
Centrum voor Wiskunde en Informatica

REPORTRAPPORT

An Object-Oriented Design for Graph Visualization

M.S. Marshall, I. Herman, G. Melancon

Information Systems (INS)

INS-R0001 January 31, 2000

Report INS-R0001
ISSN 1386-3681

CWI
P.O. Box 94079
1090 GB Amsterdam
The Netherlands

CWI is the National Research Institute for Mathematics
and Computer Science. CWI is part of the Stichting
Mathematisch Centrum (SMC), the Dutch foundation
for promotion of mathematics and computer science
and their applications.
SMC is sponsored by the Netherlands Organization for
Scientific Research (NWO). CWI is a member of
ERCIM, the European Research Consortium for
Informatics and Mathematics.

Copyright © Stichting Mathematisch Centrum
P.O. Box 94079, 1090 GB Amsterdam (NL)

Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333

Telefax +31 20 592 4199

An Object-Oriented Design for Graph Visualization

M.S. Marshall, I. Herman, G. Melançon
CWI

P.O. Box 94079, 1090 GB Amsterdam

Email: {M.S.Marshall, I.Herman, G.Melancon}@cwi.nl

ABSTRACT

Many applications, from everyday file system browsers to visual programming tools, require the display of
network and graph structures. The Graph Visualization Framework1 (GVF) is an architecture that supports
the tasks common to most graph browsers and editors. This article gives a brief overview of the design of
the GVF and focuses on the core classes that are used to represent and manipulate graphs. The design
of the core classes is justified by the requirements for navigation and visualization.
1998 Computing Reviews Classification System: D.2.2, D.2.11, H.5.2, I.3.6, I.3.8
Keywords: Graph Visualization, Networks, Data Structure, Framework, Software Libraries.
Note: This paper has been submitted as a journal publication. At CWI, the work was carried out under the
project INS3.2 “Information Visualization”.

1. INTRODUCTION

Graph visualization refers to the display of a set of data that has relations between elements and to the
interactive facilities that make navigation through the visual representation of that data possible. Graph
visualization is an increasingly important area of research, both because of its everyday applications and
because of the need in many fields to view large and complex networks. A few areas that have tasks
involving graph visualization are web administration, network administration, computer science, biology,
chemistry, medicine, and financial analysis. Although many different graph visualization systems have been
built for both research and specialized applications, none of these systems has been able to meet all the
requirements necessary for the exploration of large graphs.

When faced with the task of analyzing a large set of data with relations we are immediately faced with
some of the challenges in graph visualization. For instance, we must choose a type of layout before we can
draw the graph. If the graph is too large to fit on the screen, we must choose an abstract view of the graph
that exposes certain types of information about the graph, yet reduces the amount of information rendered.
Both choices influence what we can discover about the graph, because they determine which information is
presented and how it is presented. However, our needs don’t stop here; we would also like to interact with
the graph, changing the view in order to gain insight into the data. All these features require a system that
can easily adapt to our needs and quickly change the way a graph is presented. Obviously, graph
visualization has a set of special requirements, all of which are necessary to support the full exploration of a
graph.

In order to render a large graph, it is sometimes necessary to reduce the data set in some way. Simple
filtering techniques based on attributes don’t always suffice, so more sophisticated techniques such as
clustering (i.e. classification) are often used. The process of clustering involves discovering groups in the
data. A fundamental technique in graph visualization displays the groups, or clusters, of a graph using a
special type of node called a meta-node to represent clusters or subgraphs in the graph. This technique
makes it possible to represent a large graph by displaying fewer elements, allowing the user to control the
level of detail by “opening” and “closing” meta-nodes. Such an approach requires a way to store and
manipulate graphs whose nodes may represent subgraphs.

1 Available at http://www.cwi.nl/InfoVisu/GVF

 2

Users wishing to explore a graph must be able to manipulate it, in addition to navigation. A user should
be able to interactively apply criteria that result in different sets of clusters within the data. In fact, the user
should also be able to apply clustering proccesses to subgraphs or clusters resulting from previous activities
— a process called hierarchical clustering. The process of clustering creates additional structural
information about the graph that the user will want to compare with other processes. These types of
activities demand a system that can store multiple levels of complex information about the graph, such as
the auxiliary structures resulting from clustering, yet keep the original structural information about the
graph intact. We will call a graph with such cluster information a multigraph2, or a graph where a node may
be shared among multiple graphs. In such a clustered graph, each node belongs to the original graph and
may also belong to certain subgraphs that result from clustering. In the case of hierarchical clustering, the
node may belong to a series of nested subgraphs. If information about several clustering operations is
stored, a node may belong to subgraphs or clusters, each resulting from a different clustering proccess. As
we shall see in Section 2.1, multigraphs require a different kind of design than simple graphs.

Other tasks besides clustering make support for constantly changing graphs necessary. For example, the
ability to edit a graph can be an important part of a graph visualization system. A user experimenting with
layout may want to add or delete parts of the graph to see the effect it has on a particular layout, or simply
edit the properties of a given element to see the resulting effect. Systems that update the graph with real-
time information also require a way to handle constantly changing structures. All of these tasks make
support for dynamic graphs an important requirement for graph visualization systems.

In 1999, our research group at CWI started looking for an environment in which it was possible to
experiment with various graph visualization techniques. The experimentation would include the interactive
definition of nested clusters and the use of visual elements to represent graphs and their properties3. An
essential feature was interaction, in which the user could select and manipulate parts of the graph and use
user-defined properties to influence how the graph was displayed. Another feature that we looked for was
the ability to easily extend the existing functionality, such as extending the available layout algorithms or
even replacing the graphics renderer. Although we have looked at other class libraries for graphs[3, 4] in
addition to many complete systems[5], none fulfilled our needs and so we decided to develop our own. The
ultimate goal was to create a system that is general enough that it can be embedded in information
visualization applications. Because our goal was also portability and ease of maintenance, we decided to
implement it in Java. It is impossible to design a system that has everything needed for all applications, so
flexibility and ease of extension were the guiding heuristics.

One of the first tasks in developing such a system is to define a suitable set of data structures. In the
case of Java, this means defining a class hierarchy that enables the representation and manipulation of
graphs. The challenges described so far hopefully make it clear that the specification of such a class library
is not a simple matter. This paper explains the rationale of the design, describing how the core classes are
used within the Graph Visualization Framework (GVF). Although the development was done in Java, we
believe that the solutions we have found are of a general interest for any object-oriented environment.

2. THE FRAMEWORK: AN OVERVIEW

2 We do not use the term as it is used in graph theory.

3 Some earlier reports give a good illustration of the kinds of developments that we are interested in [1, 2].

Graph Module Layout Module View Module Input Module

Figure 1 - The largest components of the GVF Input Module View Module

 3

Although the goal of this paper is to describe the core graph class library rather than the entire GVF, it is
necessary to put these classes into the right context to understand some of the requirements that directed
our choices. The graph class libraries are used in the context of the GVF. The largest software components
in the GVF are called modules. Each module fulfills a specific function and has its own thread of control
that cooperates with other threads through a JavaBeans-style notification mechanism[6]. These modules
correspond roughly to the functional modules described in AVS[7]. The modules can be assembled into a
graph visualization application in which each module corresponds to one stage of processing in a pipeline
of data flow as in Figure 1. They communicate with one another by sending messages through logical
pipelines. It is possible, of course, to use the modules independently. For example, the Input Module, Graph
Module, and the Layout Module have been used to perform layout measurements on sets of randomly
generated graphs, in a process that didn’t involve rendering (rendering takes place in the View module).
Furthermore, it is reasonably simple to add new functionality such as a new layout algorithm, parser, or
even an entire new View Module (e.g., if the underlying graphics engine is changed). In this paper, we will
focus mostly on what takes place in the Graph Module and how it relates to the tasks in the other modules.

In the GVF, most objects can have properties and several mechanisms using properties have been put
into place. Properties allow the association of a value with a key (in what is sometimes called a
“dictionary”). Although properties are not unique to the GVF and numerous other systems use them, a
description may lend valuable insight into the application of these mechanisms and aid in understanding
how the core classes fit into the GVF.

One of the challenges faced by graph system designers is the graph classification problem. How can we
design an object hierarchy for the many types of possible graphs? Unfortunately, graph types do not fit
neatly into a hierarchy; they are classified according to the various combinations of properties that they
have. Multiple inheritance solves part of the problem but doesn’t prevent the proliferation of classes. For
example, a graph with the property “directed” and “acyclic” would be classified as a
DirectedAcyclicGraph. If the same graph is also “connected”, then it becomes a
ConnectedDirectedAcyclicGraph. Creating objects for each combination of properties in this manner
causes the number of classes to increase exponentially with the number of properties. Even if it were
possible to design, such a class type hierarchy would be impractical for dynamic graphs: a single edit of an
edge may change the graph’s type (e.g. from acyclic to non-acyclic). Such a change would necessitate a
dynamic change of the class type of a graph instance, which is impossible in Java or C++. Some
researchers have suggested delegation-based systems to overcome these types of limitations[8, 9].
However, our solution to this problem is to use properties to categorize graphs. Properties add a level of
dynamism to objects that isn’t otherwise possible in Java or C++. Adding a new property to a class instance
could be considered functionally equivalent to adding a new field to the class specification. In the case of
graphs, the use of properties makes it unnecessary to design a special type hierarchy for the many different
types of possible graphs. Rather than instantiate a new type of graph object and transfer information when a
graph property changes, we can simply change the value of the affected properties.

Because some properties depend on others, it is sometimes necessary to update several properties when
a particular property’s value changes. To aid in such interactions, we applied the Observer Pattern[10]:
class instances can express their “interest” in the change of a specific property by registering themselves. If
the property changes, the registered observers (called listeners in Java) are notified and can act
appropriately. The property change listener facilitates the update of property dependency chains. For
instance, if the property “acyclic” changes, a registered listener should check to see if the property “tree”
now applies.4 .

Another use of properties within the GVF is commonly found in many applications that have user
preferences. Application behaviors such as how a node is rendered or which type of layout to use can be
influenced by the property value that is stored at various levels throughout the application. A simple
example is the color of a node. The preferred color for a node could be set through the property at the Node
object, in the containing Graph object, in the containing View, or in the application itself.

4 Trees require the “acyclic” property to be “true”.

 4

The most important graph properties used by the GVF are boolean properties, like “directed” and
“acyclic”. These properties can be used in a simplified version of a constraint-based negotiation
mechanism[11] to implement dynamic menus. For example, some layout algorithms will only work with
particular types of graphs, i.e. graphs with certain properties. The negotiation mechanism allows us to
decide at runtime which layout algorithms are made available on the menu for a particular graph view,
depending on the graph’s properties. The same mechanism aids in deciding which layout to use when a
graph is initially viewed. Such a mechanism makes it possible to add a layout algorithm to the application
by defining a single class. In another application of properties, we can use the Factory Pattern[10] together
with the negotiation mechanism to generate objects, such as specific types of graphs. The negotiation
mechanism ensures that the objects are produced with the requested properties but according to user
preferences and within system constraints. In this way, it is possible to precisely determine the properties of
the objects that such a factory produces at runtime.

2.1. The graph as a node

Figure 2 shows a simplified class diagram of some essential classes in the GVF. The Element object is the
most fundamental object of the core classes. It is meant to capture the features common to the two types of
visual elements in a graph: nodes and edges. An Element represents data before any relational
information has been added to it and can therefore represent a generic data element in a data visualization
application. All Element objects can have properties assigned to them. For the purposes of layout,
coordinates can be assigned to an Element. An Element can also have data (i.e. the data that the graph is
representing) associated with it, along with any information necessary to view it. For instance, a node (that
is also an Element) may represent a web page that can be rendered by a specified browser. Elements can
be grouped together, as in a graph or a selection, and we can ask an Element about the groups to which it
belongs. All of these features are available to nodes, edges, and graphs through inheritance.

Some features of the hierarchy in Fig. 2 might be surprising at first glance. For example, a designer
might be initially inclined to define a Graph object as a direct translation of the definition of a graph: a
collection of nodes and edges. A Graph object, in this case, would store a list of all the nodes and edges
that belong to it. Similarly, one might be tempted to define nodes in a graph as a direct container of
references to its neighbors, in the form of object references directly represented as fields in the Node class.
However, this simple approach does not work in view of the requirements that we discussed in the
introduction. The use of multigraphs and their dynamic nature requires a somewhat more sophisticated
approach that will be outlined in what follows.

In dynamic graphs, where clusters are constantly created and disbanded, and where edits or updates
may change a graph, flexibility is of the utmost importance. Not only support for dynamic graphs but also
support for multigraphs is necessary. Multigraph support is especially important for clustering. During
clustering, we often introduce new relations into the data, both between elements of the original graph and
between the clusters themselves. We would like to build clusters and store the induced relations, yet retain
information about the graph that contains them.

Graph

Node Relation

Element

 Edge

Figure 2

 5

Another place where multigraphs are needed is during layout. Often, layout algorithms extract a
subgraph (for example, by temporarily disregarding certain edges) and perform layout on the extracted
elements, replacing the missing elements in the view. In this case, it is advantageous to regard the elements
as belonging to both the original graph and the extracted graph, i.e. multiple graphs.

In all these examples, there is one thing in common: whereas the set of nodes and edges may be
constant, a graph could be considered as a special “view” of these entities, and a system might need several
such “views” concurrently on the same set of entities.

In the GVF, we store the structural information about a graph in the Node object. In other words, the
Node object can be queried about the edges that it has in a particular graph context. This makes it possible
for a Node to belong to multiple graphs while retaining a unique identity. For example, the following lines
could be used to find out what edges NodeA has in Graph1 and then Graph2:

edgeSet1 = NodeA.getEdges(Graph1);

edgeSet2 = NodeA.getEdges(Graph2);

Notice that the Node object is queried with the graph context as a parameter. More importantly, the node
can change graph membership by simply changing what is stored in the Node object; there is no need to
find and edit an entry for the Node in lists maintained in the containing graphs. The node-centric model of
the GVF makes this possible.

Another motivation of our project besides the ability to handle multigraphs is the need to treat a Graph
object as a node when it is being used to represent a subgraph or cluster. Because many of our Graph
objects will be treated as meta-nodes, the Graph object is defined as a subclass of the Node object. This
definition makes several things possible. In this way, a Graph can be handled as a Node when it represents
a subgraph, which simplifies the implementation of nested graphs. Furthermore, a Graph can have a
relation with another Graph or Node, making it possible to express one-to-many relations and relations
between clusters.

cluster1 = new Graph();

cluster1.add(Node1);

bigGraph.add((Node)cluster1); // cluster1 is treated as a node in bigGraph

Edge edge = new Edge((Node)cluster1, (Node)cluster2);

bigGraph.addEdge(edge);

Several features of Element can also be used by the Graph object. Of course, a Graph object can have
properties just like any other element. Additionally, a graph can have data associated with it.

The discussion until now has only used the term “edge” to refer to the relations between nodes. The
word “edge” implies a binary relation. However, hypergraphs are also important in practice: they involve
relations between sets of nodes that can be best represented by tuples. The Relation object in the GVF
stores such a tuple (and degenerates in the simplest case to a binary relation or edge). The Relation object
makes GVF potentially useful for systems that use hypergraphs such as VLSI and PCB design[12] while
remaining inconspicuous to implementers concerned only with binary relations.5

2.2. Traversals

During the manipulation of graphs, it is often necessary to visit a set of nodes and/or edges. The order of
the visitation may be important for a particular application, such as a traversal that describes a path from
one node to another. In the GVF, a Traversal is an object that can produce a set of Elements in an order

5 Hypergraph relations have not yet been exploited in our visualization environment, and are the subject of future work.

 6

that describes the visitation of a graph. The intended method of access for a Traversal is through the
Iterator Pattern[10], familiar to many readers through the STL library of C++ and collections in Java 1.2.
The Iterator allows the user to iterate over a collection of objects without requiring special knowledge
about the contents of the collection. Because different circumstances require different implementations of
the Traversal, the factory pattern is applied to produce the type of traversal that best suits the situation
and the resulting iterator is returned to the user.

It is important to note that TraversalIterators return Element objects. In this way, visits of
both nodes and edges, and even graphs, can be included in a single traversal. This provides us with a
unified and comprehensive approach to graph traversal. This is especially convenient during the layout of
several connected clusters, where we would like to treat each cluster as an Element along a traversal:

Iterator clusters =

 theTraversalIteratorFactory.create("BreadthFirstSearch", graph);

while (clusters.hasNext()) {

 Node cluster = (Node)clusters.next();

 ...

}

In general, the Iterator should make the implementation details of most traversals irrelevant to the user.
However, the user may occasionally want a special type of traversal that isn’t available from the factory
and find it necessary to write her own. An explanation of how the Factory Pattern is used for Traversals
should clarify its value and help the reader understand what is involved in implementing a traversal.

The Traversal is implemented in several different ways. A Traversal can be statically defined or
stored, or can be dynamically defined by the logic that implements the iterator. The choice among
implementations is made by the factory and can be determined by the tradeoff between speed and storage.
If the factory has previously built and stored the requested traversal, it simply returns it. However, if the
user requests a traversal that hasn’t been built yet, the factory may return an iterator whose next element is
dynamically defined. Rather than throw away the traversal information, this iterator stores the returned
elements in a traversal located at the factory while it is being used. The next time that particular traversal is
requested for that particular graph, the cached version can be supplied. Of course, more sophisticated logic
may be used by the factory. For example, the factory could consider several factors such as available
memory, probability of a particular type of traversal being used again, and so forth. In some situations, it
may be useful for the user to indicate to the factory that the traversal will only be used once and this
information could be used to help decide what sort of object to return. As with most user interactions with
the factory, the preference can be contained in a property.

One stored implementation of Traversal is called LinkedTraversal. The design model for the
LinkedTraversal is very similar to the model for storing graph information at the Node object except
that the storage for LinkedTraversal is in the Element object. In the LinkedTraversal, the elements
can be considered part of a “switching network” in which each element points the way to the next element.
In such a traversal, we may also decide to change to a second traversal when we are part way through the
first one (this requires access to the actual Traversal object rather than only the Iterator). However,
the implementation of LinkedTraversal is constrained because it cannot store a path that crosses
through the same element more than once. Another stored type of Traversal, called StoredTraversal,
is less dynamic but faster and more storage efficient. The StoredTraversal is implemented as an array
of Elements, which makes iteration faster.

In order to build most types of traversals, we must be able to visit all the nodes of a graph. When a
graph is being initially built, a special LinkedTraversal called a nodeTraversal is simultaneously
built that visits all the nodes. It is easy to demonstrate that if such a traversal were implemented with an
array, changes to the graph would require more work to update the nodeTraversal. This can become a
crucial issue when dealing with large graphs.

 7

The LinkedTraversal was designed with dynamic graphs in mind. One of the advantages of the
LinkedTraversal is that during deletes, we can ask an element which traversals it belongs to and then
repair those traversals. This way, a LinkedTraversal can be updated when changes are made to the
graph. In a list model, each traversal would have to be checked after each deletion to see if it contains the
element being deleted.6 Another potential advantage of the distributed model is the ability to use parts of
existing traversals to create new ones. Changing a given traversal is also quite simple. However, for certain
temporary tasks the StoredTraversal object is better because it stores the traversal in a local object that
can then be thrown away after use. The StoredTraversal access times are also faster than that of
LinkedTraversal.

The dynamically defined implementation of Traversal is called CodedTraversal. The
nextElement() returned by the iterator of a CodedTraversal is defined by logic in a particular
implementation rather than a stored order. Obviously, CodedTraversal is more storage efficient than fast.
In a situation where traversals are used on a very large graph, it may actually be necessary to use the
CodedTraversal. For a very large graph, it may be impossible to store the order of several traversals
without running out of memory. However, not all traversals can be implemented as a CodedTraversal
because the definition of some types of traversals requires storage anyway.

The last class in the toolkit of traversals that we will discuss is the MultiTraversal. A
MultiTraversal can be used to build a traversal from several other traversals. The MultiTraversal
can transparently manage iteration across all the traversals that it contains. In cases where the user has
collected several paths that, together, span the graph, a MultiTraversal may be used to follow each path
successively until all elements have been visited.

2.3. Layout

Layout is an important part of viewing a graph. Different layouts reveal different information about the data
so it is important to have a variety of layouts for different tasks. Although layout uses information about the
graph structure, it is not part of the graph itself but, rather, it is part of a view of the graph. A designer might
be initially inclined to simply store the coordinates for a given layout in a class variable in the Node object.
However, such a design doesn’t support the storage of the coordinates from a layout for re-use. Nor does it
support concurrent layout, where a graph is laid out with different layout methods in parallel. Neither does
it support the storage of the same type of layout for different graphs in which the node is a member. For
instance, this would necessitate running a new layout procedure every time the user selects a different
layout or a different graph.

In the GVF, the coordinates of a Node or Edge are stored at the Element. These coordinates are
associated with a particular layout and can only be retrieved by providing the relevant Layout and Graph
objects as parameters. With the dual mapping of coordinates using both graph and layout as keys, we
accomplish two things: it is possible to store a particular type of layout for several different graphs and it is
possible to store multiple layouts for a particular graph. This allows us to have multiple graphs, each with a
different layout and seamlessly switch between the layouts without waiting each time for a new layout
process to finish. Furthermore, layout is often a costly process that we would like to have done in the
background, if possible. Because the layout process is independent of the view, we can perform a different
layout in the background on the same graph that is being viewed.

One of the advantages of the way the coordinates of a layout are accessed can be illustrated by a unique
application. While building a view, we may take advantage of the fact that the coordinates from different
layouts are stored at the Element and show a mixture of several layouts. The mixture can be of both the
scaling and type of layout. For instance, when encountering a meta-node during a traversal of a clustered
graph, we may choose to show the nodes in the subgraph (depending, of course, on the preferences for that
view). The nodes in the subgraph may have the same layout type as in the super-graph or a different type.

6 However, an addition will invalidate most of the traversals associated with a particular graph in either model except for

nodeTraversal.

 8

As an example, we may have a tree laid out using the traditional hierarchical Reingold-Tilford algorithm,
but a subtree laid out using a radial algorithm. The negotiation mechanism that we mentioned previously
may be used to determine the type of layout based on the layouts that are possible for the given graph type
and the user preferences.

2.4. Metrics

As with any form of analysis, we need a set of measures that we can apply to graphs. Many graph theoretic
properties are well known measures to those familiar with graph theory. The degree of a node, which is
equal to the number of edges connected to that node, is a simple example. The degree of a node is a type of
a metric that can be called a local metric, or a metric that only uses information local to the Node.
However, a metric may involve more complex processes that use information from other parts of the graph
to calculate a measure associated with a node. We call such a metric a global metric. A metric that uses its
neighbor’s metrics to determine its value is an example of a global metric. One of the challenges in the
design of Metrics was to provide a uniform approach to defining a metric, which could be either local or
global.

Certain measures or metrics are useful for providing visual cues when rendering a graph[1, 2]. One
technique renders an edge with continuously shaded color that reflects the metric values of the nodes at its
endpoints. The overall effect is the emphasis of certain edges in the graph. In another technique, the metric
value for a node determines whether the node and its corresponding edges are displayed. When applying
these techniques, different metrics create different effects on the view of a graph and emphasize different
types of information.

Visual cues aren’t the only way to use metrics. For instance, some types of layout algorithms use metric
values to aid in positioning[13]. Metrics are also essential to clustering operations, during which some type
of value must be assigned to an Element in order to decide its cluster membership. Each different area of
application may make use of metrics and these metrics take on many forms. Therefore, in the GVF, we
have made it possible to define a Metric object and associate it with an Element. There may also be
several different metrics for any given Element, each one associated with a particular graph that contains
the Element. In order to support such associations, we must again provide a dual mapping based on the
metric type and the graph. We may retrieve the Metric object for a given Element by providing both the
name of the metric and a graph context. Metrics may also be associated with edges.

A simpler approach might make a class variable of type double to store the metric value at the Node.
However, in order to support multiple metrics with unknown algebraic properties, we must have a set of
mappings to objects that implement the necessary operations. In an attempt to keep the possible
applications open, we have made Metric an interface that defines several operators for manipulation (such
as addition, subtraction, multiplication, and division) and comparison. Although we have an
implementation of Metric that uses double as the internal representation of the value, it is also possible to
implement the Metric interface with a different internal representation. For instance, a Metric based on
vectors could be used without any changes to the GVF. Such a metric could store the values of several
submetrics as the parameters of the vector.

3. COMPARISON WITH OTHER SYSTEMS

Although many graph visualization systems exist, most of them have been developed for specific tasks
rather than as libraries for general application. However, a few general libraries have been designed and we
will compare some of them to the core classes of the GVF here. Our comparison focuses on the
functionality afforded by the design rather than the feature set of the applications that have been built using
them. It is important to note that all of the systems in the comparison are works-in-progress and that our
comparisons have been made based on the available documentation for these systems. Indeed, because of a
lack of publicly available documentation, we were unable to examine certain other systems in the detail
necessary for a comparison with the GVF. A system from Bell Laboratories[14] and a proprietary system

 9

from Tom Sawyer Software[15] are a few examples of systems that we might have otherwise included in
this comparison.

Some libraries, such as AGD[16] and GDT[17] have impressive collections of algorithms but focus on
tasks such as layout rather than interaction. However, we will discuss the GDT in the context of the
solution that they provide to the graph classification problem presented in Section 2. The GDT is based on
a set of libraries for combinatorial computing called LEDA[18, 19] and is written in C++. In [9], Pizzonia
and Battista propose extensions to C++ called ECO C++ (Extender and Classer Oriented C++) that
implement a delegation-based system. The design, which is applied within the GDT, overcomes the
problem of creating a class hierarchy for dynamic graphs but requires a pre-compiler for the language
extensions. Furthermore, the implementation of graph algorithms using the GDT requires familiarity with a
large and specialized graph class hierarchy.

LINK[20] was developed as a portable tool for interactive graph manipulation and computation. It has
an object-oriented Scheme command-line interface, with direct access to the Tk graphical user interface
and an underlying set of C++ libraries. Functionality for types of manipulation common in discrete
mathematics is built on Collections and Iterators. LINK is successful at providing a high degree of
flexibility and interactivity. One of the biggest drawbacks to LINK is its speed, which makes it
inappropriate for viewing massive data sets according to its authors.

The Graph Foundation Classes (GFC)[3] for Java became available from IBM’s alphaWorks site in
March 1999. The GFC contains several ideas in common with the GVF and is implemented in Java,
although the current implementation is limited to JDK 1.1 features, which lacks, for example, the
collections library of JDK 1.2. As with the GVF, layout and drawing are separate from the core classes.
There are classes called a Walk, Trail, and Path that can be used to traverse a graph, although they are
limited to traversals of alternating nodes and edges. It is also possible for nodes and edges to be shared
among multiple graphs. However, different method signatures must be used in the base classes depending
on whether there are multiple graphs or not.

The Graph Template Library (GTL)[4] was developed at the University of Passau in C++ based on the
Standard Template Library (STL). The model for the API is based on LEDA[18, 19]. The GTL is used in
order to implement a toolkit for graphs called Graphlet and can be used to implement other systems. The
GTL consists of a set of data structures for describing graphs and a set of algorithms for manipulating them,
including several useful algorithms such as planarity testing. It is possible to handle multiple graphs in the
GTL using a feature called “hiding”. It is possible to manipulate a subgraph by hiding all nodes and edges
that don’t belong to it and performing operations on the graph. To use the entire graph again, you are
required to “unhide” nodes and edges. Although this approach makes it possible to manipulate subgraphs
without building entirely new graphs, it doesn’t effectively solve the problem of manipulating nested
multiple graphs.

The systems that we investigated had several features in common with the GVF. All the systems are
written in an object-oriented language and implement graph traversal with a storage object and some form
of iteration. Most systems have a way to associate data or properties with either a node or an edge, although
explicit support for metrics was generally absent. Most systems are also capable of specifying the visual
attributes of elements and provide several choices for layout.

Perhaps the most noticeable difference between the GVF and the systems discussed above is the GVF’s
use of properties to distinguish between graph types such as trees and directed graphs. All the other systems
except for the Graphics Template Library employ a hierarchy of graph classes. We have already pointed out
the disadvantages of such an arrangement for dynamic graphs (see Section 2). Although there was some
support for multigraphs in the GFC, other systems did not appear as capable of handling the nested
multigraph structures that the GVF was designed to handle. This was generally due to the fact that graph
objects have their own separate branch in the object hierarchy and keep lists of the nodes and edges that
they contain.

The node-centric design of the GVF provides all the features needed to visualize nested multigraphs in a
flexible way. Although nested multigraph structures aren’t necessary for all tasks, they are essential for the
representation of multiple clusterings. We feel that this simple but genuine idea, together with our

 10

application of properties to overcome the problems of a graph type hierarchy, make the GVF a unique
foundation for the visualization of graphs.

4. CONCLUSIONS

The special requirements of fully interactive graph visualization have been used to create a framework that
is uniquely equipped to handle such things as dynamic and nested multigraphs. Although the libraries
discussed here are still fairly new, they have proved to be useful in implementing a graph visualization
system that is capable of meeting the requirements that we have discussed. The flexibility and extensibility
of the GVF has been tested by a small group of researchers in the field.

There is an artificial division between different types of visualization systems because of the specialized
knowledge and tools that are currently necessary to implement them. However, it is not difficult to imagine
that graph visualization could be useful to view relations that have been induced in the data, such as the
relations resulting from clustering. Because clustering is so frequently used in information visualization
applications that are not necessarily graph-oriented, it could be argued that the core classes would be useful
as a base class for representing data.

One of the goals for our system still hasn’t been achieved. Graphs with millions of nodes still remain
out of reach. Future work may involve methods that allow us to incrementally navigate such structures, for
example, storing a graph in a database or dynamically retrieving graph information from a remote process.

REFERENCES

[1] I. Herman, G. Melançon, and M. Delest, “Tree Visualisation and Navigation Clues for Information
Visualisation”, Computer Graphics Forum, vol. 17, pp. 153–165, 1998.

[2] I. Herman, M. S. Marshall, G. Melançon, D. Duke, M. Delest, and J.-P. Domenger, “Skeletal
Images as Visual Cues in Graph Visualization”, in Data Visualization ’99, Proceedings of the Joint
Eurographics and IEEE TCVG Symposium on Visualization, E. Gröller, H. Löffelmann, and W.
Ribarsky, Eds. Wien: Springer–Verlag, 1999, pp. 13–22.

[3] C. L. Cesar, Graph Foundation Classes for Java, IBM, http://www.alphaWorks.ibm.com/tech/gfc,
(1999).

[4] M. Forster, A. Pick, and M. Raitner, Graph Template Library, University of Passau,
http://infosun.fmi.uni-passau.de/GTL/, (1999).

[5] I. Herman, M. S. Marshall, and G. Melançon, “Graph Visualization and Navigation in Information
Visualization”, (to appear) IEEE Transactions on Visualization and Computer Graphics, vol. 6,
2000.

[6] B. Eckel, Thinking in Java, Prentice Hall, 1998.

[7] C. Upson, J. Thomas Faulhaber, D. Kamins, D. Laidlaw, D. Schlegel, J. Vroom, R. Gurwitz, and
A. v. Dam, “The Application Visualization System: A Computational Environment for Scientific
Visualization”, IEEE Computer Graphics & Applications, pp. 30-42, 1989.

[8] F. Arbab, I. Herman, and G. J. Reynolds, “An Object Model for Multimedia Programming”,
Computer Graphics Forum, vol. 12, pp. 101-113, 1993.

[9] M. Pizzonia and G. D. Battista, “Object-Oriented Design of Graph Oriented Data Structures”,
ALENEX, 1999.

[10] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns, Addison-Wesley Professional
Computing Series, 1995.

 11

[11] D. J. Duke, I. Herman, and M. S. Marshall, PREMO: A Framework for Multimedia Middleware:
Specification, Rationale, and Java Binding, Springer, 1998.

[12] C. J. Alpert and A. B. Kahng, “Recent Developments in Netlist Partitioning: A Survey”,
Integration: the VLSI Journal, vol. 19, pp. 1-81, 1995.

[13] R. M. Wilson and R. D. Bergeron, “Dynamic Hierarchy Specification and Visualization”, in
Proceedings of Information Visualization, 1999.

[14] T. He, “Internet-Based Front-End to Network Simulator”, in Proceedings of Data Visualization
'99, Vienna, Austria, 1999.

[15] The Graph Editor Toolkit for Java White Paper, Tom Sawyer Software,
http://www.tomsawyer.com/get/paper-java.html, (1999).

[16] P. Mutzel, C. Gutwengwer, R. Brockenauer, S. Fialko, G. Klau, M. Kruger, T. Ziegler, S. Naher, D.
Alberts, D. Ambras, G. Koch, M. Junger, C. Bucheim, and S. Leipert, “A Library of Algorithms for
Graph Drawing”, in Proceedings of Symposium on Graph Drawing GD'98, Berlin, 1998.

[17] ALCOM-IT, Graph Drawing Toolkit, Third University of Rome, http://www.dia.uniroma3.it/~gdt/,
(1999).

[18] K. Mehlhorn and S. Näher, LEDA: A Platform for Combinatorial and Geometric Computing,
Cambridge University Press, 1999.

[19] LEDA Research, Algorithmic Solutions GmbH, http://www.mpi-sb.mpg.de/LEDA/, (1999).

[20] J. Berry, N. Dean, M. Goldberg, G. Shannon, and S. Skiena, “Graph Drawing and Manipulation
with LINK”, in Proceedings of Graph Drawing, 1997.

