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Resumo

A recuperação automática de informações de alto-nível de programas em formato
binário é um importante problema estudado em linguagens de programação. Contudo,
a maioria das soluções para esse problema são baseadas puramente em abordagens
estáticas: técnicas como análise de fluxo de dados ou inferência de tipos são utilizadas
para converter os bytes que constituem o executável de volta para o formato de um
grafo de fluxo de controle (GFC). Esse trabalho se afasta desse tal modus operandi para
mostrar que análises dinâmicas podem ser efetivas e úteis, tanto como uma técnica in-
dependente, quanto como uma forma de melhorar a precisão das abordagens estáticas.
Os resultados experimentais mostram evidências que completude, ou seja, a habili-
dade de concluir que todos os caminhos de um GFC foram cobertos, é alcançada em
muitas funções de benchmarks de nível industrial. Os experimentos também indicam
que informações coletadas dinamicamente melhoram consideravelmente a habilidade de
DynInst, um reconstrutor estático estado-da-arte, de lidar com códigos binários sem
símbolos de depuração. Esses resultados foram obtidos com CFGgrind, um recon-
strutor dinâmico de códigos binários, construído sobre a infraestrutura de valgrind.
Quando aplicado sobre cBench, CFGgrind é 9% mais rápido que callgrind, uma
ferramenta de valgrind capaz de rastrear alvos de chamadas de funções; e 7% mais
rápido em Spec Cpu2017. CFGgrind recupera GFCs completos em 40% de todos os
procedimentos invocados durante a execução padrão de programas em Spec Cpu2017,
e 37% em cBench. Quando combinado com CFGgrind, DynInst encontra 15% mais
GFCs para cBench e 7% mais GFCs para Spec Cpu2017. Finalmente, CFGgrind

é 7 vezes mais rápido que DCFG, um reconstrutor de GFC desenvolvido pela Intel, e é
1.28 vezes mais rápido que bfTrace, um reconstrutor usado em pesquisa. CFGgrind

é também mais preciso que essas duas ferramentas. Ele suporta tratamento de sinais
de sistema operacional, códigos compartilhados em funções, instruções desalinhadas,
programas multi-thread, profiling exato e refinamentos incrementais.

Palavras-chave: Grafo de fluxo de controle, Análise dinâmica, Instrumentação.
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Abstract

The automatic recovery of a program’s high-level representation from its binary ver-
sion is a well-studied problem in programming languages. However, most of the so-
lutions to this problem are based on purely static approaches: techniques such as
dataflow analyses or type inference are used to convert the bytes that constitute the
executable code back into a control flow graph (CFG). This work departs from such
a modus operandi to show that a dynamic analysis can be effective and useful, both
as a standalone technique, and as a way to enhance the precision of static approaches.
The experimental results provide evidence that completeness, i.e., the ability to con-
clude that the entire CFG has been discovered, is achievable on many functions that
are part of industry-strong benchmarks. Experiments also indicate that dynamic in-
formation greatly enhances the ability of DynInst, a state-of-the-art binary recon-
structor, to deal with code stripped of debugging information. These results were
obtained with CFGgrind, a new implementation of a dynamic code reconstructor,
built on top of valgrind. When applied to cBench, CFGgrind is 9% faster than
callgrind, valgrind’s tool used to track targets of function calls; and 7% faster
in Spec Cpu2017. CFGgrind recovers the complete CFG of 40% of all the proce-
dures invoked during the standard execution of programs in Spec Cpu2017, and 37%
in cBench. When combined with CFGgrind, DynInst finds 15% more CFGs for
cBench, and 7% more CFGs for Spec Cpu2017. Finally, CFGgrind is more than 7
times faster than DCFG, a CFG reconstructor from Intel, and 1.28 times faster than
bfTrace, a CFG reconstructor used in research. CFGgrind is also more precise than
these two tools, handling operating system signals, shared code in functions, and un-
aligned instructions; besides supporting multi-threaded programs, exact profiling and
incremental refinements.

Keywords: Control flow graph, Dynamic analysis, Code instrumentation.
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Chapter 1

Introduction

The Control Flow Graph (CFG) [Aho et al., 2006, p.525] is a fundamental structure
supporting the analysis and optimization of programs. A CFG is a directed graph where
the vertices represent basic blocks. A basic block is a maximal sequence of instructions
without branches, except at the end. Edges in the CFG denote possible program
flows. Since its introduction in the 70’s, likely due to the work of Allen [1970], CFGs
have emerged as a mandatory program representation adopted in compilers, virtual
machines and program verifiers. In program analyses based on source code, a CFG is
produced either directly from that source code or from some high-level intermediate
representation. However, there exists also much interest in recovering the CFG from the
program’s binary representation, as many researchers have demonstrated throughout
the 90’s [Cifuentes and Gough, 1995; Schwarz et al., 2002; Sites et al., 1993; Theiling,
2000]. However, while the construction of a CFG from source has a trivial solution,
and is routinely performed by compilers, the reconstruction of a CFG from the binary
representation is undecidable. Undecidability is easy to see: indirect branches, plus a
simple extension of Rice’s Theorem [Rice, 1953], hinder any algorithm from determining
with certainty every possible flow in a program.

There are two ways to recover a CFG from a program’s binary representation.
The first approach, henceforth called static, tries to recover the program flow via static
analysis of the binary program, i.e., from its .text section [Sutter et al., 2000; Kästner
and Wilhelm, 2002; Bruschi et al., 2007]. This is the technique of choice employed by
a number of well-known tools, such as DynInst [Meng and Miller, 2016], Bap [Brum-
ley et al., 2011], Jakstab [Kinder and Veith, 2008], SecondWrite [Smithson et al.,

1



1. Introduction 2

2013], IDA Pro [Eagle, 2011], GNUObjdump
1, and OllyDbg

2. The second ap-
proach, henceforth called dynamic, seeks to construct a CFG out of instruction traces
generated during the execution of a program. The dynamic reconstruction of CFGs
is not as wide-spread as its static counterpart. We know one industrial-strength tool
that provides such capability: Yount’s DCFG [Yount et al., 2015], a software built on
top of Intel’s Pin [Luk et al., 2005], and released in 2015. Dynamic CFG builders can
also be found as part of different research artifacts [Gruber et al., 2019; Xu et al., 2009;
Shoshitaishvili et al., 2016], a few of which are publicly available3.

Static and dynamic approaches yield different results. Whereas the static ap-
proach gives a conservative approximation of the program’s control flow, possibly con-
taining paths that might never be traversed, the dynamic approach gives an under-
approximation of the program flow. Every flow discovered by a dynamic tool is a true
path within the execution of the program analyzed. However, the dynamic technique
might miss paths that are not exercised by the inputs used in the reconstruction. Such
differences lead to distinct applications. Static CFG reconstruction is typically used for
security analyses [Song et al., 2008] and binary optimization [Panchenko et al., 2019;
Zhou and Jones, 2019]. Dynamic reconstruction, in turn, is used to build dynamic
slices [Agrawal and Horgan, 1990; Korel and Laski, 1988], and finds services in any
situation where such slices are in need [Tip, 1994], such as malware detection, deob-
fuscation and profiling. Nevertheless, in spite of three decades of progress in dynamic
slicing, the dynamic reconstruction of CFGs is still poorly understood, its benefits
are often understated, and its engineering still leaves much room for improvement.
Motivated by such observations, this work brings the following thesis:

Dynamic CFG reconstructors can be practical tools able to augment
the coverage of static reconstructors and provide users with completeness
information.

1.1 Contributions

This work brings the following improvements to the recovery of CFGs from binary
code:

1
GNUObjdump is a disassembler for GNU Linux. To know more, see https://www.gnu.org/

software/binutils/.
2
OllyDbg is a disassembler for Microsoft Windows. To know more, see http://www.ollydbg.

de/.
3As an example, tools available at https://docs.angr.io/, and https://github.com/

toshipiazza/LLVMCFG provide some limited form of CFG reconstruction.

https://www.gnu.org/software/binutils/
https://www.gnu.org/software/binutils/
http://www.ollydbg.de/
http://www.ollydbg.de/
https://docs.angr.io/
https://github.com/toshipiazza/LLVMCFG
https://github.com/toshipiazza/LLVMCFG


1. Introduction 3

Completeness: a new definition to quantify the coverage of CFG reconstruction
(Chapter 2) and an empirical evaluation (Section 5.3) that reveals that a stan-
dard execution of the Spec Cpu2017 suite yields complete CFGs for 40% of the
invoked functions. For cBench this number is similar: 37%.

Precision: a suite of techniques that, once combined, yield more precise CFGs than
the state-of-the-art approaches available today. Chapter 3 explains how our tech-
niques support precise profiling information, deal with overlapping instructions
and code shared by different functions, handle signals from the operating system,
support multi-threaded programs and the incremental construction of CFGs from
multiple inputs.

Efficiency: new algorithms (Chapter 4) that support faster reconstruction of CFGs
than state-of-the-art dynamic reconstructors. Our approach is ⇠7x faster than
DCFG, a tool built over Intel’s PinPlay, and ⇠28% faster than bfTrace, the
reconstructor from Gruber et al. [2019]. Our efficiency is due to extensive use of
caching, as Section 5.2 shows.

Complementarity: the demonstration that static and dynamic analyses can be com-
bined to generate more complete CFGs. Section 5.3 shows that the combination
of our technique with DynInst, a state-of-the-art static CFG builder [Meng
and Miller, 2016], increases coverage in cBench from 42% to 57%, and in
Spec Cpu2017 from 39% to 46%.

The importance of the techniques introduced in this thesis are demonstrated in
the following tools, produced as artifacts of this work:

1. CFGgrind (https://github.com/rimsa/CFGgrind), a dynamic CFG recon-
structor that runs in valgrind’s infrastructure. The internals of this tool is
described in details in Chapters 2 and 4.

2. dumpcfgs (https://github.com/rimsa/dumpcfgs), a static CFG reconstruc-
tor that uses the DynInst API. This tool is used as a counterpart in the evalu-
ation of the the dynamic CFGgrind tool in Chapter 5.

3. cmpcfgs (https://github.com/rimsa/cmpcfgs), a tool to compare the out-
puts produced by CFGgrind and dumpcfgs. The precision of both tools is
compared in Section 5.5.

4. instrgrind (https://github.com/rimsa/instrgrind), a tool to count exe-
cuted instructions. This tool is used in the case study presented in Chapter 6.

https://github.com/rimsa/CFGgrind
https://github.com/rimsa/dumpcfgs
https://github.com/rimsa/cmpcfgs
https://github.com/rimsa/instrgrind


1. Introduction 4

CFGgrind is mature enough to be used on every program of Spec Cpu2017. It
supports the reconstruction of CFGs for programs that run in parallel. It also admits
incremental construction of CFGs, meaning that a partial CFG built during one run
of the program can be retrofitted into a new execution with different inputs in order to
complement it. Thus, if new paths are traversed, more information is added to the CFG.
This feature is specially important for programs that require multiple runs to construct
a complete CFG. CFGgrind can be used in tandem with DynInst, a static binary
analyzer, allowing it to discover the target of dynamic jumps, and to handle difficult
code sections that would be missed in programs stripped of symbols and debugging
information. Additionally, CFGgrind provides exact profiling information. Contrary
to sampling based techniques, it tracks how many times every instruction of the target
program was executed, respecting the equity of flows: the number of program flows
that enter any basic block equals the number of flows that leave it.

1.2 Publications

This work led to the publication of two papers. A first version of CFGgrind with
preliminary results was published in the 2019 edition of Simpósio Brasileiro de Lin-
guagens de Programação (SBLP). Then, a more mature version of CFGgrind with
several improvements was developed. This enhancements combined with stronger re-
sults and better comparison between other CFG reconstructions tools was published
in Software: Practice and Experience in 2020, a reputable Wiley’s journal. This latter
paper is responsible for the bulk of this thesis.

• Andrei Rimsa, José Nelson Amaral, and Fernando Magno Quint ao Pereira. 2019.
Efficient and Precise Dynamic Construction of Control Flow Graphs. In Proceed-
ings of the XXIII Brazilian Symposium on Programming Languages (SBLP 2019).
ACM, New York, NY, USA, 19-26. DOI: https://doi.org/10.1145/3355378.
3355383

• Andrei Rimsa, José Nelson Amaral, and Fernando Magno Quint ao Pereira. 2020.
Practical dynamic reconstruction of control flow graphs. In Softw Pract Exper.
2020; 1– 32. DOI: https://doi.org/10.1002/spe.2907

1.3 Outline

This thesis is structured in the following seven chapters:

https://doi.org/10.1145/3355378.3355383
https://doi.org/10.1145/3355378.3355383
https://doi.org/10.1002/spe.2907


1. Introduction 5

Chapter 2. This chapter provides preliminary definitions. It builds from the defini-
tion of an instruction, passes through the notion of groups, and leads to the definition
of what is a control flow graph. Later, the concept of CFG completeness is presented.

Chapter 3. This chapter discusses five desired features that, despite decades of dy-
namic CFG reconstruction knowledge, are still not supported or partially handled by
many tools. A comparison against CFGgrind exposes the deficiencies of such tools.

Chapter 4. This chapter dives into how to perform the dynamic reconstruction of
CFGs. First, an abstract machine that simulates the execution of a program is defined.
Then, algorithms responsible for the reconstruction are provided. Also, a discussion
about how to optimize them using caches and support for parallelism.

Chapter 5. This chapter handles the evaluation of the proposed solution. This eval-
uation is classified into five research questions, namely: how efficient is CFGgrind,
how the cache impact performances, what is the ratio between complete and incom-
plete CFGs, what is the impact of different input sets in the incremental refinement of
CFGs, and how much information CFGgrind adds to a static reconstructor.

Chapter 6. This chapter provides a case study on the visibility of instructions in the
Spec Cpu2017 benchmark.

Chapter 7. This chapter compares our solution to related works. CFGgrind is
analyzed against other dynamic CFG reconstruction tools. How CFGgrind relates
to dynamic program slicing. Finally, how CFGgrind compares against static CFG
reconstructors.

Chapter 8. This chapter provides final remarks and future directions for this work.



Chapter 2

Preliminary Definitions

The definition of a CFG is readily available in any compiler textbook; however, given
its central role in this thesis, this chapter revisits it. This chapter provides preliminary
definitions for an instruction (Definition 1 in Section 2.1), and a group of instructions
(Definition 2 in Section 2.2). These concepts are the required for the definition of
control flow graphs (Definition 3 in Section 2.3). This formalism might differ from
standard definitions because it uses a number of terms that are necessary to explain
the CFG reconstruction algorithm in Chapter 4. This chapter brings, to the best of
our knowledge, a novel definition of completeness (Definition 4 in Section 2.4). This
definition allows the classification of the reconstructed CFG in respect to coverage: if
all the paths of a given CFG were explored by the execution. This characteristic of
completeness is further analysed in Section 5.3 of the evaluation (Chapter 5).

2.1 Instruction

The building blocks of a CFG are instructions. In the binary representation of a pro-
gram, each instruction is bound to an address. Each instruction also has an associated
textual representation, e.g. push %rbp. An instruction can be formally defined as
follows:

Definition 1. An instruction is a tuple I = (@addr , size, type, text), where @addr is
the address of I in memory; size is the space that I occupies, measured in bytes; type
represents a class to which I belongs; and text is the assembly textual representation
of I. For the purposes of this thesis, instructions are classified according to their effect
on the flow of control of the program. Therefore an instruction belongs to one of the
following types:

6
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standard: flows to the next instruction;

jump(@target, mode: (direct | indirect)): unconditionally jumps to @target ad-
dress, either directly or indirectly;

branch(@target, @fallthrough, mode: (direct | indirect)): conditionally
branches to @target or @fallthrough address, either directly or indirectly;

call(@target, mode: (direct | indirect)): invokes the function stored at the @tar-
get address, either directly or indirectly;

return: transfers control back to caller;

The standard instructions flow the execution to the instruction immediately after
it. The jump, branch and call instructions can transfer control flow directly — the
address is embedded in the instruction itself (e.g.: jmp @addr); or indirectly — the ad-
dress is computed either from registers or memory (e.g.: jmp %rax). A nil value is used
as the @target address in case of indirect control flows. A return instruction transfers
the execution back to the caller using the address immediately after the corresponding
function call; hence, it behaves like an indirect branch. A return instruction is usually
used to terminate a function, but it can also be used for irregular control flows, either
maliciously or not. The tuple (@0x400580, 2, branch(@0x40058c, @0x400582, direct),
’jg 0x40058c’) is an example of an instruction.

2.2 Group of Instructions

Instructions can be logically organized in groups if they can be executed in sequence,
without diverging the execution flow. A group of instructions can be formally defined
as follows:

Definition 2. A group is an ordered sequence of instructions S = {I1, I2, . . . , In} con-
taining at least one instruction (|S| > 0). The instructions in a group are consecutive
in the program (In+1.@addr = In.@addr + In.size). The first instruction of a group
is the leader. The last instruction is the tail. The leader is either the first instruction
in a program, the target of a jump, branch or call, or the fall-through instruction of a
non-taken branch. Instructions of type jump, branch, call and return cannot be followed
by any other instruction.

Instructions are executed in order unless the program flow reaches an operation
that diverts execution. Therefore, groups can be formed according to Definition 2 by
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tracing the sequential execution of instructions from a leader to a tail. The target of a
tail instruction will be the leader of a next group to be formed. Thus, chains of groups
are created during runtime. The sequence of instructions {(@0x400597, 1, standard,
’leaveq’), (@0x400598, 1, return, ’retq’)} is an example of group, assuming that the
program flow is diverted to @0x400597 at some point during execution.

2.3 Control Flow Graph

With the definition of an instruction 1 and a group 2, we can proceed with the definition
of a control flow graph (CFG):

Definition 3. A Control Flow Graph (CFG) is a connected, directed graph G =

(V,E), where:

• A node n 2 V must be in one of the following categories:

entry: marks the start of the CFG.

block(group, calls, signals): is a basic block that contains:

a group, according to Def. 2;

a map of calls that associates the addresses of functions with pairs (CFG,
count). The first element in the pair is the CFG of a function, and
the second is the number of times that function was invoked by a call
instruction in the group;

a map of signals, similar to the map of calls, except that keys are signal
ids, and the CFG, in the pair (CFG, count) is a signal handler with how
many times it was invoked.

phantom(@addr): is an undiscovered node represented by its address.

exit: marks the return of control to the caller of this CFG.

halt: marks the stop of the execution of the program — no further instructions
can be executed from this point forward.

• An edge (n1, n2, count) 2 E connects two nodes, n1 and n2 (n1, n2 2 V ), with its
execution count for profiling information, count 2 N, iff:

One of the following conditions is true:

1. The tail of n1 is not an unconditional jump and the leader of n2 imme-
diately follows the tail of n1 in program order.
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2. The leader of n2 is the target of a branch or jump instruction that is
the tail of n1.

And count is:

1. Zero, iff n2 is a phantom node, or when profiling information is not
required.

2. A positive integer with the exact count of how many times this edge
was visited during execution.

• Phantom, exit and halt nodes have no successors. The entry node has no prede-
cessors. Thus, given an edge (n1, n2, count) 2 E, n1 62 {phantom, exit , halt} and
n2 62 {entry}.

During the reconstruction of a CFG, the algorithm may process branches whose
un-taken target has not been visited thus far. These targets are represented by phantom
nodes.

Example 2.3.1. Figure 2.1(a) shows the function fmap written in C, and Fig-
ures 2.1(b,c) show two snapshots of fmap’s CFG. This function receives two parame-
ters: an integer x; and a pointer to a function that returns an integer. It performs an
indirect function call if x is greater than zero. For this example, consider that function
inc — not shown in Fig. 2.1(a) — was called. The filled oval in Figures 2.1(b,c) are
entry nodes. The double filled ovals represent exit nodes. A double filled square de-
notes the halt node. Note that there is only one exit node and/or halt node per CFG.
Functions with multiple exit points, either that terminate the function or terminate
the program, must be connected to their respective exit or halt nodes. Figure 2.1(b)
contains three basic blocks, each one with a group of instructions. The block at address
@0x40058c holds that a call to function inc was invoked one time. This target is the
value stored in the function pointer *op. If fmap is called with other arguments, more
target functions will appear in the calls section of this block. Neither block contains
invocations of signal handlers, and thus are not shown. The phantom nodes are rep-
resented with dashed outlines. The question mark represents possible unknown flows
when the last instruction in the block is either a jump, branch or call node with indi-
rect mode. Note that dashed edges are used to connect question marks, but they serve
merely as an indication of an indirect flow for this block.

Previous works have modelled the entire program as a single CFG [Theiling,
2000; Bernat and Miller, 2012; Meng and Miller, 2016]. The boundary of functions
can still be recorded in such representation, as long as edges in the CFG are marked
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block
 

[group]
0x40056d [1]: push %rbp
0x40056e [3]: mov %rsp,%rbp
0x400571 [4]: sub $0x10,%rsp
0x400575 [3]: mov %edi,-0x4(%rbp)
0x400578 [4]: mov %rsi,-0x10(%rbp)
0x40057c [4]: cmpl $0x0,-0x4(%rbp)
0x400580 [2]: jg 0x40058c <fmap+0x1f>

block
 

[group]
0x400597 [1]: leaveq
0x400598 [1]: retq

phantom
 

[addr]
0x400582

block
 

[group]
0x40058c [3]: mov -0x4(%rbp),%edx
0x40058f [4]: mov -0x10(%rbp),%rax
0x400593 [2]: mov %edx,%edi
0x400595 [2]: callq *%rax
[calls]
0x40055d {1} (inc)

?

1

1
0

1

1

block
 

[group]
0x40056d [1]: push %rbp
0x40056e [3]: mov %rsp,%rbp
0x400571 [4]: sub $0x10,%rsp
0x400575 [3]: mov %edi,-0x4(%rbp)
0x400578 [4]: mov %rsi,-0x10(%rbp)
0x40057c [4]: cmpl $0x0,-0x4(%rbp)
0x400580 [2]: jg 0x40058c <fmap+0x1f>

block
 

[group]
0x400582 <+5>: mov $-0x1,%edi
0x400587 <+5>: callq 0x400450 <exit>
[calls]
0x400450 {1} (exit)

block
 

[group]
0x40058c [3]: mov -0x4(%rbp),%edx
0x40058f [4]: mov -0x10(%rbp),%rax
0x400593 [2]: mov %edx,%edi
0x400595 [2]: callq *%rax
[calls]
0x40055d {1} (inc)

?

2

1

1

1

1

block
 

[group]
0x400597 [1]: leaveq
0x400598 [1]: retq

1

int fmap(int x,
      int (*op)(int)) {
  if (x <= 0)
    exit(-1);

  return (*op)(x);
}

(a)

(b) (c)

Figure 2.1. (a) Example program. (b) CFG after first call with positive argu-
ment for x. (c) Refined CFG after second call with negative argument for x.

as intraprocedural or interprocedural. This formalism departs from that convention:
a CFG, according to Definition 3, represents the instructions of a single function.
Formalizing a CFG in this way makes it easier to combine the CFG representation
with information extracted from compilers such as gcc and llvm. In particular,
representing each function as a separate CFG facilitates the task of tracking the entry
and exit points of procedures. In rare occasions, the binary representation of a program
can be built in such a way that a set of instructions can be executed through calls to
multiple addresses. Meng and Miller solved this problem by allowing a CFG to have
multiple entry points [Meng and Miller, 2016]. We enforce a constraint that a CFG
must have a single point of entry. Thus, in CFGgrind two different CFGs may
execute a common subset of instructions. This duplication of information, however,
has no penalties in the execution. Example 2.3.1 illustrate these concepts.

2.4 Completeness

When a CFG contains an indirect jump, an indirect branch, or an indirect call, it is
not possible to ensure that all possible execution paths have been discovered. Future
executions of the program with different workloads may follow new execution paths.
Also, the presence of phantom nodes indicates the existence of paths that have not
yet been discovered. The concept of CFG completeness, for the purposed of dynamic
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reconstruction, can be defined as follows:

Definition 4. Given a control flow graph G = (V,E) (Definition 3), G is said to be
complete iff, V contains an entry and at least an exit or a halt node; and 8n 2 V , the
following conditions are true:

1. the successors of n are in V .

2. n 6= phantom.

3. if n is a block then the mode of the tail of the group of n is direct.

A CFG is complete if all its paths are known. Definition 4 uses a more restrictive
notion of completeness: even if all indirections are proven to be constrained inside the
same CFG, the existence of indirect jumps still classifies this CFG as incomplete.

Example 2.4.1. The examples in Figures 2.1(b-c) present an incomplete CFG because
they contains both a phantom node and a block with an indirect call. Note that edges
connecting phantom nodes, although known to exist, are never executed. Thus, they
have a count of zero.

This classification is useful in the evaluation of complex code executions. For
instance, malware programs may deliberately hide some part of their execution. In
order to do so, they rely on constructs such as indirect jumps or calls to avoid exposing
the address of the offending code. In such cases, CFGgrind will mark the CFGs
as incomplete. In other words, code that contains indirect control flow will invariably
contain either phantom nodes or an indirect marking — the question mark in Figure 2.1.
Further executions of the same program, with different inputs, might improve coverage;
hence, reducing the number of incomplete CFGs. The reconstruction of dynamic CFGs
is based on successive refinements. Example 2.4.2 shows how re-execution refines CFGs.

Example 2.4.2. Figure 2.1(c) shows the CFG that results from a new activation of the
same function, but with different arguments. In this case, the branch at @0x400580
is not taken and leads to the discovery of the block at address @0x400582. In this
example, the phantom node becomes a block node that is connected to the halt node.

2.5 Conclusion

This chapter covered important definitions — instruction (Def. 1), group of instruction
(Def. 2), and control flow graph (Def. 3) — that are used by the dynamic reconstruction
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of CFGs by the algorithms discussed in Chapter 4. A new definition of completeness
(Def. 4) was given to quantify the coverage of CFG reconstruction. The completeness
of CFGs are evaluated in Section 5.3 (Chapter 5).



Chapter 3

The Need for CFG Reconstruction
Tools

There are at least two tools that perform the dynamic reconstruction of control flow
graphs, namely, DCFG [Yount et al., 2015] and bfTrace [Gruber et al., 2019].
DCFG

1 is part of PinPlay
2 — a framework for deterministically replaying a pro-

gram execution. PinPlay is publicly available, albeit closed-source. bfTrace, in
turn, is the first part of a four-staged implementation of dependence analysis [Gruber
et al., 2019]. It builds intraprocedural control flow graphs and interprocedural call
graphs. Revisiting these technologies, the need for further work in this area stems
from two simple observations about state-of-the-art tools. On the one hand, the most
precise of these tools, DCFG, incurs a heavy performance slowdown that makes its us-
age prohibitive in programs with long execution traces. On the other hand, bfTrace,
the faster dynamic analyzer, leaves too much information out from the CFGs that it
reconstructs — namely, precise profiling data. This thesis shows that it is possible to
reconstruct CFGs faster than bfTrace, and still more exactly than DCFG. Chapter 5
provides empirical evidence to support this efficiency claim. This chapter explains why
CFGgrind’s CFGs are more complete than similar structures produced by the other
tools.

Table 3.1 presents a summary comparison of the three tools and indicates the
section where each feature is discussed. Beware, however, that these tools are not
strictly equivalent: being conceived with different goals, each of them has a distinct
representation for CFGs. For instance, bfTrace is part of a larger system whose
purpose is to track dependencies between memory regions in order to advise for or

1DCFG: https://software.intel.com/en-us/articles/pintool-dcfg
2https://software.intel.com/en-us/articles/program-recordreplay-toolkit

13



3. The Need for CFG Reconstruction Tools 14

against program parallelization. Nonetheless, bfTrace is a standalone application
whose sole purpose is to reconstruct a program’s CFGs and call graph. DCFG is also
part of a larger system, PinPlay, which logs program state to allow re-execution, e.g.,
to support debugging. The code of DCFG is not open; hence, we cannot affirm that its
only purpose is to reconstruct CFGs for PinPlay. Nevertheless, from what we could
infer from DCFG’s documentation, such seems to be the case.

Table 3.1. Qualitative comparison of the different tools considered in this work.

Feature CFGgrind bfTrace DCFG Section

Completeness Reported Absent Absent 3.1
Program exit Present Absent Absent 3.1
OS Signals Tracked Absent Imperfect 3.1
Edge count Present Absent Present 3.2
Flow equity Present Absent Imperfect 3.2
Incremental analysis Present Absent Absent 3.3
Multi-threading Handled Not handled Handled 3.4
Overlapping instructions Different Different Split 3.5
Shared code in functions Duplicated Duplicated Shared 3.5

3.1 On the Precise Representation of CFGs

bfTrace, DCFG and CFGgrind adopt different representations for the program’s
control flow graph. CFGgrind and bfTrace associate a CFG for each identified pro-
gram function, while DCFG provides a single, flattened, CFG for the entire program.
However, the CFGs produced by CFGgrind have a few features that are absent from
the CFGs produced by at least one, and sometimes both, of the other tools.

First, CFGgrind reports the completeness, a notion formalized in Definition 4,
of a CFG. Neither DCFG nor bfTrace let users know if a CFG had all its basic blocks
visited during the execution of the program. CFGgrind provides this functionality
by augmenting the concept of a CFG with phantom nodes and annotations for indirect
flows.

Second, the precise recognition of exit points is another feature missing in
DCFG and bfTrace. These tools, like CFGgrind, track paths between different
functions along the program’s call graph. However, in both DCFG and bfTrace it
is not possible to know if a basic block ends only a function, or terminates the entire



3. The Need for CFG Reconstruction Tools 15

program. Our experience using CFGgrind as a debugger tells us that such differenti-
ation is important to correctly identify the points where no other instructions can be
executed.

Third, CFGgrind tracks signal events that may occur during the program exe-
cution. Signals are particularly difficult to handle because they do not originate from
specific instructions, e.g., call or jmp. Some instructions, such as div, mod, store and
load can produce signals (SIGSEGV, SIGILL, SIGFPE, etc). Signals can come from out-
side the program, e.g., due to interruptions (SIGINT), or can be scheduled to happen,
e.g., due to alarms (SIGALRM). Example 3.1.1 compares the support for this feature in
CFGgrind in contrast with the other tools.

BB 25
addr=0x4005f0
num-instrs=2
executions=1

EDGE2007
DIRECT_CALL

executions=1

BB 24
addr=0x4005e0
num-instrs=2
executions=1

EDGE1024
RETURN

executions=1

BB 27
addr=0x400601
num-instrs=3

executions=6701316

EDGE1359
DIRECT_UNCONDITIONAL_BRANCH

executions=1

BB 26
addr=0x4005fb
num-instrs=1

executions=6701316

EDGE939
CONTEXT_CHANGE

executions=1

EDGE2
FALL_THROUGH

executions=6701315

EDGE1
DIRECT_CONDITIONAL_BRANCH

executions=6701315

BB 28
addr=0x40060b
num-instrs=2
executions=1

EDGE2033
FALL_THROUGH

executions=1

Unknown

EDGE1889
FALL_THROUGH

executions=1

EDGE2175
CONTEXT_CHANGE

executions=1

(d)

volatile int g = 1;

void handleAlarm(int sigid) {
    g = 0;
}

long count() {
    long c = 0;
    while (g)
        ++c;
    return c;
}

(a)

function handleAlarm:
0x4005e0 <+0>:  movl  $0x0,0x200a52(%rip)
0x4005ea <+10>: retq
function count:
0x4005f0 <+0>:  movq  $0x0,-0x8(%rsp)
0x4005f9 <+9>:  jmp   0x400601
0x4005fb <+11>: addq  $0x1,-0x8(%rsp)
0x400601 <+17>: mov   0x200a35(%rip),%eax
0x400607 <+23>: test  %eax,%eax
0x400609 <+25>: jne   0x4005fb
0x40060b <+27>: mov   -0x8(%rsp),%rax
0x400610 <+32>: retq
function main:
0x4004c0 <+0>: ...
0x4004df <+31>: callq 0x4005f0 <count>
0x4004e4 <+36>: ...

(b)

(c)

count

block
 

[group]
0x4005f0 [9]: movq $0x0,-0x8(%rsp)
0x4005f9 [2]: jmp 0x400601

block
 

[group]
0x400601 [6]: mov 0x200a35(%rip),%eax
0x400607 [2]: test %eax,%eax
0x400609 [2]: jne 0x4005fb

1

block
 

[group]
0x40060b [5]: mov -0x8(%rsp),%rax
0x400610 [1]: retq

block
 

[group]
0x4005fb [6]: addq $0x1,-0x8(%rsp)
[signals]
14: 0x4005e0 {1} (handleAlarm)

1

21387547

21387547

1

1

Figure 3.1. (a) Example program with alarm handler. (b) Assembly code for
this example. (c) CFG obtained with CFGgrind. (d) Simplified CFG obtained
with DCFG, showing “unknown" node that emerges after signal handling.

Example 3.1.1. Figure 3.1 shows a sample program that has a signal handler (a) with
its respective assembly code (b), and shows how signals are processed by CFGgrind
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(c) and DCFG (d). When a signal handler is activated, bfTrace crashes and is
unable to produce the CFGs for such a program. CFGgrind records the address of
the function handler called with its associated signal id at the basic block where the
event originated. DCFG creates a special edge marking the function handler as a
context switch, but without an associated signal id. Also, DCFG fails to track reliably
the correct execution flow after the return of the signal handler. In Figure 3.1(d) the
edge at address @0x400610 in BB 28, is misidentified as a fall-through edge, whereas it
should have been marked as a return edge. Furthermore, the target of this edge points
to a special Unknown node due to an invalid target address calculated at this point.
Note that if a signal handler is never activated, none of the three tools are able to find
its CFG. Also, the signal registration is not relevant to the context of the control flow
graph, and thus is not tracked by any of the these tools.

3.2 On Exact Profiling Information

A profiler provides users with either exact or approximate information. In the latter
category we have all the sampling-based profilers. In the former, we have instrumen-
tation and emulation based profilers. CFG reconstructors can be used as a supporting
infrastructure to build exact profilers. To fulfill this goal, three features are desirable:
edge count, call count and signal count. Edge count gives the number of times
each edge in the CFG was traversed by the program flow. Call count provides the
number of times each function has been called during the execution of the program.
Signal count holds similar information, but for signal handlers instead of functions
calls. Both, CFGgrind and DCFG provide these three features. They are absent in
bfTrace.

Edge counts, when available, should be subject of the Law of Flows, which Tar-
jan [1974], among other graph theoreticians, have postulated as: “the sum of incoming
flows must equal the sum of outgoing flows on each vertex of a directed graph, except
on its start and end nodes.” In the context of this work, the count in the incoming
edges must add up to the sum of the counts of the outgoing edges for any basic block
traversed during program execution. The two exceptions are the program entry point,
whose in-degree is zero, and the program exit point, whose out-degree is zero. This
principle is true for CFGgrind; however, it is not entirely true for DCFG.

Example 3.2.1. Figure 3.2(a) shows an example program where the compiler can
optimize the invocation of function add depending on its calling context. As can be
observed by the assembly code produced in Fig 3.2(b), the call in function normx was
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static
int add(int x, int y) {
     return x + y;
}

int normx(int x, int y) {
    if (x < 0)
        x *= -1;
    return add(x, y);
}

int twice(int x, int y) {
    return add(x, y) * 2;
}

(a)

add function:
0x400507 <+0>: lea   (%rdi,%rsi,1),%eax
0x40050a <+3>: retq
normx function:
0x40050b <+0>: mov   %edi,%eax
0x40050d <+2>: sar   $0x1f,%eax
0x400510 <+5>: xor   %eax,%edi
0x400512 <+7>: sub   %eax,%edi
0x400514 <+9>: jmp   0x400507 <add>
twice function:
0x400516 <+0>: callq 0x400507 <add>
0x40051b <+5>: add   %eax,%eax
0x40051d <+7>: retq
main function:
0x40051e <+0>:  ...
0x400540 <+34>: callq  0x40050b <normx>
0x400545 <+39>: ...
0x40054c <+46>: callq  0x400516 <twice>
0x400551 <+51>: ...

(b)

BB 17
addr=0x400507
num-instrs=2
executions=2

BB 20
addr=0x40051b
num-instrs=2
executions=1

EDGE1820
RETURN

executions=1

EDGE1818
RETURN

executions=1

BB 18
addr=0x40050b
num-instrs=5
executions=1

EDGE1927
DIRECT_UNCONDITIONAL_BRANCH

executions=1

BB 19
addr=0x400516
num-instrs=1
executions=1

EDGE1373
DIRECT_CALL

executions=1

EDGE2405
CALL_BYPASS

executions=0

EDGE1247
RETURN

executions=1

EDGE1945
DIRECT_CALL

executions=1

EDGE1634
DIRECT_CALL

executions=1

(d)(c)

block
 

[group]
0x400507 [3]: lea (%rdi,%rsi,1),%eax
0x40050a [1]: retq

1

1

add

normx

block
 

[group]
0x40050b [2]: mov %edi,%eax
0x40050d [3]: sar $0x1f,%eax
0x400510 [2]: xor %eax,%edi
0x400512 [2]: sub %eax,%edi
0x400514 [2]: jmp 0x400507 <add>

block
 

[group]
0x400507 [3]: lea (%rdi,%rsi,1),%eax
0x40050a [1]: retq

1

1

1

twice

block
 

[group]
0x400516 [5]: callq 0x400507 <add>
[calls]
0x400507 {1} (add)

block
 

[group]
0x40051b [2]: add %eax,%eax
0x40051d [1]: retq

1

1

1

Figure 3.2. (a) Example program with two distinct calls to function add. (b)
Assembly code with a tail call optimization for this example. (c) CFGs obtained
with CFGgrind for each function. (d) Simplified CFG obtained with DCFG for
this program.

optimized to use a jump instruction. However, the compiler was unable to use the
same strategy for the call in function twice. Thus, function add is used in two distinct
contexts. Similar situation is commonly observed in code in general. For example,
libgfortran (version 3.0.0) has some data transfer functions, e.g. transfer_integer
or transfer_real, to copy data between different container types. These functions are
used externally — using call instructions — , but are also used internally — using jump
instructions after tail call optimization. Therefore, CFG reconstruction tools must be
able to handle properly such cases. The three CFGs in Fig. 3.2(c) were produced
both by CFGgrind and by bfTrace. Each CFG has its own distinctive copy of
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a shared block — the block with address @0x400507 is duplicated in the CFGs for
normx and add. DCFG on the other hand uses a single block (BB 17) in both contexts.
Consequently, it is not possible to determine if the transfer of control happened due
to a function call or due to an unconditional branch. In Figure 3.2(d), there are two
return edges going out of BB 17, but only one incoming call — the other return edge
is due to the jump from BB 18.

3.3 On the Incremental Construction of CFGs

Dynamic analyses require good datasets: the more inputs are available for a program,
the more information can be inferred from the program’s behavior. This principle ap-
plies to the dynamic reconstruction of CFGs. However, neither DCFG nor bfTrace

support the incremental construction of CFGs. In other words, it is not possible to
combine events observed in two different executions of a program to build a refined ver-
sion of its CFGs. CFGgrind provides this functionality, as Example 2.3.1 illustrates.
Thus, additional program inputs lead to successive refinements of this program’s CFG;
hence, increasing code coverage. Section 5.4 quantifies the benefits of incremental con-
struction in the cBench suite. Note that this capability is only supported if, for each
execution, the program is always loaded in the same memory region. Security pro-
tections, such as Address Space Layout Randomization (ASLR), must be disabled to
achieve incremental construction coverage. This is not an issue for CFGgrind since
valgrind manages its own memory mappings when emulating programs execution.
More details on how CFGgrind supports incremental constructions of CFGs can be
found in Section 4.2.

3.4 On the Execution of Multi-Threaded Programs

A parallel program can span multiple threads during its execution. Both CFGgrind

and DCFG supports tracking the execution of such threads; however, bfTrace

crashes in this scenario. DCFG provides detailed profiling information, where each
edge in the control flow graph contains the execution count for each thread separately;
CFGgrind compounds the result of all threads as a total for each edge.

CFGgrind leverages the serialization performed natively by valgrind, where
the execution of multi-threaded programs is converted into a single-threaded appli-
cation by using valgrind’s own scheduling policy. CFGgrind tracks each thread’s
context switch to account for the correct execution flow of programs. More details
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about the implementation of this feature can be found in Section 4.3. It is unclear how
DCFG works internally to support this feature.

3.5 On Other Assembly Idiosyncrasies

Although low-level assembly code is usually derived from high-level languages via a
compilation chain, some aggressive optimizations can dramatically change the struc-
ture of the target code. For instance, optimizations might force code sharing between
multiple functions. Also, some sections of assembly code can have overlapping instruc-
tions. Overlapping happens mostly in hand-crafted code, which either implements
some optimization or encodes malware. In this last category, we have examples of
return oriented programming attacks [Shacham, 2007]. In all these cases, binary code
presents idiosyncrasies that a reconstructor must handle.

Figure 3.3. Objdump snippet for functions __read and __read_nocancel,
from glibc 2.17, that share code. To see that overlapping happens, notice that
[eb86a16, eb86a16 + 2216] \ [eb86016, eb86016 + 7716] 6= ;.

000eb86a l F .text 00000022 __read_nocancel
000eb860 w F .text 00000077 __read

Example 3.5.1. Figure 3.3 exemplifies the first situation: instructions shared between
functions. A snippet of an object dump of mapped symbols available in glibc (ver-
sion 2.17) for two function: __read and __read_nocancel. The former function is
mapped between addresses @@0xeb86a-@0xeb88c; while the latter is mapped between
@0xeb860-@0xeb8d7. Since there is an overlap of these two ranges, some instructions
are shared by these functions. DCFG approaches this situation using an unique node
that is shared across multiple parts of the entire control flow graph. This node can
be interpreted as if a section of code has multiple access points. On the other hand,
CFGgrind and bfTrace build a CFG for each function, which means that each CFG
has its own copy of a block that contains these shared instructions. The same approach
is employed by CFGgrind to support functions with multiple entry points. Each en-
try point spawns a different CFG with its own copies of the shared instructions. Thus,
every CFG in CFGgrind has only a single entry point.

Example 3.5.2. Figure 3.4 exemplifies the second situation: a block of contiguous
bytes can be interpreted as different sequences of assembly instructions. Such situa-
tion occurs when there is a jump or call to an unaligned target address. Fig. 3.4(b)
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shows that CFGgrind and bfTrace obtained the same CFG, while Fig. 3.4(b) shows
that DCFG splits the nodes incorrectly, leading to an unrealistic execution flow. A
call to address @0x4004b7 activates Sequence 1 with two instructions. Its last in-
struction is a relative jump to the unaligned address @0x4004b8. Thus, Sequence 2
is activated. Of the three instructions of this sequence, the last one is never executed
due to the return instruction. CFGgrind and bfTrace capture the correct behavior
by treating the instructions individually in the blocks. However, DCFG treats the
block as a range of addresses, disregarding how the instructions are read inside this
range. This modus-operandi leads to the flawed split at node BB 16. Although seemly
artificial, the unaligned access that this example illustrate is a key component in sev-
eral real-world ROP-based program exploits, some of which are catalogued in the CVE
database [Gorelik, 2018; Seebug, 2018; Alvarez-Perez, 2017].

block
 

[group]
0x4004b7 [5]: mov $0xc3c03148,%eax
0x4004bc [2]: jmp 0x4004b8

block
 

[group]
0x4004b8 [3]: xor %rax,%rax
0x4004bb [1]: retq

1

1

1

BB 16
addr=0x4004b7
num-instrs=1
executions=1

BB 17
addr=0x4004b8
num-instrs=2
executions=2

EDGE1338
FALL_THROUGH

executions=1

BB 18
addr=0x4004bc
num-instrs=1
executions=1

EDGE1694
FALL_THROUGH

executions=1

EDGE1690
RETURN

executions=1

EDGE1653
DIRECT_UNCONDITIONAL_BRANCH

executions=1

EDGE1748
DIRECT_CALL

executions=1

0x4004bd 0xfa

0x4004bc 0xeb

0x4004bb retq0xc3

0x4004ba 0xc0

0x310x4004b9

0x480x4004b8

0xb80x4004b7

Sequence 2Sequence 1ByteAddress

jmp .-4

mov $0xc3c03148, %eax xor %rax, %rax

jmp .-4

(a)

(c)(b)

overlap

Figure 3.4. (a) Hand-crafted example of two overlapping sequences of assembly
instructions. (b) CFG obtained with CFGgrind and bfTrace. (d) Simplified
CFG obtained with DCFG.
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3.6 Conclusion

In this chapter CFGgrind was compared against two other CFG reconstruction tools
found in the literature: DCFG [Yount et al., 2015] and bfTrace [Gruber et al., 2019].
An in-depth analysis of these three tools was conducted over several features concerning
control flow graphs. Such features include how precise is the representation of the
CFGs (Section 3.1), how exact are the profiling information provided (Section 3.2),
how CFGs can be incrementally improved (Section 3.3), how multi-threaded programs
are supported (Section 3.4), and how to handle specific assembly idiosyncrasies that
can be generated by compilers (Section 3.5). We show that CFGgrind is the most
feature-rich tool available.



Chapter 4

Dynamic Reconstruction of CFGs

This chapter uses pseudo-code to explain the dynamic reconstruction of CFGs.
CFGgrind, the tool that prototypes the ideas presented in this thesis, is implemented
in C, on top of valgrind. However, for ease of understanding, the algorithms in this
chapter are presented in a Python-like format. Executable versions of these algorithms
can be downloaded from CFGgrind’s repository.

Before diving into the algorithms, this chapter defines an abstract machine that
is capable of simulation the execution of a program (Section 4.1). Then, the basic algo-
rithm for the dynamic reconstruction of control flow graphs is presented (Section 4.2).
Later, this algorithm is extended with features that highlight CFGgrind’s improved
capabilities when compared to other evaluated tools (Section 4.3). These extensions
are:

• the caching strategy employed by CFGgrind that makes it the fastest tool
among its competitors;

• the support for multi-threaded programs that makes CFGgrind apart from
bfTrace [Gruber et al., 2019];

• and the effectiveness of the signal events handling that makes CFGgrind more
precise than DCFG [Yount et al., 2015].

4.1 The Machine

In the context of this work, a machine is any technology, be it based on interpreta-
tion, emulation or instrumentation, that produces traces representing the execution
of programs. Typical machines include tools such as Qemu [Bellard, 2005], Pin [Luk

22
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et al., 2005], gdb and valgrind [Nethercote and Seward, 2007]. The instructions
that appear in a trace are partitioned into groups according to Definition 2. Traces
can be processed online, as soon as they are produced by the machine; or offline, as a
post-morten analysis. The algorithm described in Section 4.2 is agnostic to this pro-
cessing mode. CFGgrind, implemented in valgrind, uses the online approach. The
following example illustrates the notion of a trace.

01: int total(int array[],
02:         int size) {
03:     int i = 0;
04:     int sum = 0;
05:     while (i < size) {
06:         sum += array[i];
07:         i++;
08:     }
09:     return sum;
10: }
11: 
12: int main(int argc,
13:         char* argv[]) {
14:     int a[] = { 10 };
15:     return total(a, 1);
16: }

(a)

0x400492 <+0>:  push   %rbx
0x400493 <+1>:  mov    %rdi,%rbx
0x400496 <+4>:  mov    $0x0,%eax
0x40049b <+9>:  mov    $0x0,%ecx
0x4004a0 <+14>:  cmp    %esi,%ecx
0x4004a2 <+16>:  jge    0x4004ae <total+28>
0x4004a4 <+18>:  add    (%rbx),%eax
0x4004a6 <+20>:  add    $0x4,%rbx
0x4004aa <+24>:  inc    %ecx
0x4004ac <+26>:  jmp    0x4004a0 <total+14>
0x4004ae <+28>:  pop    %rbx
0x4004af <+29>:  retq
-------------------------------------------
0x4004b0 <+0>:  sub    $0x10,%rsp
0x4004b4 <+4>:  movl   $0xa,0xc(%rsp)
0x4004bc <+12>:  lea    0xc(%rsp),%rdi
0x4004c1 <+17>:  mov    $0x1,%esi
0x4004c6 <+22>:  callq  0x400492 <total>
0x4004cb <+27>:  add    $0x10,%rsp
0x4004cf <+31>:  retq

(b)

Figure 4.1. (a) Program written in C. (b) static assembly representation of the
program.

(0x400492, 1, standard, 'push %rbx');
(0x400493, 3, standard, 'mov %rdi,%rbx');
(0x400496, 5, standard, 'mov $0x0,%eax');
(0x40049b, 5, standard, 'mov $0x0,%ecx');
(0x4004a0, 2, standard, 'cmp %esi,%ecx');
(0x4004a2, 2, branch(0x4004ae, 0x4004a4), 'jge 0x4004ae');

Group 2

(0x4004a4, 2, standard, 'add (%rbx),%eax');
(0x4004a6, 4, standard, 'add $0x4,%rbx');
(0x4004aa, 2, standard, 'inc %ecx');
(0x4004ac, 2, jump(0x4004a0), 'jmp 0x4004a0');

Group 3

(0x4004b0, 4, standard, 'sub $0x10,%rsp');
(0x4004b4, 8, standard, 'movl $0xa,0xc(%rsp)');
(0x4004bc, 5, standard, 'lea 0xc(%rsp),%rdi');
(0x4004c1, 5, standard, 'mov $0x1,%esi');
(0x4004c6, 5, call(0x400492, 0x4004cb), 'callq 0x400492');

Group 1

(0x4004a0, 2, standard, 'cmp %esi,%ecx');
(0x4004a2, 2, branch(0x4004ae, 0x4004a4), 'jge 0x4004ae');

Group 4

(0x4004ae, 1, standard, 'pop %rbx');
(0x4004af, 1, return, 'retq');

Group 5
(0x4004cb, 4, standard, 'add $0x10,%rsp');
(0x4004cf, 1, return, 'retq');

Group 6

Figure 4.2. Execution trace of the program in Figure 4.1. Instructions are
grouped according to Def. 2. Arrows show order in which groups are processed.
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Example 4.1.1. Figure 4.1 shows a program (a) with two functions and its assembly
representation (b). The execution of this program in a machine produces a trace
formed by those assembly instructions. Such trace represents the paths traversed by
the execution of the program. Figure 4.2 shows the different groups formed by the
analysis of this execution trace. The jump, branch and call instructions in this trace
are all direct, and thus the mode of each instruction is omitted. In this example, the
body of the while loop in function total (Lines 5-8) executes only once.

4.2 The Algorithm

Central to the understanding of Algorithms 1-3, is the notion of a state, defined as
follows:

Definition 5. A state is a tuple S = (current , callstack). Current is a pair (cfg,
working), where cfg is the CFG (G = (V,E), Def. 3) currently being reconstructed,
and working is one of this CFG’s nodes (working 2 V ). The callstack is a stack
of (current, @ret_addr) pairs, where @ret_addr is a return address. The callstack’s
current pair is similar to the one in the state, except working must perform a function
call (working.tail.type is call), and the @ret_addr is the address of the instruction
immediately after this call (working.tail.type.fallthrough).

During the reconstruction of CFGs, the algorithms discussed in this section op-
erate on a state. The processing of groups, such as those shown in Fig. 4.2, leads to
changes in this state. Thus, Algorithms 1-3 are state-transition functions that map
a state-group pair into another state (state ⇥ group 7! state). When the algorithm
processes a working node in the current CFG, another node becomes the working node.
When the algorithm processes a function call, the current pair is pushed onto the
callstack and its return address is set. A function return to an address matching a
@ret_addr in the callstack causes the stack to pop elements until this point is reached.
The current pair associated with this return address is then restored as the current
pair of the state. At initialization, the current is set to nil and the callstack is empty
(S = (nil, [])).

Example 4.2.1. Figure 4.3 shows the state after each one of the six groups in Figure 4.2
is processed. In this multi-layer representation, the front layer presents the current
state, e.g., (cfg, working). Underneath layers represent the state’s callstack. The front
layer in Figures 4.3(a) and 4.3(f) represents the main function. The front layer in
Figure 4.3(b-e) corresponds to the total function.
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The algorithms discussed in this section use a core data structure, the cfg, with
the following operations:

• add_node(node): adds a new node to the cfg if this new node is not already there.

• add_edge(src, dst, count): adds a new edge to the cfg from node src to node dst
with count as the number of executions. If the edge already exists, increment the
previous execution count by the value of count.

• find_node_with_addr(@addr): searches for a block node with instruction at
@addr, or a phantom node at @addr; returns nil if not found.

• phantom2block(phantom_node, block_node): replaces the phantom node with
the block node, including moving its predecessors edges to the new node.

• split(block_node, @addr): finds instruction ij with address @addr in the group of
the block node such that i1 < ij  in, moves the instructions {i1, . . . , ij�1}, and
its predecessor to a new block node, and finally connects them with a new edge.

4.2.1 Processing Programs

Algorithm 1 is the entry point for the process of CFG reconstruction. The algorithm
assumes the existence of a global state, initialized as (nil, []), that is readily available
during processing. This global state can be externally manipulated to support features
such as multi-thread programs and signal handlers (Sec. 4.3). The algorithm receives
a machine and a mapping of CFGs indexed by their addresses. The mapping can
be either empty or pre-populated with CFGs loaded from a previous run. This is
they key to support incremental construction of CFGs as described in Section 3.3. By
loading previously computed CFGs, the algorithms described in this section can further
improve them, as they continue to refine the CFGs as new paths are explored during
the execution.

Algorithm 1 expects a sequence of groups generated by the machine to reconstruct
the CFGs dynamically. Each group is then processed individually (Lines 2-12) by this
algorithm. Once the machine halts, i.e. no more groups are generated, the algorithm
finalizes the remaining CFGs by connecting the working nodes, of the state’s current
pair or of the callstack if present, to the halt node (Lines 13-17). Finally, Algorithm 1
returns the updated mapping with all reconstructed CFGs at line 17.
For each group (Lines 2-12), Algorithm 1 manipulates the state in two phases:
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block
 

[group]
0x4004b0 [4]: sub $0x10,%rsp
0x4004b4 [8]: movl $0xa,0xc(%rsp)
0x4004bc [5]: lea 0xc(%rsp),%rdi
0x4004c1 [5]: mov $0x1,%esi
0x4004c6 [5]: callq 0x400492

working

cf
g:

 0
x4

00
4b

0 
(m

ai
n)

1

block
 

[group]
0x4004b0 [4]: sub $0x10,%rsp
0x4004b4 [8]: movl $0xa,0xc(%rsp)
0x4004bc [5]: lea 0xc(%rsp),%rdi
0x4004c1 [5]: mov $0x1,%esi
0x4004c6 [5]: callq 0x400492

working

cf
g:

 0
x4

00
4b

0 
(m

ai
n)

1

block
 

[group]
0x400492 [1]: push %rbx
0x400493 [3]: mov %rdi,%rbx
0x400496 [5]: mov $0x0,%eax
0x40049b [5]: mov $0x0,%ecx
0x4004a0 [2]: cmp %esi,%ecx
0x4004a2 [2]: jge 0x4004aecf

g:
 0

x4
00

49
2 

(t
ot

al
)

working

1

block
 

[group]
0x4004b0 [4]: sub $0x10,%rsp
0x4004b4 [8]: movl $0xa,0xc(%rsp)
0x4004bc [5]: lea 0xc(%rsp),%rdi
0x4004c1 [5]: mov $0x1,%esi
0x4004c6 [5]: callq 0x400492

working

cf
g:

 0
x4

00
4b

0 
(m

ai
n)

1

block
 

[group]
0x400492 [1]: push %rbx
0x400493 [3]: mov %rdi,%rbx
0x400496 [5]: mov $0x0,%eax
0x40049b [5]: mov $0x0,%ecx
0x4004a0 [2]: cmp %esi,%ecx
0x4004a2 [2]: jge 0x4004aecf

g:
 0

x4
00

49
2 

(t
ot

al
)

block
 

[group]
0x4004a4 [2]: add (%rbx),%eax
0x4004a6 [4]: add $0x4,%rbx
0x4004aa [2]: inc %ecx
0x4004ac [2]: jmp 0x4004a0

working

phantom
 

[addr]
0x4004ae

01

block
 

[group]
0x4004b0 [4]: sub $0x10,%rsp
0x4004b4 [8]: movl $0xa,0xc(%rsp)
0x4004bc [5]: lea 0xc(%rsp),%rdi
0x4004c1 [5]: mov $0x1,%esi
0x4004c6 [5]: callq 0x400492

working

cf
g:

 0
x4

00
4b

0 
(m

ai
n)

1

block
 

[group]
0x4004a4 [2]: add (%rbx),%eax
0x4004a6 [4]: add $0x4,%rbx
0x4004aa [2]: inc %ecx
0x4004ac [2]: jmp 0x4004a0

block
 

[group]
0x400492 [1]: push %rbx
0x400493 [3]: mov %rdi,%rbx
0x400496 [5]: mov $0x0,%eax
0x40049b [5]: mov $0x0,%ecx

block
 

[group]
0x4004a0 [2]: cmp %esi,%ecx
0x4004a2 [2]: jge 0x4004ae

cf
g:

 0
x4

00
49

2 
(t

ot
al

)
1

1

1
1

working

phantom
 

[addr]
0x4004ae

0

block
 

[group]
0x4004b0 [4]: sub $0x10,%rsp
0x4004b4 [8]: movl $0xa,0xc(%rsp)
0x4004bc [5]: lea 0xc(%rsp),%rdi
0x4004c1 [5]: mov $0x1,%esi
0x4004c6 [5]: callq 0x400492

working

cf
g:

 0
x4

00
4b

0 
(m

ai
n)

1

block
 

[group]
0x4004a4 [2]: add (%rbx),%eax
0x4004a6 [4]: add $0x4,%rbx
0x4004aa [2]: inc %ecx
0x4004ac [2]: jmp 0x4004a0

block
 

[group]
0x400492 [1]: push %rbx
0x400493 [3]: mov %rdi,%rbx
0x400496 [5]: mov $0x0,%eax
0x40049b [5]: mov $0x0,%ecx

block
 

[group]
0x4004a0 [2]: cmp %esi,%ecx
0x4004a2 [2]: jge 0x4004ae

working

block
 

[group]
0x4004ae [1]: pop %rbx
0x4004af [1]: retq

cf
g:

 0
x4

00
49

2 
(t

ot
al

)

1

1

1
1

1

block
 

[group]
0x4004b0 [4]: sub $0x10,%rsp
0x4004b4 [8]: movl $0xa,0xc(%rsp)
0x4004bc [5]: lea 0xc(%rsp),%rdi
0x4004c1 [5]: mov $0x1,%esi
0x4004c6 [5]: callq 0x400492
[calls]
cfg: 0x400492

block
 

[group]
0x4004cb [4]: add $0x10,%rsp
0x4004cf [1]: retq

working

cf
g:

 0
x4

00
4b

0 
(m

ai
n)

1

1

(a)
(b)

(c) (d)

(e)
(f)

Figure 4.3. State after processing each of the six groups listed by Figure 4.1.
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Algorithm 1 Process program by handling each group of instructions generated by a
machine during execution.

global: state
input: machine, mapping
output: mapping

1: function process_program(machine, mapping)
2: for group in machine.run() do
3: @addr = group.leader.addr
4: if not state.current then
5: initial = mapping.get(@addr) if mapping.has(@addr) else mapping.put(@addr, CFG())

6: state.current = (initial, initial.entry)
7: else
8: assert state.current.working instanceof Block

9: mapping = process_type(mapping, state.current.working.group.tail.type, @addr)
10: end if
11: state.current.working = process_group(state.current.cfg, state.current.working, group)

12: end for
13: while state.current do
14: state.current.cfg.add_edge(state.current.working, state.current.cfg.halt, 1)
15: state.current = state.callstack.pop() if not state.callstack.empty() else nil
16: end while
17: return mapping
18: end function

Phase 1 (Lines 4-10): takes an action based on the previous working node. In the
absence of the working node, initializes the first CFG (Lines 4-6). The initial
CFG is either fetched from the mapping based on the address of the group’s
leader instruction if existent, or it is created and set in the mapping (Line 5).
Then, the state’s current pair is configured with this CFG and its entry node
(Line 6). Otherwise, ensures that working node is a basic block (Line 8) and
activates Algorithm 2 (Line 9) passing the type of the tail instruction of the
working node and the address of the next instruction of the group.

Phase 2 (Line 11): activates Algorithm 3. This algorithm is responsible for building
a new path or following an existing one in the CFG. It may create or split nodes in
this process, but it will never transition between CFGs. At the end, Algorithm 3,
sets the working node to the node which its tail is last instruction of the processed
group.

Example 4.2.2. Each one of the six frames in Figure 4.3 is a snapshot of the state after
each iteration of Algorithm 1. Snapshots are taken immediately after the processing
of the group by Algorithm 3 (Line 11).

Group 1: (Figure 4.3(a)) In phase 1, the CFG for function main is created with its
entry node set as the working node. In phase 2 this group is processed leading
to the creation of the block with address @0x4004b0 with all the instructions of
the group. A new edge was created with execution count of 1 from the previous
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working node, i.e. entry node, to the current working node, i.e. the newly created
block.

Group 2: (Figure 4.3(b)) In phase 1, the pending call of the previous block is pro-
cessed. The CFG for function total at address @0x400492 is created and in-
serted into mapping. This CFG is added to the call map of the working node
(block @0x4004b0). Then, the state’s current pair is pushed onto the state’s call-
stack with the return address @0x4004cb — the fall-through of the instruction
call. Finally, there is a switch to the new CFG by setting the state’s current pair
with this CFG and its entry node. In phase 2, the second group is processed in
a similar fashion as the previous. A block with address @0x400492 is created,
connected from the entry with execution count of one, and set as the new working
node.

Group 3: (Figure 4.3(c)) In phase 1, the pending branch of the previous block is
processed. The algorithm creates a phantom node with address @0x4004ae for
the target address of this branch. Note that no phantom node is created for this
branch’s fall-through address, since this path will be covered in phase 2 for this
group. Thus, in phase 2 the block @0x4004a4 is created, connected, and set as
the working node.

Group 4: (Figure 4.3(d)) In phase 1, there is no action for the jump instruction of
the previous block, since the jump target will be handled by this group. In Phase
2, there is a jump to the instruction @0x4004a0 that is inside block @0x4004a0.
Therefore, this block must be split in two blocks: block @0x400492 with four
instructions and block @0x4004a0 with two instructions. Then, a new edge with
one execution is created between blocks @0x4004a4 and @0x4004a0. All the
instructions of this group are matched against the ones in block @0x4004a0;
thus no new information is added at this point. Afterwards, this block becomes
the working node.

Group 5: (Figure 4.3(e)) In phase 1, the branch of instruction @0x4004a2 is processed
again, but both paths it can follow have already been covered; thus nothing is
changed for this CFG. The execution followed the target of the branch, which
lead to this group. In phase 2, the leader of this group matches the address of the
phantom node at @0x4004ae. Thus, the phantom node is converted to a block
node and it is populated with the instructions of this group and the update count
of the edge increased by one. Finally, this new block becomes the working node.
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Group 6: (Figure 4.3(f)) In phase 1, a function return occurs, because the tail in-
struction of the working node is a return. First, the working node is connected
to the exit node with an edge count of one. Then, the algorithm checks if there
is a return address in the callstack that matches the address of the leader of this
group. In this case, the leader address of this group @0x4004cb matches the
top of the stack. Thus, the state’s current pair is restored by popping the top of
the stack. At this point, the current working node is block @0x4004b0, and the
cfg the CFG of the main function. In phase 2, the block @0x4004cb is created,
connected, and set as the working node.

After processing all the groups, Algorithm 1 connects the state’s working node
to the halt node to conclude the execution (Lines 13-16). Then, Algorithm 1 returns
the mapping containing the functions main and total that were invoked during the
execution of this program (Line 17). The final CFG for both functions can be seen in
Figure 4.4.

block
 

[group]
0x4004b0 [4]: sub $0x10,%rsp
0x4004b4 [8]: movl $0xa,0xc(%rsp)
0x4004bc [5]: lea 0xc(%rsp),%rdi
0x4004c1 [5]: mov $0x1,%esi
0x4004c6 [5]: callq 0x400492
[calls]
cfg: 0x400492

block
 

[group]
0x4004cb [4]: add $0x10,%rsp
0x4004cf [1]: retq

cf
g:

 0
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00
4b

0 
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n)

1

1

1

block
 

[group]
0x4004a4 [2]: add (%rbx),%eax
0x4004a6 [4]: add $0x4,%rbx
0x4004aa [2]: inc %ecx
0x4004ac [2]: jmp 0x4004a0

block
 

[group]
0x400492 [1]: push %rbx
0x400493 [3]: mov %rdi,%rbx
0x400496 [5]: mov $0x0,%eax
0x40049b [5]: mov $0x0,%ecx

block
 

[group]
0x4004a0 [2]: cmp %esi,%ecx
0x4004a2 [2]: jge 0x4004ae

block
 

[group]
0x4004ae [1]: pop %rbx
0x4004af [1]: retq

cf
g:

 0
x4
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49

2 
(t
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)

1

1

1
1

1

1

(a) (b)

main total

Figure 4.4. The resulting CFGs for functions main (a) and total (b) in the
mapping produced by Algorithm 1.

4.2.2 Processing the Type of a Group’s Tail Instruction

Algorithm 2, invoked at Line 9 of Algorithm 1, performs an action based on the type of
the tail instruction of the previously processed group. This tail instruction is obtained
from the last instruction of the working node, which is always a basic block. The
function process_type of Algorithm 2 receives a mapping of all CFGs discovered so
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far, the type of the tail instruction of the previous group, and the target address (tar-
get_addr) of the leader instruction of the next group obtained from the machine. This
function returns the updated mapping, in case new control flow graphs are discovered.
Note that this function may also affect the global state.

Algorithm 2 Process the type of the tail instruction of a group.
global: state
input: mapping, type, @target_addr
output: mapping

1: function process_type(mapping, type, @target_addr)
2: if type instanceof Jump then
3: # do nothing

4: else if type instanceof Branch then
5: addrs = [type.fallthrough]

6: if type.direct then
7: addrs.append(type.target)
8: end if
9: for @addr in addrs do
10: if @addr 6= @target_addr then
11: node = state.current.cfg.find_node_with_addr(@addr)
12: if node then
13: if node instanceof Block and node.group.leader.addr 6= @addr then
14: node = state.current.cfg.split(node, @addr)
15: end if
16: else
17: node = state.current.cfg.add_node(Phantom(@addr))
18: end if
19: state.current.cfg.add_edge(state.current.working, node, 0)
20: end if
21: end for
22: else if type instanceof Call then
23: called = mapping.get(@target_addr) if mapping.has(@target_addr)

else mapping.put(@target_addr, CFG())

24: state.current.working.add_call(called, 1)
25: state.callstack.push(state.current, type.fallthrough)

26: state.current = (called, called.entry)
27: else if type instanceof Return then
28: pops = state.callstack.pops_count(@target_addr)
29: while pops > 0 do
30: state.current.cfg.add_edge(state.current.working, state.current.cfg.exit, 1)
31: state.current = state.callstack.pop()

32: pops��
33: end while
34: else
35: error "Unreachable code"

36: end if
37: return mapping
38: end function

According to Definition 2 the type of the tail instruction of a group must be either
jump, branch, call, or return. If the type is an unconditional jump, then no special action
is required (Lines 2-3). In this case, only one program flow is possible in the CFG and
it will be handled when processing the next group. If the type is a conditional branch
then Algorithm 2 models the possible execution flows for this instruction (Lines 4-21).
First, it builds a list of the possible target addresses: the branch’s target if it is known
— in case of a direct branch — , and the branch’s fall-through address (Lines 5-8).
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Then, for each target @addr (Line 9) that is not the target_addr of the next block,
Algorithm 2 either: (1) splits its block, if @addr is not in the first instruction (Lines
12-15); or (2) creates a new phantom node, if @addr does not belong to a known block
(Line 16-18). Regardless of the case, the working node is connected to this new node
without updating its execution count, since this path has not been traversed yet (Line
19).

Example 4.2.3. Figure 4.3(c) shows that Algorithm 2 created the phantom node
@0x4004ae. Said node corresponds to the target of the branch jge at the end of group
@0x400492 that was not taken.

If the type is a call, then a different CFG will be visited (Line 22-26). First,
the CFG is obtained either from the mapping if it already exists, or a new instance is
created otherwise (Line 23). Then, this CFG is added to the call list of the working
node (Line 24) with the execution count incremented by one. Later, Algorithm 2
pushes the current pair with the cfg and working node onto the state’s callstack with
the expected return address, at the fall-through of this call after it is completed (Line
25). Finally, the state’s current pair is updated with the called cfg and its entry node
(Line 26).

Example 4.2.4. Figure 4.3 shows the transition in the state for the CFGs that hap-
pens when the function main (Fig. 4.3(a)) makes a call to another function total
(Fig. 4.3(b)). At this point, the working node points to the entry node of function
total — situation prior to the Figure 4.3(b). Also, the called CFG is added to the
call list of block @0x4004b0 of function main, as seen in Figure 4.4(a).

If the type is a return, then Algorithm 2 restores the state’s current pair if the
target address matches the return address of an entry in the call stack (Lines 27-33).
First, the Algorithm 2 calls the CFG auxiliary function pops_count to scan the
state’s callstack, from top to bottom, searching for an entry whose @ret_addr is the
same as the @target_addr. It returns how many pops, or hops, are necessary to find
the matching entry. Then, while the pop count is positive (Line 29), Algorithm 2 adds
an edge from working to exit, or increments that edge’s counter by one (Line 30). The
state’s current pair is restored with a pop in the call stack (Line 31). Also, the pop
count is decremented by one (Line 32). If there is no entry matching the target address
with the return address in the call stack, the return is treated as an unconditional jump.
In this case, no further action is performed.
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Example 4.2.5. Figure 4.3(e) shows the moment before the return at block
@0x4004ae is processed by Algorithm 2. The target address @0x4004cb matches
the top of the call stack, hence a pop is required. The working node of Figure 4.3(e)
is connected to the exit node as can be seen in Figure 4.4(b). Then, the current pair
is restored to the CFG of main function as in Figure 4.3(f), but with working node at
@0x4004b0 and before the creation of block @0x4004eb.

Algorithm 2 ensures that variable type can only be one of: jump, branch, call, or
return according to Definition 2. Any other type results in an error (Lines 34-35). In
the end, Algorithm 2 returns the mapping, which might have been updated.

4.2.3 Processing Groups of Instructions

Algorithm 3 processes each instruction in a group in the order defined by their ad-
dresses. When processing instructions, Algorithm 3 either builds a new path in the
current CFG, follows an existing path, or does a combination of both. While the same
group might pertain to different CFGs [Meng and Miller, 2016], a CFG cannot contain
only part of a group. Therefore, the only part of the state that matters to Algorithm 3
is the current pair — the cfg and the working node. Algorithm 3 is parameterized
by these two arguments, plus the group to be processed. The algorithm follows the
instructions of the group, updating the working node in the process. It returns a block
that has the tail instruction of the group, which Algorithm 1 uses to update the working
node (Alg. 1-Line 15).

Algorithm 3 processes instructions individually (Line 3). There is an auxiliary
variable curr_instr to ensure that the first instruction of the group belongs to the
successor of the working node (Line 2). When curr_instr is defined, Algorithm 3 takes
no action (Lines 4-5). In this case, the instr already exists in the basic block of the
working node. When curr_instr is nil, there is a switch from one basic block to
another. Such event happens in several scenarios, each one implying different actions:

1. The program flow is moving onto a phantom node. Algorithm 3 “resurrects"
it, that is to say, turns this phantom node into a basic block (Lines 9-11). A
new edge is created between the working node and the revived block with the
execution count increased by one (Line 16). The new block becomes the current
working node (Line 17).

2. The program flow is moving onto the middle of a sequence of instructions pre-
viously thought to be a single basic block. Algorithm 3 splits this block (Lines
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Algorithm 3 Process group by handling each instruction individually.
input: cfg, working, group
output: working

1: function process_group(cfg, working, group)

2: curr_instr = nil
3: for instr in group.instrs() do
4: if curr_instr then
5: assert curr_instr == instr
6: else
7: node = cfg.find_node_with_addr(instr.addr)
8: if node then
9: if node instanceof Phantom then
10: node = cfg.find_node_with_addr(instr.addr)
11: node = cfg.phantom2block(node, Block(Group(instr)))
12: else if node.group.leader 6= instr then
13: node = cfg.split(node, instr.addr)
14: end if
15: assert node.group.leader == instr
16: cfg.add_edge(working, node, 1)
17: working = node
18: else
19: if (instr 6= group.leader) and (working instanceof Block) and (not working.calls.empty())

20: and (not working.signals.empty()) and (not cfg.succs(working).empty()) then
21: assert (working.group.tail.addr + working.group.tail.size) == instr.addr
22: working.group.add_instr(instr)
23: else
24: node = cfg.add_node(Block(Group(instr)))
25: cfg.add_edge(working, node, 1)
26: working = node
27: end if
28: end if
29: end if
30: curr_instr = working.group.next(instr)
31: end for
32: return working
33: end function

12-13). Then, the same steps of the previous case happens to connect the working
node to this block and make it the new working node (Lines 16-17).

3. The program flow is visiting an instruction that should belong to the working
node. Algorithm 3 appends the new instruction to the working node (Lines 20-
23), if: (1) the instruction is not be the leader of the group — group leaders must
always be the first instruction of a block; (2) the working node has no calls nor
signal handlers to other functions, and neither does it have successors nodes.

4. The program flow is visiting a block leader for the first time. Algorithm 3 creates
a new node to represent this block of instructions, and sets the working pointer
to it (Lines 25-28).

When there is a mismatch between an instruction of the group (instr) with the
tracker pointer (curr_instr), Algorithm 3 takes one of two possible actions. (1) a block
must be created (event 4) or modified (events 1 and 2) which guarantees instr is the
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leader. Edges may be added to connect the previous working block with this new block.
(2) instr must be the tail of the working block (event 3).

Example 4.2.6. Figure 4.3(e) shows that the phantom node @0x400492 in Fig-
ure 4.3(d) was replaced with an actual basic block. This happens during the pro-
cessing of Group 5 in Figure 4.3, when the branch jge is visited. Figure 4.3(d) shows
the splitting of block @0x400492 into two new blocks: @0x400492 now with four in-
structions and @0x4004a0 with the remaining two instructions. This happens during
the processing of Group 4 in Figure 4.3, because of the jump to @0x4004a0.

4.3 Extensions to the Basic Algorithm

The core algorithms described in Section 4.2 support extensions for performance and
precision. Regarding efficiency, Algorithm 1 admits a caching strategy to avoid unnec-
essary recomputations. Regarding precision, the algorithm supports multi-threaded
programs and signal handlers. These extensions are key for CFGgrind to provide the
functionalities described in Chapter 3.

4.3.1 Caching Strategy

By Definition 2, once the program flow reaches the leading instruction of a group g,
every instruction within g will be executed. As a consequence of this observation, it
is not necessary to invoke Algorithm 3 on groups that have already been visited in
the same context. In other words, the outcome of function process_group (Alg. 3),
invoked at Line 11 of Algorithm 1, is always the same for a given triple (cfg, working,
group). Therefore, as an optimization, the algorithm associates a cache in each node
of the cfg. When a pair formed by a working node and a group is processed for
the first time, the algorithm caches the next working node. This cache is a table
workingsrc ⇥ group 7! (workingdst , count). The execution count is updated in case of
cache hits, and flushed in case of cache misses. This optimization is implemented by
Algorithm 4, which augments Algorithm 1 with a cache.

Example 4.3.1. The cache avoids work due to repeated loop iterations. The loop
in Figure 4.1(a) iterates once, because its input is a single-element array. However,
running this program with a longer array, only the first loop iteration would change the
structure of the CFG. The other iterations would just update the execution counters.
In this case, the working pointers would be moving between the loop condition (block
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Algorithm 4 Algorithm 1 update to use a caching strategy to avoid recomputation
of function process_group.

global: state
input: machine, mapping
output: mapping

1: function process_program(machine, mapping)
2: for group in machine.run() do
3: addr = group.leader.addr

...

11: idx = addr mod CACHE_SIZE

12: (cached_group, cached_working, cached_count) = state.current.working.cache[idx]
13: if cached_group == group then
14: state.current.working.cache[idx] = (cached_group, cached_working, cached_count + 1)

15: state.current.working = cached_working
16: else
17: if cached_count > 0 then
18: state.current.cfg.flush_counts(

state.current.working, cached_group, cached_working, cached_count)
19: end if
20: prev_working = state.current.working
21: state.current.working = process_group(state.current.cfg, state.current.working, group)

22: prev_working.cache[idx] = (group, state.current.working, 0)
23: end if
24: end for

...

29: for (addr, cfg) in mapping do
30: for src in cfg.nodes() do
31: for (group, dst, count) in src.cache do
32: if count > 0 then
33: cfg.flush_counts(src, group, dst, count)
34: end if
35: end for
36: end for
37: end for
38: return mapping
39: end function

@0x4004a0) and loop body (block @0x4004a4) without generating new information,
except updating its execution count.

The cache avoids the O(i) cost of Algorithm 3, where i is the number of instruction
in the group, upon cache hits. The performance evaluation in Chapter 5 indicates that
such situations abound. To support this optimization, the CFG is augmented with the
following operation:

• flush_counts(src, group, dst, count): flush execution counts of group for count
times by following the edges starting from src node until it reaches the dst node.

Every entry and block node has a cache with n triples like (group, working, count).
Entries are indexed by the leader address of the group (Alg. 4, Lines 11). The cache
size n is configurable at compile-time. The working node is updated without invoking
Algorithm 3 if the current group plus its working node gives us a cache hit (Lines
13-15). The cache is updated; hence, increasing by one its execution count.
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If we have a cache miss, then a number of actions must be taken, before a new
entry is added to the cache. In particular, Algorithm 4 needs to update counters
associated with paths stored in the cache. This “flush" is necessary because the cache
avoids processing instructions, including updating edge counters. Flushing happens at
Lines 17-19 of Algorithm 4. After flushing the cache, Algorithm 4 processes the new
group and updates the cache (Lines 20-22). The first entry of a group in the cache is
associated with a counter of zero (Line 22), because this first information is recorded
directly in the current CFG’s edges when process_group is invoked at Line 21 of
Algorithm 4.

4.3.2 Support to Multi-Threaded Programs

The prototype of CFGgrind, implemented in valgrind, has support for multi-
threaded programs. valgrind natively serializes the execution of such programs into
a single-threaded application by implementing its own scheduling policy. CFGgrind

leverages this feature by maintaining a state per thread of execution. In Algorithm 5,
the state is the same global variable used by Algorithms 1-3. The global variable cur-
rent_thread keeps all the information regarding the execution of the active thread,
including its ID. The global map thread_states holds the states for all the threads in-
dexed by the thread IDs. Initially, each thread state is initialized with an empty state
(nil, []), similarly to how the global state is configured prior to program execution
(Sec. 4.1). A context switch occurs as an event external to the process that runs Al-
gorithms 1-3. Thus, this operation is of no consequence to the inner workings of these
algorithms.

Algorithm 5 Context switch from the current_thread to another next_thread.
global: state, current_thread, thread_states
input: next_thread

1: procedure switch_context(next_thread)

2: assert current_thread 6= next_thread
3: thread_states[current_thread.id] = state
4: state = thread_states[next_thread.id]
5: current_thread = next_thread
6: end procedure

In a context switch from the active thread (current_thread) to a different thread
(next_thread), Alg. 5 saves the state of current_thread in the map thread_states, index-
ing it by current_thread’s ID (Line 3). Then, the previously saved state of next_thread
is restored to the global state (Line 4). Finally, Alg. 5 updates variable current_thread
to refer to next_thread (Line 5).
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Although programs are emulated as is, the instrumentation runtime environment
adds an overhead to the execution that may affect its behavior. Some specific timed
constraints may never be reached, and thus some code parts never executed. This is
a limitation of dynamic binary frameworks in general, not the algorithms presented in
this section.

4.3.3 Handling Signal Events

The prototype of CFGgrind has the ability to precisely track signal events.
CFGgrind relies on valgrind’s capabilities to identify when an event is raised by the
machine and when this event is properly handled by the program. To support signal
events, CFGgrind employs a strategy similar to the one employed for multi-threaded
programs: it manipulates the global state externally. Algorithm 6 is responsible to
prepare the state when a signal event is raised, whereas Algorithm 7 is responsible
to recover the state once the signal was handled by the program. Both Algorithms 6
and 7 hold a global variable for the active thread (current_thread), and a global map
of state’s queue indexed by thread IDs (signal_states). Signals occur in the scope of
a thread; thus each thread must have its own signal handlers. A queue is required to
hold the thread state in case multiple signals are raised simultaneously — they must
be treated separately and in sequence.

Algorithm 6 Process a raised signal event.
global: state, current_thread, signal_states
input: mapping, sigid, @target_addr

1: procedure enter_signal(mapping, sigid, @target_addr)
2: called = mapping.get(@target_addr) if mapping.has(@target_addr)

else mapping.put(@target_addr, CFG())

3: assert state.current.working instanceof Block

4: state.current.working.add_signal(sigid, called, 1)
5: signal_states[current_thread.id].enqueue(state)
6: state = (nil, [])

7: end procedure

In Algorithm 6, enter_signal receives the map of CFGs (mapping), the ID
of the signal raised (sigid), and the address of the first instruction to be executed
afterwards (@target_addr). This address is the entry point of a function that will be
called to handle the signal. Algorithm 6 obtains the called CFG for the signal handler
based on @target_addr (Line 2). Then, it adds this CFG to the list of signal handlers
associated with the working node with an execution count of one (Lines 3-4). Notice
that this working node must be of the block type. Later, the current state is pushed onto
the signal_states queue for the active thread (Line 5). Finally, the state is initialized
as empty to proceed with the execution of Algorithms 1-3.
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Algorithm 7 Process a handled signal event.
global: state, current_thread, signal_states

1: procedure leave_signal( )

2: while state.current do
3: state.current.cfg.add_edge(state.current.working, state.current.cfg.exit, 1)
4: state.current = state.callstack.pop() if state.callstack else nil
5: end while
6: assert not signal_states[current_thread.id].empty()

7: state = signal_states[current_thread.id].dequeue()

8: end procedure

When leaving a signal handler, Algorithm 7 connects the working node of the
current state and all the working nodes in its callstack if present, to the exit node with
execution count of one (Line 2-6). This step is similar to the one present in Algorithm 1,
Lines 13-16: it is used to ensure consistency of CFGs. Then, the state is restored by
popping the signal_states queue for the current_thread.

4.4 Conclusion

This chapter develops the foundation of the algorithms implemented by CFGgrind,
a tool built on top of valgrind [Nethercote and Seward, 2007]. The dynamic bi-
nary instrumentation framework valgrind plays the role of the machine described
in Section 4.1. The basic algorithm, described Section 4.2, and its extensions, de-
scribed in Section 4.3, are publicly available for use in CFGgrind’s repository
(https://github.com/rimsa/CFGgrind). A working python prototype of these al-
gorithms is also available in this repository.

https://github.com/rimsa/CFGgrind


Chapter 5

Evaluation

The techniques introduced in this thesis are integrated into a tool, CFGgrind, which
is publicly available at https://github.com/rimsa/CFGgrind. Although a research
artifact, CFGgrind’s implementation is sufficiently solid to enable the exploration of
several research questions:

RQ1 How efficient is CFGgrind, when compared with tools with similar purpose?

RQ2 What is the impact of the cache (Algorithm 4) on the performance of
CFGgrind?

RQ3 What is the ratio between complete and incomplete CFGs in large programs?

RQ4 What is the impact of different input sets in the incremental refinement of CFGs?

RQ5 How much information does CFGgrind add onto a static CFG reconstructor?

RQ6 What is the time complexity of CFGgrind in practice?

Benchmarks. This evaluation of CFGgrind uses two benchmarks, cBench (http:
//ctuning.org/) and Spec Cpu2017 (https://www.spec.org/). cBench contains
32 C programs. Each program has 20 available input sets, except bzip2d and bzip2e
with 32 inputs each. The cBench programs were modified to compile and run in a
64-bit architecture. Spec Cpu2017 contains 43 programs, written in C, C++ and
Fortran. They are organized in 4 categories: integer and floating point, separated into
single- and multi-thread versions. Multi-thread programs were configured to execute as
single-thread, since valgrind serializes the execution. Thus, executing the programs
with a single thread in one core for the experiments is sufficient because the perfor-
mance of CFGgrind is not affected by the number of threads in an execution (Sec.

39

https://github.com/rimsa/CFGgrind
http://ctuning.org/
http://ctuning.org/
https://www.spec.org/
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3.4). All programs in cBench and Spec Cpu2017 are compiled with gcc at the -O2
optimization level. In the comparison with DynInst (RQ5 in Section 5.5), the code
was stripped from debugging symbols.
Runtime Setup. The current version of CFGgrind has been implemented in
valgrind version 3.15.0. Results reported for cBench were produced on a 16-core
Intel(R) Xeon(R) E5-2630 at 2.40GHz with 16GB of RAM running CentOS 7.5. For
Spec Cpu2017, the results were obtained on an 8-core Intel(R) Core(TM) i7-4790 at
3.60GHz with 16GB of RAM running CentOS 7.6. We use two machines to run the
experiments in parallel.
Measurement Methodology. Performance numbers for cBench are the average
of three executions for each program. On average, a run on the entire cBench is
completed in ⇠22.5h. The difference between the fastest and slowest of the three
runs is less than one minute. Due to this small difference — one minute in 22.5
hours, we shall not report standard deviations in our results. Performance numbers for
Spec Cpu2017 were measured only once because of the long run times. Executing a
single set of experiments for intrate takes ⇠30.1h, fprate ⇠35.5h, intspeed ⇠40.6h,
and fpspeed ⇠295.6h. The experimental evaluation used all the inputs available in
both benchmarks for the simulations. To answer RQ1 5.1 and RQ2 5.2, the average is
computed using the geometric mean. The variance between each program run times
is high: the fastest program in cBench executes in ⇠2s, while the slowest in ⇠20s;
in Spec Cpu2017 the fastest runs in ⇠4m, while the slowest in ⇠57m. To answer
RQ3 5.3, the average is computed using the arithmetic mean. The total number of
complete, incomplete, and unreached CFGs is divided by the total number of CFGs in
the benchmark suite.

5.1 RQ1: Efficiency

Dynamically reconstructing CFGs with CFGgrind during the execution of a pro-
gram results in significant overhead. For instance, the execution of the 32 programs of
cBench with CFGgrind is ⇠19 times slower than an equivalent non-instrumented
baseline execution. For the 43 programs in Spec Cpu2017, CFGgrind has a slow-
down of ⇠29 times. This runtime cost is on par with other tools built on top of
valgrind, whose manual we quote below [Seward, 2019]:

‘The amount of instrumentation code added varies widely between tools.
At one end of the scale, Memcheck adds code to check every memory access
and every value computed, making it run 10-50 times slower than natively.
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At the other end of the spectrum, the minimal tool, called Nulgrind, adds
no instrumentation at all and causes in total “only" about a 4 times slow-
down.’

The empirical results in this section evidence that the instrumentation overhead
is also high for other tools that reconstruct CFGs. Figure 5.1 presents, in logarithmic
scale, a comparison of the slowdown for three different tools that reconstruct CFGs:
CFGgrind, bfTrace [Gruber et al., 2019] and DCFG [Yount et al., 2015]. The
baseline for these comparisons is the original program. Figure 5.1 also shows the
slowdown caused by callgrind, a valgrind tool that builds the call graph of a
program. Results for the 32 programs available in cBench are reported; however, we
omit for SPEC CPU2017 because DCFG takes a prohibitively long time to process the
larger Spec Cpu2017 suite.
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Figure 5.1. Slowdown of different tools that reconstruct CFGs relative to the
original program execution without instrumentation for cBench.

The CFG-reconstruction tools compared in Fig. 5.1 are not equivalent (see Chap-
ter 3). callgrind is not a CFG reconstructor, but it is included in the comparison
because it runs on valgrind, like CFGgrind does. Hence, callgrind serves as
a performance baseline for readers that are familiar with the valgrind’s ecosystem.
The other three tools in Fig. 5.1 reconstruct CFGs. However, their outputs, although
similar, are not directly comparable because each tool uses its own program representa-
tion. For instance, DCFG produces a single CFG for the entire program; CFGgrind

and bfTrace, in turn, splits it per function.
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Figure 5.1 indicates that CFGgrind and bfTrace are much faster than
DCFG. DCFG, built onto PinPlay, saves program state for posterior re-execution
— an overhead absent on the other tools. On average, DCFG is ⇠7x slower than
CFGgrind. CFGgrind runs faster than bfTrace, although by a lower margin:
⇠28%. CFGgrind is also faster than callgrind: ⇠9%. Figure 5.1 also shows the
runtime for the original programs. Binaries analyzed by CFGgrind experiment a
slowdown of ⇠19x when compared to the original programs — viz., without any em-
ulation. To put these numbers in perspective, DCFG causes a slowdown of ⇠136x
and bfTrace, ⇠24x. valgrind, without any tool, slows cBench down by ⇠3.6x on
average; however, for the sake of readability, we omit this result from Figure 5.1.

5

10

20

50

100

●
●

●

●

●
●

●
●

●

●

●

●●

●●

●
●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●
●

●

●
●

●

●
●

●
●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

Sl
ow
do
w
n

50
0.p
erl
be
nc
h

50
2.g
cc

50
3.b
wa
ve
s

50
5.m
cf

50
7.c
ac
tuB
SS
N

50
8.n
am
d

51
0.p
are
st

51
1.p
ov
ray

51
9.l
bm

52
0.o
mn
etp
p

52
1.w
rf

52
3.x
ala
nc
bm
k

52
5.x
26
4

52
6.b
len
de
r

52
7.c
am
4

53
1.d
ee
ps
jen
g

53
8.i
ma
gic
k

54
1.l
ee
la

54
4.n
ab

54
8.e
xch
an
ge
2

54
9.f
oto
nik
3d

55
4.r
om
s

55
7.x
z

60
0.p
erl
be
nc
h

60
2.g
cc

60
3.b
wa
ve
s

60
5.m
cf

60
7.c
ac
tuB
SS
N

61
9.l
bm

62
0.o
mn
etp
p

62
1.w
rf

62
3.x
ala
nc
bm
k

62
5.x
26
4

62
7.c
am
4

62
8.p
op
2

63
1.d
ee
ps
jen
g

63
8.i
ma
gic
k

64
1.l
ee
la

64
4.n
ab

64
8.e
xch
an
ge
2

64
9.f
oto
nik
3d

65
4.r
om
s
65
7.x
z

ave
rag
e

●

●

●

nulgrind
callgrind
CFGgrind

Figure 5.2. Slowdown of builtin tools in valgrindand CFGgrind relative to
the original program execution without instrumentation for Spec Cpu2017.

Figure 5.2 compares the runtime of CFGgrind for the Spec Cpu2017 suite
against the non-instrumented baseline program and other valgrind builtin tools.
These results indicate that CFGgrind has a performance on par with callgrind

— CFGgrind is actually ⇠7% faster than callgrind. Even though CFGgrind has
a slowdown of ⇠29x in relation to the original program, it is only ⇠4.5x slower than
running valgrind without any tool (nulgrind). Notice that CFGgrind delivers
substantial more information than callgrind. CFGgrind’s CFGs encapsulates the
call graph of programs, in addition to all the instructions and paths traversed during
the program flow. CFGgrind is as suitable as other tools in the valgrind ecosystem
for practical use.
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5.2 RQ2: The Impact of the Cache

The cache implemented by Algorithm 4 is key to boost CFGgrind’s performance. As
explained in Chapter 4, the caching strategy avoids the re-execution of Algorithm 3
for a previously visited pair (working, group). A cache hit enables the algorithm to
move directly to the next working node without processing all the instructions of the
group. In CFGgrind, the size of the cache is configurable at compilation time: for
each working node there are n entries indexed by different group addresses. However,
increasing n past a certain value results in diminishing returns. Figure 5.3 illustrates
this trend on the training set for the intrate part of the Spec Cpu2017 suite.

perlbench gcc mcf omnetpp xalancbmk x264 deepsjeng leela exchange2 xz average
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Figure 5.3. The impact of cache size on the runtime of CFGgrind.

Figure 5.3 makes it clear that the cache is important: the average performance
improvement from the introduction of a cache with n = 2 is ⇠1.6 times. This benefit
is substantial in loop-intensive programs, such as xz. Setting n > 2 produces mixed
results because most of the basic blocks in a program have only one or two successors.
Exceptions to this rule are due to indirect jumps, such as those used to implement
switch statements. Thus, although the last column of Figure 5.3 tends to report in-
creasingly better results, improvements past n = 8 are too small to be of practical
consequence. Larger cache sizes might even provoke slowdowns due to heavier memory
usage. Based on these results, the experiment performed to answer RQ1 (Sec. 5.1)
used a fixed cache size of n = 8, which provides a good balance between efficiency and
memory requirements.
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5.3 RQ3: CFG Completeness

When used to support software testing, CFGgrind accurately recovers the portions
of code traversed by test inputs, with exact profiling information (as explained in
Chapter 3). And, contrary to classic approaches [Fraser and Arcuri, 2011; Lemos et al.,
2006], it also recovers the CFG of library code. Program coverage through dynamic
reconstruction of CFGs can be estimated by answering the following question: “how
many functions had all their instructions executed at least once by a particular input?".
These functions are called complete, as stated in Definition 4. This section provides an
answer to this research question.

Determining Functions of Interest. Even though CFGgrind can track the execu-
tion of dynamically shared libraries, this study of completeness considers only func-
tions available in the source code of each benchmark. This restriction enables the
computation of a ratio of completeness because the total number of functions that
can be invoked is available when the source code is accessible. The .text section of
binary files, compiled with debugging symbols, is used to identify source-code func-
tions. Spec Cpu2017 has 172,268 functions scattered across 43 programs; cBench

has 7,250 functions in 32 programs.

Invocation Ratio. The invocation ratio of a set of inputs for a benchmark suite is
the number of functions that are invoked over the total number of functions in the
programs in the benchmark suite. For the Spec Cpu2017, with all the reference
inputs, the invocation rate is ⇠25%, while for cBench, with 20 inputs, the invocation
rate is ⇠38%.

Completeness Ratio. Figures 5.4-5.5 show, in logarithmic scale, the number of com-
plete, incomplete, and unreached CFGs for Spec Cpu2017 and cBench, respectively.
Both were executed with the benchmark’s reference inputs. The data collection for
both figures, from a single run of the entire suite, required 402 hours (almost ⇠17
days) for Spec Cpu2017 and 22.5 hours for cBench. The completeness ratio for a
benchmark suite with a given workload is the number of functions for which the entire
CFG was discovered divided by the number of functions that were invoked with that
workload. For the Spec Cpu2017 suite with the reference inputs, the completeness
ratio is ⇠40%, and for the cBench suite the completeness ratio is ⇠37%.

Figure 5.6 shows the correlation between completeness ratio and (a) number of
blocks, or (b) number of instructions per CFG. To improve readability, the graph shows
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Figure 5.4. Number of complete/incomplete/unreached flow graphs for each of
the 43 programs in Spec Cpu2017.
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Figure 5.5. Number of complete/incomplete/unreached flow graphs for each of
the 32 programs in cBench.

results only for CFGs with up to 100 blocks (a) and up to 1,000 instructions (b). For
example, Spec Cpu2017 has 392 CFGs that contain exactly 20 block nodes. Out of
those, 50 are complete and 342 are incomplete. The same is true for instructions: out
of the 15 CFGs of Spec Cpu2017 with exactly 200 instructions, 4 are complete and 11
are not. Most of the CFGs in programs in the Spec Cpu2017 suite are small; hence,
the negative slopes in Figure 5.6(a-b). A similar behaviour is observed in cBench,
although not shown in this manuscript. This decreasing rate is much more accentuated
for complete CFGs. This trend indicates that, as expected, the probability of finding
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complete CFGs decreases as the size of the CFG increases.
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Figure 5.6. Relation between the number of complete/incomplete CFGs (y-axis,
ln scale) per number of blocks (a) and instructions (b) for the Spec Cpu2017
benchmark. X-axis shows number of blocks (a) and instructions (b).

5.4 RQ4: Incremental Construction of CFGs

Multiple invocations of the same function during a single run of a program might lead to
more complete CFGs when new paths are explored. To capitalize on this observation,
the results produced by a run of CFGgrind can be forwarded as input to another
run. If the new execution flows into unexplored program areas, this information will
be added to the CFGs produced. Entire CFGs can be included when new functions
are called, and existing CFGs can be expanded when phantom nodes or unmapped
areas are visited. The more inputs are given to CFGgrind, the more complete the
reconstruction of the program’s control flow. Note that neither bfTrace nor DCFG

support incremental construction of CFGs, as discussed in Section 3.3.
Figure 5.7 shows how extra inputs contribute to augment the number of visited

instructions in cBench. This benchmark is well suited for this experiment because
each program comes with 20 data sets, except for bzip2d and bzip2e that come with
32 inputs each. In this case, the 32 inputs were evenly distributed as 20 inputs in
Figure 5.7. Each tick in the X-axis of Figure 5.7 shows the number of instructions
observed up to the nth execution of a program (1  n  20). Following the methodology
used in Section 5.3, library functions are excluded from this analysis. Considering
all 32 cBench programs, the 19 extra inputs augment the number of instructions
visited from 127,016 to 163,750 — an increase of ⇠29%. The largest growths were
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Figure 5.7. Evolution of instruction coverage (y-axis) due to incremental exe-
cution of inputs for cBench.

observed in bzip2d, 19 new CFGs were added of the 81 available CFGs for the entire
program (⇠23%), and office_ghostscript, 312 new CFGs added onto 3,488 (⇠9%).
Comparing the first and last executions of all the programs reveals that CFGgrind

was able to identify 378 new CFGs — a growth of 5.21% over a universe of 7,250 CFGs
available in the text section of cBench. Applying the same principles for instructions,
36,736 new unique instructions were executed — a growth of 6.01% upon 601,345
instructions in cBench. This experiment indicates that, at least for cBench, extra
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inputs have a mild effect on code coverage: they provide new information about the
program execution. Although a great extent of each program was already observed in
the first execution. This is not a limitation of CFGgrind, further coverage could be
achieved with improved tests inputs.

5.5 RQ5: Combining Static and Dynamic CFG

Reconstruction

DynInst, a state-of-the-art static CFG reconstructor [Meng and Miller, 2016], can
be used to extend CFGgrind’s coverage, and vice-versa. This section uses these two
tools in tandem to analyze cBench and Spec Cpu2017. For this experiment, we
have compiled the benchmarks without debugging information — the typical way in
which production code is distributed. Table 5.1 shows the result of this comparison for
cBench. The invocation ratio of CFGgrind is ⇠38%; hence, it identifies 2,738 out
of 7,250 possible CFGs. The invocation ratio of DynInst is 42%; hence, it finds 3,049
CFGs. The two techniques found 1,633 common CFGs, i.e., ⇠23% of the total. Simi-
larly, Table 5.2 shows results for Spec Cpu2017. The invocation ratio of CFGgrind

is ⇠25%. This percentage means that it identifies 43,485 out of 172,268 CFGs. The
invocation ratio of DynInst is ⇠39%; hence, it finds 66,552 of the CFGs. The two
techniques found 30,825 common CFGs in Spec Cpu2017, i.e., ⇠18% of the total.

CFGgrind (A) DynInst (B) A \B A \B B \A
CFGs 2,738 3,049 1,633 (59.6%/53.6%) 1,105 (40.4%) 1,416 (46.4%)

Basic blocks 33,316 76,456 23,608 (70.9%/30.9%) 9,708 (29.1%) 52,848 (69.1%)

Edges 52,980 111,732 37,345 (70.5%/33.4%) 15,635 (29.5%) 74,387 (66.6%)

Instructions 163,752 332,189 124,338 (75.9%/37.4%) 39,414 (24.1%) 207,851 (62.6%)

Calls 7,596 18,728 4,120 (54.2%/22.0%) 3,476 (45.8%) 14,608 (78.0%)

Table 5.1. Comparison between CFGgrind and DynInst for cBench. In the
column between the intersection of CFGgrind and DynInst, the percentage is
given in relation to CFGgrind and DynInst, respectively.

CFGgrind (A) DynInst (B) A \B A \B B \A
CFGs 43,485 66,552 30,825 (70.9%/46.3%) 12,660 (29.1%) 35,727 (53.7%)

Basic blocks 939,568 3,466,454 714,309 (76.0%/20.6%) 225,259 (24.0%) 2,752,145 (79.4%)

Edges 1,429,277 5,098,624 1,096,006 (76.7%/21.5%) 333,271 (23.3%) 4,002,618 (78.5%)

Instructions 4,968,718 17,712,186 4,161,470 (83.8%/23.5%) 807,248 (16.2%) 13,550,716 (76.5%)

Calls 302,929 3,160,257 198,561 (65.5%/06.3%) 104,368 (34.5%) 2,961,696 (93.7%)

Table 5.2. Similar to Table 5.1, but for Spec Cpu2017.
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Binaries without debugging information hurt static analyses, whereas dynamic
analyses require good program inputs to be effective. Combining these two techniques
can improve code coverage.

The combined analyses find 4,154 CFGs for cBench — an invocation rate of
⇠57%. CFGgrind finds 1,105 new CFGs that DynInst was unable to recover stati-
cally. In other words, CFGgrind adds ⇠15% more CFGs onto the collection observed
by DynInst. Similarly, the combined analysis for Spec Cpu2017 yields 79,212 CFGs
— an invocation rate of ⇠46%. Of those, 12,660 (⇠7%) were previously unknown to
DynInst. The remaining metrics in Tables 5.1-5.2, e.g., blocks, edges, instructions
and calls, collide in ways that are hard to quantify. For instance, DynInst identifies
instructions that are never executed, such as those used for padding. Some CFG edges
mark impossible paths — they arise due to conservative estimates of indirect branches,
for instance. Also, a basic block in one analysis can intersect partially with one or more
basic blocks in other analysis. Thus, because there is no one-to-one correspondence be-
tween these four metrics in both analyses, the numbers presented must be understood
as approximate results.

5.6 RQ6: Empirical Estimate of Asymptotic

Complexity

The reconstruction of CFGs increases the complexity of program execution because of
accesses to the cache discussed in Section 4.3. The cache is implemented as a hash-
table. In the absence of collisions, the next working node is retrieved in constant time,
i.e., with an overhead for this access of O(1). However, collisions might happen. The
current implementation of CFGgrind minimizes collisions via a simple expedient. If
occupation of the hash-table reaches 80% of its size, then a new table, twice as large is
allocated, and data is copied from the old cache to the new one. If collisions happen,
then CFGgrind uses a list to store multiple entries. We have opted for a list, instead
of a balanced tree, for two reasons. First, the list has lower startup cost; hence, it
outperforms the balanced trees for a small number of elements. Second, the resize-
and-copy procedure tends to reduce the number of collisions; thus, in practice, it is
unlikely that CFGgrind’s cache will contain a large number of entries with the same
hash code. The other components of the algorithms discussed in Section 4.2 contribute
only a constant factor to the processing of each instruction. The algorithms follow
instructions in the order in which they are executed. The loop in Lines 2-12 of Al-
gorithm 1 processes each group in order, while the loop in Lines 3-31 of Algorithm 3
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processes each instruction of a group sequentially. Algorithm 2 processes the tail in-
struction of the group, and runs in O(1) for jumps, calls and returns. For branches,
the algorithm needs to find a successor in a list, but since most blocks have a small
number of successors, the search cost is low. Furthermore, operations that add a node
or an edge, or replace a phantom node with a block node run in O(1). The operation
to find the node with a specific address, or the exact program point where to split a
node requires a search in a hash-table; but this operation tends to run in constant time
due to lower collisions. Therefore, in practice it is still possible to reconstruct the CFG
of programs with a constant time per instruction; or, in other words, with a linear cost
in terms of number of executed instructions. Figure 5.8 supports this observation with
empirical data.
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Figure 5.8. Relation between execution time of non-instrumented programs
with nulgrind (emulation only) and programs instrumented with CFGgrind,
for cBench and Spec Cpu2017 (a); Relation between the number instructions
observed during the execution of cBench and Spec Cpu2017 programs, and the
running time of these programs, when instrumented with CFGgrind (b).

Figure 5.8(a) correlates the running time of programs executed with nulgrind

and the running time of programs instrumented with CFGgrind. nulgrind runs
valgrind on the target program without instrumentation, as an emulation only tool.
Visual inspection of the figure indicates strong linear correlation. Indeed, the coef-
ficient of determination between these two running times is 0.905: very strong ev-
idence of linear behavior. The linear relation between the number of instructions
that are fetched during program execution, and the running time of CFGgrind is
even stronger. Figure 5.8(b) supports this statement by presenting such relation for
cBench and Spec Cpu2017 programs. In this case, the coefficient of determination
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is 0.990: very close to 1.0, which would be a perfect linear relation.

5.7 Conclusion

CFGgrind enabled the exploration of six research questions as discussed in this chap-
ter. RQ1 (Section 5.1) shows that CFGgrind outperforms DCFG by ⇠7 times and
bfTrace by ⇠28% in execution efficiency. RQ2 (Section 5.2) shows that, by employ-
ing a caching strategy to the algorithms, CFGgrind’s execution speed is significantly
improved: more than 2 times when a size-8 cache is used. RQ3 (Section 5.3) shows
that, the invocation ratio — invoked functions divided by all available functions — for
Spec Cpu2017 is ⇠25% and for cBench is ⇠38%. In contrast, the completeness ratio
— complete CFGs divided by all invoked CFGs — for Spec Cpu2017 is ⇠40% and
for cBench is ⇠37%. RQ3 also shows that, the larger the CFG — more instructions
or blocks —, smaller it is its probability of being complete. RQ4 (Section 5.4) shows
that executing cBench with extra inputs discovered ⇠5% new control flow graphs
and augmented the number of visited instructions, previously unexplored, by ⇠29%.
RQ5 (Section 5.5) shows that DynInst finds 15% more CFGs for cBench, and 7%
more CFGs for Spec Cpu2017 when combined with CFGgrind. RQ6 (Section 5.6)
shows that the algorithms described in Chapter 4 exhibit a linear behavior in terms
of number of executed instructions; hence, CFGgrind executes with a constant time
per instruction.

CFGgrind is mature enough to be practically used, as demonstrated with its
application in reputable benchmarks such as Spec Cpu2017 and cBench. The data
that support the findings of this study are openly available in CFGgrind’s repository
at https://github.com/rimsa/CFGgrind.

https://github.com/rimsa/CFGgrind


Chapter 6

Case Study

This chapter provides a case study on the capabilities of dynamic instrumentation tools.
This study is built on the concept of instruction visibility [Leobas et al., 2018], where
instructions in a program’s execution can be classified as visible — derived from source
code — or invisible — derived from library code (Section 6.2). The relation between a
program’s visible parts compared to its entire execution, i.e. its visibility ratio, can be
used to measure how such program is affected by compiler optimizations. Larger visible
sections are expected to be more sensitive to these optimizations, and thus have higher
impact on its execution. Thus, this case study provides an analysis on the visibility of
instruction for the Spec Cpu2017 benchmark when applied to different optimization
levels. The key insight is that optimizations gains obtained by this benchmark should
only be expected in programs that share a similar visibility ratio. More about the
motivations of this work can be found in Section 6.1.

The visibility ratio must be measured by instrumenting a program’s execution to
count how many instructions are visible and invisible (Section 6.3). CFGgrind can
be used for this purpose: the instructions count can be extracted from the profiling
information gathered in the process of reconstructing the CFGs. However, the cost
to build the CFGs for this application can be avoided. Therefore, a new dynamic
instrumentation tool, instrgrind, was conceived (Section 6.3). This tool is derived
from CFGgrind, where most of its CFG reconstruction functionalities were stripped
in favor of a more lightweight version. This adjustment is important, otherwise the
experiments in this section would take a prohibitively long time to run (Section 6.4).
Thus, this chapter shows how a relatively heavy weight tool can inspire a much lighter
counterpart in order to keep dynamic analysis practical.

52
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6.1 Introduction

The Standard Performance Evaluation Corporation (SPEC) was founded in 1988 to cre-
ate standard benchmark suites to evaluate the performance of computer systems [Dixit,
1993]. Since then, SPEC has evolved to provide benchmarks for Cloud Computing,
Graphics, Java, Storage, Virtualization, Web services and Power Consumption, includ-
ing SERT, a suite widely used to evaluate computer server efficiency. For the compiler
and computer architecture research community, SPEC has been the dominant source
of programs used to predict the effects of innovation on the performance of computing
systems [Phansalkar et al., 2007a]. This suite focuses on compute-intensive applications
that stress the CPU and the higher levels of the memory hierarchy. The first collection
of SPEC CPU benchmarks in this series was announced in October 1989 [Dixit, 1991].
The most recent release is the Spec Cpu2017 benchmark suite. Spec Cpu2017 is
divided into four suites: intspeed, fpspeed, intrate and fprate. Programs in these
collections are implemented in either C, C++ or Fortran.

SPEC CPU has been fundamental to the standardization of performance mea-
surement in the computing industry. This impact has, unsurprisingly, been of great
consequence to the development of computer architectures. As testimony to this state-
ment, the many editions of Patterson and Hennessy’s classic textbook, including its
latest version [Patterson and Hennessy, 2013], rely on different releases of SPEC CPU
to justify hardware design decisions. For computer-architecture simulation studies,
many efforts to subset SPEC benchmark suites led to the capture of the behavior of
the programs with shorter simulations [Phansalkar et al., 2007b; Nair and John, 2008;
KleinOsowski and Lilja, 2002]. Therefore, compiler writers and computer architects
tend to employ SPEC CPU as a beacon: good code optimizations should perform well
in this benchmark collection. Such importance, however, elicits one question from a
compiler’s perspective: how much of the gains obtained in SPEC CPU can be extrap-
olated to benefits into actual applications?

To answer the above question, this case study analyzes the provenance of machine
instructions processed during the execution of Spec Cpu2017 programs. This study
uses instrgrind, a new dynamic profiler, based on valgrind [Nethercote and Seward,
2007], that counts executed instructions. In an effort to summarize results, this case
study classifies the instructions produced by instrgrind as visible and invisible. The
former comes from the source code of the benchmark; the latter, from libraries invoked
during its execution. Visible instructions determine the proportion of the program that
the compiler can modify.

To assess the representativeness of Spec Cpu2017, this case study uses
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instrgrind to measure instruction provenance in the GNU CoreUtils library.
GNU CoreUtils consists of 106 utility programs used in UNIX-like operating sys-
tems. Examples include cat, mv and ls. The GNU CoreUtils programs are the
epitome of system applications: they interact heavily with the operating system, are
input bound, and are massively used in production environments. The comparison of
instruction provenance in Spec Cpu2017 and GNU CoreUtils leads to the following
results:

• The proportion of visible instructions found in Spec Cpu2017 when compiled
using gcc with -O0 is, on average, 0.922.

• The same ratio in GNU CoreUtils, when compiled with gcc at -O0 is,
on average, 0.108; hence, substantially smaller than Spec Cpu2017’s. Thus,
whereas most of Spec Cpu2017’s executed instructions are visible, most of
GNU CoreUtils’ are invisible.

• Optimization levels maintain the disparity between these ratios. For instance, the
ratio observed in Spec Cpu2017 compiled using gcc with -O2 is 0.701. Similar
behavior holds for GNU CoreUtils: the proportion of visible instructions is
still low, at 0.073.

Following SPEC’s recommended methodology [Dixit, 1993], all the averages are
geometric means. Measurements in Spec Cpu2017 use the combined benchmarks’
reference inputs. Modified versions of the scripts distributed with GNU CoreUtils

are used to execute programs in this collection. Benchmarks were compiled with gcc.
Results reported in this case study indicate that there is greater potential for compiler-
based code transformations to impact the performance of Spec Cpu2017 than the
performance of applications from other domains. This observation is confirmed by the
total execution time on different levels of compiler optimization. The execution time of
Spec Cpu2017 at level 2 (gcc with -O2) is 45% lower than at level 0 (gcc with -O0).
For GNU CoreUtils this reduction is 1%. The results of this case study concern a
particular architecture, operating system and compiler; however, instrgrind—itself
a contribution of this work—can be used in tandem with other such triples.

6.2 Visible and Invisible Instructions

In a computer application, only part of the instructions executed come from the ap-
plication’s source code. The rest of the instructions comes from dynamically linked
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0x4004c0 <+0>:  sub    $0x8,%rsp
0x4004c4 <+4>:  mov    0x8(%rsi),%rdi
0x4004c8 <+8>:  mov    $0xa,%edx
0x4004cd <+13>: xor    %esi,%esi
0x4004cf <+15>: callq  0x400490 <strtol@plt>
0x4004d4 <+20>: test   %eax,%eax
0x4004d6 <+22>: mov    %eax,0x200b64(%rip)
0x4004dc <+28>: jle    0x400509 <main+73>
0x4004de <+30>: mov    %eax,%esi
0x4004e0 <+32>: lea    -0x1(%rsi),%eax
0x4004e3 <+35>: mov    $0x400680,%edi
0x4004e8 <+40>: mov    %eax,0x200b52(%rip)
0x4004ee <+46>: xor    %eax,%eax
0x4004f0 <+48>: callq  0x400470 <printf@plt>
0x4004f5 <+53>: mov    $0x1,%edi
0x4004fa <+58>: callq  0x4004a0 <sleep@plt>
0x4004ff <+63>: mov    0x200b3b(%rip),%esi
0x400505 <+69>: test   %esi,%esi
0x400507 <+71>: jg     0x4004e0 <main+32>
0x400509 <+73>: xor    %eax,%eax
0x40050b <+75>: add    $0x8,%rsp
0x40050f <+79>: retq   

 

Global Variables
(cnt)

 

Functions
(main)

EXE

countdown.exe

Functions
(printf, 
sleep,  

strtol, …)

LIB

libc.so

Dynamically
linked to

Compiled to

int cnt;
int main(int argc, char* argv[]) {
    cnt = strtol(argv[1],
              NULL, 10);
    while (cnt > 0) {
        printf("%d\n", cnt--);
        sleep(1);
    }
    return 0;
}

countdown.c

Figure 6.1. Example code in C (left) compiled to x86-64 assembly instructions
(middle) produced the executable file that is dynamically linked to the libc li-
brary (right).

libraries and routines added by the compiler, such as initialization (pre-main code)
and finalization (post-main code). This distinction is formalized by Definition 6.

Definition 6 (Visibility). Given a program P with source code S, and a compiler
C, the visible instructions of P are the instructions that were produced by C’s code
generator for statements that appear in S. Every other instruction required for the
execution of P is an invisible instruction.

Example 6.2.1 (Visibility). Figure 6.1 shows countdown.c, a C program whose func-
tion main invokes three functions that belong to the libc library: strtol, printf
and sleep. This program is dynamically linked to the libc library file in Figure 6.1.
The executable file contains the translated x86-64 assembly instructions of the main
function, while the library file contains many functions, including the three functions
invoked by this program. According to Definition 6, the instructions in the executable
file that originated from the main function are visible, every other instruction is invis-
ible.

The concept of visibility leads to the notion of Visibility Ratio of a program
execution. Visibility is a static property of an instruction, established by its provenance.
However, the visibility ratio of a program execution is determined dynamically, because
it depends on the number of instructions from each category (visible or invisible) that
is processed.
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0x400509: G7.execs_count++
          xor    %eax,%eax
0x40050b: add    $0x8,%rsp
0x40050f: retq

G7 {
  instrs = [0x400509..0x40050f]
  execs_count
}

G6 {
  instrs = [0x4004e0..0x4004f0]
  execs_count
}

0x4004e0: G6.execs_count++
          lea    -0x1(%rsi),%eax
0x4004e3: mov    $0x400680,%edi
0x4004e8: mov    %eax,0x200b52(%rip)
0x4004ee: xor    %eax,%eax
0x4004f0: callq  0x400470 <printf>

0x4004ff: G5.execs_count++
          mov    0x200b3b(%rip),%esi
0x400505: test   %esi,%esi
0x400507: jg     0x4004e0

G5 {
  instrs = [0x4004ff..0x400507]
  execs_count
}

G4 {
  instrs = [0x4004f5..0x4004fa]
  execs_count
}

0x4004f5: G4.execs_count++
          mov    $0x1,%edi
0x4004fa: callq  0x4004a0 <sleep>

G3 {
  instrs = [0x4004de..0x4004f0]
  execs_count
}

0x4004de: G3.execs_count++
          mov    %eax,%esi
0x4004e0: lea    -0x1(%rsi),%eax
0x4004e3: mov    $0x400680,%edi
0x4004e8: mov    %eax,0x200b52(%rip)
0x4004ee: xor    %eax,%eax
0x4004f0: callq  0x400470 <printf>

G2 {
  instrs = [0x4004d4..0x4004dc]
  execs_count
}

0x4004d4: G2.execs_count++
          test   %eax,%eax
0x4004d6: mov    %eax,0x200b64(%rip)
0x4004dc: jle    0x400509

G1 {
  instrs = [0x4004c0..0x4004cf]
  execs_count
}

0x4004c0: G1.execs_count++
          sub    $0x8,%rsp
0x4004c4: mov    0x8(%rsi),%rdi
0x4004c8: mov    $0xa,%edx
0x4004cd: xor    %esi,%esi
0x4004cf: callq  0x400490 <strtol>

Group Data Structure Group Instrumentation

Figure 6.2. (Left) data-structures used to represent groups of instructions: a
list of instruction addresses, plus a counter. (Right) dynamic instrumentation, in
boldface, that precedes the execution of a group of instructions.

Definition 7 (Visibility Ratio). Let V be the number of visible and I be the number
of invisible instructions executed during a run of a program P with workload W . The
visibility ratio of (P,W ) is V

V+I .

6.3 Analyzing Instruction Provenance

The measurement of the visibility ratio of a program execution requires instrumenta-
tion that counts how many times each instruction is executed. This instrumentation
must be dynamic—it cannot be statically inserted into the code because a compiler
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only has access to visible instructions. Thus, instrgrind, a tool built on top of
valgrind [Nethercote and Seward, 2007], is used to perform the instrumentation.
The choice for valgrind is due to our familiarity with it. Any other dynamic binary
instrumentation framework could have been used instead, such as Pin [Luk et al., 2005]
or Qemu [Bellard, 2005].

6.3.1 Instrumenting Groups of Instructions

Although every instruction in an execution must be accounted for, there is no need
to instrument all of them. Instrumenting all the instructions would lead to an im-
practical runtime overhead. Instead, instrgrind instruments groups of instructions
that are executed as a unit. These groups, as described in Section 2.2, are obtained
by instrgrind the same way they are obtained by CFGgrind when reconstructing
control flow graphs. The groups found in programs instrumented with instrgrind

for this study contain, typically, six to seven instructions. Thus, grouping reduces the
instrumentation overhead up to sevenfold.

Example 6.3.1. Figure 6.2 shows how the instructions observed during the execution
of function main, seen in Example 6.2.1, are divided into groups. This division happens
while instructions are executed, not statically. When a group is discovered, an auxiliary
structure is created for it, as seen in the left column of Figure 6.2. This structure
holds a counter, incremented via binary instrumentation, as seen in the right column
of Figure 6.2 in boldface. Thus, whenever a group of instructions is visited by the
program flow, its execution counter is incremented by one. An instruction may belong
to more than one group. For instance, the operation at address @0x4004e0 belongs to
groups G3 and G6.

6.3.2 Classifying Instructions

Instructions are classified into visible or invisible using as reference their location in
memory. In order to classify instructions, instrgrind uses a mapping that associates

1 /usr/lib64/libc-2.17.so:0x4c459a0:1376079
2 /usr/lib/valgrind/vgpreload_core-amd64-linux.so:0x4a24580:568
3 /usr/lib/valgrind/instrgrind-amd64-linux:0x58000150:1764106
4 /usr/lib64/ld-2.17.so:0x4000ad0:111936
5 /home/user/countdown:0x4004c0:402

Figure 6.3. Files mapping onto memory with range addresses specified as base
address and size.
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object files with the range of addresses that they cover, once loaded into memory. A
range of addresses is defined by a base address and a size. As noted in Definition 6,
instructions located in ranges belonging to source files are classified as visible and all
other instructions are classified as invisible. Example 6.3.2 shows how this classification
works in practice.

Example 6.3.2. Figure 6.3 shows the mapping that instrgrind creates to analyze
the execution of the countdown program seen in Example 6.2.1. Visible instructions
start at the address 0x4004c0, and cover the next 402 bytes (Line 5). Instructions that
exist in valgrind’s address space (Lines 2-3 of Fig. 6.3) are not counted because they
are not part of the normal execution of the program. Instructions from libc (Line 1)
and from ld (Line 4) are classified as invisible.

In some large computer applications part of the application code, which must be
classified as visible, is offloaded to shared libraries. In such cases, an analyst must iden-
tify which address ranges in memory corresponds to visible or invisible instructions.
For all the benchmarks analyzed in this study, the determination of visible and invisi-
ble address ranges is automatic because the files that compose the compiled program
originate the instructions marked as visible.

6.4 Measuring Visibility Ratio

This section answers three research questions:

• RQ1: What is the visibility ratio of Spec Cpu2017’s execution with reference
inputs?

• RQ2: What is the visibility ratio in GNU CoreUtils’ execution with its stan-
dard test inputs?

• RQ3: How code optimizations impact these ratios?

All the experiments were executed on a 16-core Intel(R) Xeon(R) E5-2630 at
2.40GHz with 16GB of RAM running Linux CentOS 7.5. Programs are compiled with
gcc v7.3.1.

6.4.1 RQ1: Visibility ratio in Spec Cpu2017

Figure 6.4 shows the visibility ratio of instructions executed for the Spec Cpu2017

benchmark suite with reference inputs. Each benchmark was compiled with -O0 and
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Figure 6.4. Visibility ratio of Spec Cpu2017 programs compiled using gcc
with -O0, running with reference inputs.
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Figure 6.5. Visibility ratio of GNU CoreUtils programs compiled using gcc
with -O0.
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executed once using instrgrind with its reference input. This experiment took ap-
proximately 9 days to complete for the entire Spec Cpu2017 suite.

Most of the instructions observed by instrgrind are visible. For the 43 programs
available in Spec Cpu2017, 37 of them had visibility ratio higher than 0.9; 5 more of
them higher than 0.8. The only divergence was 603.bwaves, with a visibility ratio of
about 0.6. The average visibility ratio reported in the charts is computed by summing
the number of visible instructions over all the benchmark executions and dividing by
the total number of instructions executed by all the benchmarks in the suite. For
Spec Cpu2017 this average is 0.922.

Most of the instructions observed in a typical run of Spec Cpu2017 are visible.
This result confirms our expectations given that Spec Cpu2017 focuses on CPU per-
formance and the curation of the benchmark suite must ensure that the entire code
can be distributed under a SPEC license agreement. Thus, benchmark authors tend
to avoid extensive library usage, so to avoid having to deal with the legal process of
obtaining permission to use them.

6.4.2 RQ2: Visibility Ratio in GNU CoreUtils

Figure 6.5 shows the visibility ratio observed during the execution of GNU CoreUtils

with the standard inputs available in its test suite. All programs were compiled with -
O0. This test suite was modified to invoke each program, with its reference input, using
instrgrind. The entire suite was executed once. The numbers that follow represent
the results for 105 of the 106 programs available in GNU CoreUtils. The exception
is the [ (open bracket) program that was not exercised by the GNU CoreUtils’ test
suite. The average visibility ratio is 0.108. A few calculation-oriented programs, such
as factor and the cryptographic routines, break this tendency, as Figure 6.5 shows.
However, these programs are exceptions within GNU CoreUtils. The conclusion of
this experiment is that instructions processed in a typical run of GNU CoreUtils’
programs are, in general, invisible.

6.4.3 RQ3: the Impact of Compiler Optimizations

When producing code for a program P , a compiler has an effect only on the source
code of P ; that is, on its visible instructions (Def. 6). Hence, it is natural to assume
that the larger the visibility ratio of P , averaged across different executions, the larger
the impact of compiler optimizations on P . Figures 6.6 and 6.7 confirm this intuition.
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Figure 6.6 shows the speedups obtained by the different optimization levels of
gcc when applied onto Spec Cpu2017. Results are the average of three executions.
Deviations are insignificant; thus, not reported. In total, one run of all unoptimized
programs for Spec Cpu2017 takes approximately 45 hours. The following average
speedups (geometric mean) are observed for Spec Cpu2017: �O1 = 2.277x, �O2 =

2.437x and �O3 = 2.463x.
Figure 6.7 shows similar data, this time considering the programs from

GNU CoreUtils. The test suite was invoked 25 times, each invocation taking ap-
proximately 4 minutes. Deviations are, again, negligible; hence, omitted. Speedups
are too low to be considered statistically significant1. On average (geomean), gcc

-O3 delivers a speedup of 1.011 across the GNU CoreUtils’ programs. From this
last experiment, we conclude that the visibility ratio strongly determines the effect of
compiler optimizations onto programs.

The mild effect of optimizations onto GNU CoreUtils, and its important im-
pact onto Spec Cpu2017 is due to a simple observation: the visibility ratio disparity
is maintained in face of different optimization levels. Figures 6.8 and 6.9 show the
visibility ratio for optimized versions of the Spec Cpu2017’s and GNU CoreUtils’
programs, respectively. The optimized version (compiled with -O2) has less visible
instructions than the non-optimized (compiled with -O0): a visibility ratio of 0.701
against 0.108. However, this difference is small to be of consequence. Optimizations
bear a more noticeable effect onto Spec Cpu2017. Programs optimized with -O2 show
a visibility ratio of 0.701, against 0.922 in the unoptimized programs. This difference
is natural: Spec Cpu2017 has a larger code base, and a much larger visibility ratio
than GNU CoreUtils; therefore, the compiler has more opportunities to optimize
code.

6.4.4 Reflection on the Results

Are these visibility ratios an experimental confirmation of the expectation of compiler
developers or are they new information for some of them? An informal consultation
from July of 2018 indicated that there was no consensus about visibility. At that time
we asked ten researchers what proportion of a program in Spec Cpu2006 is visible2.
These engineers and academics have experience with compilers: four of them have been

1Because the runtime differences produced by the three optimization levels were small, this ex-
periment averages 25 samples, in contrast to the one used to produce the data in Figure 6.6, which
averages 3.

2We chose Spec Cpu2006 because this suite was more well-known than Spec Cpu2017 at the
time when the questions were sent.
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Figure 6.6. Speedup produced by different optimization levels of gcc, when
applied onto the Spec Cpu2017 programs.

part of CGO’s program committee. The other six were professionals actively working
with the following compilers, within different companies: LLVM (Apple, Facebook
and ARM), Visual Studio (Microsoft), JavaScript Core (STMicroelectronics), and V8
(Google). We quote below the e-mail sent to the different researchers and professionals,
asking them about their feeling on the proportion of invisible instructions:

We are working on a project to count the number of “visible" and “invisible
instructions" in a program. A visible instruction is, for instance, the instruction
that we can see in the LLVM IR. An invisible instruction is an operation that
we cannot see, for instance, instructions inserted to implement the ABI, or that
are part of some external library. We have already counted this ratio in several
benchmarks. I’ve decided to write to the compiler experts that I know, asking
them what is the proportion between:

• VS: Stores in the source code of a C program, and

• TS: all the stores produced during the execution of the program.

Answers came out all over the spectrum. The average was VS/TS = 0.575.
This value is substantially lower than the average (arithmetic mean) observed for
Spec Cpu2017: 0.92. Variance in the answers was high: the standard deviation
was 0.31. Only two researchers gave us answers greater than 0.9. Two answers were
less than 0.3. The highest ratio someone guessed was 0.95; the lowest was 0.2.
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Figure 6.7. Speedup produced by different optimization levels of gcc, when
applied onto the GNU CoreUtils programs.

6.5 Conclusion

This case study has measured the visibility ratio of instructions executed by bench-
marks in Spec Cpu2017, when run with reference inputs on a Linux-based processor
with the x86 architecture. This study reveals that most of the executed instructions
are visible—they originate from code available to the compiler. In contrast, most of the
instructions executed in a typical run of programs in GNU CoreUtils are invisible.
The origin of invisible instructions are libraries that these applications invoke during
their execution. These findings confirm the intuition of some developers but will be
surprising to others. Visibility measurements are important because architectures and
compilers are often evaluated with Spec Cpu2017, which shows high visibility ratio;
however, they are applied onto applications like GNU CoreUtils, which have low
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Figure 6.8. Visibility ratio of Spec Cpu2017 programs compiled using gcc
with -O2, running with reference inputs.
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Figure 6.9. Visibility ratio of GNU CoreUtils programs compiled using gcc
with -O2.
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visibility ratio. Thus caution should be exercised when projecting the effects of code
transformations observed in Spec Cpu2017 onto other applications.



Chapter 7

Related Work

This chapter visits related works on three main fronts: on reconstruction of control
flow graphs (Section 7.1), on instruction categorization (Section 7.2 and on binary
instrumentation (Section 7.3). The first topic discusses how control flow graphs can
be obtained from a binary, either using a dynamic approach — by running the code
and following its execution flow — or using a static approach — by analyzing its
instructions and inferring the possible execution paths. An in-depth comparison of
the three dynamic reconstructions tools that were used to evaluate our solution can be
found in Chapter 3. The second topic gives an overview of related works on instructions
Categorization, mainly comparing the visible/invisible relation as tackled in our case
study (Chapter 6). The last topic addresses how binary programs can be instrumented
for profiling purposes. This instrumentation can be performed by frameworks using
different approaches. A static profiler modifies the internals of a binary program: it can
include, modify or remove its instructions to perform the profiling. A dynamic profiler
in the other hand does not change a program’s structure, but emulates its runtime
environment to allow introspection of its instruction, to observe or change its behavior
during execution time. A hybrid profiler combines both approaches.

7.1 On Control Flow Graphs

Related research includes the reconstruction of CFGs for the analysis of binary pro-
grams; two alternative approaches for dynamic reconstruction of CFGs; the reconstruc-
tion of CFGs in dynamic program slicing, which is typically done through program
instrumentation; and several approaches for the static reconstruction of CFGs. This
section reviews these related topics.

66
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Dynamic Reconstruction of CFGs. Dynamic analyses of binary programs have been
used to detect malware [Moser et al., 2007], to improve test coverage [Godefroid, 2014],
to de-obfuscate programs [Zhen, 2014], to locate out-of-bounds memory accesses [Kim-
ball, 2013], and to detect memory dependences [Gruber et al., 2019]. All these uses
of dynamic analysis of binaries had to reconstruct the CFG in order to perform the
analysis. However, the description of these analyses do not detail the method used to
reconstruct the CFG. Therefore, it is difficult to discern the advantages and shortcom-
ings of the CFG reconstruction in each of them. Moreover, none of them provide a
publicly available artifact that would allow for an evaluation or comparison with the
approach described in this thesis. To the best of our knowledge, only three tools focus
on dynamic CFG reconstruction: FXE by Xu et al. [2009], bfTrace by Gruber et al.
[2019] and PinPlay by Yount et al. [2015]. In this thesis, we have experimented with
the last two of them.

PinPlay and bfTrace are the only implementations of dynamic CFG recon-
struction that are available for public scrutiny. The experimental results presented in
Chapter 5 indicate that the techniques described in this thesis improve on both tools,
in terms of efficiency and completeness. Indeed, many of the design decisions in the
development of CFGgrind were motivated by the possibility to use it to augment the
precision of DynInst, a static CFG reconstructor. Integration with static analyzers is
not a driving force behind neither PinPlay’s implementation nor bfTrace’s; hence,
such possibility is not discussed in the papers that introduce those tools.

FXE combines static and dynamic analysis [Xu et al., 2009]. Like bfTrace,
FXE interprets a program using Qemu [Bellard, 2005], whereas PinPlay uses Pin [Luk
et al., 2005], and CFGgrind uses valgrind [Nethercote and Seward, 2007]. However,
instead of simply interpreting each instruction with the state produced by the normal
execution of the program, FXE tries to force the execution of each branch that it
finds while building the program’s CFG; hence, a CFG produced by FXE does not
correspond to a dynamic slice of a program’s execution. In other words, upon finding
a phantom node, FXE saves the current state at that program point, and marks it as
active. While there are active branches, FXE backtracks, and re-evaluates the branch
condition, forcing the visit of the phantom block. Although elegant, this approach has
a much higher runtime complexity. Therefore, to keep reconstruction practical, FXE
foregoes the analysis of library code, which is a serious limitation for its practical use.
According to Xu et al. [2009]:

“When FXE detects a function call pointing to external code, it forces
the execution to immediately return to the call site and continue along the



7. Related Work 68

fall-through." [Xu et al., 2009]

Dynamic Program Slicing. Much of the literature on the dynamic reconstruction
of CFGs was influenced by the notion of Dynamic Program Slicing. This concept was
introduced by Korel and Laski [1988]. Yet, the formulation of Agrawal et al. [1993],
introduced five years later, seems to be the most standard today. If P is a program,
I 2 P is an instruction of P and ◆ is an input of P , then the dynamic slice S is a subset
of P ’s instructions that, when executed, always causes the interpretation of I as in P .
Dynamic program slicing has been the focus of much research, and remains a trendy
topic even today [Hu et al., 2018; Lin et al., 2018].

A survey of the literature on Dynamic Slicing reveals that most work on the area
relies on code instrumentation. In contrast, CFGgrind, PinPlayand bfTrace rely
on program emulation. Code instrumentation has a key advantage: it simplifies the
task of linking runtime events with source code. On the other hand, it has a major
disadvantage: it requires the availability of the source code; hence, it is unable to
handle library code.

Static Reconstruction of CFGs. Most papers about the analysis of binary code deal
with the static reconstruction of control flow graphs. Seminal work on binary code
analysis, such as Cifuentes’ [Cifuentes and Gough, 1995], Gao’s [Gao et al., 2008] and
Balakrishnan’s [Balakrishnan and Reps, 2004], used static reconstruction of CFG. More
recent techniques to reconstruct CFGs also use static reconstruction. For example, the
binary optimizers that appeared in 2019, such as BOLT [Panchenko et al., 2019] and
Janus [Zhou and Jones, 2019]. As discussed in Chapter 1, the static methodology
has advantages and disadvantages over its dynamic counterpart. This thesis presents
a dynamic CFG reconstruction technique that improved the precision of DynInst,
a static CFG reconstructor, created by Meng and Miller [2016]. To the best of our
knowledge, DynInst is the most precise static CFG reconstructor to date.

7.2 On Instructions Categorization

The categorization of dynamic instances of program instructions is not a novel en-
deavor. In their classic textbook, Patterson and Hennessy’s discuss the dynamic count
of opcodes executed for the twelve integer benchmarks in the Spec Cpu2006 bench-
mark suite [Patterson and Hennessy, 2013]. Similarly, Guthaus et al. [2001] present a
comprehensive analysis of the distribution of instructions across MiBench and in the
Spec Cpu2000 benchmark suite. In this analysis, instructions are split into four major
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types: control, memory, integer arithmetics and floating point arithmetics. However,
previous work has not distinguished visible from invisible instructions.

Historically, SPEC CPU has been the subject of several statistical studies [Nair
and John, 2008; Phansalkar et al., 2007b,a]. Since the release of Spec Cpu2017, nu-
merous research groups have already performed analyses on it [Bucek et al., 2018;
Limaye and Adegbija, 2018; Panda et al., 2018; Singh and Awasthi, 2019; Wu et al.,
2018]. These studies focus on some particular aspect of that benchmark suite, such
as potential redundancies [Panda et al., 2018], code coverage [Limaye and Adegbija,
2018; Wu et al., 2018] or memory characterization [Singh and Awasthi, 2019]. None
of these papers analyze the visibility ratio in Spec Cpu2017, nor the impact of com-
piler optimizations on these benchmarks. Amaral et al. [2018] curated the Alberta
Workloads for the Spec Cpu2017 Benchmark Suite. Based on their analysis of how
program behavior varies with workloads, the expectation is that the visibility ratios
will not change significantly when the benchmarks are run with different inputs.

Leobas et al. [2018] classify an instruction as visible if it corresponds directly to
operations in the LLVM representation of the program. Instructions inserted by the
compiler, such as loads and stores used to spill variables, are classified as invisible.
Their goal is to estimate the overhead caused by the code that the compiler creates
outside of a programmer’s control. Their definition is in contrast to Definition 6, in
which the category of an instruction depends on its location in memory. Differently
than the work of Leobas et al. [2018], this case study supports the assessment of the
impact that compiler transformations might have on programs.

7.3 On Binary Instrumentation

Instrumentation is a powerful technique to profile, monitor and even modify pro-
grams [Aho et al., 2006; Appel and Palsberg, 2002]. It is specially useful when applied
directly to binary programs, where the source code is not available or may be pro-
tected. The execution of a program can be inspected for numerous applications. For
code coverage, profilers are useful to verify if test cases covered most of a program’s
execution paths [Eustace and Srivastava, 1995; Tikir and Hollingsworth, 2002]. For
performance, profilers aid in the discovery of program’s hotspots that can be targeted
for potential compiler optimizations [Nethercote et al., 2006]. For debugging, profilers
can check for programming errors, such as bugs in memory management, race con-
ditions in multi-threads programs„ detailed simulations in caching latencies, among
others [Seward and Nethercote, 2005; Nethercote et al., 2006; Nethercote and Seward,
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2007]. For security, profilers can help identify possible security problems [Tymburibá
et al., 2016], and even actively prevent attacks from affecting the runtime environ-
ment [Kiriansky et al., 2002]. For malware analysis, profilers can search for signature
to identify malicious infections in programs [Brumley et al., 2006; Pewny et al., 2015].
Binary instrumentation brings endless possibilities for program analysis.

These applications are supported by binary instrumentation frameworks. Some
of them can work statically, i.e., can infer properties without actually executing a
program. Others can work dynamically, i.e., can monitor its execution environment
extracting information or actively performing actions at runtime. There are also hybrid
frameworks that combine designs of these two. These frameworks, with its advantages
and disadvantages, are explored as follows.

Static Binary Frameworks. Static binary frameworks enable verification or trans-
formation, such as instrumentation or code rewriting, by analyzing or manipulating
the instructions of a program without the need of executing it. This avoids the cost
of running such program with added instrumentation or code manipulation [Meng and
Miller, 2016]. Because of that, static analysis tends to be faster, albeit less accurate.
This enables more complex analysis, such as whole program path coverage. However,
assembly constructs with indirections, such as indirect calls or jumps, hurt the preci-
sion of the static analysis. Stripped binaries, i.e., binaries without debugging symbols,
are specially difficult to analyze since it is hard to pinpoint exactly where functions
begin and end. Thus, static analysis tends to be conservative: it may raise many false
positives due to the unavailability of runtime information [Shoshitaishvili et al., 2016].
This has a direct impact on the accuracy of recovered control flow graph, as can be
observed in the discussion in Section 5.5.

Despite its shortcomings, many frameworks are available for writing custom static
analysis tools for binaries [Eustace and Srivastava, 1995; Laurenzano et al., 2010; Brum-
ley et al., 2011]. They can be used to recover high-level structural information, such
as complex control and data-flow, dependency analyses, optimizations and security.

Dynamic Binary Frameworks. Dynamic binary frameworks are powerful when in-
formation about the runtime environment can not be inferred statically. The execution
of the code is required for a specific action to take place in order to be observed or
manipulated. For example, it is easy for a dynamic analysis to follow an indirect call
or jump since its target address is calculated during runtime. However, it is hard to
tell all of its potential targets. Hence, dynamic analysis is limited to the code sections
that are seen during the execution, while static analysis may have a global view of the
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entire program. Despite this limitations, dynamic analysis are critical for analyzing
programs with signal handlers, calls to shared libraries, dynamically generated code or
self-modifying code.

Dynamic binary frameworks support applying instrumentation or transformation
into a code while it is executing. There are many frameworks available to support dy-
namic analysis, where some of the most popular are valgrind [Nethercote and Seward,
2007], Pin [Luk et al., 2005], DynamoRIO [Bruening et al., 2003], and Qemu [Bellard,
2005]. These frameworks support building tools within its infrastructure to perform
dynamic analyses, such as to find parallelization opportunities [Bach et al., 2010; Gru-
ber et al., 2019], memory errors [Seward and Nethercote, 2005; Bruening and Zhao,
2011], and to protected against control-flow based attacks [Kiriansky et al., 2002].

Figure 7.1. valgrind’s execution workflow.

Both CFGgrind (Chapter 4) and instrgrind (Chapter 6) were built using
valgrind’s infrastructure [Nethercote and Seward, 2007]. valgrind’s architecture
is divided into two main parts: the core that provides low-level support for instru-
mentation and useful services, and the tool that actually performs the instrumenta-
tion. Figure 7.1 shows a diagram of valgrind’s execution workflow. At the core,
valgrind first identifies a sequence of instructions that can be executed as a unit. If
this sequence is viewed for the first time, then they are disassembled into a custom IR
called VEX to form a superblock. This superblock is thus passed to the tool to perform
the instrumentation. Afterwards, the superblock is returned to valgrind’s core to be
stored in a cache for fast retrieval. Finally, this superblock is translated back to the
host’s assembly instruction set using a just in time compiler for execution. In case of
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a previously seen sequence of instructions, valgrind recovers its cached instrumented
superblock and proceed with its execution.

Hybrid Binary Frameworks. A hybrid binary framework combines aspects of static
and dynamic frameworks to achieve a more complete and powerful tool. The weaknesses
of both the static and dynamic approaches are mitigated by building a hybrid tool on
its strengths, which are complementary to each other.

BitBlaze [Song et al., 2008] and angr [Shoshitaishvili et al., 2016] are two ex-
amples of frameworks that support static analysis and dynamic analysis via symbolic
execution [Majumdar and Sen, 2007]. The former was built specifically for security ap-
plications, whereas the latter can be used to detect vulnerabilities and recover control
flow graphs. Angr supports two distinct strategies to reconstruct control flow graphs:
CFGFast which uses static analysis and CFGEmulated which uses dynamic analysis.
The static analysis suffers from the same imprecisions, while the dynamic analysis takes
prohibitively long times, even for small and simple programs.

DynInst [Meng and Miller, 2016] is another hybrid framework that supports
static and dynamic analysis. It allows for dynamic binary rewriting and can be used for
profiling and performance analysis. It has a builtin static analysis algorithm to recover
control flow graphs that was used in Section 5.5 when compared against CFGgrind.
However, there are no similar algorithms using a dynamic approach. Albeit one could
use the foundations elicited in Chapter 4 on top of DynInst to build CFGs dynami-
cally. Janus [Zhou and Jones, 2019] is also a hybrid framework. It supports complex
modifications of the original program during runtime. It uses DynamoRIO [Bruening
et al., 2003] to perform binary parallelization while the code is executing.

7.4 Conclusion

This chapter reviewed related works in respect to three subjects. First, CFGgrind is
compared against other works on its capability of reconstructing control flow graphs in
Section 7.1. Then, the approached employed by instrgrind to classify the visibility
of instructions is compared against other works in Section 7.2. Finally, a discussion on
how binary frameworks can be used to support different analysis, such as the instru-
mentation performed by these two tools, was provided in Section 7.3.



Chapter 8

Conclusion

This thesis provided evidence that the dynamic reconstruction of CFGs from the exe-
cution of a program can result in more precise CFGs than the ones obtained solely via
static analyses. However, to correctly reconstruct CFGs in this fashion, it was necessary
to revisit the definition of CFGs to account for phantom nodes and signals. New algo-
rithms had to be engineered into an efficient and robust tool. This tool, CFGgrind

(https://github.com/rimsa/CFGgrind), was used to analyze several large programs.
The experimental evaluation determined that CFGgrind outperforms, in terms of pre-
cision and efficiency, two other tools that support dynamic CFG reconstruction: DCFG

and bfTrace. CFGgrind also improves the precision of DynInst, a state-of-the-art
static binary analyzer by augmenting it with the ability to handle binaries stripped of
debugging information. The experimental results also evidenced that typical data sets
distributed with benchmarks already let a dynamic reconstructor completely recover
a substantial part of all the active functions in large programs. Although intrinsically
dependent on program inputs, this complete recovery has been observed in a large
number of programs, including Spec Cpu2017 and cBench.

Future work that stems from this thesis includes the use of CFGgrind in different
scenarios. First, CFGgrind’s ability to track non-aligned and overlapping instructions
in the binary representation of a program gives can be useful to reconstruct return-
oriented programming attacks [Shacham, 2007], even when they are built via Check-
oway et al. [2010]’s approach based on indirect jumps. Second, CFGgrind’s exact
profiler is likely to give binary optimizers, such as BOLT [Panchenko et al., 2019],
more information to improve the instruction layout of programs. The performance
improvements that can be derived from this extra information remains to be evalu-
ated. Finally, CFGgrind’s dynamic approach can also be useful for the recovery of
the control flow of programs obfuscated with control flow flattening [Blazy and Trieu,
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2016], the nemesis of static deobfuscation. How much information can be recovered
via CFGgrind when it is used to analyze obfuscated programs is an open question.
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