use in Section 2.5.

2.1 Manual Code Review

Manual code reviewing is a form of inspection in which reviewers search for issues in
source code. It is a way of ensuring developers are following proposed guidelines to build a
system. Thus, we can use manual code review to check many properties, such as proper code
indentation or lack of security flaws. We could use this technique to find issues that might
compromise privacy and security of sensitive information. Frequently, it demands reviewers
to understand the domain and purpose of the application [21].

In this context, available documentation might guide developers in the code reviewing
task. For instance, the Open Web Application Security Project (OWASP) provides these guide-
lines [22] for web systems. Thus, by following them, reviewers can read the source code to find
known vulnerabilities, such as those that allow SQL Injection, Cross-site Scripting, Race Con-
ditions, etc. [21]. The code review task consists of reading the source code to determine if it is
possible for third parties to maliciously explore the system information. Besides searching for
known vulnerabilities, reviewers seek for violations of sensitive information, that is when this
information might be exposed. For example, a reviewer can search for points within the source
code where a secret token is printed in the user interface. Listing 2.1 of code below illustrates
this example. Line 3 appends the token secret to a text area visible to users. Reviewers should
detect this problem.

2.2. STATIC INFORMATION FLOW CONTROL ANALYSIS TOOLS 18

Code 2.1: Program fragment with violation of sensitive information

1 void a c t i o n P e r f o r m e d (A c t i o n E v e n t e v t) {
2 S t r i n g s e c r e t = g e t T o k e n S e c r e t () ;
3 t e x t A r e a . append (s e c r e t) ;
4 . . .
5 }

Another typical scenario is to review code in collaborative development based on the
pull request model [23]. Usually, an experienced developer performs the review task before
integrating the code contribution into production repositories. Thus, it is possible to reject the
code and demand changes fix to the detected problems.

More recent platforms like GitHub [1] allow developers to easily interact during the
manual code review task. For example, a reviewer can comment any line of code changed,
added, or removed by other developers in a set of commits. These platforms have increased the
popularity of manually reviewing code contributions [24].

Albeit necessary in many cases, manual code review is time-consuming and expen-
sive [6]. To do it correctly, human code reviewers must first know what privacy and security
issues look like before they can rigorously examine the code [7, 8]. Additionally, they must
reason about the sensitive information that should not be exposed as well as the points where
it could leak. This understanding demands knowledge about the system domain, architecture,
and source code. Therefore, it is usual to assign only experienced developers to the review task.
Considering the experience we acquired on open-source and Java-written projects on GitHub [1]
based on our experiments, only one or two developers perform the manual code review task in-
dependently of the total number of contributors. Besides that, even experienced reviewers can
bypass some problems that might then escape the development environment and reach users,
with potentially harmful consequences [4].

2.2 Static Information Flow Control analysis tools

To mitigate the drawbacks of manual code review researchers have proposed the use of
static analysis tools. These tools automatically analyze source code to find different types of
violations. In general, there are two analysis approaches.

The first analysis approach concerns the set of tools that allow developers to specify
flows that configure violations, independently of the application domain. However, they are still
dependent on programming languages. Jeeves [16] and PIDGIN [15] provide policy languages
for specification of Sources and Sinks, which allow developers to determine program parts that
hold sensitive information and source code location where it cannot flow. For e xample, we
could write the code snippet below in the policy language provided by PIDGIN.

2.2. STATIC INFORMATION FLOW CONTROL ANALYSIS TOOLS 19

let secret = pgm.returnsOf("getRandom") in

let outputs = pgm.formalsOf("output") in

pgm.between(secret, outputs) is empty

This policy specifies that there must not be information flow between the return of method
getRandom() and any arguments of method output. Thus, by writing it, developers can
also reduce the effort of manual code reviewing.

Other tools such as JIF [14], CheckerFramework [25], and JOANA [13] provide an
annotation mechanism. Thereby, developers can manually annotate Sources and Sinks before
running the automatic analysis. These tools are also independent of application domains and
dependent on programming languages. For instance, the snippet of JIF code below1 specifies
that x is ruled by a security policy.

int {Alice->Bob} x;

It states that the principal Alice controls the information in x, and she permits that the principal
Bob sees this information. The policy {Alice->Bob} means Alice owns the information,
and she allows Bob to affect it.

The CheckerFramework has a similar annotation mechanism. This way, developers
tangle policy code with system’s source code. On the other hand, JOANA provides a different
annotation mechanism. Developers use its user interface to annotate program instructions as
Sources and Sinks every time before running the analysis. Figure 2.1 illustrates this scenario.
We annotate the User.passwordHash attribute as Source whereas the println instruction
called in the Log.loggingAction(user) method as Sink. In this way, JOANA’s analysis
is capable of determining whether there is a flow between these two annotated program parts.
Nonetheless, JOANA also provides an API to permit implementation of customs annotation
mechanisms.

In this work, we use JOANA’s analysis and API to implement our policy language.
Therefore, in Section 2.4, we explain the JOANA tool, its analysis and data structures.

The second approach concerns the set of tools that analyze systems of specific techni-
cal domains, such as Java Web systems. In this context, some tools automatically find source
code locations that hold user input. For example, a field that contains a password that the user
typed. These tools also search for program parts where the information of these inputs should
not flow to or must be sanitized before reaching them [11, 26], for instance, a call to a method
that saves user password in the database without encryption. Thus, their goal is to determine
whether there is a flow between user input and points where it might leak or cause harm. For
the domain of Java Web applications, TAJ [11] can determine whether there is a flow between
user entries in a form and database queries. Other tools designed for specific domains like
Flowdroid [10] and Scandroid [12] hold a list of Sources and Sinks that represent sensitive in-
formation and leaking points, respectively. Their primary goal is also to determine whether

1https://www.cs.cornell.edu/jif/

https://www.cs.cornell.edu/jif/

2.3. CONFIDENTIALITY AND INTEGRITY 20

Figure 2.1: JOANA’s user interface

there is information flow between a Source and a Sink. For example, Flowdroid [10] can estab-
lish the existence of information flows between a phone’s IMEI and a sendSMS method for the
Android application domain.

These tools allow reviewers to reduce the effort of manually reviewing source code to
find issues regarding illegal information flow. On the other hand, such tools might not affect the
productivity of manual code review for other tasks we mentioned in Section 2.1, like checking
code indentation.

2.3 Confidentiality and Integrity

Before explaining JOANA in Section 2.4, we introduce two important concepts in Sec-
tion 2.3: confidentiality and integrity properties. In this section, we explain two properties that
are important to consider when working with sensitive data.

Confidentiality demands that sensitive information does not leak to public outputs [18].
It also refers to protecting sensitive information from being accessed by unauthorized parties.
Only the people who are authorized to do so have access to the information. For example, in
Listing 2.1, the sensitive information is the secret token whereas the public output is the user
interface text area. In this work, we approach confidentiality regarding information fl ow. This

2.4. JAVA OBJECT-SENSITIVE ANALYSIS (JOANA) 21

way, we can enforce confidentiality by controlling information flow from sensitive informa-
tion to source code locations where it can leak [27], like the text area we mentioned above.
Information flow policies can help us to express confidentiality properties of systems [28].

Integrity demands that public data does not influence sensitive computations [18]. It
also refers to ensuring that information is not altered, and that the source of the information is
genuine. For instance, Listing 2.2 illustrates a violation of sensitive information integrity.

Code 2.2: Program fragment showing integrity violation

1 void r e g i s t e r U s e r (User u) {
2 D a t a b a s e C o n n e c t i o n c = getConn () ;
3 S t r i n g l o g i n = u . g e t L o g i n () ;
4 u . s e t P a s s (" 123 ") ; / / m a l i c i o u s code

5 S t r i n g password = u . g e t P a s s () ;
6 c . s a v e U s e r (l o g i n , e n c r y p t (password)) ;
7 }

An unauthorized developer introduced the malicious code in line 4. It changes the sensitive in-
formation password so that he can easily guess the encrypted password of any user. This exam-
ple assumes this malicious developer knows the encryption algorithm used in the encrypt()
method, which is called in line 6. In this example, the public data is the unauthorized call to
setPass() in line 4 whereas the sensitive computation is the saveUser() call in line 6.

We can also express integrity properties of systems using information flow p olicies. In
this manner, we can enforce these properties by controlling information flow from potentially
dangerous program parts (eg., a method that changes passwords) to sensitive information.

Lastly, confidentiality and integrity are dual to each other [29]. Thus, to guarantee both,
we need to check for information flows from one source code location to another and vice-versa.

2.4 Java Object-sensitive Analysis (JOANA)

There are many Information Flow Control tools [25, 30, 31, 32, 6, 33, 34, 10, 11, 35,
14, 15, 16]. In this work, we implement our policy language using JOANA [13], which is an
open-source framework written in Java that supports static analysis of Java systems to identify
integrity and confidentiality constraint v iolations. It is built upon the WALA program analysis
framework [30].

We choose JOANA because it is open-source and contains many customizable optimiza-
tions that improve analysis precision, which help to reduce the number of false-positives [33].
Additionally, JOANA provides an API that allows us to customize its annotation mechanism. It
uses a special kind of graph named System Dependence Graph [36] in its analysis implementa-
tion. In Section 2.4.1, we explain this data structure.

2.4. JAVA OBJECT-SENSITIVE ANALYSIS (JOANA) 22

2.4.1 System Dependence Graph (SDG)

JOANA backend is based on dependence graphs which capture dependencies between
program statements in the form of a graph [33]. It uses two kinds of graph: Program Depen-
dence Graphs [37] (PDG) and System Dependence Graph [36] (SDG). PDGs are intraprocedu-
ral whereas SDGs are interprocedural. In this way, an SDG adds edges between different PDGs
accordingly to the call graph representation of the program.

In these dependence graphs, graph nodes represent program statements or expressions.
Moreover, there are two kinds of edges: data dependence and control dependence [18]. Data
dependence regards one statement (node) that assigns a variable which is used by another one
(node) without being reassigned underway. Control dependence edge means that the execu-
tion of one statement depends directly on the value of a given expression, which is typically a
condition clause in an if or while.

To determine whether an information flow e x i sts f r o m o n e n o d e t o a n o ther, JOANA
requires that we manually annotate labels of different security levels to these nodes. Secu-
rity levels are defined i n s e c urity t y p e s y s tems, w h i ch a s s ociate l e v els—coded a s types—to
variables, fields, e xpressions, e t c . a nd t he t yping r ules p ropagate t hese l evels t hrough t he ex-
pressions and statements of a program [18]. These labels might be High or Low, which could
represent public or sensitive information. Thus, JOANA runs its analysis to identify potential
flow b e tween a H i gh a n d L o w l a bel t o c h eck f o r c o nfidentiality vi ol at ions, an d fr om Lo w to
High to check for integrity violations. In Listing 2.3, we show a snippet of code and Figure 2.2
shows the corresponding PDG.

Code 2.3: Program fragment with information leak [33]

1 void main () {
2 S t r i n g password = i n p u t () ;
3 p r i n t (password) ;
4 i f (password . c o n t a i n s (" 123 ")) {
5 p r i n t (" password c o n t a i n s 123 ") ;
6 }
7 p r i n t (" n o t a l e a k ") ;
8 }

Control dependence is shown as dashed edges and data dependence as solid lines. There is a
path from node 2 to node 4, indicating that password may eventually influence the value of
the conditional expression. There is also a data dependence between nodes 2 and 3 because the
statement in 3 reads password. The control dependence from 1 to 2, 3, 4, and 7 indicates
that these statements execute only if we call main. Additionally, there is a control dependence
between 4 and 5 because the execution of the latter depends on the evaluation of the expression
in the former.

2.4. JAVA OBJECT-SENSITIVE ANALYSIS (JOANA) 23

Figure 2.2: Program Dependence Graph for Listing 2.3

After building the graph of Figure 2.2, we should annotate the nodes that represent
sensitive information and potential leaking statements. Therefore, we assign the High label to
node 2 because it holds sensitive information. Furthermore, we assign the Low label to nodes
3, 5, and 7 because they can be leaking statements. The High label has a different security level
from the Low label. Therefore, our goal is to determine whether there is a path in the graph
from a node annotated with High to another node annotated with Low.

In this case, there is a path from node 2 to node 3, which indicates a violation of
sensitive information confidentiality. Indeed, the statement in node 3 prints the password.
Since there is no path from node 2 to node 7, sensitive information is not printed through
print("not a leak"). However, there is a path from node 2 to 5, which consists of a
Data dependence edge from 2 to 4 and a Control dependence from 4 to 5. Thus, the password
value eventually influences the execution of 5.

To detect a violation of the integrity property, we check whether there is a path from a
node annotated with Low to another one annotated with High. As we explained in Section 2.3,
these two properties are dual.

We can annotate code instructions represented as PDG nodes with the user interface
of Figure 2.1. In this way, we label node 2 with High label and nodes 3, 5, and 7 with Low

label. These nodes correspond sensitive information and potential leaking statements, respec-
tively. This annotating procedure might be time-consuming when we need to annotate many
nodes scattered across an SDG. Moreover, we illustrate an PDG instead of SDG for simplicity.
An SDG would have additional edges to connect method calls to their corresponding PDGs.
For example, node 4 would have a Control dependence edge to the starting node of the PDG
representing the method contains(). We explain the process of SDG creation next.

2.4. JAVA OBJECT-SENSITIVE ANALYSIS (JOANA) 24

Figure 2.3: SDG construction overview

2.4.1.1 SDG creation

In Figure 2.3, we provide an overview of the process of SDG creation. First, we need
a set of compiled Java classes. Then JOANA sets up the analysis scope, which defines what
classes will be analyzed. We can classify these classes as Primordial, Application, and Exten-
sion class loader references. Primordial represents classes defined in the Java standard library,
like ArrayList. Application represents the classes we define for the analyzed system. Extension
regards third-party classes that we use in the system, such as those provided by libraries we
include in the build path. Additionally, JOANA permits that we provide an exclusion list to the
scope. This tool uses the analysis scope mechanism provided by the WALA framework.

Then, JOANA also uses WALA to create a class hierarchy based on the analysis scope.
This data structure holds information about relationships between classes. For example, a sub-
class is related to its superclass. JOANA uses the class hierarchy as an auxiliary data structure
to create other structures and to find the entry method we provide as input.

The call graph is, in summary, a structure that relates nodes and edges. The nodes
represent methods whereas the edges represent calls to these methods. JOANA executes a
pointer and exception analysis, which is used together with the class hierarchy to build a WALA
call graph. The call graph uses an entry-point as a starter. From each node in the call graph
built, JOANA creates an PDG, which models a given method. Finally, the call graph edges are
used to connect the established PDGs, forming an SDG. For each call graph node, JOANA finds
the target of the call to establish the connections.

2.4. JAVA OBJECT-SENSITIVE ANALYSIS (JOANA) 25

JOANA allows that we configure the SDG creation so that the analysis is less or more
precise. This configuration might have an impact on performance. The more accurate, the
slower it is. Therefore, we opt for the most precise configuration that does not turn the analysis
execution infeasible regarding time. We explain some of these configurations below.

Entry point.
To create a call graph of a program, JOANA requires that we provide an entry-point.

For a Java Desktop system, the typical entry-point is the main() method. For native methods,
the PDGs must be manually supplied or generated from so-called stubs [18]. JOANA supports
stubs for two Java Runtime Environments (JREs): 1.4 and 1.5. In particular, these stubs in-
clude predefined models of native methods for the Java standard library. Additionally, JOANA
supports multi-threaded systems. It is capable to compute interference SDG edges to model de-
pendencies between threads [18]. In Figure 2.4, we show a Java program and the corresponding
call graph.

Figure 2.4: Java program and its corresponding call graph

The main() method calls print(), thus there is an edge between their corresponding nodes.
In turn, print() calls println() and encrypt(), thus there are edges from the former
to the latter. We can also provide other methods as entry-point. For example, usually Java Web
systems do not have a main method. Thus, we can provide methods that encompass parts of
code that we are interested in analyzing.

Exception analysis.
The SDGs we have shown so far do not include exceptions. Hammer and Snelting [18]

discuss that exceptions can alter the control flow of a program and thus may lead to implicit
flow2, in case the exception is caught by some handler on the call-stack, or else in case the

2We explain this concept in Section 2.4.3

2.4. JAVA OBJECT-SENSITIVE ANALYSIS (JOANA) 26

exception is propagated to the top of the stack yielding a program termination with stack trace.
To avoid missing these implicit flows, JOANA can deal with exceptions in two different

ways. First, JOANA can conservatively add control flow edges from bytecode instruction to
an appropriate exception handler. Second, it can percolate the exception to the callee which in
turn receives such a conservative control flow edge [18]. We can configure different JOANA
options regarding exceptions, which influences in the analysis precision. This tool provides four
different configurations regarding exception analysis:

1. Ignore all exceptions;

2. Integrate all exceptions without optimization;

3. Integrate all exceptions with intraprocedural optimization;

4. Integrate all exceptions with interprocedural optimization.

The first option acts as if exceptions never o ccur. Thus, 1 is less precise, but f aster. The
second option assumes that each statement in a program can potentially throw an exception (e.g.,
NullPointerException). Hence, 2 tends to be more accurate than 1, but also slower. The
third option acts like 2, but it applies an intraprocedural analysis that detects statements that
definitely c a nnot t h row a n e xception (e g., t h e t h is p o inter). F or t h is r e ason, 3 t e nds t o
be more precise than 2, but it is also slower. At last, the fourth option extends the third option
with interprocedural analysis. Therefore, 4 tends to be the most precise and the most time-

consuming.
The choice for a more precise option affects the SDG creation because JOANA needs to

include more nodes and edges for each exception occurrence. Thus, we create different SDGs
if we use different options.

Pointer analysis.
The pointer analysis also affects the SDG creation. It is a static program analysis that

determines information on the values of pointer variables or expressions. The goal of pointer
analysis is to compute an approximation of the set of program objects that a pointer variable or
expression can refer to [38]. JOANA inherits nine different pointer analyses provided by
WALA. Table 2.1 explains each pointer analysis that we can choose to build an SDG. In Sec-tion
2.4.2, we discuss the configuration we choose to run JOANA in this work.

2.4.2 JOANA configuration

For this work, we set JOANA’s configuration to build the SDGs with the object-sensitive
pointer analysis and integrating all exception with interprocedural optimization since we notice that
this configuration i s t he m ost p recise a nd y et f easible (i .e., i t f i nishes ex ecuting in a few

2.4. JAVA OBJECT-SENSITIVE ANALYSIS (JOANA) 27

Table 2.1: Pointer analyis options

Pointer analysis Description

Rapid Type Analysis Protoype for academic purposes
Type based It differentiates objects by their classes. Different instances

of a given class are considered to be the same object
Instance based It differentiates objects by their allocation points/positions

It is capable of distinguishing different instances of the same
Object sensitive class and methods invoked on different instances.

Unlimited receiver context for application code and 1-level
receiver context for library code

N1 Object sensitive It limits the receiver context for both application and library
code to 1-level

Unlimited object sensitive Unlimited receiver context for the application and library code
It tends to be very slow
It differentiates objects by their allocation points/positions.

N1 call stack Additionally it differentiates calls to methods of the same
object with 1 level of call stack
It differentiates objects by their allocation points/positions.

N2 call stack Additionally it differentiates calls to methods of the same
object with 2 levels of call stack
It differentiates objects by their allocation points/positions.

N3 call stack Additionally it differentiates calls to methods of the same
object with 3 levels of call stack

days in the worst of our cases). This configuration tends to allow us to detect more violations.
However, more precise settings take much more time and hardware resources.

As we explained in Section 2.4.1.1, the object-sensitive analysis is capable of distin-
guishing two objects from the same class. For example, Listing 2.4 shows a snippet of code in
which "secret" does not leak to the print() method. Indeed, there is no path in the SDG
from the node of line 10 to 13 because we create a new instance of X in line 11. Therefore, the
object-sensitive analysis distinguishes the value variables in the two objects of X.

2.4. JAVA OBJECT-SENSITIVE ANALYSIS (JOANA) 28

Code 2.4: Object-sensitivity example

1 c l a s s X {
2 S t r i n g v a l u e ;
3 void s e t V a l u e (S t r i n g v) { t h i s . v a l u e = v ; }
4 S t r i n g g e t V a l u e () { re turn t h i s . v a l u e ; }
5 }
6
7 c l a s s UsingX {
8 void main () {
9 X p = new X () ;

10 p . s e t V a l u e (" s e c r e t ") ;
11 p = new X () ;
12 p . s e t V a l u e (" p u b l i c ") ;
13 p r i n t (p . g e t V a l u e ()) ;
14 }
15 }

Despite the fact that we believe the scenario of Listing 2.4 is unusual, we still need to detect it.
Therefore, we opt for object-sensitivity.

For the sake of precision, we also include the exception analysis that integrate all excep-
tions with interprocedural optimization. In contrast to the object-sensitive example, Listing 2.5
shows a real information leak we found in our evaluation (Chapter 5).

Code 2.5: Exception example

1 IPas sword g e t P a s s w o r d (S t r i n g pwd) {
2 i n t i n d e x = t h i s . pwd . indexOf (’ : ’) ;
3 i f (i n d e x == −1) {
4 throw new I l l e g a l A r g u m e n t E x c e p t i o n (pwd) ;
5 }
6 . . .
7 }

Depending on the value of index, the program throws a new exception with the pass-
word as an argument. In case we label pwd as High and the exception throwing statement
in line 4 as Low, we would be able to detect a violation even without exception analysis.
However, with this option activated, we are also able to identify that there is a Control De-
pendence between index and the exception, which unveils precisely the statement that can
throw IllegalArgumentException. Otherwise, with exception analysis deactivated, all
the lines of the getPassword() method are potential throwers. Thus, to be able to iden-
tify when these problems occur in the context of exceptions, we also opt to include exception

2.4. JAVA OBJECT-SENSITIVE ANALYSIS (JOANA) 29

analysis.
In this context, JOANA implements an SDG based Information Flow Control analysis

that checks whether there are paths from nodes annotated with labels of different security level
(eg., High and Low). Therefore, we explain the analyses in Section 2.4.3.

2.4.3 Information flow control analysis

Information Flow Control (IFC) is concerned with the flow of information inside a sys-
tem. IFC analysis checks whether there is information flow from one point to another within a
system or if this information is altered at some point. In our context, we use JOANA analyses
to check whether sensitive information flows t o o r i s a ltered b y p otentially d angerous opera-
tions (e.g., labeled with Low). To avoid these problems, we consider IFC as a technique for
discovering paths of sensitive information flows. It has two main tasks [18]:

� Guarantee confidentiality of information;

� Guarantee integrity of information.

In particular, IFC analysis aims to establish noninterference [39], that is, by analyz-
ing compiled source code, it tries to prove that there is no violation of confidentiality and in-
tegrity [40, 18].

In Listing 2.6, we illustrate a simple example of a path that IFC analysis detects to
check sensitive information confidentiality. In this way, an SDG representation of the program
is built, which makes it possible to check for paths from a given node to another. Thus, the
information initially stored in password flows (has a path) to print() in line 6 because
the user object contains this sensitive information. In this example, IFC analysis is useful for
finding a violation of password information confidentiality. In this case, we need to provide
to IFC tools the statements that contains sensitive information and the statements that might
leak it. Thus, the node that corresponds to password is labeled as High and print() node
is labeled as Low. Therefore, password is our Source and print() is our Sink in this
example.

Code 2.6: Sensitive information confidentiality

1 S t r i n g l o g i n = " p u b l i c " ;
2 S t r i n g password = " s e c r e t " ; / / High

3 User u s e r = new User (l o g i n , password) ;
4 s i g n I n (u s e r) ;
5 Logger . i n f o (" User s i g n e d i n : " + l o g i n) ;
6 p r i n t (User) / / Low

Additionally, Listing 2.7 illustrates an example of a path that IFC analysis identifies
to determine whether there is a violation of sensitive information integrity. The information

2.4. JAVA OBJECT-SENSITIVE ANALYSIS (JOANA) 30

initially stored in password is altered by changeUserPassword() because this method
reassigns the password variable. Given the SDG representation of the program, IFC analysis
is capable of identifying that there is a path between these two corresponding nodes. In this case,
there is a Data dependence between the node that corresponds to changeUserPassword()
and the node that corresponds to password. Different from the confidentiality example,
changeUserPassword() is labeled as High and password as Low. This annotation
switching happens because confidentiality and integrity are dual [29]. Thus, sensitive infor-
mation labeled as Low and dangerous operations labeled as High allow us to check information
integrity instead of confidentiality.

Code 2.7: Sensitive information integrity

1 S t r i n g l o g i n = " p u b l i c " ;
2 S t r i n g password = " s e c r e t " ; / / Low

3 User u s e r = new User (l o g i n , password) ;
4 changeUserPassword (password) ; / / High

Static analysis tools can help to reduce the effort of Manual Code Review because they
can check systems more frequently, and they encapsulate privacy and security knowledge in a
way that does not require the tool operator to have the same level of expertise as a human code
reviewer [7]. Another frequent use of these analyses is to guarantee the Principle of Least
Privilege [41], which states that every program and every user should operate using the least
amount of privilege necessary to correctly complete the job.

Additionally, IFC analysis is capable of detecting different kinds of information flows.
An explicit flow arises if a secret value is copied to public output whereas an implicit flow arises
if a secret value can influence the control flow. Listing 2.8 implements an example that shows
both kinds of flow.

Code 2.8: Explicit and implicit flows

1 void main () {
2 x = i n p u t P I N () ; / / s e c r e t

3 p r i n t (x) ; / / e x p l i c i t f l o w

4 i f (x < 1234) {
5 p r i n t (0) ; / / i m p l i c i t f l o w

6 }

The value of variable x is secret. In this example we have an explicit flows from x to a public
output (print()) in line 3. This program prints 0 if the secret value is less than 1234.
Therefore, the value of x influences the program control flow (conditional clause in line 4),
which represents an implicit flow. If an attacker has access to the source code, he would know
that secret is less than 1234, which masks it more straightforward to guess the correct secret
value.

2.5. COLLABORATIVE SOFTWARE DEVELOPMENT 31

2.5 Collaborative software development

In collaborative software development, many developers implement code and submit to
a common source code repository. We use a term for the code and submissions throughout this
work: code contribution. Here a code contribution is a set3 of commits submitted to a repository
managed by a Version Control System (VCS). For example, a code contribution might be:

� A pull request in GitHub [1];

� Commits with messages containing a certain word (e.g., to identify commits related
to issues);

� Commits submitted by a specific author;

� Commits related to the result of a task execution;

Collaborative software developers might be talented and experienced, but they can also
be untrustworthy or malicious. In particular, an open-source software project can receive code
submissions from any developer. To help protecting these systems from harm, we use this code
contribution concept in our language specification, a s w e e xplain i n C hapter 4 . O ur language
implementation currently supports the Git [42] Version Control System.

2.5.1 Git

Git [42] is a distributed Version Control System that allows developers to contribute to
repositories in an organized way. By the end of 2017, the most used hosting service using Git,
named GitHub [1], has around 20 million users, 57 million repositories, and 100 million pull
request [43]. This is the main reason we choose Git for our policy language implementation.
Nonetheless, the concepts of our language also apply to other Version Control Systems.

Pull requests let a developer warn others about commits pushed to a repository on
GitHub. In this way, experienced developers can manually review and discuss changes with
collaborators before merging the changes. Thus, pull-based collaborative software develop-
ment encourages code review. However, as we mentioned in Section 2.1, developers might
bypass some issues.

To be capable of analyzing code contributions, we use four Git commands in our lan-
guage implementation (Chapter 4): diff, checkout, blame, and log.

First, the git diff command shows changes between commits. It generates a file in-
dicating the lines added, changed, or removed. In Listing 2.9, we show an example of diff’s
output. The latest commit adds the line shaded in green (line 2) whereas it removes the line
shaded in red (line 3). Notice that before this latest commit, only line 3 existed. We use diff

3The order does not matter.

2.5. COLLABORATIVE SOFTWARE DEVELOPMENT 32

outputs in our language implementation to determine the lines of code that correspond to a
certain code contribution.

Code 2.9: diff output

1 void showDif f () {
2 + print("Hello added");

3 − print("Hello deleted");

4 }

Second, the git checkout command updates file in the working tree to match the spec-
ified source code version. For instance, we can checkout a source code to a specific commit
identified by a commit hash: git checkout gsd68dh. The result of this command execu-
tion is the repository showing exactly how all its files were when a particular developer made a
commit associated with the commit hash gsd68dh. Git automatically generates these commit
hashes, and they are unique for each commit, independently of repositories. In this way, we
use git checkout to obtain the system version we have to analyze. Figure 2.5 illustrates an
example of Git checkout.

Figure 2.5: Example of git checkout

Before checkout, the current repository state is on the s98ac commit. After checkout,
all the files downgrade to the state they were on commit 5ghr8. In this way, we can analyze
the source code corresponding to the commit 5ghr8.

Third, the blame command shows the code contribution and author that last
modified each line of a file. Thus, it is useful in our context to identify the de-
veloper and his code contribution that introduced a potential violation in a system
source code. For example, we can run the blame command to retrieve informa-
tion about the last commit that modified line 4. For example, on command line,
we can use this: git blame -L 4,4 - - AuthenticationProvider.java.

2.5. COLLABORATIVE SOFTWARE DEVELOPMENT 33

This command identifies the last commit that makes a change to line 4 in the
AuthenticationProvider.java file.

Code 2.10: Git blame example

1 c l a s s A u t h e n t i c a t i o n P r o v i d e r {
2 void s e t C o o k i e (UserModel u s e r) {
3 i f (S t r i n g U t i l s . i sEmpty (u s e r . c o o k i e))
4 u s e r . c o o k i e = u s e r . c r e a t e C o o k i e () ;
5 } . . .
6 }

This command would inform that the commit identified by hash b453703 was committed by
the author Rodrigo Andrade on the 15th of August. Furthermore, we can call this Git feature
programmatically.

Fourth, we also use the log command to find the set of commit hashes corresponding
to a given author or to filter commits containing a keyword in their messages. For example, the
command below retrieves the commit history for a given software project where the commit
messages include the keyword "leak".

git log -grep="leak"

For each commit found, this command output consists of its hash, committer, date, and message.
In this chapter, we explain the central concepts that the reader should know to under-

stand this work. Thus, we define Manual Code Review and briefly discuss its limitations. More-
over, we present some real automatic analysis to find issues in the source code. To better un-
derstand the kind of analysis we use in this work, we explain the information integrity and
confidentiality properties. So, we describe the Information Flow Control analysis and its main
structures. We end this chapter explaining collaborative software development and the Version
Control System we use in this study. In the next chapter, we illustrate four scenarios of problems
we aim to tackle.

34

3 Problem

The Common Weakness Enumeration (CWE) has a catalog of more than 1000 kinds of
software weaknesses [44]. These are different ways that software developers can introduce vio-
lations that lead to non-secure projects. Each violation could be subtle, and many are seriously
tricky. Software developers are not taught about these issues in school, and most do not receive
any training on the job about these problems [21]. Indeed, other researchers have found many
problems in Java projects [6, 11, 26, 45].

In this chapter, we explain four scenarios that illustrate privacy and security problems
that could be time-consuming and error-prone to detect with existing approaches, such as man-
ual code review and plain IFC tools. We explain the first s cenario i n S ection 3 .1, t he second
one in Section 3.2, the third one in Section 3.3, and the last one in Section 3.4. These scenarios
illustrate similar problems regarding violations of sensitive information. However, they differ
in the way we could detect such violations. For example, the first s cenario d emands t hat we
analyze different code contributions whereas the second scenario demands that we analyze po-
tentially dangerous classes in a single software version. At last, we summarize some limitations
of manual code review and existing IFC analysis for tackling the problems presented in our
scenarios (Section 3.5).

3.1 First scenario: Code contribution introducing a violation

In this scenario, we discuss an example of a real problem in the Gitblit [46] project. In
this git repository manager, there is a web user interface that administrators can use to create,
edit, rename, or delete repositories, users, and teams. Furthermore, Gitblit implements a cookie
mechanism to identify these web interface users. This project is open-source and supported by
several developers, who submit their code contributions to a GitHub1 repository. We provide
further details about Gitblit in Section 5.2.1.

One of these contributions resulted from an enhancement task assigned to one devel-
oper [47]. His task was to improve the Gitblit code that deals with Java Servlets. Among other
code changes in the resulting contribution [47], the developer added the green line (line 5) in

1https://github.com/gitblit/gitblit

https://github.com/gitblit/gitblit

3.1. FIRST SCENARIO: CODE CONTRIBUTION INTRODUCING A VIOLATION 35

Listing 3.1 to set a user cookie. In particular, setCookie receives the user object, which is
an instance of UserModel.

Code 3.1: Setting an user cookie

1 class RootPage {
2 void l o g i n U s e r (UserModel user) {
3 if (u s e r != null) {
4 . . .
5 app().auth().setCookie(request, response, user);

6 }
7 . . .
8 }

However, we believe that the developer did not notice that UserModel instances hold
sensitive user information, such as password, email, and location. Since the experi-
enced developer responsible for manually reviewing code contributions in Gitblit did not iden-
tify any problems, this setCookie call was merged into the production repository. Hence,
when we execute the loginUser method, sensitive user information unnecessarily flows in
an implicit way to setCookie, which we call in the new code contribution (line 5). This
situation is a violation of the Principle of Least Privilege [41], which states that every program
part should operate using the least amount of privilege necessary to correctly complete the job.

Thus, this new code contribution should not have access to sensitive user information
contained in the user object, such as the one stored in UserModel.password. Moreover,
the code contribution can expose sensitive user information to any attacker possessing access
to user browser data. Indeed, Gitblit developers use a weak encryption algorithm (SHA-1) to
deal with this confidential information in cookie implementation [48]. Additionally, an attacker
might use tools like HashKiller [49] to decrypt the resulting hash key and expose user sensitive
information.

This problematic code contribution was merged on the 3rd of July 2014. We have
reported this potential leak, and Gitblit developers requested a pull request. We submitted a fix
and it was integrated on 13 December 20162. Thus, it might take a long time to detect and solve
these problems [4].

In case we consider existing approaches to find the issue presented in this scenario, the
person responsible for reviewing the code changes that generated the illustrated problem would
have to read and understand 142 additions and 142 deletions in the Gitblit source code [20] only
for this contribution. This person would have to be an expert in the system because she must
know the information that should be protected and also the program parts that could leak it. In
the case of Gitblit, which contains many pieces of sensitive information, this could be a hard
task. Notice that even though Gitblit has a manual code review process, reviewers could not

2https://github.com/gitblit/gitblit/pull/1116

https://github.com/gitblit/gitblit/pull/1116

3.2. SECOND SCENARIO: SENSITIVE INFORMATION LEAKING THROUGH THIRD-
PARTY CLASSES 36

identify the issue presented in this scenario.
On the other hand, when using JOANA [13] on the Gitblit system for the code contribu-

tion of Listing 3.1, we have to analyze 408 bytecode instructions to annotate High and Low to
run its IFC analysis. They originate from a method with 300 lines of code (each line can con-
tain more than one instruction). Furthermore, we might have to annotate instruction for other
classes and methods. Labeling these instructions was time-consuming even using a graphical
user interface provided by JOANA. Nevertheless, we could mitigate the effort of this labeling
task with a more user-friendly interface, but it would still demand significant w ork because
there are 142 lines of methods and fields added in this code c ontribution. Jif [14] and Checker
Framework [25] might introduce more drawbacks since we would need to change the source
code to associate program elements with their types or annotations for each code contribution.
For example, we would need to manually annotate additional types for the 142 lines added in
this contribution, like line 5 in Listing 3.1. However, the user password did not change, so we
would need to do further annotations for it.

3.2 Second Scenario: Sensitive information leaking through
third-party classes

Our second scenario illustrates an issue in the Blojsom [50] project, which is an open-
source and Java-written blog application. This system calls many external library methods.
One of these libraries is the Simple Logging Facade for Java (SLF4J) [51], which is useful to
log operations throughout the source code. These logging operations are known to be a poten-
tially dangerous point of information leak [52] as specified in the Common Weakness Enumer-
ation [44] and in The Open Web Application Security Project [22]. Thus, in many situations,
we should not log sensitive information. However, untrustworthy or careless developers might
ignore this problem, which might compromise information confidentiality and integrity. Thus,
we should be able to find these leaks and discover the code contribution that introduced it.

For example, Listing 3.2 illustrates a method of the AtomAPIServlet class that
checks whether a user is authorized to request a resource. Line 4 obtains the user password
and line 8 logs it in case an error occurs. Thus, the password value is passed as an argument
to logger.info(), which leads to sensitive information flowing to the code of an external
library (SLF4J).

3.2. SECOND SCENARIO: SENSITIVE INFORMATION LEAKING THROUGH THIRD-
PARTY CLASSES 37

Code 3.2: Logging passwords

1 boolean i s A u t h o r i z e d (H t t p S e r v l e t R e q u e s t r e q) {
2 boolean r e s u l t = false ;
3 . . .
4 password = rea lmAuth . s u b s t r i n g (pos + 1) ;
5 r e s u l t = _b log . c h e c k A u t h o r i z a t i o n (username , password) ;
6 if (! r e s u l t) {
7 l o g g e r . i n f o (" Unable t o a u t h u s e r [" + username + "]
8 wi th password [" + password + "] ") ;
9 } . . .

10 }

The code in Listing 3.2 might be dangerous because it prints the password in the log
files, which could expose this information to an attacker in case the user provide the wrong
username, but the correct password. In this context, sensitive information should not flow
or be changed by the code of external libraries such as Logger methods. We could not report
this issue because, differently from Gitblit, the Blojsom project is no longer supported. Thus,
the problem we illustrate in Listing 3.2 is still present in Blojsom source code.

To detect this problem, a manual code reviewer would have to localize and understand
58 references to Logger and 340 calls to its methods in the most recent version of Blojsom.
In contrast to the other scenarios discussed so far, the Blojsom project does not have a code
contribution review process. Thus, developers might have integrated many violations. For this
reason, we should also be able to detect privacy and security violations to such cases.

Moreover, she would have to identify flows of sensitive information to these
methods. For example, she would have to reason whether the password value reaches
the logger.info() method. In case the password is reassigned before reaching
logger.info(), there is no violation. Identifying such issues could be a hard task because
it includes explicit and implicit flows.

At last, JOANA would require that sensitive information and Logger methods are
manually labeled. This task is not as time-consuming as using these tools for the first scenario
because we only consider one Blojsom version instead of many code contributions. However
one might forget to annotate instructions across 340 different Logger method calls. Addition-
ally, if we consider Checker Framework or JIF, we would have to scatter and tangle policy code
with core code, which could make it harder to evolve and maintain the system [53].

3.3. THIRD SCENARIO: CODE CONTRIBUTION INTRODUCING A POTENTIAL
VIOLATION 38

3.3 Third Scenario: Code contribution introducing a potential
violation

This scenario differs from the first scenario because here the code contribution intro-
duces a potential violation. We consider a real example in the ScribeJava [54] project. It is a
simple authentication library for Java programs. This project is also open-source and supported
by several developers, who submit their code contributions to its repository on GitHub. We
explain ScribeJava with more details in Section 5.2.1.

The OAuth [55] library has representations of access tokens, which hold sensitive infor-
mation such as the token secret. Many classes implement these representations. Each of them
override toString methods. In 19th of February 2016, a developer submitted a code contri-
bution with the goal of updating token representations.3 Among 559 changed lines throughout
33 files, this developer implemented equals() and toString() methods. Listing 3.3 il-
lustrates one toString() implementation introduced by this code contribution.

Code 3.3: Implementing toString method

1 class OAuth1AccessToken {
2 String toString() {

3 return "OAuth1AccessToken{"
4 + "oauthtoken=" + getToken()

5 + ", oauthtokensecret=" + getTokenSecret() + "}";

6 }
7 }

This developer carelessly introduced the sensitive information token secret in
the result yielded by the toString method. In case other developers call
OAuth1AccessToken.toString(), the token secret would be printed, which exposes
this sensitive information. ScribeJava developers did not notice this issue during manual code
review. Thus, this dangerous code was merged into the central repository.

In this context, the code contribution illustrated in Listing 3.3 should not have access to
the token secret in the toString method because, in case some developer calls it, sensitive
information would be printed. We have opened an issue in the ScribeJava project and one of
its maintainers accepted it as a problem.4 Since it was an easy fix, this developer submitted a
new commit excluding the token secret from the toString method.5 In this case, it took 21
months from the submission of the problematic code contribution to the commit fixing it.

To find the problem introduced by this code contribution, a reviewer might need to un-
derstand sensitive information flows for 33 different files with 385 additions and 174 deletions.

3https://github.com/scribejava/scribejava/commit/d734a4df
4https://github.com/scribejava/scribejava/issues/796
5https://github.com/scribejava/scribejava/commit/73c29f5

https://github.com/scribejava/scribejava/commit/d734a4df
https://github.com/scribejava/scribejava/issues/796
https://github.com/scribejava/scribejava/commit/73c29f5

3.4. FOURTH SCENARIO: UNTRUSTWORTHY DEVELOPER INTRODUCING
VIOLATIONS 39

Moreover, she would have to identify the sensitive information that might flow to the code con-
tribution. This review task might be unfeasible if we need to analyze a large number of code
contributions manually.

Analogously to the scenario of Section 3.1, the task of manually annotating code con-
tributions might be time-consuming and error-prone if we use JOANA. Notice that there are
more changed lines in this scenario which leads to the need for more instruction labeling. At
last, if we use other tools such as JIF, we would have the same drawback: to manually annotate
Sources and Sinks throughout Java source code for each code contribution.

3.4 Fourth Scenario: Untrustworthy developer introducing
violations

The fourth scenario is a hypothetical example of the Open Refine project [56]. This
system works with messy data, cleaning or transforming it from one format into another. Open
Refine is a client-server system written in Java. Furthermore, Open Refine implements an au-
thentication mechanism so that users can access their spreadsheets stored in Google Drive. This
project is also open-source and supported by many developers. We provide further details in
Section 5.2.1.

Some of these developers might be considered untrustworthy, e.g., a new developer, with
few commits accepted. Other characteristics might be necessary to define whether a developer
is untrustworthy: (i) a high number of rejected or reverted commits, (ii) a low activity profile in
GitHub, (iii) the developer is a stranger to a particular software community, (iv) or because the
developer was fired.

These developers’ code contributions should be checked carefully. For the Open Refine
project, we assume that one of its developers is untrustworthy. Among several development
tasks, this developer improved the authentication mechanism between Open Refine and Google
Drive. Listing 3.4 illustrates a snippet of code of his contribution. The shaded line in green
(line 3) represents the added code, whereas shaded line in red (lines 4 and 5) represent removed
code.

Code 3.4: Removing public check

1 void d o I n i t i a l i z e P a r s e r U I (S e r v l e t R e q u e s t r e q u e s t ,
2 S e r v l e t R e s p o n s e r e s p o n s e) {
3 String token = TokenCookie.getToken(request);

4 boolean isPublic = "true".equals(getProperty("isPublic"));

5 String token = isPublic ? null : TokenCookie.getToken(request);

6 . . .
7 }

3.5. SUMMARY OF EXISTING APPROACHES LIMITATIONS 40

Notice that before this code contribution, there was a verification checking whether a
token is public. This verification was removed by the untrustworthy d eveloper, which might
compromise user privacy since TokenCookie.getToken() returns sensitive information.
Hence, sensitive user information of existing code mistakenly flows to an untrustworthy devel-
oper code contribution. In this case, it might result in private user spreadsheet access without
proper permission.

For instance, if this developer is fired from a company, we should check his code contri-
butions to find v iolations. In this scenario, the untrustworthy developer has 813 commits with
1027084 additions and 589028 deletions to be manually reviewed [20]. A code reviewer should
search for sensitive information leak in each of these commits to check the flow of information
to the execution of their lines.

Using JOANA for this scenario would require manually labeling lines added by the
untrustworthy developer for his 1027084 additions spread across 813 commits. Besides that,
sensitive information needs to be labeled for these different program versions. Thus, using
this tool for this scenario would be more time-consuming and error-prone than for the others.
In turn, the effort to use Checker Framework or JIF is unfeasible because we would need to
manually annotate security types for 813 different versions.

3.5 Summary of existing approaches limitations
Manual code review. By looking at the examples we present in our four scenarios, we can
notice that manual code review alone could be time-consuming and error-prone to identify and
solve the problems we discuss. Thus, tools that reduce the effort to review code are neces-sary
to improve productivity and quality of the task of finding privacy and security violations.

Existing IFC tools. In this work, we attempt to mitigate two IFC analyses limitations:
(i) lack of generality and (ii) time-consuming and error-proneness.

The lack of generality drawback regards the IFC tools that are designed to work only for
certain technical domains, such as Android. Therefore, to use these tools to detect the problems
of our scenarios, we would have to do many changes so they would not be specific to their
original domain anymore.

The time-consuming and error-proneness drawback concerns IFC tools that demand
developers to manually specify the information to be protected. Developers can manually label
instructions as High or Low and run the IFC analysis to check whether there is a flow between
them [13]. Alternatively, developers can manually associate labels to program elements in the
form of security types [14] or annotations [25]

On the other hand, some IFC tools demand developers to specify the information to be
manually protected. Developers can manually label instructions as High or Low and run the IFC
analysis to check whether there is a flow between them [13]. Alternatively, developers can man-
ually associate labels to program elements in the form of security types [14] or annotations [25].

3.5. SUMMARY OF EXISTING APPROACHES LIMITATIONS 41

However, the use of such tools might be time-consuming and error-prone.
In this chapter, we illustrate four scenarios that contain problems we want to tackle

in this work. Additionally, we discuss some limitations of existing approaches to solve such
problems. Therefore, to address the time-consuming and error-proneness limitation of these
approaches, we define a policy language named Salvum and a tool to enforce specified con-
straints. We go into more details in Chapter 4.

42

4 Salvum

To solve the problems discussed, we propose Salvum [17] to allow developers to declar-
atively express constraints to protect confidentiality and integrity of sensitive information from
code contributions. To tackle the lack of generality problem, we aim at specifying and en-
forcing constraints for systems of different technical domains. Furthermore, to solve the time-

consuming and error-proneness problem, we design Salvum to declaratively specify sensitive
information and code contributions so that our tool can automatically label them. Moreover,
our language helps developers to reduce the effort of manual code reviewing by diminishing the
need to read several lines of code through different software versions.

Our goal with Salvum is to find confidentiality and integrity violations of sensitive infor-
mation when a developer changes the source code (code contribution) or when this information
leaks to specific c l asses (e .g., e xternal l i braries). T h us, i n t hese c a ses, S a lvum i s c apable of
determining the lines of source code that a violation of a constraint happens.

To better illustrate how Salvum works, we discuss the general idea of our approach in
Section 4.1. Furthermore, we explain Salvum and its main constructs in Section 4.2. Finally, in
Section 4.3, we detail Salvum implementation logical steps, which includes how it deals with
Git and JOANA, and processes the results.

4.1 General idea

In the context of collaborative software development, it would be useful to write a set
of constraints and check them to protect confidentiality and integrity of sensitive information
that might flow within a system. This verification process could happen before integrating code
contributions or after integration into a central repository. For example, in case we want to
prevent violations from happening (e.g., for the scenario of Section 3.1), it would be essential
to enforce the specified constraints before merging the code contributions. On the other hand,
in case the code contributions have already been merged, like those associated to an
untrustworthy developer like in our fourth scenario (Section 3.4), we could detect the
constraints after the integration into the central repository.

In this manner, a developer (e.g., code reviewer) could use Salvum to specify a set of

4.1. GENERAL IDEA 43

constraints for a system to avoid the problems we discuss in Chapter 3. Our language provides
means to reference program elements that might store sensitive information (e.g., password,
location) and code contributions. For instance, we can specify that the code contributions of
an untrustworthy developer cannot read or write a password. In this context, Salvum automati-
cally identifies whether there are violations of the specified constraints within developers’ code
contribution.

We can use our tool to enforce specified Salvum constraints before or after merging
code contributions, which we call backward and forward. The former concerns the case in
which we should check the history of a software project. For instance, similarly to the scenario
of Section 3.4, consider that a company fires a developer due to misbehavior after some time of
software development. This developer has contributed with several commits across that period.
Thus, it could be interesting to check potential sensitive information violations in all these
commits. To do that, one could write constraints in Salvum to specify that sensitive information
should not flow to the code added or changed by these commits. Moreover, we could also
write constraints to assure that only a given information can flow to or be changed by code
contributions. For example, if we assign to a developer a task to include logging operations, we
would want to guarantee that her code contributions do not access sensitive information because
they might leak through these logging operations. Therefore, Salvum can automatically detect
violations of these constraints in the history of this project.

The latter (forward) regards the case in which we should check code contributions be-
fore being integrated into the production repository. For example, consider an open-source
project that receives many code contributions (e.g., pull requests, commits) from different de-
velopers, which possibly are naive or untrustworthy. Thereby, a developer could write con-
straints in Salvum to check whether sensitive information leaks to these code contributions.
Then, before integrating the code contribution into the production repository, we can ask the
developers to fix any violations found by Salvum. Figure 4.1 depicts this general idea.

Equally to the fourth scenario (Section 3.4), without Salvum, a specialist (eg., experi-
enced developer or reviewer, system architect, etc.) should manually review the commits made
by the fired developer. Otherwise, she should manually label sensitive information as well as
the commits’ code and run an IFC tool for each system version for the backward approach.
Similarly, this specialist would need to review code contributions manually before merging into
the production repository (forward).

4.2. LANGUAGE SPECIFICATION 44

Figure 4.1: General Idea

In summary, our solution works as follows:

1. The specialist identifies sensitive information;

2. The specialist writes constraints;

3. Our tool checks source code adherence to these Salvum constraints;

4. Our tool reports potential violation warnings;

5. The specialist determines which warnings are real violations.

4.2 Language specification

In this section, we discuss examples of constraints that we could use for the
scenarios of Chapter 3. Then, we explain the main constructs and identifiers of our language.

4.2.1 Examples

We can use Salvum to specify a constraint with the goal to detect the problem
introduced by the code contribution of Listing 3.1 in Chapter 3. In that example, a developer
implemented a code contribution that introduces a setCookie call. This method implicitly
leaks the user password. Since the code contribution was already merged in the Gitblit
repository, we con-sider our backward approach, that is, we aim at searching for privacy
and security violations

4.2. LANGUAGE SPECIFICATION 45

throughout the repository history and different versions of Gitblit. Listing 4.1 illustrates a con-
straint we can write for this scenario. First, we determine a set of existing fields that could store
sensitive information, such as the password and locality defined in UserModel class.
The noflow construct specifies that this sensitive information (and only it) cannot flow to any
line changed or added by the code contribution, which is identified as Contribution. This
identifier is a Salvum keyword and it designates a specific set of code contributions that we
want to analyze.

Code 4.1: Protecting sensitive information flows to code contribution

UserModel { password , l o c a l i t y } noflow C o n t r i b u t i o n

In Listing 4.1, the Contribution identifier represents a set of Gitblit commits
we want to analyze. For example, Figure 4.2 depicts three versions in the commit history
represented by Contribution. Therefore, this constraint enforces that password and
locality do not flow to the code committed throughout these three versions.

Figure 4.2: The Contribution identifier and project versions

The constraint in Listing 4.1 helps to detect sensitive information flows to code con-
tributions. However, it determines nothing about code contributions writing to that sensitive
information. Thus, we might also define the constraint in Listing 4.2 to detect the points where
code contributions make changes to sensitive information. It states that code contributions can-
not change sensitive information initially stored in the field like password and locality

fields defined by the type UserModel. Analogously to the noflow example, this constraint
can also reduce the effort to manually review different Gitblit versions.

Code 4.2: Protecting code contribution changes to sensitive information

C o n t r i b u t i o n noset UserModel { password , l o c a l i t y }

The example in Listing 4.3 regards a constraint specifying the information that can flow
to code contributions defined by a pull request [23]. It states that only the information stored
in login, nickname, or countrCode can flow to the commits with messages contain-
ing #921, which uses the PullRequest identifier. Here we assume that only the commits
from a given pull request have #921. Thus, Salvum might be used to ensure that only this
UserModel information can flow to the code of these commits.

Code 4.3: Specifying information that can flow to code contributions

UserModel { l o g i n , nickname , coun t rCode } flow P u l l R e q u e s t
where P u l l R e q u e s t = { c | c . message . c o n t a i n s (" #921 ") }

4.2. LANGUAGE SPECIFICATION 46

This constraint demonstrates that Salvum is capable of enforcing it for many different
system versions. We explain in detail how Salvum does it in Section 4.3. This constraint is
particularly useful to ensure that only a information can flow to the resulting code contribution.
The code contributions to be analyzed might resolve an issue [57], a task execution, or a feature
implementation, as long as they have an identifier in their commit messages, such as #921. By
using this constraint, a code reviewer would not need to manually review these different system
versions identified by the commits associated with PullRequest. Besides that, there would
be no need to manually label sensitive information or the code contribution.

Additionally, we can use the set construct to specify the information that can be altered
by a code contribution. In Listing 4.4, we show an example of a constraint specifying that the
code contribution identified by the commit message containing task87 can alter only the in-
formation stored in login, nickname, and countrCode. Therefore, this code contribution
cannot write to any other field.

Code 4.4: Specifying information that can be altered by code contributions

UpdateUserTask set UserModel { l o g i n , nickname , coun t rCode }
where UpdateUserTask = { c | c . message . c o n t a i n s (" t a s k 8 7 ") }

Besides the contains clause, Salvum also supports c.author to define code contri-
butions. For instance, suppose that Bob was fired, and his company wants to check his commits
to ensure that his code only accesses public user information. Therefore, Listing 4.5 defines
a constraint to verify that the code Bob committed accesses information stored only in the
login, nickname, and countrCode fields of UserModel class. Therefore, any access to
other fields would represent a violation. The UntrustworthyBob identifies the code com-
mitted by Bob. Analogously, we can specify a constraint using the set construct.

Code 4.5: Specifying information that can flow to code contributions

UserModel { l o g i n , nickname , coun t rCode } flow Unt rus twor thyBob
where Unt rus twor thyBob = { c | c . a u t h o r (" Bob ") }

Moreover, we can define constraints using commit hashes directly to represent a
code contribution. For example, Listing 4.6 states that only information stored in login,
nickname, and countrCode can flow to the code contribution ServletsTask, which is
defined by the commit hash efdb2b3d0. Thus, Salvum helps to ensure that this code contri-
bution only accesses public user information.

Code 4.6: Specifying information that can flow to a specific commit code

UserModel { l o g i n , nickname , coun t rCode } flow S e r v l e t s T a s k
where S e r v l e t s T a s k = { efdb2b3d0 }

Furthermore, we can reference code contributions and use Salvum’s negative constructs.
In Listing 4.7, we write a constraint specifying the information that cannot flow to code contri-

4.2. LANGUAGE SPECIFICATION 47

butions defined by a pull request. It states that the information stored in password, email,
and location cannot flow to commits with a message containing #921. Thus, Salvum might
be used to ensure that this sensitive information cannot flow to the code of these commits.

Code 4.7: Specifying information that cannot flow to code contributions

UserModel { password , emai l , l o c a t i o n } noflow P u l l R e q u e s t
where P u l l R e q u e s t = { c | c . message . c o n t a i n s (" #921 ") }

When we define this constraint, it is not necessary to review the source code manually
to find a potential user password, email, or location leak throughout the different system ver-
sions identified by PullRequest. Furthermore, our tool automatically labels this sensitive
information and these different versions, which reduces the time-consuming task of manually
annotating them (Section 4.3).

Salvum also considers constraints specifying that only public information can flow to
the methods of a certain class, which means that other information cannot flow. For this purpose,
we use the flow construct. In Listing 4.8, we illustrate a constraint specifying that public
information initially stored in the login and name fields of UserModel class can flow to
Logger class methods, which uses the Log identifier. The flow construct means that only
the information stored in login and name can flow, that is, no other information can. In turn,
this constraint does not specify anything about login and name flowing to other methods.
Therefore, it would not represent a violation to this constraint.

Code 4.8: Specifying information that can flow to Logger methods

UserModel { l o g i n , name} flow Log
where Log = { Logger . e r r o r () , Logger . i n f o () , Logger . warn () }

Our goal is to consider the Logger class and its subclasses in the constraint speci-
fication. Moreover, in case of Logger is an interface, we would consider the classes that
implement it. However, the current version of our language only supports Logger as a class.
Therefore, one needs to specify Logger subclasses in the constraint as well.

This constraint might help to assure that only public information flows to public outputs,
such as Log methods. In case this constraint is violated, a code reviewer knows precisely where
within the source code it happens and also which contribution introduced such violation. We
could also use the set construct to determine which method or contribution is allowed to write
only on a set of fields that store public information.

Analogously, we can use the noflow construct to protect sensitive information. List-
ing 4.9 specifies a constraint to state that a sensitive information like password cannot flow
to public outputs such as Logger methods.

4.2. LANGUAGE SPECIFICATION 48

Code 4.9: Specifying sensitive information that cannot flow to Logger methods

UserModel { password } noflow Log
where Log = { Logger . e r r o r () , Logger . i n f o () , Logger . warn () }

At last, we can also use the constructs noset and set with these specifications of po-
tentially dangerous external libraries like the Logger methods. We explain Salvum constructs
in the next section.

4.2.2 Constructs

Salvum supports four main constructs: noflow, noset, flow, and set. The
noflow construct specifies that sensitive information cannot flow to code co nt ributions. This
construct does not determine anything about other information. For instance, if we define that
a password cannot flow t o a c ode c ontribution, w e a re s aying n othing a bout a dditional infor-
mation, such as location. Therefore, this construct goal is to guarantee the confidentiality of
information.

In this context, the noset construct complements noflow. It specifies t hat sensitive
information cannot be altered by code contributions. Again, we are not specifying anything
about other information. Thus, we can determine that a password cannot be altered by a set of
code contributions. In turn, this construct’s goal is to guarantee integrity of information.

In contrast to noflow, Salvum supports the flow construct. It specifies t hat o nly a
specific i nformation c an fl ow to co de co nt ributions. Th erefore, no ot her in formation ca n flow
to these contributions. For example, we can specify that only user login can flow t o a code
contribution that implements logging operations.

Also in contrast to noset, we provide the set construct. It specifies that only a specific
information can be altered by code contributions. For instance, we can specify that only an
email message can be altered by a code contribution that implements an indentation feature for
an email system. Thus, this code contribution cannot alter other information (i.e., user email
address).

The goal of flow and set is to enforce the Principle of Least Privilege [41]: a code
contribution should use the least amount of privilege necessary to correctly complete its execu-
tion. Salvum also supports different identifiers t hat r epresent c ode c o ntributions. We explain
them in the next section.

4.2.3 Representation of code contribution

Salvum allows the representation of code contributions in three distinct ways: explicitly,
implicitly, and through operations listing.

Explicitly. The first representation defines a code contribution as a set of commits that
contains a particular message keyword. For example, if we want to enforce a constraint for all

4.2. LANGUAGE SPECIFICATION 49

the commits that solve a specific issue, we can use a where clause followed by the condition,
as shown below:
IssueFixing where IssueFixing = {c | c.message.contains("issueId")}

The IssueFixing identifier represents the code contributions. The where clause estab-
lishes a condition for these contributions to be identified. In this case, the condition rep-
resents the set of commits that contains messages with the "issueId". The c identi-
fier is a keyword that we must use when expressing declarations regarding commits. The
message.contains() statement represents each commit that contains a message with a
particular keyword ("issueId", for example). In turn, we must assume that only the com-
mits related to a specific issue contain the "issueId" in their messages.

Salvum also supports other representations of code contributions for the where clause.
For example, we can define a code contribution as being the set of commits submitted by a
particular author, as follows:
FiredAuthor where FiredAuthor = {c | c.author("AuthorId")}

The FiredAuthor identifier represents the code contributions. In this case, the condi-
tion determines they are the set of commits submitted by the author identified by "AuthorId".
Besides that, we can directly declare that a code contribution represents only one particular
commit:
HarmfulCommit where HarmfulCommit = {5odle482}

In this case, the HarmfulCommit represents one commit identified by the
hash 5odle482. We could have represented this particular commit using only
HarmfulCommit = {5odle482}. However, we intend to reuse the HarmfulCommit
definition for other constraints. Therefore, we opted to represent a particular commit using the
where clause. Further, we can implicitly specify code contributions.

Implicitly. We can specify code contributions via the comprehension of a commit set.
Thus, we implicitly define a code contribution with the identifier Contribution. This iden-
tifier represents a set of commits that we want to analyze. This identification is up to the person
who is examining the system. Therefore, Contribution does not explicitly restrict a partic-
ular set of commits like using the where clause, as we explained above.
User {password} noflow Contribution

In this constraint, the password represents the sensitive information whereas the
Contribution identifier implicitly defines the set of commits to be analyzed.

Operations listing. Salvum also supports that we specify a list of potentially dangerous
operations for the where clause. For example, we can identify a code contribution as a list of
Logger methods, as shown below:
Log where Log = {Logger.error(), Logger.info(), Logger.warn()}

The Log identifier represents all the calls to these three Logger methods.

4.2. LANGUAGE SPECIFICATION 50

4.2.4 Discussion

In the current version of our language, we do not support the specification of sensitive
information that is stored only on local variables. As we show in the examples of Section 4.2.1,
Salvum only allows the specification o f i nformation t hat i s i nitially s tored o n c lass variables.
We intend to solve this limitation in future work by allowing that developers write constraints
specifying local variables. Additionally, Salvum does not support the specification o f method
parameters and the return of a method. We also intend to address this drawback in future
work. To be able to detect violations of sensitive information regarding these situations in our
evaluation (Chapter 5), we could turn a local variable into a class variable. We could also assign
the return of a method or its arguments to class variables.

We might use noflow and noset to guarantee the Principle of Least Privilege and
sensitive information confidentiality a nd i n tegrity. H owever, t hese c onstructs a re permissive.
Figure 4.3 illustrates an example of their limitation. Notice that in case we write only the
constraint of Listing 4.7, Salvum enforces that any information stored in user password,
email, location does not flow to the specified pull request’s co de. However, this constraint
(using noflow) does not restrict phone and address from flowing to the pull request code,
that is, this sensitive information can flow without any restriction.

Figure 4.3: noflow and noset are permissive

This issue might be mitigated if experienced developers write the constraints in Salvum.
Indeed, this kind of developer usually is responsible for manually reviewing code [6]. More-
over, forgetting to specify sensitive information is also a drawback of Information Flow Control
analysis tools that require developers to label program parts manually [33, 14]. However, we
acknowledge that despite the restriction to specific technical domains, such as Android, a tool
like Flowdroid [10] does not introduce this issue since it automatically identifies sensitive in-
formation using auxiliary tools [58].

Due to advantages and disadvantages of the presented constructs, we provide both pos-
itive (flow and set) and negative (noflow and noset). Figure 4.4 shows a summary of
these constructs and their respective semantics.

By writing the constraints presented in this section using our policy language, develop-

4.3. LANGUAGE IMPLEMENTATION 51

Figure 4.4: Semantics of constructs

ers can specify exactly the only information that can flow or be changed, or illegal information
flow to systems of different d omains, which helps to circumvent the lack of generality prob-
lem we point out in Section 3.5. Furthermore, developers might have some effort to write
the constraints in Salvum, but they do not need to manually associate labels to program parts
before reviewing code to find v iolations. This helps to mitigate the time-consuming and error-

proneness problem of tools like JOANA [33] and Jif [14], as we also explain in Section 3.5.
Thus, using Salvum might increase productivity for the execution of finding violations tasks.
We provide more details in Chapter 5.

Finally, our constraints define boundaries for code contributions or classes. Salvum sees
these elements as software modules [59]. In Section 4.3, we explain it in more detail as well as
Salvum’s implementation.

4.3 Language implementation

An additional contribution of this work is the development of a tool to automatically
enforce the Salvum constraints that we specify. To achieve that, we use the JOANA [33] tool,
which provides IFC analysis, as we explained in Section 2.4. This way, we can use these
analyses to detect information flows t hat m ight v iolate t he s pecified co nstraints. Fi gure 4.5
illustrates our tool components and their connections.

We implement a parser for our language using ANTLR [60], which is a tool to generate
parsers that can build and walk parse trees. This parser validates the syntax of the constraints.
Furthermore, it receives a text file where we specified the constraints and generates a corre-
sponding JSON file, which we use as input to perform the annotation procedure and analysis.

Besides that, we implement a mapping generator to execute a preprocessing for the
source code of the system to be analyzed. The resulting mapping holds information about
relevant lines of code, such as those that code contributions change or those that declare a
variable that contains sensitive information. Our tool uses the information of the line of code to

4.3. LANGUAGE IMPLEMENTATION 52

Figure 4.5: Overview of our tool

correctly annotate it as High or Low depending on the specified constraint.
Additionally, we implement a mechanism that allows us to automatically annotate sen-

sitive information and code contribution. This mechanism mitigates the time-consuming and

error-proneness problem of plain IFC tools because we do not need to manually associate in-
struction with labels, as discussed in Section 3.5.

As we explained in Section 2.5.1, we use four Git features in our language implemen-
tation: diff, blame, checkout and log. Hence, we implement a module to integrate Git
with our tool, and consequently provide support for these Git features.

For each project version that we analyze, we have to build a System Dependence Graph.
Thus, we implemented a custom generator that is capable of automatically creating at least one
SDG for each version that contains the code contributions we want to analyze. Since JOANA
permits that we provide only one entry method, we implemented support for multiple entry
methods at once. Therefore, we can use JOANA to create an SDG from a list of entry methods.
This implementation allows us to build larger SDG, which consequently encompasses a more
substantial part of the source code. For example, in case a code contribution is scattered across
many classes and methods, we would not be able to enforce constraints for the whole code
contribution because the unique entry method would result in a small SDG that would not have
nodes and edges corresponding to that code contribution. Thus, in these cases, we provide
multiple entry methods. However, we acknowledge that we do not have a mechanism to check
whether the full code contribution is represented by the SDG created. We discuss this threat in
Section 5.5.

In the next sections, we explain Salvum implementation steps: Preprocessing, Gen-

erating SDG, Labeling, Analyzing, and Results processing. Figure 4.6 illustrates these steps,
their inputs and outputs. Our tool uses JOANA API to generate the SDGs and to execute the
Information Flow Control analysis (Analyzing step).

Differently from a typical JOANA execution, we have the Preprocessing, Labeling (au-
tomatically), and Result Processing steps. Nonetheless, we observe that the execution time

4.3. LANGUAGE IMPLEMENTATION 53

Figure 4.6: Five steps

overhead is insignificant. To execute the additional steps, our implementation needs a few sec-
onds regarding the projects we selected for our evaluation (Chapter 5). In contrast, Generating
an SDG might take hours.

4.3.1 First step - Preprocessing

As shown in Figure 4.6, this step receives as inputs the specified c onstraints a nd the
source code of the system we want to analyze. There are two different preprocessing procedures,
which depend on the constraints.

The first one regards the specification of code contributions as operations listing (Sec-
tion 4.2.3). In this case, we define an algorithm to find occurrences in the source code of calls
to methods that are specified by the c onstraint. These calls could be specified as in Listing 4.8.
In this context, our algorithm holds information about the lines of code of these occurrences
throughout the source code. Therefore, the output of this step is a mapping of classes and line
numbers. For example, if there is a call to a Logger method in a class called Main in lines
11 and 12 plus another call in a class called Repository in lines 6 and 16, this step would
create the following mapping: [Main:[11,12]],[Repository:[6,16]]. This map-
ping is useful for automatically labeling the source code as a sink or source and mitigate the
time-consuming and error-proneness problem, which we explain in the Labeling step.

The second preprocessing procedure concerns the specification of explicit and implicit
code contributions (Section 4.2.3). Therefore, we need to deal with program history in Version
Control Systems [61]. For now, Salvum supports Git [42]. In this context, the Git diff
command generates a diff file, w h ich c o ntains t h e d i fferences b e tween e x isting c o de and

4.3. LANGUAGE IMPLEMENTATION 54

code contribution. We define an algorithm that analyzes the diff file to obtain the classes and
their source code line numbers where changes occur. Thus, the output of this step is a mapping
of classes and line numbers. For example, a mapping for the snippet of code in Listing 3.1 is
[RootPage:5]. This mapping is also useful for automatically labeling source code to execute
an IFC analysis and detect illegal flows. This s tep i s t he same for t he two main approaches
for finding v iolations: backward and f orward. The main difference between the mapping we
generate for code contributions to the one we do for classes is that the former contains lines of
code changed within a commit whereas the latter contains lines of code that represent calls to
methods we want to stop from leaking sensitive information.

In particular, there is an additional difficulty for code c ontributions. Since we need to
analyze different software project versions, we need to obtain the target version before building
the output mapping. To achieve this goal, we use the checkout Git command either automat-
ically or manually depending on the project and constraint.

Additionally, our parser validates the syntax of the constraints and generates a corre-
sponding JSON containing the specification of sensitive information and code contributions.

4.3.2 Second step - Generating SDG

In this step, we create the necessary SDGs. We provide as inputs the set of entry methods
and the compiled system. A typical entry method of a Java system is its main method. However,
some systems do not define a main or they define many ma in s. Th erefore, for these cases that
do not present a unique main, one has to manually choose a set of entry methods. This task
could be done by identifying the set of methods that encompasses both code contribution and
sensitive information. These inputs are mandatory to correctly create an SDG. In the current
version of our tool, we manually choose a set of entry methods with the goal to encompass the
code contribution. This selection procedure depends on the system we want to analyze and its
code contributions. For example, consider the following constraint:
User {password} noflow Contribution
In Listing 4.10, we illustrate an example that would demand us to provide two entry-methods to
correctly generate an SDG. A developer added the lines 4, 5, 13, and 14 in her code contribution.
Since there are changes in the authUser() and editUser() methods, we provide them as
entry-points to the JOANA SDG generation mechanism. Consequently, we can create an SDG
that encompasses the changes introduced by this code contribution. However, we acknowledge
that manually picking entry-points is a time-consuming task that could be at least, partially,
automated. We provide more details in Sections 3.5 and 7.3.

4.3. LANGUAGE IMPLEMENTATION 55

Code 4.10: Entry method selection

1 class A u t h e n t i c a t i o n M a n a g e r {
2 void a u t h U s e r (S t r i n g l o g i n , S t r i n g password) {
3 . . .
4++ Logger . i n f o (" User " + l o g i n + " wi th pwd "
5++ + password + " log ge d s u c c e s s f u l l y ") ;
6 }
7 . . .
8 }
9

10 class UserDAO {
11 void e d i t U s e r (S t r i n g l o g i n , S t r i n g password) {
12 . . .
13++ Logger . i n f o (" User " + l o g i n " + wi th pwd "
14++ + password + " u p d a t e d s u c c e s s f u l l y ") ;
15 }
16 . . .
17 }

Depending on the constraint, we could need to generate many SDGs in this step. For
instance, recalling the fired developer e xample: she could have submitted many code contribu-
tions, and consequently, there are many different system versions to analyze. Thus, for each
version, we automatically create a different SDG. At last, this step output is a set of one or more
SDGs.

4.3.3 Third step - Labeling

This step is essential to reduce the time-consuming and error-proneness problem. Our
implementation automatically annotate information and code contributions so that it can check
whether there is a flow between them in either direction depending on the specified constraints.
JOANA provides an annotation mechanism that allows us to label a set of program parts with
different security levels (e.g., High and Low).

This way, JOANA is capable of annotating the instructions that correspond to a particu-
lar program part, which in our case is identified by its source code line n u mber. Since JOANA
is built upon the WALA framework [30], it holds a list of intermediate representations that
represents instructions of a program. Mainly, this data structure represents the instructions of
a method. Therefore, JOANA is capable of identifying in which SDG node an intermediate
representation is included.

Based on the constraints written in Salvum and the first step output mapping explained

4.3. LANGUAGE IMPLEMENTATION 56

above, our implementation automatically labels SDG nodes that represent sensitive information
for noflow construct, as High. On the other hand, SDG nodes originated from source code
lines identified in the mapping as part of code contributions are automatically labeled as Low. To
deal with positive constructs (flow and set), the labeling strategy is the opposite of noflow
and noset constructs since they are dual [29]. Thus, code contributions are labeled as High

and the public or sensitive information is labeled as Low.
For instance, consider again Listing 3.1 and Listing 4.1. This constraint uses the

noflow construct. Therefore, the High label is automatically associated with UserModel

sensitive information stored in password and locality and the Low label is associated
with code contribution. Notice that if we use the noset construct for this constraint, the High

label would be associated with the code contribution and the Low label would be associated
with UserModel information. Figure 4.7 depicts this scenario.

Figure 4.7: High and Low labels

4.3.4 Fourth step - Analyzing.

In this step, we execute JOANA [13] IFC analyses. Thus, Salvum automatically runs
these analyses to verify source code’s adherence to the specification o f S a lvum constraints.
More specifically, it checks whether there are possible paths from an SDG node labeled as High
to another one labeled as Low.

4.3. LANGUAGE IMPLEMENTATION 57

As a result of the analyses execution, we obtain a collection of potential violations,
which we provide as an input to the last step: Results processing.

4.3.5 Fifth step - Results processing

Salvum creates a report to inform violations occurrences. For instance, consider List-
ings 3.1 and 4.1 again. The resulting report would inform a violation, like the following:

Illegal flow from UserModel.password, UserModel.locality

to RootPage:27 at commit hsf354ks

In this way, we know that there is a violation of UserModel sensitive information
confidentiality to the line 27 of RootPage class in the system project version identified by the
commit hash hsf354ks. Therefore, we can determine that this code contribution introduces
a violation in a backward approach, that is, in the actual project history. On the other hand, we
could either reject this code contribution or ask for a fix in a forward approach. We manually
process these results to find false-positives.

In this chapter, we present the specification of our policy language as well as a tool to
enforce the constraints we could write. Moreover, we provide Salvum implementation in our
online Appendix [20]. In the next chapter, we explain the evaluation we performed considering
the use of Salvum for selected software projects.

58

5 Evaluation

To evaluate our policy language presented in Chapter 4, we performed an empirical as-
sessment focusing on finding violations by writing Salvum policies and constraints for selected
software projects and checking whether it can help developers to reduce the effort of manual
code review. Furthermore, we evaluate JOANA concerning precision, recall, and accuracy of
its IFC analyses.

In Section 5.1, we discuss the Goal-Question-Metric design [62] that drives our eval-
uation in Section 5.1. Additionally, in Section 5.2, we perform the first e valuation consider-
ing highly active and well-supported software projects. To evaluate Salvum for other kinds of
projects, in Section 5.3, we explain our second evaluation with low activity and poorly supported
software projects. We make this distinction between highly and low active projects because we
believe that we should have different results. For the former, we expect to detect a few vio-
lations whereas more violations considering the latter. In Section 5.4, we investigate whether
JOANA’s IFC performs well when we run it against an existing benchmark. This JOANA anal-
yses evaluation brings us insights about the kinds of violations that we can identify or miss. At
last, we discuss the threats to validity in Section 5.5.

5.1 Goal, Questions, and Metrics

We use the Goal-Question-Metric (GQM) [62] design to better drive the evaluation pro-
cess. Our goal is to check whether we can detect privacy and security violations for real soft-
ware projects. Besides that, we aim to determine if Salvum can reduce the effort to find these
violations. We also have the additional goal of measuring JOANA [13] precision, recall, and
accuracy. Table 5.1 summarizes our GQM approach.

We define three major and two minor research q uestions. Q1 is crucial to bring evidence
that Salvum can, indeed, find violations of sensitive information for existing software projects.
This answer would help developers to prevent violations that could be harmful to sensitive
information. We investigate software projects of different technical domains to check whether
Salvum is useful in this context. We write some constraints in Salvum (e.g., passwords cannot
flow t o c ode c ontributions) a nd r un o ur t ool t o fi nd vi olations on so ftware pr oj ects. To better

5.1. GOAL, QUESTIONS, AND METRICS 59

Table 5.1: GQM to assess Salvum

Goal
Purpose Evaluate Salvum regarding
Issue privacy and security violations
Object for code contributions
Viewpoint from a code reviewer

viewpoint
Questions and Metrics

Q1- Can Salvum detect code contribution -Number violations warnings (NVW)
violations to sensitive information? -Number of violations (NV)

Q1.1- Do developers solve violations before -Number of violations
code contribution merging on GitHub? before merging code contributions (NvC)

Q1.2- Are unmerged code contributions on GitHub -Number of unmerged code contributions
related to violations of sensitive information? containing violations (NrC)

Q2- Can Salvum reduce the effort
to find violations of specified -Source lines of code to analyze (SA)
constraints in a set of code contributions? -Project versions to analyze (PA)

-Number of true-positives (TP)
Q3- How does JOANA [13] perform when being -Number of false-negatives (FN)
applied to IFC issues regarding precision, -Number of false-positives (FP)
recall, and accuracy of its analyses? -Number of true-negatives (TN)

5.1. GOAL, QUESTIONS, AND METRICS 60

understand the answer to Q1, we define two minor questions: Q1.1 and Q1.2. The former
aims to explain whether developers fix violations before merging code contributions. The latter
intends to unveil whether code reviewers found violations and discarded code contributions
before merging them into the repository.

Answering Q2 might help developers to decide whether it is more efficient to perform
(i) only a manual code review, (ii) to use only Salvum, or (iii) to use both to bring evidence
of the violations introduced by a set of code contributions. Therefore, we analyze the source
lines of code and the number of different software versions we would need to review for finding
the violations. We approximate effort in terms of the lines of code and project versions we
need to manually review. Thus, more lines and project versions mean more revision effort.
We acknowledge that lines of code do not approximate well the programming effort. Thus, it
is likely that the same occurs to an approximation of code reviewing effort because we could
take more time to review one line that contains complex computations than many other more
uncomplicated lines. However, we are not measuring the effort to review one line comparing to
another one. In this context, we do not exactly take that risk in our assessment.

On the other hand, Q3 concerns JOANA precision, recall, and accuracy. The answer
to Q3 is useful to determine the cases JOANA can detect violations. For example, if JOANA
analyses present low rates of recall, we can conclude that we may have missed violations due to
limitations of this tool. Thus, we run this IFC tool against the SecuriBench Micro [19], which
is a set of micro-benchmarks intended for evaluating security of web-based applications.

To answer our research questions, we define a set of simple metrics, as shown in Ta-
ble 5.1. Regarding Q1, we use the Number of violation warnings (NVW) and
Number of violations (NV) metrics. The former regards the number of violation
warnings that Salvum finds among different project versions whereas the latter represents the
subset of found violations which were confirmed by the selected systems developers. To better
understand Q1 results, we manually analyze a set of submitted pull requests for each selected
project to check whether our approach misses violations. Thus, we use the NvC metric to an-
swer Q1.1. Additionally, we manually check rejected pull requests to know if they were not
accepted due to violations in our context. We provide further details in Section 5.2.3.

To answer Q2, we consider two metrics:

� Source lines of code to analyze (SA)

� Project versions to analyze (PA)

By using our tool, a reviewer needs to manually check whether a warning represents a real
violation. Therefore, we use the SA metric to measure the number of lines of code that this
reviewer should manually analyze to determine whether the code contribution indeed introduces
the warned violation.

Besides that, our tool warns the presence of potential violation for each project version.
Therefore, a reviewer would not need to manually review all the versions, but only those with

5.1. GOAL, QUESTIONS, AND METRICS 61

violation warnings. Thus, we use the PA metric to measure the number of projects versions
we need to manually analyze to confirm violations of the specified constraints. For example,
if we use our tool to analyze ten project versions, and it warns violations only for two ver-
sions, we would not need to manually examine the other eight versions to confirm the warnings.
Figure 5.1 illustrates an example that explains our intent with these metrics.

Figure 5.1: Metrics for Q2

In the case a reviewer needs to consider the full code contributions, she would have
to manually review 6012 lines of code scattered across 49 different project versions to find
violations of the specified constraints. On the other hand, Salvum detects warnings in three
different project versions. Since our tool brings evidence that there are no violations present
on the other 46 project versions, a reviewer would need to manually review 32 lines of code
contribution across these versions to confirm that the problem happens. However, JOANA
analyses have some limitation, which we discuss in Section 5.5. For instance, it does not support
Java reflection.

Regarding Q3, we take into account four metrics. The
Number of true-positives (TP) represents real identified information flows
that are violations of the specified constraints. The Number of false-negatives (FN)

represents the unwarned existing violations whereas the Number of false-positives

(FP) represents warnings that are not a violation. The Number of true-negatives

(TN) is the number of violations that JOANA correctly establishes are not a real treat. We
provide more details in Section 5.4.

5.2. ASSESSING HIGHLY ACTIVE AND WELL-SUPPORTED SOFTWARE PROJECTS
62

5.2 Assessing highly active and well-supported software projects

In this section, we consider nine highly active software projects. Thus, we explain these
projects in Section 5.2.1. Furthermore, we define a set of constraints for them in Section 5.2.2.
At last, we describe the results we obtained in Section 5.2.3. Our goal here is to answer Q1,
Q1.1, Q1.2, and Q2. To do that, we use the backward approach (Section 4.1). In this case, it is
more interesting than the forward approach because the existing project history has much more
commits, and consequently merged code contributions.

5.2.1 Selected software projects

For this assessment, we consider the following open-source Java software
projects hosted on GitHub: Gitblit [46], Open Refine [56], Voldemort [63], ScribeJava [54],
Solo [64], HikariCP [65], Apache Kafka [66], Teammates [67], and Crawler4J [68]. Table 5.2
summarizes some of their numbers, which are approximations because they are rapidly
changing. We found these applications by using a simple tool we developed to filter GitHub
projects based on their number of stars and fork [20].

Our tool uses the GitHub API [69] to generate a list of GitHub repositories URLs. Each
one contains at least 100 stars and 50 forks. We also set that the main programming
language is Java and the project README must have the keyword "java". This last
condition helps to decrease the number of Android projects. JOANA developers only added
support to Android after we started this experiment and it only works for small toy
applications. We provide more details in Section 7.2.

In this context, we obtained a list of the first 3 00 h undred p rojects r eturned b y the
GitHub API. We visited each GitHub project repository webpage to choose the first nine that
returned in our searching procedure. Initially, we discarded the projects that are Android ap-
plications. Furthermore, we put away projects that we could not find sensitive information
by navigating through their source code in GitHub. Hence, the first nine projects that we did
not discard are considered in this section. We provide source code and further details in out
online appendix [20]. We explain each project below.

Gitblit is a system for managing, viewing, and serving Git repositories. There are
two main products within the same project: client and server. This application has
approximately 12300 lines of code. Moreover, Gitblit deals with much sensitive information,
such as private user data. It is an active project on GitHub containing around 3000
commits and 100 con-tributors. A GitHub contributor is a developer that has committed at
least one time within the repository. This project includes around 400 open and closed pull
requests.

Open Refine is an application for working with messy d ata: cleaning i t, transforming
it from one format into another, and extending it with web services and external data. This

5.2. ASSESSING HIGHLY ACTIVE AND WELL-SUPPORTED SOFTWARE PROJECTS
63

Table 5.2: Selected software projects

Project KSLOC Commits Contributors Total GitHub GitHub
Pull requests stars forks

Gitblit 123 3000 100 400 1400 500
Open Refine 75 2700 60 250 5000 900
Voldemort 225 4300 60 350 2000 500
ScribeJava 5 800 90 350 4300 1500

Solo 41 2000 15 190 3900 1700
HikariCP 17 2600 80 250 6000 900

Apache Kafka 113 4700 400 4500 7400 4400
Teammates 145 16600 350 3100 500 1200
Crawler4J 8 300 25 100 2600 1500

system might deal with sensitive data stored in sheets, and it can communicate with Google
API informing user login and password. Besides that, Open Refine has roughly 75000 lines
of code, and it is an active project with around 2500 commits, 60 contributors, and 250 pull
requests.

Voldemort is a distributed key-value storage system. It provides functionalities to allow
distribution of data across a set of databases, which could be useful to replicate data in the cloud.
This application handles sensitive information such as database password and administrator
client instance. Voldemort has around 4300 commits, 60 contributors, and 350 pull request. It
is the largest application we selected with 225000 lines of code.

ScribeJava is an OAuth library for Java. It is designed to provide authentication func-
tionalities which means ScribeJava handles sensitive information such as user API key and
secret. ScribeJava project has approximately 800 commits, 90 contributors, 350 pull requests,
and 5000 lines of code.

Solo is a blogging system with nearly 2000 commits, 15 contributors, and 190 pull
requests. It handles sensitive information that contains, user password, email, cookie, and email
messages.

HikariCP provides a JDBC connection pool that supports most popular databases. It is
capable of creating and maintaining a collection of JDBC connection objects. This application
deals with sensitive user information such as his password. It presents around 17000 lines of
code, 2600 commits, 70 contributors, and 250 pull requests.

Apache Kafka is a distributed streaming platform to publish, subscribe, process, and
store streams of data. It handles passwords, credentials, and keys for security layer. This
applications has around 113000 lines of code, 4700 commits, 400 contributors, and 4500 pull
requests.

Teammates is a tool for managing peer evaluations and to collect feedback from stu-
dents. It works as a cloud-based service for educators and students, and many universities
currently use its functionalities. This application handles sensitive information like student reg-

5.2. ASSESSING HIGHLY ACTIVE AND WELL-SUPPORTED SOFTWARE PROJECTS
64

istration keys, administrators email, and account. This project is supported by approximately
350 contributors that have already committed 16600 times in a total of 3100 pull requests.
Teammates has around 145000 lines of code.

Crawler4J implements a web crawler. Users can provide a set of initial URLs and this
tool crawls for linked pages. It needs to handle sensitive information such as proxy passwords
and authentication data. This implementation has more than 8000 lines of code. Nearly 25
contributors support Crawler4J with 300 commits and 100 pull requests.

We noticed in the pull requests review on GitHub that there are code contribution review
processes for these nine software projects. We also noticed that two or three experienced devel-
opers manually review the changes that other developers submit via pull requests. Therefore,
we might find few critical violations within the repository h i story. However, these experienced
developers might have spent a long time to manually review all code contributions, and they
might miss violations.

The number of selected projects is limited due to the time-consuming task of under-
standing the systems, which is necessary to write relevant constraints. We discuss this threat in
Section 5.5.2. Next, we define Salvum constraints for these projects.

5.2.2 Policies and Constraints

To answer Q1 and Q2, we analyze the selected software projects focusing mainly
on their technical domain, source code, the sensitive information they hold, and their
contributors. We need to understand their technical domain and source code to correctly
write policies and constraints. Identifying sensitive information that we should protect also
helps to specify the policies and constraints. Additionally, we check the number of commits a
contributor submitted because low numbers might indicate that the developer is either
inexperienced or not evolved with the project. Thus, we can write constraints to protect
sensitive information for these con-tributors.

A developer that has experience on a particular project could play this role since
he would have this knowledge to write constraints in Salvum. As we mentioned in Section
4.3.2, we have to manually choose the entry-points for each project. We might introduce bias
because only one author validated these entry-points. Thus, we discuss this threat in Section
5.5.

Moreover, we define p olicies a nd c onstraints w ith t he g oal t o e nforce t hem f or the
selected projects. For simplicity, we explain only those policies and constraints that we
could detect real violations for the selected projects. However, the complete list can be found
in our online Appendix [20]. We discuss the violations that we found by enforcing the
constraints presented below in Section 5.2.3.

GITBLIT:

Policy P1: User password, locality, token, access information,

5.2. ASSESSING HIGHLY ACTIVE AND WELL-SUPPORTED SOFTWARE PROJECTS
65

and permission cannot flow to code contributions

Constraint C1:
ChangePasswordPage {password,confirmPassword}, UserModel {password,locality},

FederationModel {token}, FederationProposal {token},

AccessPermission {permission}, RepositoryModel {accessRestriction,authControl},

RepositoryUrl {permission}, TeamModel {permissions} noflow Contribution

Constraint C1’:
ChangePasswordPage {password,confirmPassword}, UserModel {password,locality},

FederationModel {token}, FederationProposal {token},

AccessPermission {permission},

RepositoryModel {accessRestriction,authControl}, RepositoryUrl {permission},

TeamModel {permissions} noflow WrittingOps where
WritingOps = {Logger.info(),Logger.error(),Logger.warn(),

System.out.println(),setCookie()}

In P1 we specify sensitive information handled by Gitblit that we aim to protect. Thus, our
goal is to detect whether there is a flow between such information and code contributions.
The constraints C1 and C1’ written in Salvum help us to achieve this goal. We identify the
fields that initially store the sensitive information specified in P1, such as password and
locality from UserModel class. The noflow construct determines a violation occurs in
case there is a flow between the sensitive information and code contributions. Notice that we
use the Contribution identifier, which implicitly defines the contributions to be analyzed.
To obtain the results we show in Section 5.2.3 for C1, we consider a set of 49 different Gitblit
versions. Therefore, the Contribution identifier represents 49 code contributions. For C1’,
we consider a unique Gitblit version. This variation is useful because we can find violations
introduced by a code contribution already integrated into the repository without building the
corresponding Gitblit version.

SCRIBEJAVA:

Policy P2: User token secret cannot flow or be altered by code contributions

Constraint C2:
OAuth1Token {tokenSecret}, ServiceBuilder {apiSecret},

ServiceBuilderAsync{apiSecret},

OAuth1AccessToken {tokenSecret}, OAuth1RequestToken {tokenSecret},

OAuthConfig {apiSecret}, RSASha1SignatureService{privateKey} noflow
Contribution

Constraint C2’:
Contribution noset OAuth1Token {tokenSecret}, ServiceBuilder {apiSecret},

ServiceBuilderAsync{apiSecret},

OAuth1AccessToken {tokenSecret}, OAuth1RequestToken {tokenSecret},

OAuthConfig {apiSecret}, RSASha1SignatureService{privateKey}

5.2. ASSESSING HIGHLY ACTIVE AND WELL-SUPPORTED SOFTWARE PROJECTS
66

We define P2 to state that sensitive information cannot flow to code contributions and
code contributions cannot alter sensitive information. We write C2 and C2’ in Salvum to en-
force P2. The constraint C2 is similar to C1, which determines that sensitive information cannot
flow to code contributions. On the other hand, C2’ uses noset construct to state that code con-
tributions cannot alter sensitive information initially stored in the specified fields.

We also write more policies and constraints for ScribeJava, but we did not find any
violations. So, we focus only on the constraints that helped us to detect violations.

CRAWLER4J:

Policy P3: User proxy password cannot flow to code contributions or writting operations

Constraint C3:
CrawlConfig {proxyPassword} noflow Contribution

Constraint C3’:
CrawlConfig {proxyPassword} noflow WrittingOps where

WrittingOps = {Logger.info(),Logger.error(),Logger.warn(),

System.out.println()}

The P3 policy not only specifies that user proxy password cannot flow to code contributions but
also to writting operations. Therefore, we write C3 and C3’. The former is similar to C1 and
C2 whereas the latter states that proxyPassword cannot flow t o w riting o perations called
throughout Crawler4J source code, such as Logger.info(). At last, we explain the viola-
tions these constraints helped to find in Section 5 .2.3. Additionally, in our online Appendix [20],
we provide a complete list of constraints we have written in Salvum.

5.2.3 Results

In this section, we show the results we obtain running Salvum for the constraints and
software projects explained. First, we answer Q1.

Answering Q1.
In particular, Table 5.3 illustrates the number of different software versions we

analyzed and the number of violations we have found for all considered versions of each
selected software project.

For the cases where Salvum detects a violation, we still need to manually review
the code contribution. There are two possibilities: (i) we acknowledge that there is indeed a
vio-lation, so we open an issue for the corresponding project on GitHub, or (ii) we recognize
that there is a sensitive information flow to the code contribution, but it is not h armful. For
exam-ple, a developer might submit commits containing a new authentication implementation.
In this case, Salvum detects a sensitive information flow, then we check the code contribution,
and we might conclude that the developer correctly implemented this functionality.

5.2. ASSESSING HIGHLY ACTIVE AND WELL-SUPPORTED SOFTWARE PROJECTS
67

Table 5.3: Results for violations

Project Versions Number of Violation Number of Violations
Warnings

Gitblit 49 2 1
Open Refine 10 0 0
Voldemort 52 0 0
ScribeJava 27 3 3

Solo 10 0 0
HikariCP 10 0 0

Apache Kafka 43 0 0
Teammates 10 0 0
Crawler4J 10 1 1

Total 221 6 5

Thus, we do not report a violation. This scenario is typical when analyzing initial commits.
In summary, the procedures to obtain the results for this evaluation is as follows:

� We write constraints for a software project;

� We run our tool to detect these constraints;

� We manually analyze the set of violation warnings;

� We decide whether the warnings are real violation;

� In case there are violations, we report them for the project developers on GitHub.

Gitblit, Voldemort, Teammates, Open Refine, and Apache Kafka present a more sig-
nificant number of commits than the other projects. Hence, we consider more versions to en-
compass around three years of development time as well as different contributors. ScribeJava
presents less commits, but it has more developers contributing than Voldemort, for instance.
Therefore, we consider 27 different versions. Our results could be biased because of the differ-
ence in the number of versions that we consider for each project. Thus, we discuss this threat
in Section 5.5. The remaining projects either handle less sensitive information or present fewer
contributors or commits. Thus, we take into account fewer software versions for them.

These nine projects adopt manual code review for their pull based software development
through GitHub pull requests. For each project, there is at least one developer that reviews code
contributions. Additionally, we also see that many code contributions fix only user interface
presentation, typos, and configuration files. To conclude that, we manually reviewed the code
attached to all Gitblit pull requests and at least five for the other projects. These kinds of
commits do not add or change lines of Java code, which avoids introducing violations in our
context.

5.2. ASSESSING HIGHLY ACTIVE AND WELL-SUPPORTED SOFTWARE PROJECTS
68

Nonetheless, we expect that the problems we might find should be critical because they
encompass sensitive information. In Table 5.3, the NVW metric results show that we found six
violation warnings for the selected projects of which five were confirmed as violations by expe-
rienced developers from each project, as we can see in NV results. One violation warning was
discarded by Gitblit developers because it was not a real threat. We opened an issue explaining
this warning, but Gitblit developers concluded that it was not a real problem.

In the following, we explain the violations we found for Gitblit, ScribeJava, and
Crawler4J.

Gitblit. For this project, we found two violations of the constraints we explained in
Section 5.2.2. In particular, we illustrate the output Salvum provides for constraint C1 below.
We use this violation as motivating example in Chapter 3. This output indicates that there is
an illegal flow of the information initially stored in password to line 284 of the RootPage
class at the Gitblit version associated with commit hash efdb2b3d.

Illegal flow from UserModel.password

to RootPage.loginUser() at line 284 in commit efdb2b3d

We reported this violation, and Gitblit developers accepted it as an issue1. Afterward, we
submitted a pull request to fix this issue. Listing 3.1 illustrates the line that caused this problem.
We solve it by implementing a new way of generating a hash for the cookie mechanism. Instead
of using password and username, we produce a random number. The pull request was accepted,
and its code was integrated into production repository. This issue remained unnoticed for 655
days. Furthermore, Gitblit developers also opened an issue to change the implemented hash
function after we warned them about the weakness ot he previous method.2

ScribeJava. Among the 27 Scribe Java versions, we found one violation to constraint
C2. Thus, we manually analyzed the code contribution introduced by commit d734a4df.
Indeed, a developer added one flow from tokenSecret to toString() method, which
might leak sensitive information in case other developers carelessly call it.

Illegal flow from OAuth1Token.tokenSecret

to OAuth1AccessToken.toString() at line 48 in commit d734a4df

We also reported this violation to Scribe Java developers. After one experienced de-
veloper reviewed our report, he confirmed the issue and fixed it himself by removing the
toString() method.3 Therefore, we did not need to submit a pull request. This issue re-
mained unnoticed for 573 days.

Crawler4J. The violation we found for this project is similar to the one explained for

1https://github.com/gitblit/gitblit/pull/1116#pullrequestreview-12289367
2https://github.com/gitblit/gitblit/issues/1166
3https://github.com/scribejava/scribejava/issues/796#event-1250752673

https://github.com/gitblit/gitblit/pull/1116#pullrequestreview-12289367
https://github.com/gitblit/gitblit/issues/1166
https://github.com/scribejava/scribejava/issues/796#event-1250752673

5.2. ASSESSING HIGHLY ACTIVE AND WELL-SUPPORTED SOFTWARE PROJECTS
69

ScribeJava. There is a violation of the constraint C3. We manually analyzed the code contribu-
tion that introduced this violation, and we identified that a developer also added one flow from
proxyPassword to a toString() method. Crawler4J developers accepted this violation,
and they asked for a pull request to fix it4. This issue remained unnoticed for 2091 days.

Illegal flow from CrawlConfig.proxyPassword

to CrawlConfig.toString() at line 399 in commit 1c23e320

Based on NVW and NV results shown in Table 5.3, we answer Q1 stating
that Salvum can detect proper violations of sensitive information and code
contributions in the context of software projects that have a defined code
review process.

However, due to the low number of problems for this set of software projects, we aim
to answer two secondary research questions: Q1.1 and Q1.2.

Answering Q1.1.
The answer to Q1.1 might help us unveil the reason we have found only a few violations.

Thus, we read developer discussions of at most 25 merged pull request containing at least two
messages attached considering the nine projects. We choose 25 because while performing this
analysis, we noticed the reasons of discussions started to be repetitive, which indicates that we
would have similar results for more pull requests. Additionally, We observed that two messages
indicate an initial debate on the code contributions whereas only one message suggests that the
pull request developer explains something without any replies. Indeed, most messages discuss
change requests and responses. On the other hand, pull requests without messages suggest that
developers did not review it or there was no problem and it was merged. The former case is not
compelling to answer Q1.1 because there is no change request. The latter case means that the
code contribution is integrated, and consequently, we could analyze it using Salvum. Table 5.4
depicts the number of pull request we manually analyzed for each project.

Following Lientz and Swanson [70] and Gousios, Storey, and Bacchelli [24], we divide
the types of contributions in three categories: Perfective (new functionalities), Corrective (fix-
ing issues), and Preventive (refactoring). We aimed at checking a correlation between these
categories and security-related issues, but we did not find a connection.

Our goal was to analyze 25 pull requests for each project, but Solo has only six merged
pull request with at least two messages whereas Crawler4J has only 10. Thereby, we analyzed
a total of 191 pull requests messages.

The main reason for discussions throughout these 191 pull requests in GitHub is to:
(i) include or run tests, (ii) obey development guidelines like code indentation, (iii) change

4https://github.com/yasserg/crawler4j/issues/260#issuecomment-346919742

https://github.com/yasserg/crawler4j/issues/260#issuecomment-346919742

5.2. ASSESSING HIGHLY ACTIVE AND WELL-SUPPORTED SOFTWARE PROJECTS
70

Table 5.4: Manually analyzed pull request messages

Project Perfective Corrective Preventive Total Security
related

Gitblit 11 5 9 25 0
Open Refine 8 2 15 25 0
Voldemort 7 6 12 25 0
ScribeJava 8 9 8 25 2

Solo 0 5 1 6 2
HikariCP 5 10 10 25 1

Apache Kafka 6 8 11 25 1
Teammates 9 9 7 25 0
Crawler4J 5 2 3 10 0

Total 59 56 76 191 6

behavior of new functionality, (iv) fix rebase, branch, or merge issues, (v) explain how the
proposed new functionality works and why it is useful, and (vi) fix compilation problem. The
nine projects present discussions mostly about these six reasons.

We can observe in Table 5.4 that security-related pull requests are rare for our sample.
Three of them are Perfective pull requests, and the other three are Corrective. The discussion
attached to these six pull requests are related to (i), (ii), and (vi). However, there are no com-
ments about privacy and security violations of sensitive information. To confirm that they do
not concern violations, we analyzed the code of these six pull requests. Indeed, none of them
introduces violations.

In this way, these manually analyzed pull requests ratifies our previous findings with
Salvum. Only a small amount of code contributions are associated with privacy and security of
sensitive information. Thus, regarding our sample, it is not unusual that we find a few violations
of our specified constraints for projects that have an organized way of contribution.

In summary, we did not find violations that developers solved before merg-
ing code contributions for our sample. Thus, the NvC metric is zero which
leads us to answer Q1.1 stating that we did not find on the analyzed projects
that developers solved these violations for our sample.

Answering Q1.2.
To answer Q1.2, we manually analyzed the source code of at most five unmerged pull

requests that have already been closed. Hence, developers will not merge them in the future. As
we explained in Section 3.5, manually reviewing code contributions is a time-consuming task.
For this reason, our sample is small. However, we plan to extend this analysis, as we discuss in
Section 7.3.

5.2. ASSESSING HIGHLY ACTIVE AND WELL-SUPPORTED SOFTWARE PROJECTS
71

The corresponding results might bring evidence that we missed violations because the
code contributions that would introduce them was not integrated into the repository. In this
case, we do not need to analyze the discussions associated to pull requests because a developer
can close them without demanding changes from the submitter.

We search for violations of the constraints we define in Section 5.2.2. Thus, while
manually reviewing, we have in mind mainly where and how the code contribution deals with
sensitive information. The procedure to collect data to answer Q1.2 for each project is as
follows:

� We search for the five most commented pull requests that are closed and unmerged;

� We read the last comments to check why developers rejected the pull request;

� We search for occurrences of sensitive information on the resulting diff file;

� We decide whether those occurrences configure a violation.

We performed this procedure for 45 pull requests, which leads to 39517 lines added,
changed, or removed. However, we skipped non-Java code and test implementations because
they cannot introduce violations in our context. For this reason, the total number of Java code
lines that we read was reduced. Table 5.5 summarizes our manual analysis results. Despite
the fact that we could not find a connection between privacy and security pull requests and the
categorization of Lientz et al. [70], we use it to keep the pattern equal to Table 5.4.

Table 5.5: Manually analyzed unmerged pull requests

Project Perfective Corrective Preventive

Gitblit 4 1 0
Open Refine 2 1 2
Voldemort 3 0 2
ScribeJava 3 0 2

Solo 2 2 1
HikariCP 3 2 0

Apache Kafka 3 0 2
Teammates 2 1 2
Crawler4J 3 0 2

Total 25 7 13

As we discussed before, security-related pull requests are rare for our sam-
ple. Only two ScribeJava rejected pull requests approach privacy and security prop-
erties. They implement changes that print access tokens on the console. However,
We did not classify them as violations because these operations are implemented in
classes that exist only as examples, that is, real systems that use ScribeJava do no use

5.2. ASSESSING HIGHLY ACTIVE AND WELL-SUPPORTED SOFTWARE PROJECTS
72

them. Therefore, the Number of unmerged code contributions containing

violations (NrC) is zero for our sample.

Then, we answer Q1.2 stating that the unmerged code contributions on
GitHub are not related to violations of sensitive information for our sam-
ple.

This answer brings evidence that we did not miss violations because the code contribu-
tion that could have introduced them was not merged. Regarding the analyzed sample, we found
a few violations. Therefore, we do not have evidence that these violations existed on GitHub
project, but they were detected and fixed during the code review process. This way, one possi-
bility is that the developers of these projects are experienced, so they introduce a small number
of these kinds of violations. Another possibility is that these violations are rarely introduced
even for inexperienced developers, or they do exist, but they are fixed at the local repositories.

At last, the main reasons for the rejected pull requests were: (i) submitter did not
respond a change request for a long time, (ii) another pull request replaces the rejected one,
and (iii) the new functionality implemented in the pull request is invalid.

Answering Q2.
Moreover, to assess whether Salvum reduces the effort (regarding project versions and

line of code to review) to review manually these violations that Salvum detects, we consider
Q2. Table 5.8 illustrates the results for PA and SA metrics. For instance, we needed to perform
a manual code review for only three versions of the Gitblit project. The other 46 versions do not
present violations as Salvum established. Therefore, in the worst case, a manual code reviewer
would need to consider the 49 selected versions. This scenario could happen for cases that we
need to analyze all the contributions submitted by a particular developer, as it was the case for
our untrustworthy developer scenario in Section 3.4. Table 5.8 also illustrates the percentage
of total PA. For example, PA with Salvum for Gitblit is three, which means that we need to
analyze only 6,12% of the total project versions.

Additionally, there are 6012 lines of code contribution scattered across the 49 versions.
These numbers represent lines of Java code added, changed, or removed in considered code
contributions. Thus, the total number of lines to initiate a review is 23053. Besides that, a
reviewer would need to review lines of code that were not introduced by code contributions, but
are related to them. However, we focus on this set of initial lines to start a code review. Since
Salvum shows precisely where the violations occur, we reduce the number of lines to read and
confirm or discard the issue.

Thus, the SA with Salvum for Gitblit is 32. This measure represents the number of
initial lines of Java code that we consider to review to determine Salvum indeed detected a

5.3. ASSESSING LOW ACTIVE AND POORLY SUPPORTED SOFTWARE PROJECTS 73

Table 5.6: Results for revisions

Project PA without PA with Percentage of SA without SA with Percentage of
Salvum Salvum total Salvum Salvum total

Gitblit 49 3 6,12% 6012 32 0,53%
Open Refine 10 0 0% 578 0 0%
Voldemort 52 0 0% 5040 0 0%
ScribeJava 27 1 3,7% 4496 4 0,08%

Solo 10 0 0% 952 0 0%
HikariCP 10 0 0% 216 0 0%

Apache Kafka 43 0 0% 3402 0 0%
Teammates 10 0 0% 1863 0 0%
Crawler4J 10 1 10% 494 22 4,45%

Total 221 5 - 23053 58 -

violation of the constraints we specified. In summary, we needed to consider 0,53% of code
contribution lines for Gitblit, 0,08% for ScribeJava, and 4,45% for Crawler4J.

However, an experienced reviewer could decrease the number of lines to be reviewed.
For example, there might be lines of code corresponding to tests or configuration files. In these
cases, there is no change for Java code, and consequently, no violation is introduced. On the
other hand, our tool has the advantage to show precisely from and to the sensitive information
flows. In this context, even an experienced reviewer would have to put lots of effort to find inter-
procedural dependences. For instance, the task of identifying violations of sensitive information
that flows throughout many methods of different classes.

Thus, we answer Q2 stating that Salvum reduces the effort to find violations
of the specified constraints under JOANA IFC analysis limitations.

5.3 Assessing low active and poorly supported software projects

For the second part of our evaluation, we consider five software projects used in previous
study [26, 11]. We selected the projects that are still available either in SourceForge [71] or
GitHub. From a total of 36 projects, we discarded the unavailable ones and also those that we
could not correctly build or identify sensitive information.

Different from the nine projects in Section 5.2, the current ones do not have an organized
code review process. In this way, we expect to find more violations than the previous evaluation.
We explain these projects in Section 5.3.1. Additionally, we define a set of constraints for them
in Section 5.3.2. At last, we describe the results we obtained in Section 5.3.3. Our goal here is
to answer Q1 considering the latest version of each project.

5.3. ASSESSING LOW ACTIVE AND POORLY SUPPORTED SOFTWARE PROJECTS 74

5.3.1 Selected software projects

In this assessment, we select the following open-source and Java written
software projects: Blojsom [50], Personalblog [72], GridSphere [73], SnipSnap [74], and
Lutece [75]. In Table 5.7, we illustrate some of their characteristics.

Table 5.7: Selected software projects

Project Commits SLOC Technical
Domain

Blojsom 3600 6500 Blog
Personalblog - 4300 Blog
GridSphere 6000 40400 Web portal
SnipSnap 1500 22800 Wiki

Lutece 3000 69700 Web portal

Blojsom is a multi-user blogging system. It has nearly 6500 lines of Java code and 3600
commits. Developers have supported this project for ten years until 2013. However, the last
stable version is still available for download. Blojsom handles sensitive information like owner
authorization and email as well as many passwords.

Personalblog is also a blogging application. It has approximately 4300 lines of code.
Equally to Blojsom, this project has been supported for ten years until 2013, and its last version
is available for download. Sensitive information such as hibernate connection properties, pass-
word, cookies, and sessions flows throughout Personalblog source code. We could not retrieve
the list of commits for this project because it uses an old control version system, which is not
supported for migration to GitHub.

Gridsphere is a web portal developed from 2002 to 2010. During this time, it was
highly active containing three mailing lists and issue tracker. Thus, it has around 6000 commits
and 40400 lines of code. This system holds passwords and certificates as sensitive information.
SnipSnap is a collaborative system that executes a wiki, which allow users to create and manage
pages via a browser. This project has roughly 1500 commits and 22800 lines of code. It also
handles sensitive information like user password.

The last selected project, Lutece, is a web portal that allows users to create websites or
intranets. Developers still support this project. They have submitted 137 pull requests. How-
ever, their code contribution review is not as organized as the projects of our first assessment.
For example, the pull requests do not have many comments before being accepted. In turn, this
project is more active than the other four we selected. Thus, we expect to find fewer violations.

To evaluate these projects, we define policies and constraints for each one in Sec-
tion 5.3.2, and we explain the results in Section 5.3.3.

5.3. ASSESSING LOW ACTIVE AND POORLY SUPPORTED SOFTWARE PROJECTS 75

5.3.2 Policies and Constraints

To answer Q1 for a set of selected projects with different characteristics, we
write policies and constraints. We explain only policies and constraints that helped us
to find violations and also because the others are similar. However, the complete list can be
found in our online Appendix [20].

BLOJSOM:

Policy P4: Blog owner email, authorization, and any password

cannot flow or be altered by writing operations

Constraint C4:
Blog {blogOwnerEmail,blogOwner,authorization}, AtomAPIServlet {password},

BlojsomXMLRPCServlet {password}, BloggerAPIHandler {password},

MetaWeblogAPIHandler {password} noflow Writeops where
Writeops = {Logger.info(),Logger.error(),Logger.warn(),

System.out.println(),setCookie()}

Constraint C4’:
Writeops noset Blog {blogOwnerEmail,blogOwner,authorization},

AtomAPIServlet {password},BlojsomXMLRPCServlet {password},

BloggerAPIHandler {password}, MetaWeblogAPIHandler {password} where
Writeops = {Logger.info(),Logger.error(),Logger.warn(),

System.out.println(),setCookie()}

P4 defines s e nsitive i n formation t h at B l ojsom h a ndles a n d t h e k i nd o f o p erations t h at they
should not flow. Thus, our goal is to detect an information flow between these el ements. There-
fore, we specify two constraints in Salvum to enforce P4. The first one, C4, aims to identify a
flow f rom s ensitive i nformation t o w riting o perations, w hich would r epresent a p otential leak.
Thus, a violation occurs if there is a flow. T his c onstraint g uarantees c o nfidentiality. On the
other hand, C4’ detects a flow f rom writing operations to sensitive information (the opposite),
which would mean that the source code violates integrity.

The other policies and constraints for the remaining four selected projects are similar
to P4, C4, and C4’. The differences regard the set of sensitive information, which we briefly
explained in Section 5.3.1, and also the potential leaking operations. For example, the Person-
alblog implements a sendMessage() method to send an email. Therefore, we define policy
and constraints to detect a violation through this method because we do not want it to leak
passwords. Thereby, we discuss the results for this evaluation in Section 5.3.3.

5.3.3 Results

In this section, we explain the results we obtain running Salvum for the constraints and
software projects introduced in Section 5.3.1. In particular, Table 5.8 illustrates the number of

5.3. ASSESSING LOW ACTIVE AND POORLY SUPPORTED SOFTWARE PROJECTS 76

violation warnings for each selected software project. Differently from Section 5.2, we consider
only the last version of each system. Blojsom and Personalblog are not pull-based development.
Thus, there is no pull request to analyze. Additionally, GridSphere and SnipSnap were migrated
from SVN to Git. Therefore, they do not have GitHub pull requests. In turn, Lutece is currently
developed on GitHub, and it has pull requests. However, this project does not have an organized
code review process. Thereby, we assess it in this section.

Table 5.8: Results for violations

Project Number of Violation Number of Violations
Warnings

Blojsom 34 33
Personalblog 44 43
GridSphere 4 2
SnipSnap 1 1

Lutece 1 1
= 86 80

Blojsom. Salvum warned 34 violations for this project of which we confirmed 33. In
this case, we looked carefully to verify whether it is a violation because we could not report
them since contributors do not develop Blojsom anymore. We did not confirm one reported
warning because it was a Java reflection usage, and JOANA does not support it [33]. Thus,
it generates a false-positive because JOANA conservatively establishes that there is a flow for
every reflection usage [18]. Below we show one of the 34 outputs that our tool provided:

Illegal flow from BloggerAPIHandler.password

to BloggerAPIHandler.editPost() at line 452 in commit 71e96cb

Line 452 contains a call to a Logger.error() method with userid and
password arguments. Therefore, it represents a violation because developers should not print
sensitive information such as passwords in log files. It is a well-known problem documented
in the OWASP guides.5 The majority of problems we found in Blojson is similar or related to
leaking sensitive information through writing operations like logging. Thus, we do not discuss
them here because it would be tedious and repetitive. Nonetheless, we provide the full report in
our online Appendix [20].

Other tools have also found many privacy and security issues for Blojsom [26, 11].
However, this project is not developed for a long time, thus developers did not fix its problems.

Personalblog. This project is the only one we could not migrate to GitHub because its
last version was still using CVS, which is not supported for migration by that platform. Hence,
Salvum could not show the commit that originated the issues. We found 44 violations of which

5https://www.owasp.org/index.php/Logging_Cheat_Sheet

https://www.owasp.org/index.php/Logging_Cheat_Sheet

5.3. ASSESSING LOW ACTIVE AND POORLY SUPPORTED SOFTWARE PROJECTS 77

we could confirm 43. The other one was also a false-positive due to JOANA limitation regarding
reflection. We show one of Salvum’s outputs below:

Illegal flow from InitializationManager.hibernate_properties

to InitializationManager.createHibernateConfigFile() at line 80

The hibernate_properties field holds the password that grants access to the
database. The code of line 80 writes the database password in a configuration file, which is also
a well-known problem explained in the OWASP guides.6 Hence, this violation represents a leak
of sensitive information that we should avoid.

GridSphere. We found four violations for this project, but two of them are false-
positives, both due to JOANA limitation concerning reflection. The following violation rep-
resents a different sensitive information leak.

Illegal flow from UserManagerPortlet.passwordBean

to UserManPortlet.mailUserConfirmation() at line 653 in commit 81219e5a

Line 653 contains a call to the sendMail() method, which sends email messages
with the goal of user confirmation. The problem is that they include the passwordBean in
their body, and this password is not temporary. In case an attacker has control over the user
browser or email account, he can also access the GridSphere account. Thus, we should avoid
sending permanent passwords through email introduced in commit 81219e5a.

SnipSnap. This system also implements a cookie mechanism similarly to Gitblit. We
found one violation regarding a user password flowing to this mechanism.

Illegal flow from User.passwd

to DefaultSessionService.getUser() at line 153 in commit 38d6902

Line 153 calls the setCookie() method, which receives a user argument. It is an
instance of the User class, and it contains sensitive information like a password. Analogously
to the Gitblit example in Section 3.1, we should not save passwords in cookies. Therefore, it
represents a real violation in the SnipSnap system introduced in commit 38d6902

Lutece. This project also handles user passwords. As shown in the Salvum output
below, we detect one violation regarding a password.

Illegal flow from PasswordFactory.strStoredPassword

to PasswordFactory.getPassword() at line 82 in commit 0b8670f

Line 82 throws an exception passing strStoredPassword as argument. Therefore,

6https://www.owasp.org/index.php/Use_of_hard-coded_password

https://www.owasp.org/index.php/Use_of_hard-coded_password

5.4. JOANA EVALUATION 78

if the system throws this exception, it could print the password on the stack trace. Thus, an
attacker that has access to the stack trace could see passwords from different users, and conse-
quently, access their web portals.

In summary, we answer Q1 stating that Salvum can detect a higher number
of proper violations of sensitive information and code contributions in the
context of poorly-supported software projects.

Our results here are different from the study in Section 5.2 because we consider poorly-
supported software projects. Thus, since there is no code review process, it is natural that many
violations are introduced by code contributions. Additionally, only Lutece is still in develop-
ment. Thus, the issues that our work and other studies found are not fixed.

5.4 JOANA evaluation

To assess how well JOANA [13] perform its analysis in our work, we evaluated it against
the Stanford SecuriBench Micro [19]. This benchmark is a set of many Java-written programs
intended to be used as a testing ground for security tools. Other authors have used it [10, 26,
11, 15, 76] to test their approaches. These programs are organized following the data structure
or operations where the problems might occur. We obtain the results to answer Q3 by running
JOANA for 73 SecuriBench tests to check its precision and recall.

Our primary goal is to determine the cases that JOANA misses information flows, which
could impact in our results for Q1 and Q2. Thus, we generate a System Dependence Graph
(SDG) for each test case using JOANA’s API, and we manually annotate the necessary instruc-
tions with High and Low for each program using JOANA’s user interface. In Table 5.9, we
illustrate the results for this assessment.

Table 5.9: SecuriBench Micro test results

Test Case Group TP TP + FN FP FN TN Recall Precision Accuracy
Aliasing 12 12 0 0 2 100% 100% 100%
Arrays 9 9 5 0 1 100% 64% 62%

Collections 14 14 6 0 1 100% 70% 71%
Datastructure 5 5 3 0 0 100% 62% 62%

Factories 3 3 3 0 0 100% 50% 50%
Inter 16 16 8 0 3 100% 66% 70%
Pred 5 5 3 0 1 100% 62% 66%

Reflection 3 4 6 1 0 75% 33% 30%
Session 3 3 1 0 0 100% 75% 75%

Strong Updates 1 1 4 0 0 100% 20% 20%

5.4. JOANA EVALUATION 79

JOANA was able to detect all the violations of 9 test case groups out of 10. The
Number of true-positives (TP) and the number of existing violations, which is rep-
resented by the sum of TP and FN, are different only for the Reflection group. As expected,
JOANA missed one violation regarding reflection since it does not support it. Therefore, the
only recall below 100% is for the reflection group. Since JOANA conservatively indicates that
there is information flow for reflection code, we believe this false-negative happened due to a
bug. We calculate the recall based on the metrics of TP and FN. We use the following formula:

recall =
T P

T P+FN

Surprisingly, JOANA results for this benchmark shows that for most examples the
Number of false-positives (FP) is not zero, which indicates high rates of false-
positives. Thus, we use the following formula to calculate precision:

precision =
T P

T P+FP

As shown in Table 5.9, only the Aliasing group has 100% of precision. Since we enable
object-sensitivity in JOANA configuration, we could correctly detect aliasing examples like the
one illustrated in Listing 5.1. Lines 7 and 8 leak "secret" to println(), but line 9 does
not leak it because of the assignment in line 4.

Code 5.1: Aliasing example

1 S t r i n g name = " s e c r e t " ;
2 O b j e c t o1 = name ;
3 O b j e c t o2 = name . c o n c a t (" abc ") ;
4 O b j e c t o3 = " anc " ;
5
6 P r i n t W r i t e r w r i t e r = r e s p . g e t W r i t e r () ;
7 w r i t e r . p r i n t l n (o1) ; / * BAD * /

8 w r i t e r . p r i n t l n (o2) ; / * BAD * /

9 w r i t e r . p r i n t l n (o3) ; / * OK * /

However, JOANA presented higher rates of FP on the other groups, which compromised
its precision. For example, the Strong Updates group result has 20% of precision with four false-
positives. In Listing 5.2, line 12 does not leak "secret" because line 10 assigns "abc" to
w.value. However, JOANA detects a violation in line 12. Conceptually, JOANA should not
introduce such false-positive. Thereby, we opened an issue on GitHub to report this potential
problem.

5.4. JOANA EVALUATION 80

Code 5.2: Strong Update example

1 c l a s s O u t t e r {
2 c l a s s Widget {
3 S t r i n g v a l u e = n u l l ;
4 }
5
6 void m() {
7 S t r i n g name = " s e c r e t " ;
8 Widget w = new Widget () ;
9 w. v a l u e = name ;

10 w. v a l u e = " abc " ;
11 P r i n t W r i t e r w r i t e r = r e s p . g e t W r i t e r () ;
12 w r i t e r . p r i n t l n (w. v a l u e) ; / * OK * /

13 }
14 }

Additionally, we calculate the accuracy for our sample. We obtain the accuracy with the
following formula:

accuracy =
T P+T N

T P+FP+FN +T N

Table 5.9 shows that the Aliasing group has 100% of accuracy. Thus, JOANA performs
better for these kinds of scenarios regarding recall, precision, and accuracy. Due to the high
number of false-positives, the Strong Updates group has only 20% of accuracy, which makes
him even worse than Reflection. However, the Reflection group does not have true-negative
examples in this benchmark. Thus, the TN metric measures zero. Since JOANA does not
support reflection, we would have lower accuracy rates in case the Reflection group had true-
negative examples.

The SecuriBench Micro examples exercise a large variety of IFC scenarios, which in
many times are not common in real systems. Even though the higher recall, precision, and
accuracy, the better to detect these examples, we can still find real problems considering 100%
recall. The results of Table 5.9 shows that JOANA presents a false-negative for Reflection, as
expected. For the other cases FN is zero, which allow us to conclude that if there is a violation,
JOANA is capable of finding it.

However, these results also show that precision and accuracy rates are lower than we
expected, which might reduce productivity to find violations in real systems. For example, if
we have cases similar to the programs of the Strong Updates group, we might have more effort
to understand, and consequently decide whether JOANA detected a real violation. Therefore,

5.5. THREATS TO VALIDITY 81

this limitation is a drawback also for our work because Salvum might find high rates of false-
positives for other examples.

Other IFC analysis implementations present lower rates for false-positives [10, 15]. The
Flowdroid tool [10] presents a total of only nine false-positives. However, its developers only
evaluate it for eight test case group (we consider ten). In turn, the PIDGIN tool [15] consider 12
test case group and present only 15 false-positives. Unfortunately PIDGIN is not open-source.
Nonetheless, due to this experiment results, we plan to use another IFC analysis implementation
in our tool to check whether we enhance precision and accuracy. We opted not to use the
Flowdroid tool because we would need to implement several changes so that we could run its
analysis for software projects of technical domains different from Android applications. Since
PIDGIN is not open-source, we also could not use it in this work.

In real scenarios that we show in Sections 5.2 and 5.3, we only found false-positives
regarding reflection. Thus, the low rates of precision and accuracy did not bias our previous
results. However, if we used another IFC analysis implementation, we would be able to decrease
even more the number of lines of code that we need to review.

Besides that, as we can see in Section 5.2.3, we could significantly reduce the number
of lines of code and project versions to be reviewed.

We answer Q3 stating that JOANA has a good performance regarding recall.
Although, we expected that it would have higher rates for precision and
accuracy.

5.5 Threats to validity

In this section, we discuss the threats to validity of our evaluation. By following
Wohlin et al, we organize the threats as Construct validity (Section 5.5.1),Conclusion
validity (Sec-tion 5.5.2), External validity (Section 5.5.3), and Internal validity (Section 5.5.4).

5.5.1 Construct validity

Threats to construct validity cover issues related to the design of the assessment and
its capacity to answer the research questions [77].

The selected metrics limitation. In Section 5.2, we evaluate effort using
approxima-tions: lines of code and project versions to analyze. However, we do not consider
other metrics such as the time to learn and define the policies and constraints as well as the
time to learn how to perform a manual code review.

To mitigate this threat, we could execute a controlled experiment in which we assign
tasks to reviewers. These tasks would be related to finding v iolations. T herefore, w e could

5.5. THREATS TO VALIDITY 82

measure the difference of time to execute these tasks with and without Salvum. We might bring
more insights about how our tool improves productivity.

Another threat related to the metrics we use in this work is related to the fact that they are
approximations. For example, an experienced developer could need to review a lower number
of lines of code to find the same violations comparing to an inexperienced d eveloper. This way,
the aforementioned controlled experiment could also mitigate this threat if we select developers
with different levels of experience.

Also because the metrics are approximations, we might have introduced a bias in the
number of lines of code that we need to review to find t h e v i olations. O n ly o n e a u thor of
this work manually reviewed the code contributions that Salvum identified violation warnings.
Although we have academic experience in code review, it would be interesting to have many
reviewers to decide the total lines of code that we need to consider for identifying the violation.

5.5.2 Conclusion validity

Threats to conclusion validity are concerned with issues that affect the ability to
draw the correct conclusion [77].

Sample size limitation. To answer the research questions Q1, Q1.1, Q1.2, and Q2,
we used small samples for selected projects and reviewed pull requests. This limitation might
introduce a bias in our conclusions.

The small sample of software projects is due to the time-consuming task of studying
the systems to be able to write relevant constraints. We tried to contact developers of some
of these projects, but we did not receive replies. The only way to receive feedback from
developers was to open an issue regarding the violations we found and tag the developer that
introduced it. Thus, we could not select a much higher number of projects.

The small sample of pull request is also because of the time-consuming task of
manually understand the discussions and source code. Additionally, only one author was
responsible for both tasks.

5.5.3 External validity

Threats to the external validity concern a generalization of the results [77].
The selected software projects, specified c onstraints, and analyzed pull requests.

Due to the analysis limitations explained in Section 5.5.2, our set of selected software projects,
specified constraints and analyzed pull request is s mall. Thus, we acknowledge that we might
have a small sample to answer Q1 and Q2. Additionally, the projects are only Java-written and
open-source. Therefore, we cannot guarantee that our results apply to other systems written
using different programming languages or proprietary software. However, we still could find
real violations, and we could reduce the effort to review code contributions manually.

5.5. THREATS TO VALIDITY 83

The automated static IFC analysis. In this work, we implement our language using
static IFC analysis. Therefore, we cannot generalize our results to other types of analysis, such
as dynamic [78, 32, 79] or Bayesian-based [80]. However, implementing policy languages using
these alternative techniques could open an interesting avenue of research. We should consider
these alternatives as future work.

5.5.4 Internal validity

Threats to the internal validity concern the fact that the assessment affects the
re-sults [77].

The procedure of manually reviewing pull requests. To answer Q1.1 and Q1.2,
we manually analyzed many pull requests code and associated comments. However, we might
have introduced bias because we also defined the policies and constraints for the code
contributions. Thus, we might have missed other violations that were not related to our
constraints. Despite the fact that Q1.1 and Q1.2 are secondary research questions in this
work, our results comply with the results we obtained using Salvum to answer Q1. Anyway,
it would be interesting to have more reviewers to perform the procedure of manually
reviewing the set of pull requests we selected.

The procedure to select software projects. For the projects we consider in Section
5.2, we developed a tool [20] to find repositories in GitHub that contain a set of characteristics:
Java as the primary language, at least 100 GitHub stars, and 50 forks. We intend to select
highly active projects to show evidence that Salvum can find violations in this c ontext.
Although, we cannot assure that these values are ideal to obtain highly active projects. For
this reason, we might introduce bias in this procedure.

Moreover, we selected the projects that we consider in Section 5.3 with the intent
to show evidence that Salvum finds a higher number of violations for low active p rojects.
Hence, we searched for them by reading the evaluation of related work (Chapter 6). Since
we knew that other studies had found privacy and security problems on this set of projects, we
could be biased to write the policies and constraints. In turn, these related work are
designed to find different types of issues, like SQL Injection [11].

Time to execute analysis. JOANA analysis execution might be slow for large software
projects, such as Voldemort. Depending on the number of lines of a code contribution, it takes
up to a day to finish e xecution. This delay happens even using our powerful hardware
(Intel Xeon E7 with 64 gigabytes of RAM). It occurs mainly because the System Dependence
Graph (SDG) [36] gets very large for such cases. Thus, this limitation on execution time
affects our results because we might have missed violations for the cases that we could not
execute JOANA.

The set of pull requests we manually reviewed. We establish parameters to
select the code contributions to review in Section 5.2.3. For example, pull requests with at
least two messages attached to answer Q1.1. We intended to select pull requests that
developers discussed

5.5. THREATS TO VALIDITY 84

merging so that they could have solved violations. However, we did not review pull requests
with other characteristics for this case. Hence, we cannot generalize that developers do not
address privacy and security violations before merging pull requests.

Size of source code. Static analysis using SGDs do not support projects larger than
100KLOC [81]. So, it is unfeasible to run JOANA analyses providing an entry point that the
resulting SDG would encompass more than 100KLOC. Indeed, we noticed that "Out of memory
errors" happen for such cases. However, we also run the IFC analysis for larger projects (e.g.,
Voldemort) because the code contributions do not encompass the whole source code. Therefore,
this limitation about choosing the entry points affects our ability to conclude whether a massive
project presents violations. To mitigate this issue, we generate different SDGs for the same
project by providing different entry points. In turn, we chose these entry points with the goal to
encompass the code contributions that we aim to analyze.

IFC analysis limitation. Currently, Salvum uses JOANA as an IFC approach. Albeit
we conclude it has a high recall, JOANA does not support reflection so that we might miss other
kinds of violations. Therefore, this limitation might affect the results we discuss in Sections 5.2
and 5.3. However, we developed Salvum to be as independent as possible from the IFC im-
plementation. Therefore, we can change to other IFC tool in case we observe many violations
regarding reflection for future work.

Specified policies and constraints. In this work, we studied the selected projects to un-
derstand their purpose, the sensitive information they handle, architecture, and how developers
contribute. Thus, we know to define some policies and constraints for these projects. However,
we cannot guarantee that all the sensitive information is specified in our constraints. To be able
to define other relevant constraints, we tried to contact developers of the selected projects, but
we got no response. This limitation might lead to losing some violations, which affects our
conclusions. When we manually reviewed the pull requests to answer Q1.1 and Q1.2, we also
tried to observe additional sensitive information that we missed. In this way, we could define
more policies and constraints to mitigate this drawback. Nonetheless, developers with vast ex-
perience in a particular software project could reduce this issue by establishing their Salvum
constraints.

Number of project versions. In Section 5.2.3, we obtain our results from a different
number of software projects for each project. Therefore, we could have found more violations
for some projects due to a higher number of versions. For example, we consider 49 Gitblit
versions and only 10 Open Refine. We found one violation regarding Gitblit and none regarding
Open Refine. This way, we could have found more violations if we considered more Open
Refine versions.

Decisions whether there is a violation. In Section 5.3, only one author of this work
manually decides whether a violation warning is a real problem. Ideally, at least two researchers
should make these decisions. This way, we could reduce bias because there would be a dis-
cussion before determining a violation occurrence. In contrast, this issue does not happen in

5.5. THREATS TO VALIDITY 85

Section 5.2 because we report the violations on GitHub, directly to the project developers.
Therefore, these developers decide whether we found a real violation.

Entry-points. For the results we obtained in this work, we manually chose the entry-
methods necessary to generate an SDG. We might have introduced a bias in case the author
responsible for this task misses methods that contain code contribution changes. This limitation
could lead to missing violations for our results. To mitigate this threat, we implemented a
mechanism to allow us to provide multiple entry methods to generate one SDG. Therefore, we
tried to choose a set of methods that encompasses all code contribution changes. Additionally,
in case developers adopt Salvum to their projects, they can define a simple tool to identify all
the methods that contain code contribution changes, which results in the set of entry-methods.

86

6 Related Work

In this chapter, we present related work. First, we discuss manual code review in Sec-
tion 6.1 and some existing Information Flow Control analysis tools in Section 6.2. Lastly, we
approach related language-based information flow in Section 6.3.

6.1 Manual code review

There are some documented guides to improve the execution of manual code review.
These guides provide information on how to find s pecific ki nds of vu lnerabilities. Th us, a
reviewer can focus on user inputs and access to databases, for example. The Open Web Appli-
cation Security Project (OWASP) [22] provides a number of these guides. Thus a reviewer can
follow it to find privacy and security violations for Java projects, .NET projects, e tc. They also
provide a list of standard vulnerabilities detailing how they might appear in source code and
how to fix t hem. Another widely used guide is the Common Weakness Enumeration (CWE)
[44]. It provides a set of software weaknesses to better understanding and management of
software weaknesses related to architecture and design. Thus, reviewers can consult this guide
to under-stand and discuss privacy and security violations, which could also improve their
manual code review tasks.

Nonetheless, as we explain throughout this work, manual code review is costly and
time-consuming. These guides help to reduce these factors, but automated tools could improve
productivity even more. Thus, our solution does not replace manual code review tasks, but we
decrease its effort.

6.2 Information Flow Control analysis tools

TAJ [11] is a static analysis tool designed to detect four of the well-known security
vulnerabilities: Cross-site scripting, Injection flaws, Malicious file executions, and Information
leakage and improper error-handling attacks. Each of these vulnerabilities can be cast as a prob-
lem in which information associated with a label High flows to another program part associated

6.2. INFORMATION FLOW CONTROL ANALYSIS TOOLS 87

with label Low without being endorsed, which means that the information is not validated or
corrected. This tool works for Java Web projects and is also a WALA [30] client.

In this context, TAJ defines implicit constraints, which are transparent to its users, to
detect occurrences of these four vulnerabilities in Java Web projects. However, this tool would
need several modifications to allow developers to specify constraints as we show in Chapter 4,
and to for other technical domains than Java Web projects.

Another related static analysis tool is the Flowdroid [10], a static analysis system specif-
ically tailored to the Android platform. It is designed to analyze Android applications bytecode
and configuration files to find potential privacy leak. To label program parts as High and Low,
it uses an auxiliary tool named Susi [58], which sweeps Android API to find where poten-
tially sensitive information is stored and potentially dangerous methods, such as sendSMS().
Therefore, Flowdroid automatically defines implicit constraints and run its analysis to find vio-
lations.

Likewise TAJ, Flowdroid is designed to work for a specific platform. Also, we would
need to make several adaptations to use Flowdroid for code contributions. Other tools also
present similar drawbacks for our context.

Scandroid [12] is a tool to check Android applications. It extracts security specifica-
tions from manifests that accompany such applications, and checks, whether information flows
through those applications are consistent with those specifications. Thus, Scandroid automati-
cally defines constraints based on an auxiliary specification, such as manifest files. Mainly, this
tool is used to guarantee that an Android application obeys user permissions.

Different from TAJ and Flowdroid, Scandroid constraints might vary depending on these
auxiliary specifications. However, we cannot specify our constraints to detect the problems we
introduced in Chapter 3. To use Scandroid analysis, we would need to drastically change its
source code. Thus, like Flowdroid, this tool is useful for auditing Android applications, but
they do not work for other technical domains.

Taintdroid [32] is another related tool. It is a dynamic IFC analysis system capable of
simultaneously tracking multiple Sources of sensitive information for the Android environment
with the cost of performance overhead. Different from the other presented tools, Taintdroid
adopts a dynamic analysis. However, it also defines implicit constraints to find illegal infor-
mation flow when applications are executing. As its main drawback, Taintdroid only supports
explicit flows. Thus, its analysis would not be able to identify the problem introduced in List-
ing 3.1. Furthermore, Tripp et al. propose a Taintdroid new approach to address privacy en-
forcement as a learning problem, relaxing binary judgments into a quantitative or probabilistic
mode of reasoning [80].

Salvum does not provide dynamic analysis to check whether constraint violations occur
at runtime. This limitation could be an exciting study for future work. However, it is out of
the scope of this thesis because we would have to ultimately implement a new dynamic IFC
analysis so that it could work for our scenarios.

6.3. LANGUAGE-BASED INFORMATION FLOW 88

Moreover, ANDROMEDA [26] statically detects flows w h erein i n formation returned
by Source reaches a Sink without being adequately endorsed by a "downgrader", that is, the
information has not been validated. ANDROMEDA is capable of detecting typical information
flow r e lated v u lnerabilities [2 2], s u ch a s C r oss-site s c ripting a n d S Q L I n jection, f o r a web
application. To work for different web frameworks and libraries, ANDROMEDA supports the
definitions o f e xtensions s o t hat i t w orks f or S truts, S pring, J SF, e t c. T he p urpose a nd u se of
this tool are similar to JOANA.

However, JOANA allows more flexibility r e garding p r ecision a n d p e rformance con-
figuration. F u rthermore, A N DROMEDA i s n o t a s p r ecise a s J OANA i s [5] s i nce t h e latter
guarantees noninterference [18, 39]. Anyway, Salvum is not high attached to JOANA’s imple-
mentation. So, we can change our IFC analysis to ANDROMEDA in the case we need it.

The F4F (Framework For Frameworks) tool [82] is also a related work. It is designed
to execute IFC analysis of framework-based web applications using a specification language
called WAFL for describing the behavior of such frameworks. Thus, to identify privacy and
security violations for the scenario, we present in Chapter 3, we would have to add a WAFL
generator for each framework the selected software projects (Section 5.2.1) use. For example,
Gitblit uses the Apache Wicket [83] framework and Open Refine uses Java Servlet API. On the
other hand, Salvum requires only the specification o f s imple c onstraints, i nstead o f w riting a
whole specification language for each selected system.

6.3 Language-based Information Flow

There are languages designed to support IFC. Jif [14, 34] is a security-typed program-
ming language that extends Java with support for information flow control. Thus, developers
should modify the system source code to add security types. Therefore, Jif implementation can
analyze type errors. For instance, if one variable with security type High is assigned to another
variable with security type Low a compilation error occurs. In this context, it would be hard to
attribute security types for different program versions, as we automatically do (Chapter 4). Ad-
ditionally, Jif tangles constraint code with program code, which might hinder code maintenance
and understanding since according to the principle of Separation of Concerns [59] one should
be able to implement and reason about each concern independently. The Checker Framework
[25] extends Java’s type system to let software developers detect and prevent errors in their
Java programs. It provides some checkers for different pur-poses, like Nullness, Format
String, and Constant value checkers. One of them is related to our work: Tainting checker. It
defines a type system that uses mainly two types: @Untainted and @Tainted. The
@Untainted annotation is equivalent to JOANA’s Low label, whereas @Tainted is
equivalent to High. Thus, if we try to assign an @Tainted variable to a @Untainted
one, a compilation error occurs.

Although fast, this tool would demand a significant effort from developers to manually

6.3. LANGUAGE-BASED INFORMATION FLOW 89

apply Checker Framework types in systems’ source code. This task would be even more difficult
when we need to refer to code contributions because we would use these types to different
versions of the same system. Besides that, constraint code gets tangled with and spread across
system core code, which might harm program maintenance [59].

Joe-E [52] is based upon the Java programming language. It adds some restrictions
(taming Java API) to define a subset of Java that provides privacy and security properties of an
object-capability language, which says that program state in objects cannot be read or written
without a reference. This mechanism is used to guarantee the Principle of Least Privilege [41].
However, to use Joe-E to solve the problems presented in Chapter 3, we would have to make
several changes in the source code so that it could compile. Notice that some wide used classes
like java.io.File have restrictions in this language, such as the exclusion of some methods.
Thus, it would be unfeasible to change the source code of several projects, primarily when we
work with code contributions since it deals with different source code versions. Caja [84] is
also a similar object-capability language, but it is designed to work with JavaScript.

Yang et al. developed a functional constraint language, named Jeeves, to protect sen-
sitive information [16]. It is a Scala programming language extension for privacy policies. Its
goal is to enforce these policies to filter the output of any function in the system based on con-
text. For example, if Alice is friends with Bob, she can see she can see his exact location (e.g.,
Informatics Center, UFPE, Recife). On the other hand, people that are not friends with Bob
can only see part of this location information (e.g., Recife). Moreover, Jeeves emphasizes the
separation of policies and system core code.

Salvum does not support filtering the output, which, indeed, is useful for some situ-
ations. Instead, Salvum currently allows negative and positive constructs. It means that the
information cannot flow at all, or that only specific information can flow, which does not spec-
ify how fine-grained this information is. However, Jeeves works only at runtime. Thus, to
prevent the problems we present in Chapter 3, Jeeves would have to support references for code
contributions similar to Salvum.

Johnson et al. provide a generic query language for program dependence graphs to find
different kinds of vulnerabilities [15] called PIDGIN. They check if the query resulting program
dependence subgraph is not empty for a particular constraint, which configures a violation.
We also allow developers to write policies to detect illegal flows from sensitive information to
specific operations like logging, as we showed in constraint C1’ in Section 5.2.2. However,
we found violations of policies considering code contributions. PIDGIN does not support these
kinds of policies. Indeed, the authors did not find any violation of their case studies [15].

Finally, Apel et al. [85] investigate some shortcomings of object-oriented modifiers,
such as public or private, that limits expressiveness of feature-oriented languages [86].
Thus, they propose three new modifiers: feature to limit access to the feature in which the
variable is defined, subsequent to limit the access to the feature containing the variable and
all features composed subsequently [87], and public to make the variable globally available.

6.3. LANGUAGE-BASED INFORMATION FLOW 90

However, this solution does not support Salvum’s flexibility to define different kinds of policies.

91

7 Conclusions

This work introduces a policy language named Salvum to protect sensitive information
confidentiality and integrity from code c ontributions. Our language allows the specification of
constraints that should be enforced for systems of different technical domains. Developers can
use Salvum to enforce these constraints either before or after integrating the code contributions.
By checking before, we can prevent violations from being introduced in the system code. This
scenario is adequate for cases that we must analyze the existing project history. For example, it
could be necessary to enforce Salvum constraints to detect violations of sensitive information
confidentiality a nd i ntegrity f or c ode c ontributions t hat a n u ntrustworthy d eveloper submits.
On the other hand, by checking after, we can identify violations that were introduced by code
contributions, that is, they are already merged into the repository. For instance, it could be nec-
essary to enforce Salvum constraints to detect violations of sensitive information confidentiality
and integrity for code contributions submitted by a fired developer.

Our language has four main constructs: noflow, noset, flow, and set. They spec-
ify how code contributions can access sensitive information. For example, we can determine
that a passord cannot flow to a code contribution using the noflow c onstruct. Salvum also
supports explicit, implicit, and operations listing declarations of code contributions. For in-
stance, we can specify that the code contributions we want to analyze are represented by all the
commits submitted by a particular developer.

Salvum implementation includes four logical steps: Preprocessing, Labeling, Analyz-

ing, and Processing results. In the Preprocessing step we identify the contributions in the source
code and build a mapping that we use in the second step. In turn, Labeling automatically anno-
tate sensitive information and code contributions as High or Low security levels depending on
the specified c onstraint. Then, we run the JOANA IFC analysis to identify v iolations. Finally,
we process the results to determine whether it is a real violation in the Processing results step.
The current version of our tool supports the Java language, although we might use its concepts
as a basis for its implementation to other languages.

We evaluate our approach in three different ways. First, we specify Salvum constraints
to detect violations of sensitive information in nine highly active and well-supported selected
software project. Our results show that even to these projects, which present an organized code

7.1. REVIEW OF MAIN CONTRIBUTIONS 92

review process, we still can find code contribution violations of sensitive i nformation. Second,
we perform a similar assessment with five project that are not highly active nor well-supported.
In this way, our results indicate that we can find a higher number of violations for these kinds
of projects. We also evaluate the JOANA tool regarding precision, recall, and accuracy of its
analyses. JOANA presented a lower precision and accuracy than we expected, but it has a high
recall.

7.1 Review of main contributions

This work makes the following contributions:

� A new concept of policy languages;

To our knowledge, no policy language in the literature deals with code contributions.
Therefore, we propose a new concept to protect sensitive information. It might also
allow researchers to define other policy languages in this context.

� A policy language named Salvum;

In this work, we propose Salvum to allow the specification of privacy and security
constraints for collaborative software development. Its goal is to protect sensitive
information from potentially harmful code contributions.

� A prototype tool based on IFC analysis;

To enforce the specified constraints, we developed a tool. Therefore, developers can
write constraints and check code contribution adherence, which turns it possible to
find violations of such constraints.

� Auxiliary tools to perform the Preprocess and Processing results steps;

For these steps, we developed simple tools that automatize some work. For the
Preprocess step, we defined a tool to find projects on GitHub with the characteristics
we need. For the Processing results step, we developed a tool to filter the IFC
analysis results. For example, we remove duplicated illegal flow warnings. This
duplication happens because JOANA could detect two illegal flows for the same
source code line, but to different instructions.

� Policies and constraints specification for 14 software projects;

To evaluate our work, we defined a set of policies and constraints for the 14 selected
software projects we explained in Chapter 5.

� An empirical assessment considering highly active and well-supported selected soft-
ware projects;

7.2. LIMITATIONS 93

We use our tool to enforce a set of specified constraints to find violations of sensitive
information introduced by code contributions on these projects. To organize our
assessment, we define four research questions and use six metrics to answer them.

� An empirical assessment regarding low active selected software projects;

We use our tool to enforce a set of specified constraints to find violations of sensi-
tive information introduced by code contributions on these projects. We define two
research questions and use four metrics to answer them.

� Empirical evidence that our tool can find violations regarding real projects;

Since we find violations on both empirical assessments, we conclude that our lan-
guage and tool can indeed be useful in collaborative software development.

� An empirical study concerning JOANA precision, recall, and accuracy.

By running JOANA against the SecuriBench Micro, we could conclude that it
presents high recall, but low precision and accuracy for the test cases.

7.2 Limitations

Our work has many limitations:

� Salvum supports a small set of representations of code contributions. This way,
there might be relevant violations that we cannot identify with the current version of
Salvum. For example, we could support a list of Java String methods in addition to
contains (Section 4.2.3). Thus, we could express more policies;

� We use only static Information Flow Control analysis to identify violations. How-
ever, we can use other techniques like Dynamic IFC or mutation-based analysis [88];

� IFC analysis demands bytecode as input. Therefore, we have to manually build
project versions we aim at analyzing to enforce the specified constraints. For this
reason, it is very time-consuming to analyze a higher number of system versions;

� We have not considered cases where the constraints could be conflicting. For in-
stance, we can write that A noflow B and A flow B. There is no mechanism
to alert a conflict. For this case, the analysis result could state that there is a violation
of the first constraint independently of the second constraint. Therefore, the current
version of our tool enforces each constraint separately;

� We do not have a tool to automatically decide the most suited set of entry-points for
a particular system version. This feature would be useful so that we could assure that

7.3. FUTURE WORK 94

we build SDGs that encompass all the code related to the target code contribution.
Therefore, we have to manually decide the set of entry-points;

� We use Git commands in our language implementation, which makes the current
version of Salvum dependent on this software. Hence, the use of Salvum is limited
to this version control system. Nonetheless, Git has become one of the most popular
version control solutions. Besides that, GitHub hosts more than 78 million projects
supported by 28 million people, and it uses Git;1

� The usual high cost of generating SDGs might hinder the use of our forward ap-
proach. However, we could circumvent this issue by providing entry points that
encompass only the code changes and sensitive information. This solution would
reduce the size of the SDG, which turns its generation less costly. An alternative
solution is to change the IFCS analysis for others that are faster.

7.3 Future work

We intend to extend this study with the following future work:

� In this thesis, we only enforce constraints for code contributions. However, we could
also specify policies and constraints for features [89]. We believe that this extension
could identify harmful feature interactions or configurations. For example, we could
check, based on IFC, whether one feature depends on information that flows within
another feature code;

� We intend to conduct more experiments regarding the practical use of Salvum. For
instance, one idea is to empirically study developers using our language during the
evolution of a real project. This would provide us a better understanding of advan-
tages and disadvantages of our language;

� Customizing SDGs to optimize their creation is also a future work. Instead of cre-
ating a whole new SDG for each system version, we could change only nodes and
edges corresponding to the differences introduced by a code contribution. This fea-
ture would probably decrease the time to analyze multiple system versions. Indeed,
we did not find in the literature related work that investigates this optimization;

� Recently, JOANA developers added support for Android library. However, it only
works for small toy applications since they still need to implement more optimiza-
tion for the SDG creation. We tried to consider Android applications for this work,
but we could not generate an SDG even for a small Google Play application.2

1https://github.com/about
2https://preview.tinyurl.com/yauwyvsj

7.3. FUTURE WORK 95

Nonetheless, when this support becomes more robust, we plan to use Salvum to
investigate Android applications;

� We plan to add a declassification feature for our language. This feature allows the
security level (e.g., High or Low) of sensitive information to be lowered as means
to relax the specified constraint. For example, we can specify a constraint that de-
termines user password cannot flow operations that save it in a database unless it is
encrypted before. With this feature, we can evaluate our language by comparing it
against tools that seek for different kinds of problems such as SQL Injection. Addi-
tionally, we could use the OWASP benchmark named WebGoat [90] as an interesting
sample;

� We plan to extend our evaluation by including at least another researcher to review
the set of pull requests that we manually analyzed. This extension could reduce bias
in our results;

� Another point to explore is to consider an alternative Information Flow Control anal-
ysis. Since the one we adopt presents low precision and accuracy, we could use
another analysis for our tool implementation to mitigate this issue. We believe that
we could reduce false-positives for additional results. One possibility is to consider
incremental analysis [91] to increase precision. This approach allows developers to
interactively decide whether warnings are related to real violations.

� An interesting path of future work is to extend Salvum specification to
support more general constraints. Our idea is to allow that develop-
ers write constraints and use it among different projects. For instance,
we could write this constraint for MVC (Model-View-Controller) projects:
Model.Userpassword noflow View.Page.textArea. This constraint
would help to detect whether there is a flow from a password defined in User class
on the Model layer to a text area defined in the Page class on the View layer;

� Inspired by AspectJ wildcards [92], we plan to extend Salvum to support
this feature. Therefore, developers could write constraints like this one:
Authentication {*} noflow Log where Log = {Logger.*(..)}.
This constraint specifies that any information initially stored in any
Authentication class variables cannot flow to any method defined in
Logger class;

� We plan to extend our language specification to allow developers to declare vari-
ables that could hold definitions used in more than one location. This improve-
ment would reduce constraint code duplication. For example, we could as-

7.3. FUTURE WORK 96

sign WriteOps = {Logger.info(), Logger.error()} to the logger
variable and reuse it across many constraints;

� Another interesting language extension would be to support the specifi-
cation of interfaces or superclasses for the operations listing constructs.
Therefore, we could allow a reduction in the number of methods that
we need to declare. For instance, if Logger is an interface in
WriteOps = {Logger.info(), Logger.error()}, our tool would au-
tomatically identify the classes that implement Logger so that we could also detect
violations for them without explicitly declaring their methods.

97

References

[1] GitHub: Social Coding. [Online]. Available: http://github.com/

[2] D. E. Denning and P. J. Denning, “Certification of programs for secure information flow,”
Communications of the ACM, vol. 20, 1977.

[3] S. Saghafi, K. Fisler, and S. Krishnamurthi, “Features and object capabilities,” in AOSD,
2012.

[4] A. Meneely, H. Srinivasan, A. Musa, A. R. Tejeda, M. Mokary, and B. Spates, “When
a patch goes bad: Exploring the properties of vulnerability-contributing commits,” in
ACM/IEEE International Symposium on Empirical Software Engineering and Measure-

ment, 2013.

[5] G. Snelting, “Understanding probabilistic software leaks,” Science of Computer Program-

ming, vol. 97, Part 1, pp. 122–126, 2015.

[6] V. B. Livshits and M. S. Lam, “Finding security vulnerabilities in Java applications with
static analysis,” in USENIX Security, 2005.

[7] B. Chess and G. McGraw, “Static analysis for security,” IEEE Security & Privacy, no. 6,
pp. 76–79, 2004.

[8] G. McGraw, “Automated code review tools for security,” Computer, vol. 41, pp. 108–111,
2008.

[9] Sufatrio, D. J. J. Tan, T.-W. Chua, and V. L. L. Thing, “Securing Android: A survey,
taxonomy, and challenges,” ACM Computing Surveys, vol. 47, pp. 58:1–58:45, 2015.

[10] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. Le Traon, D. Octeau, and
P. McDaniel, “Flowdroid: Precise context, flow, field, object-sensitive and lifecycle-aware
taint analysis for Android apps,” in Programming Language Design and Implementation,
2014, pp. 259–269.

[11] O. Tripp, M. Pistoia, S. J. Fink, M. Sridharan, and O. Weisman, “TaJ: effective taint
analysis of web applications,” ACM Sigplan Notices, vol. 44, pp. 87–97, 2009.

[12] A. P. Fuchs, A. Chaudhuri, and J. S. Foster, “Scandroid: Automated security certification
of android applications,” in IEEE Symposium on Security and Privacy, 2010.

[13] JOANA - Java Object-sensitive ANAlysis. [Online]. Available: http://joana.ipd.kit.edu

[14] A. C. Myers, N. Nystrom, L. Zheng, and S. Zdancewic. Jif: Java information flow.
[Online]. Available: http://www.cs.cornell.edu/jif

http://github.com/
http://joana.ipd.kit.edu
http://www.cs.cornell.edu/jif

REFERENCES 98

[15] A. Johnson, L. Waye, S. Moore, and S. Chong, “Exploring and enforcing security guaran-
tees via program dependence graphs,” in Conference on Programming Language Design

and Implementation, 2015, pp. 291–302.

[16] J. Yang, K. Yessenov, and A. Solar-Lezama, “A language for automatically enforcing
privacy policies,” in Proceedings of the Symposium on Principles of Programming Lan-

guages, 2012.

[17] R. Andrade, “Privacy and security constraints for code contributions,” in SPLASH Doc-

toral Symposium, 2015.

[18] C. Hammer and G. Snelting, “Flow-sensitive, context-sensitive, and object-sensitive in-
formation flow control based on program dependence graphs,” International Journal of

Information Security, vol. 8, pp. 399–422, 2009.

[19] Securibench Micro. [Online]. Available: http://suif.stanford.edu/~livshits/work/
securibench-micro/

[20] Online Appendix. [Online]. Available: https://sites.google.com/site/rodrigocaa/
programming2018

[21] OWASP - code review guide. [Online]. Available: https://www.owasp.org/images/2/2e/
OWASP_Code_Review_Guide-V1_1.pdf

[22] OWASP - open web application security project. [Online]. Available: https://owasp.org/

[23] Using Pull Requests. [Online]. Available: https://help.github.com/articles/
using-pull-requests/

[24] G. Gousios, M.-A. Storey, and A. Bacchelli, “Work practices and challenges in pull-based
development: The contributor’s perspective,” in International Conference on Software

Engineering, 2016, pp. 285–296.

[25] M. D. Ernst, R. Just, S. Millstein, W. Dietl, S. Pernsteiner, F. Roesner, K. Koscher, P. B.
Barros, R. Bhoraskar, S. Han, P. Vines, and E. X. Wu, “Collaborative verification of infor-
mation flow for a high-assurance app store,” in Proceedings of the ACM SIGSAC Confer-

ence on Computer and Communications Security, 2014, pp. 1092–1104.

[26] O. Tripp, M. Pistoia, P. Cousot, R. Cousot, and S. Guarnieri, “Andromeda: Accurate and
scalable security analysis of web applications,” in Fundamental Approaches to Software

Engineering, 2013.

[27] S. Chong, K. Vikram, and A. C. Myers, “Sif: Enforcing confidentiality and integrity
in web applications,” in USENIX Security Symposium on USENIX Security Symposium,
2007, pp. 1–16.

http://suif.stanford.edu/~livshits/work/securibench-micro/
http://suif.stanford.edu/~livshits/work/securibench-micro/
https://sites.google.com/site/rodrigocaa/programming2018
https://sites.google.com/site/rodrigocaa/programming2018
https://www.owasp.org/images/2/2e/OWASP_Code_Review_Guide-V1_1.pdf
https://www.owasp.org/images/2/2e/OWASP_Code_Review_Guide-V1_1.pdf
https://owasp.org/
https://help.github.com/articles/using-pull-requests/
https://help.github.com/articles/using-pull-requests/

REFERENCES 99

[28] S. Chong and A. C. Myers, “Security policies for downgrading,” in Conference on Com-

puter and Communications Security, 2004, pp. 198–209.

[29] K. J. Biba, “Integrity considerations for secure computer systems,” Tech. Rep. ESD-TR-
76-372, 1977.

[30] S. Fink and J. Dolby. WALA, The T.J. Watson Libraries for Analysis. [Online]. Available:
http://wala.sourceforge.net/

[31] J. Newmsome and D. Song, “Dynamic taint analysis for automatic detection, analysis, and
signature generation of exploits on commodity software,” in Proc. of Network and Dist.

System Security Symp., 2005.

[32] W. Enck, P. Gilbert, B. g. Chun, L. P. Cox, J. Jung, P. McDaniel, and A. N. Sheth, “Taint-
droid: An information-flow tracking system for real-time privacy monitoring on smart-
phones,” in Proc. of the USENIX Symposium on Operating Systems Design and Imple-

mentation, 2010.

[33] J. Graf, M. Hecker, and M. Mohr, “Using JOANA for information flow control in Java
programs - a practical guide,” in Working Conference on Programming Languages, 2013.

[34] A. C. Myers, “Jflow: Practical mostly-static information flow control,” in ACM Symposium

on Principles of Programming Languages, 1999.

[35] L. Zheng and A. C. Myers, “Dynamic security labels and static information flow control,”
International Journal of Information Security, vol. 6, pp. 67–84, 2007.

[36] S. Horwitz, T. Reps, and D. Binkley, “Interprocedural slicing using dependence graphs,”
ACM Transactions on Programming Languages and Systems, vol. 12, pp. 26–60, 1990.

[37] S. Horwitz, J. Prins, and T. Reps, “Integrating non-interfering versions of programs,” ACM

Transactions on Programming Languages and Systems, vol. 11, pp. 345–387, 1989.

[38] Y. Smaragdakis and G. Balatsouras, “Pointer analysis,” Foundations and Trends in Pro-

gramming Languages, vol. 2, pp. 1–69, 2015.

[39] J. Graf, M. Hecker, and M. Mohr, “Security policies and security models,” in Proc. of

IEEE Symposium on Security and Privacy, 1982.

[40] L. Zheng and A. C. Myers, “A language-based approach to secure quorum replication,” in
Workshop on Programming Languages and Analysis for Security, 2014.

[41] J. H. Saltzer, “Protection and the control of information sharing in multics,” Communica-

tions of the ACM, vol. 17, pp. 388–402, 1974.

[42] Git. [Online]. Available: https://git-scm.com

http://wala.sourceforge.net/
https://git-scm.com

REFERENCES 100

[43] Github Popularity. [Online]. Available: https://github.com/blog/
2345-celebrating-nine-years-of-github-with-an-anniversary-sale

[44] CWE - common weakness enumeration. [Online]. Available: https://cwe.mitre.org/

[45] W. Enck, D. Octeau, P. D. McDaniel, and S. Chaudhuri, “A study of android application
security,” in USENIX security symposium, 2011.

[46] Gitblit: Open-source, pure Java stack for managing, viewing, and serving Git repositories.
[Online]. Available: http://gitblit.com

[47] Gitblit commit. [Online]. Available: http://tinyurl.com/q9xlueq

[48] SHA1 collision. [Online]. Available: https://security.googleblog.com/2017/02/
announcing-first-sha1-collision.html?m=1

[49] Hashkiller. [Online]. Available: https://hashkiller.co.uk/sha1-decrypter.aspx

[50] Blojsom. [Online]. Available: https://sourceforge.net/projects/blojsom/

[51] SLF4J -simple logging facade for java. [Online]. Available: http://www.slf4j.org

[52] A. Mettler, D. Wagner, and T. Close, “Joe-e: A security-oriented subset of java,” in Net-

work and Distributed System Security Symposium, 2010.

[53] C. Kästner, S. Apel, and M. Kuhlemann, “Granularity in software product lines,” in Inter-

national Conference on Software Engineering, 2008, pp. 311–320.

[54] Simple OAuth library for Java. [Online]. Available: https://github.com/scribejava/
scribejava

[55] D. Hardt, “The oauth 2.0 authorization framework,” 2012.

[56] Open Refine. [Online]. Available: http://openrefine.org

[57] Issues in Github. [Online]. Available: https://guides.github.com/features/issues/

[58] S. Arzt, S. Rasthofer, and E. Bodden, “SuSi: A tool for the fsully automated classification
and categorization of android sources and sinks,” Tech. Rep. TUD-CS-2013-0114, 2013.

[59] D. L. Parnas, “On the criteria to be used in decomposing systems into modules,” in Com-

munications of the ACM, 1972.

[60] ANTLR. [Online]. Available: http://www.antlr.org/

[61] W. F. Tichy, “Rcs - a system for version control,” Software: Practice and Experience,
vol. 15, pp. 637–654, 1985.

https://github.com/blog/2345-celebrating-nine-years-of-github-with-an-anniversary-sale
https://github.com/blog/2345-celebrating-nine-years-of-github-with-an-anniversary-sale
https://cwe.mitre.org/
http://gitblit.com
http://tinyurl.com/q9xlueq
https://security.googleblog.com/2017/02/announcing-first-sha1-collision.html?m=1
https://security.googleblog.com/2017/02/announcing-first-sha1-collision.html?m=1
https://hashkiller.co.uk/sha1-decrypter.aspx
https://sourceforge.net/projects/blojsom/
http://www.slf4j.org
https://github.com/scribejava/scribejava
https://github.com/scribejava/scribejava
http://openrefine.org
https://guides.github.com/features/issues/
http://www.antlr.org/

REFERENCES 101

[62] V. Basili, G. Caldiera, and D. H. Rombach, “The goal question metric approach,” in En-

cyclopedia of Software Engineering, J. J. Marciniak, Ed. Wiley, New Jersey, 1994, pp.
528–532.

[63] An open source clone of Amazon’s Dynamo. [Online]. Available: https://github.com/
voldemort/voldemort

[64] A blogging system written in Java. [Online]. Available: https://github.com/b3log/solo

[65] A solid high-performance JDBC connection pool. [Online]. Available: https:
//github.com/brettwooldridge/HikariCP

[66] Apache Kafka. [Online]. Available: https://github.com/apache/kafka

[67] Feedback management tool for education. [Online]. Available: https://github.com/
TEAMMATES/teammates

[68] Open Source Web Crawler for Java. [Online]. Available: https://github.com/yasserg/
crawler4j

[69] GitHub API. [Online]. Available: https://developer.github.com/v3/

[70] B. P. Lientz and E. B. Swanson, Software Maintenance Management. Addison-Wesley
Longman Publishing Co., Inc., 1980.

[71] SourceForge. [Online]. Available: https://sourceforge.net/

[72] Personalblog. [Online]. Available: https://sourceforge.net/projects/personalblog/

[73] GridSphere. [Online]. Available: https://github.com/brandt/GridSphere

[74] SnipSnap. [Online]. Available: https://github.com/thinkberg/snipsnap

[75] Lutece. [Online]. Available: https://github.com/lutece-platform/lutece-core

[76] S. Guarnieri, M. Pistoia, O. Tripp, J. Dolby, S. Teilhet, and R. Berg, “Saving the world
wide web from vulnerable javascript,” in International Symposium on Software Testing

and Analysis, 2011, pp. 177–187.

[77] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A. Wesslen, Experimen-

tation in software engineering. Springer, 2012.

[78] V. Rastogi, Y. Chen, and W. Enck, “Appsplayground: Automatic security analysis of
smartphone applications,” in Conference on Data and Application Security and Privacy,
2013, pp. 209–220.

https://github.com/voldemort/voldemort
https://github.com/voldemort/voldemort
https://github.com/b3log/solo
https://github.com/brettwooldridge/HikariCP
https://github.com/brettwooldridge/HikariCP
https://github.com/apache/kafka
https://github.com/TEAMMATES/teammates
https://github.com/TEAMMATES/teammates
https://github.com/yasserg/crawler4j
https://github.com/yasserg/crawler4j
https://developer.github.com/v3/
https://sourceforge.net/
https://sourceforge.net/projects/personalblog/
https://github.com/brandt/GridSphere
https://github.com/thinkberg/snipsnap
https://github.com/lutece-platform/lutece-core

REFERENCES 102

[79] L. K. Yan and H. Yin, “Droidscope: Seamlessly reconstructing the OS and dalvik semantic
views for dynamic android malware analysis,” in USENIX Security Symposium, 2012, pp.
569–584.

[80] O. Tripp and J. Rubin, “A bayesian approach to privacy enforcement in smartphones,” in
USENIX Security Symposium, 2014, pp. 175–190.

[81] D. Binkley, M. Harman, and J. Krinke, “Empirical study of optimization techniques for
massive slicing,” ACM Transactions on Programming Languages and Systems, vol. 30,
2007.

[82] M. Sridharan, S. Artzi, M. Pistoia, S. Guarnieri, O. Tripp, and R. Berg, “F4f: taint analysis
of framework-based web applications,” ACM SIGPLAN Notices, vol. 46, pp. 1053–1068,
2011.

[83] Apache Wicket. [Online]. Available: http://wicket.apache.org

[84] M. S. Miller, M. Samuel, B. Laurie, I. Awad, and M. Stay. Caja: Safe active content
in sanitized javascript. [Online]. Available: https://google-caja.googlecode.com/files/
caja-spec-2008-06-07.pdf

[85] S. Apel, S. S. Kolesnikov, J. Liebig, C. Kästner, M. Kuhlemann, and T. Leich, “Access
control in feature-oriented programming,” Science of Computer Programming, vol. 77,
pp. 174–187, 2010.

[86] C. Prehofer, “Feature-oriented programming: A fresh look at objects,” in European Con-

ference on Object-Oriented Programming, 1997.

[87] S. Apel, C. Kastner, and C. Lengauer, “Feature house: Language-independent, automated
software composition,” in International Conference on Software Engineering, 2009.

[88] B. Mathis, V. Avdiienko, E. O. Soremekun, M. Böhme, and A. Zeller, “Detecting informa-
tion flow by mutating input data,” in IEEE/ACM International Conference on Automated

Software Engineering, 2017, pp. 263–273.

[89] K.-C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson, “Feature-oriented
domain analysis (FODA) feasibility study,” Tech. Rep. CMU/SEI-90-TR-21, 1990.

[90] OWASP WebGoat. [Online]. Available: https://github.com/WebGoat/WebGoat

[91] X. Zhang, R. Grigore, X. Si, and M. Naik, “Effective interactive resolution of static anal-
ysis alarms,” in Proceedings of Annual ACM SIGPLAN Conference on Object-Oriented

Programming, Systems, Languages, and Applications, 2017, pp. 25–55.

http://wicket.apache.org
https://google-caja.googlecode.com/files/caja-spec-2008-06-07.pdf
https://google-caja.googlecode.com/files/caja-spec-2008-06-07.pdf
https://github.com/WebGoat/WebGoat

REFERENCES 103

[92] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold, “An
overview of aspectj,” in European Conference on Object-Oriented Programming, 2001,
pp. 327–354.

104

Appendix A - Salvum Grammar

The grammar for Salvum is shown in Figure A.1. A program represents a set of con-
straint or constant declarations. The former represents a constraint itself specifying the infor-
mation to be protected either using the noflow, noset, flow, or set constructs. The latter
defines a constant that can be used in many constraints. A module might be an identifier (e.g.,
a Contribution), parts of a program (e.g., a method call), or a sequence of fields that store
sensitive information.

Figure A.1: Salvum grammar

Salvum also supports combinations of expressions. For instance, we could declare that a
set of sensitive information cannot flow to contributions made by a particular author and contain
a specific commit message. Finally, we can also specify constraints considering just commit
hashes. For example, in case we want to enforce a constraint for a given project version.

	Rodrigo Andrades-DO
	tese-final.pdf
	Fichário1.pdf
	Catalogação na fonte MEI-2018-71

	tese-rcaa2.pdf
	Introduction
	Background
	Manual Code Review
	Static Information Flow Control analysis tools
	Confidentiality and Integrity
	Java Object-sensitive Analysis (JOANA)
	System Dependence Graph (SDG)
	JOANA configuration
	Information flow control analysis

	Collaborative software development
	Git

	Problem
	First scenario: Code contribution introducing a violation
	Second Scenario: Sensitive information leaking through third-party classes
	Third Scenario: Code contribution introducing a potential violation
	Fourth Scenario: Untrustworthy developer introducing violations
	Summary of existing approaches limitations

	Salvum
	General idea
	Language specification
	Examples
	Constructs
	Representation of code contribution
	Discussion

	Language implementation
	First step - Preprocessing
	Second step - Generating SDG
	Third step - Labeling
	Fourth step - Analyzing.
	Fifth step - Results processing

	Evaluation
	Goal, Questions, and Metrics
	Assessing highly active and well-supported software projects
	Selected software projects
	Policies and Constraints
	Results

	Assessing low active and poorly supported software projects
	Selected software projects
	Policies and Constraints
	Results

	JOANA evaluation
	Threats to validity
	Construct validity
	Conclusion validity
	External validity
	Internal validity

	Related Work
	Manual code review
	Information Flow Control analysis tools
	Language-based Information Flow

	Conclusions
	Review of main contributions
	Limitations
	Future work

	Bibliography
	Salvum Grammar

