
UC Irvine
ICS Technical Reports

Title
Software design representation: analysis and improvements

Permalink
https://escholarship.org/uc/item/2v54m6fb

Author
Freeman, Peter

Publication Date
1976

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2v54m6fb
https://escholarship.org
http://www.cdlib.org/

SOFTWARE DESIGN REPRESENTATION:
ANALYSIS AND IMPROVEMENTS*

Peter Freeman
May, lg76 ...

Technical Report #81

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S. C.)

Department of Information and Computer Science
University of California

Irvine, CA 92717

*The project studied in this report was funded by the United
Nations Development Programme and was carried out at the
International Computer Education and Information Center in
Budapest, Hungary.

Page 1

1. PRELIMINARI~S

1.1 INTRODUCTION

We ace interested in design, especially the design of

software*. One way of characterizing design is that it is a

process of building a representation of the object to be

created. We take it a.s self-evident that some

representation of a piece of software exists from inception

until a binary image is loaded into memory for execution.

The issue we ace concerned with in this paper is the focm of

that representation.

The reasons foe studying design representation are

probably well known to the reader, but ace restated foe the

benefit of those new to methodological considerations:

Representations, in some focm other than contents of a human

memory, ace needed so that the information involved can be

communicated to others; the limited capacity of the human

*It has been often observed that the methods used to design
a wide cange of objects ace quite similar in many respects.
This fact is especially true in the design of information
processing systems that have both hard and soft elements.
Thus, much of what we have to say here may apply equally
well to hacdwace or software. We have chosen not to
consider hardware explicitly in this paper, however, foe two
cea.sons: H hardware has a number of additional, very
useful representations, the consideration of which would
cac ry us too far afield and 2• the concrete example on which
this study is based did not include any hardware design.

Page 2

mind for technical detail must be augmented (repcesenations

of current software systems often run to hundreds or even

thousands of printed pages~; the form of the representation

may greatly affect the performance of various design tasks

(review, backup, prediction of results~; the representation

of infocmation affects our success or failure in producing

moce refined representations that are closer to the desired

final result ..

We have no panaceas to offer. What we have is a

detailed example of the representations used on a particular

project (actually, pieces of a detailed example too lengthy

to present here~, an analysis of those representations and

their usage, and some suggestions of how to impcoye the

representation of software designs .. Following some

preliminaries, we will describe the case study, analyze it

and suggest improvements in that order.

1.2 A VIEW OF DESIGN

is a cepcesentation of an object ..

Funddmentally, a design is a collection of information that

tells us something about the object we want to create.

Thus, the can be viewed as an

information-gathering process that continually expands the

design by putting more and more information into the

representation until a termination point is reached.

Typically, we terminate a design when we have enough

Page 3

information to implement the object. Figure 1 illustrates

our informational view of design.

It foilows then that design is a process of deciding

what information to include in the design and what

information not to include. This has led us in an earlier

paper [Freeman, 1975] to propose that it is primarily the

decisions made in the course of design that must be
~-----

r epcesented ..

\ ·~ ONE VIEW OF DESIGN

REPRESENTATION

MUSH

r£f ACODE (PDL)

OBJECT

A

Page 5

lo3 REPRESENTAION VS DOCUMENTATION

It is important to distinguish representations from

documentationo We, along with most peopje concecned with

software design, have not been Cdreful about making this

distinction in the past.. One of the main points we want to

stress in this paper is the need for this distinction.

The current use of the word "documentation" in software

cceation usually denotes information describing an object

such as a program, an operating procedure, or the results of

a design process. This word has the further connotation in

many instances, especially in design where the object does

not yet exist, of representing everything we know about the

object ..

It is precisely this connotative use of the word

"documentation," however, that we believe has prevented

clear thinking about design representation. In the CdSe of

a pcogcam that exists, it is understood that the

documentation aus.~en~~ the actual object and than we must go

to the object itself as the final authority on questions of

substance .. (This in fact is a standard maxim given to those

attempting to undecstand a program~. In the case of a

program ~~.§.!.S.12., howevec, the "documentation" is ail that

exists .. Thus, it is more than infocmation about an object

(i.e., documentatio~, it is a representation of the object

being cceated.

Page 6

By not being clear about what our flowcharts, lists,

diagrams, and voluminous prose generated during design

cecllly constitute, we have not thought clearly about the

role of these c esentational forms. Of course, everyone

recognizes that the stacks of paper generated during a

design process contain in theory all the information we have

available about the object (usually, there is additional,

unrecorded information•. Yet, few people have specifically

tceated such ad hoc collections of information as a

representation in the same way that an architect views

gcaphical representations of a building or an engineer views

mathematical representations of a physical process. Just as

other design professions have carefully evolved (and in many

cases consciously created~ the representational forms they

use, so must we do the same foe software design.

Recently there has been increased concern taken with

software design. A number of books (e.g. [Lucas, 1974],

[McGowan and Kelly, 1975], and [Youcdon, 1975]) and papers

(e .. g. [DeRemer and Kron, 1975], [Freeman, 1976b], and

[Stevens, Myers, and Constantine, 1974]) have appeared that

treat vacious aspects of software design.*

* There ace several attempts to develop a more comprehensive
cepresentation for system design that will include hardware
and software [for example, Chu, 1975]. Our purpose here is
not to survey the field, however, but to try to increase our
understanding of the issues by close examinatin of one
particular example.

Page 7

Some of these have explicitly addcesssed the issue of

cepcesentation: Stcuctuce charts [Stevens, Myecs, and

Constantine, 1974] and program description ianguag_es _JPDLs•
~· -----~-~·~~------·~·------~~------~---~""--~"---·••--•-•o-,• --•,-.-.<,.,--• -·~-~---· - - '"'-•

[Caine and Gordon, 1975] are both forms for representing

program designs and have been used with some success.

Peters and Tripp [1976] survey a number of graphicdl design

representation schemes@

Our own work on software design rationalization

[Freeman, 1975] provided another form for representing a

design; while typically requiring too much effort to carry

out in the full format we earlier proposed, its ability to

capture the _decisions being made during design led us to one

of the representational forms discussed below* ..

* Softwace design rationalization is a technique for
capturing not only the design decisions, but the reasoning
that led to them. Specifically, one is instructed for each
decision, to list a set of alternative choices, an
evaluation for each alternative, and the reason foe the one
actually chosen. While it is clear that this provides a
great amount of information not normally found in a design,
which may be very useful to later attempts to understand the
design, it is not clear that the added effort of producing
this detailed "rationalization" is cost-effective.. The
decision statement representation discussed below appears to
be a more natural representation for actual design
situations.

Page 8

In the remainder of this pdpec we will illustrate and

analyze the usage of several cepcesentational forms. Not

surprisingly, we will find that although paying careful

attention to the representational issues outlined above

appears to have improved matters, we are still a long ways

fcom having a truly Sdtisfactory representation for software

design.

Page 9

2 .. 0 THE CASE STUDY

2al OVERVIEW

The analysis we will present in later sections is based

on a case study of an actual design projecte The Remote

Text Editor (RTE• project was ca.cried out by a group of five

people under the direction of the author; it resulted in

the design and implementation of a small time-sharing

system .. The work was performed at the International

Cornputec Education and Information Center (Szamok• in

Budapest, Hungary.

A sizeable fragment of the design, along with a

description of the representational forms used, is presented

in [Freeman, 1976a] .. References in this pa.pee to the "case

study" should be read as implicit cefecences to that paper.

Some of that material is reproduced in this section foe ease

of cefecence along with some new material.

2~2 FORMS OF REPRESENTATION USED

Six main representational forms were used in the RTE

project; each is defined and illustrated below:

~~~l!~~ E£~~~: Ordinary narrative descriptions . 

.. ~xa!!!E!.~= The FS consists of a collection of reentrant 
programs. These programs, taken as a group, are a 
pact of each process-type in the RTE system. 



Page 10 

Lists: Simple iists of items which are usually a single 
word-or phrase .. 

~!~!!!£!~= required control functions: 

start editing 
start copying 
start directocy manipulation 
submit job 
quit subsystem 
logon 
logof f 

Decision statements: Simple English statements that record 
:;--decision--wIEfi--little elaboration. Each decision is 
represented by a single statement. 

~~ampl~: Files will be accessible in two modes: block 
oc record. 

Functional module §J2~9.!.f!.~~ti2_1]_~: Inputs, outputs, 
function-,- caffing- sequences, and constraints that define a 
program module; presented in a fixed format with little or 
no narrative explanation. 

PROTECT(filename, 
ctn-code• 

owner-id, usec-pcocess, 

function: Mark the specified file read-only 

inputs: filename 
owner-id 
user-process 

outputs: done 
file open - no action 
user = owner 
owner does not exist 
user does not exist 



Page 11 

g£.~E~i~~! ~~ : 
charts ind1cat1ng 

Flow charts 
intermoduie 

and system structure 
dependencies of control 

and data flow. 

~eta~~de: A PDL (program description language• Algol-like 
language consisting of ordinary control flow statements 
(if-then-else, do-while, repeat-until, exit, exit-with, 
case4 and free-form English statements for conditions and 
operational stdtements. Ordinary programming statements are 
permitted, but are discouraged. Data structures ace either 
implicit oc logically (not physically• defined. 

_exa~El~: beg in 
Tr-owner = user then exit 

with (user =owner '• ; 
----if file is open then exitwith('file in use'•; 

get dic.ectory focowner·;--·---
if none then exitwith('owner does not 

exist ..,f; --.-·- ----·--·------- ---
·-----iI~9. f i 1 !:. .en ~£.YI , 

if none then setreturncode( file does not 
exist . ..,.f; ---- -----------

end 

~l:_se b~ii!! 
mark file read-only; 
setr etur ncode ( 'done'~ ; ena _________ _ 

r~Iease directory; 



Pclge 12 

2.3 STAGES OF DESIGN IN THE RTE PROJECT 

This pcoject consisted of several definite temporal 

stages. Each stage also corresponded to the level of 

decisions being made: 

_§_tag~ -~: Specifications by customer 

Basic objectives of project wece defined. 
Ocganizational resources (people and machines• committed. 
Overall schedules set. Repcesented by: prose. 

_§.!:~~ !_~: Detailed specification 

Functional specs of system were developed by design 
team and advisors. Operated as co-routine with Stage lBc 
Both involved decisions at about the same level. 
Represented by: prose, lists. 

[Note: Throughout, the "level" of decisions refer r:ed to is 
merely the mode; often at a low level some high-level 
decisions were made and vice versa]. 

§!~~ l~: Overall structurdl organization of system 

Major decisions regarding main pieces of the system and 
how they intecact. List of main ideas of how to build each 
piece (not complete•. Represented by: prose, lists, 
structure charts. 

-~!:~~ ~: Preliminary design of each facility 

Functions and interactions of each facility were 
considered and major decisions made about how they would 
wock. Basic input formats and data structures set. 
Repcesented by: decision statements. 

§_ta9~ -~= Refined design of each facility 

Each decision made in Stage 2 was directly expanded by 
considering its implications, the decisions made at Stage 2 
for interacting facilities, and moce details of the 
underlying hardware and RTDM system (a real-time disk 
monitor supplied by the manufacturec•. Represented by: 
decision statements. 



Page 13 

.§tage != Preliminary module design 

The decisions of previous stages were examined for 
implicit definition of modules for each facility. Common 
secvice routines were identified. Modules were specified by 
stating inputs, outputs, and functions precisely. Some 
cough metacode was written. Represented by: prose, module 
specifications, structure charts, and metacode . 

.§.ta9_~ .~: Detailed module design 

Ail needed modules were specified in 
structures were specified at the 
Repcesentated by: functional module 
metacode. -

2.4 REPRESENTATIONAL NEEDS 

metacode. Data 
logical level .. 
specifications, 

In this section we will summarize the representational 

needs experienced in each stage of the RTE project described 

above. For each stage we will describe the information 

inputs and outputs to the stage (these comprise the main 

items to be cepcesentedi , the constraints considered at that 

stage, the types of decisions made, and the dominant 

representational forms actually used . 

.e.~~~ ~.:_ ~~~tom~~ §.E~s.!.;~£~~iq!2.~ 

inputs: basic needs of the sponsoring organization 
physical resources available 
people resources available 

outputs: wock order 
constraints on the task (technical and 

ocganizationaH 

decision types: information and action needs 
[not made by designers] 



Page 14 

representations used: verbal instructions and agreements 
memoranda defining the task 

§.!~9.~ 1: Qet~ile~ Spec_!!!£ at!~!!~ 

inputs: work order 

softwace 

knowledge and experience with other systems 
detailed knowledge of available hardware and 

knowledge of application area 

outputs: detailed list of user functions 
initial structuring of system into facilities 
listing of major functions for ectch facility 
dominant interactions between facilities 

constraints: capabilities of machine, software, and design 
staff 

user needs and level of sophistication 

decision types: functional capabilities 
system structure 

representations used: prose 
lists 
structure charts 

-~!:~9.~ ~-=-- Pre 1 im inar .Y f ac i 1 i !:Y Q~~.!9.!! 

inputs: outputs of Stage 0 and 1 
models of other systems 
analogous information handling situations 
requirements of facilities defined in Stage 1 
probable structure of facilities defined in Stage 1 

outputs: sets of decisions 

constraints: hardware capabilities and structure 
Stage 2 decisions 

decision types: detailed function, structure and format 
descriptions. 

representations used: decision statements 
formal module specifications 

~!:~~ l.!. D~~~_i~'=9_ ~~S:i~ i !:!Y Q~~!~ 
inputs: outputs of previous stage 

decisions of Stage 2 
knowledge of other systems 
requirements - global and of other facilities 

outputs: detailed decisions based on decisions of Stage 2 
some module specifications 



Page 15 

some constraints on functions, structures, and 
formats 

constraints: hdcdwace 
Stage 2 decisions 

decision types: detailed function, structure, and format 
descriptions 

representations used: decision statements 
formal module specifications 

~ ta9_~ ! . .:. .~c el imin~£_y t!~9_ul~ Q.~~~!! 

inputs: outputs of all previous stages 
programming knowledge 

outputs: required module list 
service module list 
rough design of major modules 
module specifications, including further decisions 

constraints: previous decisions 
programming requirements of system and machine 

decision types: most format and structure 
some further functional requirements 

representations used: lists 
metacode at high level 
some prose 

Sta~ 5: De~~i!~~ t!~d~!~ ~~~!9-~ 

inputs: previous stage outputs 
programming knowledge 
rough module designs of previous stage 

outputs: detailed data structures (logical• 
detailed metacode (logical• 
precise input/output formats 

constraints: previous decisions 
programming structures 

decision types: program structures 
housekeeping structures 

representations used: metacode 
diagrams 
prose (documentation• 



Page 16 

2.5 NARRATIVE DESCRIPTION OF THE RTE PROJECT 

The design of the entire system followed the temporal 

stages described above. For example, Stage 1 activities 

wece completed before Stage 2 activities were begun. A 

cectain amount of backtracking was necessary, as in any 

design efforti but, with the exception of the RJE (Remote 

Job Entcy• communicator, the design of the other facilities* 

proceeded stcaightfocwacdly. 

In Stages 1 to 3 there was a large amount of 

interaction between the design of different parts of the 

system. Beginning with Stage 4, the interaction was more 

limited and localized. 

The ociginal pcoject goals were laid down by Szamok 

management verbally and in memoranda, but in Hungarian. No 

direct translation was available. They were the usual type 

of high-level general directions of management to a 

technical organization. They set resource levels and 

defined certain global constraints on the form and function 

* The total RTE system consists of several major pieces, 
described as "facilities": memory manager, process manager, 
i/o manager, file system, editor, command interpreter, RJE 
communicator, and RJE initiator. See [Freeman, 1976a] for 
more details. 



Page 17 

of the system. 

Considerable effort was expended on the RTE project 

before the author joined it. One of the repults of this 

dCtivity was a more detailed statement of specifications foe 

the system embodied in a report that was given back to 

mdnagement for review. 

When the author joined the project, it was soon evident 

that although the major pieces of the system had been 

identified, the specifications foe each of these pieces were 

not well understood. Further, the required usec functions 

were not clearly delineated. 

A series of group work meetings were held over several 

days at which we first worked out a comprehensive view of 

the system as the user will see it, and then developed a 

functional specification of each major facility. Note that 

we did not develop detailed specifications of some 

facilities such as the command language interpreter and copy 

system which do not interact significantly with other 

facilities. 

Starting from the functional specifications , we began 

to devise software structures thdt would satisfy the 

specifications. We worked top-down by considering analogs 

of the subsystems, listing requirements and constraints, and 

identifying major decisions. After choosing an overall 

structure, we concentrated on details. 



Page 18 

The decisions and information generated at the first 

stage came about largely through free-association and 

brainstorming. Some decisions were explicitly elaborated 

later, but primarily the first stage formed a basis for the 

more organized decision making of the next stage. At the 

end of Stage 1 we had a clear representation of the 

requirements. 

In Stage 2 we undertook to identify and make the major 

decisions that would determine more precisely the structure 

of subsystems. We did this by considering the requirements 

and the hazy structural outline produced in Stage lB, and by 

tcying to identify design features for which there seemed to 

be alternatives. If such a feature seemed low-level (~~.=.. 

not having global implications• we ignored it; otherwise we 

made a decision and recorded it exactly as shown in the case 

study. Alternatives for each decision were considered 

often at length in the manner of design_ rationalization 

[Freeman, 1975]. 

The decision statements in Stage 3 were direct 

expansions and implications of the decision statements in 

Stage 2. For each decision statement in Stage 2 we asked 

what implications, sub-decisions, and co-decisions were 

possible. The resulting decisions were then made, as in 

Stage 2, by consideration of alternatives. While 

sub-decisions of different Stage 2 decisions sometimes 

necessitated coordination, we did not have to make major 



Page 19 

revisions to the Stage 2 decisions. 

After Stage 3 we felt the decision statement cefinement 

had carried us as fac as it could and we set out to specify 

actual program modules. While Stage 4 generated a number of 

decisions and information that later (Stage S• permitted us 

to pcoduce detailed module designs, it was 

cepresented stage of the design. 

representation used in Stage 4 was a "mush." 

not a cleanly 

Bluntly, the 

Out of the "mush" of Sta.ge 4 we proceeded to identify 

needed program modules. In Stage 5 we designed these 

modules in sufficient detail that we could then code and 

test them. Ouc decisions were all represented in the 

standard organization of module specifications and the 

metacode used to describe the logic. 



Page 20 

3. ANALYSIS 

Throughout the following we assume some familiarity 

with the case study summarized in Section 2 and more fully 

described in [Freeman, 1976a]. 

3.1 APPROACH 

Our primary purpose in this study is to increase our 

understanding of software design representation by careful 

considecdtion of a particular case study. Having presented 

what occurred in this particular project, we now want to 

identify some cause and effect relationships. 

A necessary first step in an analysis of this sort, 

identifying the constituent parts, has already been done. 

In what follows, we will limit most of our analysis to two 

particular forms: decision statements and metacode. While 

other forms were used, these two were dominant. 

Ouc approach to this analysis has three parts. Fiest, 

we will identify several important features of any 

representation along which the two forms of interest can be 

evaluated. Because we ar~ interested in the total 

representation of a design, we will also evaluate the two 

focms taken together along these same dimensions. 



Page 21 

,;z,) \t{o\P·--

Second, we will assess the impact of these forms (and 

some of the othecs used in the RTE p~oject• on the design 

process. We will i?entify specific ways in which the forms 

helped or hindered us as we designed. 

Thicd, we will assess the impact of the design process 

on the forms. We want to understand to what extent the 

choice of forms was dictated by the design steps and to what 

extent those that wece chosen were modified because of the 

design process. 

As with any complex and unformalized endeavor, these 

evaluations ace necessarily subjective. It is clear that 

whenevec possible, we should strive to obtain objective 

evdlUdtions. Yet, it is also clear that most progress in 

impcoving the state-of-the-act in software engineering is 

bdsed on subjective evaluations due to the extreme 

difficulty of obtaining objective data of significance. 

Further, careful objective studies usually must be preceded 

by subjective analyses that point the way toward areas for 

deeper investigation. 

3.2 ANALYSIS BY PARTS 



Page 22 

3.2.1 Underlying Factors -

As the theocy and practice of a pacticulac 

cepcesentation is developed, highly detailed analyses can be 

carried out. Foe example, we can analyze a programming 

language along a lacge number of well-understood technical 

and practical dimensions (see, for instance, [Sammet 19711•. 

Unfortunately, this is not yet the - case for design 

representations. One result of studies such as this should 

be a gcadual establishment of the pcopec dimensions to use 

in analyzing representations. Thus, we must first discuss 

briefly the factors we consider important for analysis. 

A representation is a collection of information 

expressed in graphical, mathematical, or written form. Its 

main reason for existence is to facilitate two fundamental 

operations of design: review and elaboration. A design 

ceasons: the designers themselves must understand parts 

designed by colleagues and refresh their memories on their 

own decisions, peers must review it for technical accuracy, 

managers must review it to determine resource allocations 
) 

foe future stages,'and customers must ceview it to see if it 

meets specifications and expectations. Later, a design may 

be reviewed by students, researchers, and other designers in 

order to understand the conceptual basis and logical 

structure of the object that has been created. 



Page 23 

Elaboration is the basic, operation by which we achieve 

progress in design. Even if a design is not strictly 

orgdnized into logical levels, any design process is 

fundamentally one of continually elaborating the information 

in the design. In effect, designers apply operators (albeit 

in a complex manner• to the information represented at one 

stage of a de'sign to obtain the next, moce elaborated 

cepresentation .. A design representation must facilitate 

these two main operations of design. 

The factors we have chosen for analysis ace directly 

related to these two functions: 

clacit~ - ace the representations clear and easy 
to understand? 

,~.2.!!!El ete!;_<:_~~ do they permit 
information to be represented? 

all needed 

~_ccuc acy can facts and relationships be 
expressed precisely? 

consistency are similar items expressed in 
similarways? ace items expressed in the same way 
at diffecent levels of specificity? 

ease of use - do people find them natural and 
simple to-use? 

cost-effectiveness - ace they expensive to produce 
and/ocmaintain?-

3.2.2 Information Elements Of A Design -



Page 24 

A fundamental cequirement of any design representation 

is that it be able to represent the eiements of the object 

in question. In the case of software design, we can 

identi following kinds of information: 

.~ecisi9_!1S - choices among alternatives; 

relations logical connections between other 
elements·; ei thee physical or informational; 

constraints - statements of conditions that should 
not --5e---broken by the design; may include 
constraints on the process itself, but these are 
usually outside the representation; 

2.12en g~~~~io!!_~ - an imper tant pdr t of any design 
is determining what is not known or what is 
pdrtially known; this information needs to be a 
pact of the design representation (although one 
might argue that it is properly a part of the 
design documentation4 ; 

_£egu!_£~~~nt~ - much t~e same as open questions; 

functions - descriptions of what something is to do; ___ _ 

structures - programs, data structures, control 
structuce's' formats. 

Beac in mind in the following that these ace the types 

of information that went into the representations we are 

The CdSe study [Freeman, 1976a] provides 

numerous examples and the analysis presented above in 

Section 2.4 also illustrates the range of information 

present in this design. 



Page 25 

Table 1 presents a summary evaluation of the undecyling 

factors desccibed above. Only those forms (metacode and 

decision statements• which are used to any great extent ace 

evdluated; their combined effect* (since they formed the 

bulk of the representation• ace also evaluated. 

* By "combined effect" we mean "taken together to form a 
whole" and are not implying their use side-by-side on the 
same page .. 



clarity 
completeness 
accuracy 
consistency 
edse of use 
cost to use 

decision 
statements 

8 
6 
9 

/,,' -5_ 
8 
10 

SCdle: 1 

bad 

5 

metacode 

9 
10 
7 

i7 

10 
10 

10 

Pdge 26 

decision statements 
& metacode overall 

5 
4 
8 
5 
7 
10 

good 

Table 1: Summary Evaluation by Factors 

Table 2 presents a summacy evaluation of the ability of 

metacode and decision statements to represent the 

information in elements in our design. 

Decision 
Information Statements ------------Elements -·-------
decisions 10 
relations 3 
constcaints 8 
open questions 0 
requirements 0 
functions 10 
structures 2 

scale: unable to 
represent 

Metacode -----

4 
10 
3 
3 
0 
8 
10 

easy 
represent 

Table 2: Summary Evaluation by Information Represented 

In the next two sections we amplify and illustrate these 

evdluations. 



Page 27 

3.2.4 Discussion Of Factors -

The ciacity of decision statements is high. For example, 

consider the LFS Pceiiminary Decision Statements in the case 

study. It is easy to see quickly what the primary features 

of the LFS will be by reading these decision statements. 

When they are later refined, the ramifications of the 

higher-level features are readily apparent. 

What is missing is a representation of the interrelation of 

decisions. Thus, the connection between the decisions on 

file shacing and file protection is unrepresented. 

Metacode is generally easy to follow as evidenced by the 

samples in the case study. The logic is given in 

unambiguous form through the use of structured control 

statements while unnecessary details are suppressed and the 

operations ace represented in natural language that is 

easier to comprehend (in general~ than straight programming 

language statements. 

* (8/9/5~ are the evaluations of clarity given in Table l for 
decision statements, metacode, and the two forms taken together. 



Page 28 

is not as good as either alone because of the gap between 

them. That is, they ace rather different forms of 

representation and do not interface well. As we progressed 

thcough the stages of design there was no problem as long as 

we were within a single form, but when we worked back and 

forth between the two forms the combination did not clearly 

represent the design@ This is most clearly seen in the case 

study in Stage 4 where we attempted to create a metacode 

representation directly from decision statements. 
h;_ /4J1 10VI rJ tR f • 

Decision statements are only fair along the dimension of 

completeness. A reasonable amount of the design was not 

captured by them, due largely to the fact that they did not 

express immediately the implications of design decisions, 

such as the interrelationships between parts of the system. 

In the case of metacode, on the other hand, when something 

is written down, we can determine its relationship to other 

parts, but only on a local basis. This is clearly a 

consequence of the fact that met~~~de, as d form, has a 

definite structure while natural language statements do not. 

There is structure between levels of decision statements, 

however, and this removes some of the problems. For 

instance, from a first-level decision regarding the 

simplicity of file names, we can see the relation of several 

J ,_,, Ii 



Page 29 

other decisions concerning the exact rules governing name 

formation. The relation between these decisions and those 

governing the structure of the directocy are not so 

apparent, however. 

Metdcode permitted us to represent the design in as much 

completeness as we wanted at the logical level. Foe 

example, in the representation of the OPEN function, there 

was no problem in showing all the conditions and operations 

of interest. Since we could use programming-language 

statements, we could have made it fully complete. 

Taken overall, the two forms did not provide a very complete 

representation as we progressed through the stages of the 

design. The lack of stcucture representation posed a 

serious pcq~Jem as we moved from decision statements to 

metacode. Thus, our rating of their combined effect is low. 

Decision statements are straightforward, although in some 

cases there is ambiguity. For example, the decisions on 

file space management do not point us to a definite 

implementation. The accuracy of the decision statements is 

just the accuracy of natural language, impcoved somewhat by 

the sparseness of the format and the absence of extraneous 

verbiage. 



Page 30 

The metacode we used introduced some ambiguity, especially 

in data stcuctuces. This, however, was due to our failure 

to describe data structures at the metacode level, not to 

the representational form itself. However, the use of 

English expressions permits one to be sloppy, sometimes 

resulting in inaccurate statements. 

Overall we found the representation to be accurate. 

Accuracy tends to be a localized property and thus to be 

ddditive. No particular accuracy problems were noted in 

going from decision statements to metacode. 

Neither form made it easy to achieve a consistent 

representations Decisions were often made at widely 

differing levels of detail even when an attempt was made to 

limit to them to a particular level. The representation 

helped only minimally to organize decisions by level or' by 

area. This is especially noticeable in the refined decision 

statements of Stage 3. 

Metacode is somewhat better. The use of the same control 

stcuctures imposes a certain amount of consistency on the 

descriptions. Standardization in the terms and operations 

used would further increase the consistency of metacode 

descriptions. This is illustrated in the case study where 

set phcas<;s such as "get owner's directory" are used in 

several different functions. 



Page 31 

The difference between the two focms and the "distance" 

between them is basic enough that it really doesn't make 

sense to address seriously the issue of overall consistency. 

We found both representations easy to use (i.e., generate~, 

although decision statements were not as easy as metacodeo 

This appears to be partly due to the experience of 

pcogcammecs/designers in working with a proramming language 

representation. It is also partly due to the fact that it 

is difficult to choose the decisions to be made and that 

they typically apply to large segments of the des~gn. 

Generation of representations in both, of course, is 

generally quite easy since the syntax is not complicated. 

The mismatch again detracts from the overall performance. 

Cost to Use 1!.~L.!~{!~l 

Neither form requires great effort to use or maintain and 

thus both are cost-effective. 

A fundamental property of any representation is its ability 

to represent items of interest. An equation cannot 

cepresent our feelings toward a situation while poetry 

cannot represent (precisely• the flow of fluid in a pipe. 



Page 32 

Beyond the simple binary question of capab~l~~y of a 

cepresentation, is the more difficult question of relative --­~bilit¥. A decision statement may cepresent the structure 

of a system, at least implicitly, but how well does it do 

this? Even more difficult is the case where we have two 

competing repcesentdtions: foe example, does a flow chart 

or metacode better represent the control structure of a 

system? 

l L> ,f (y CJ lf ) , 

In Table 2 we have tried _p!.'.--O·v-±-aea a set of subjective 

discriminations. Foe seven information elements (decisions, 

relations, etc .. ~ that we used in our design, we have 

indicated, on a scale of 0 to 10, how well they could be 

represented in each of the two representational forms we are 

analyzing. The different infocmation elements were not 

equally distributed throughout the design, of course; but, 

we have evaluated the effectiveness of both representational 

f ocms foe all information elements in order to consider 

their relative merits. 

Decisions are easily represented by decision statements, by 

* (10/4) ace the ratings given decision statements and metacode 
respectively on their ability to represent decisions. 



Page 33 

definition! While it is clear that metacode (indeed, any 

representation~ encodes a set of decisions, they are not so 

easily seen. Further, while it is easy to represent a local 

dee is ion in metacode (e.g.. "the test for file owner ship 

will be per formed after the test foe existence of the file"4 

the representation of a global decision (e.g. "file 

ownership will always be checked before performing any 

operation"~ will be distributed ace oss a lac ge amount of 

metacode, but would be represented in a single decision 

statement .. 

Relations between parts of the system are not easily 

representable by decision statements. We typically would 

have to write out a decision statement foe each possible 

relation. Further, the mode of usage of decision statements 

(deciding the form or function of some part of a system• 

does not encourage expressing relations except in cases 

where that celationship is of major importance. 

In metacode, the relationship between parts is expressed 

textually, by simply naming the object (through subroutine 

calls and use of variable~. This makes it easy to express 

relationships, although they may not be as visible as in a 

structure chart .. 



Page 34 

Constraints are quite easy to express using decision 

statements. Foe example, we might state as a decision "only 

the owner of a file may alter its protection code" .. 

Constraints on the programs themselves can be easily 

expressed in some instances (e.g. "any program that 

accesses a file must provide an accurate error return 

indicdting the results of the access"• but in other 

instances may be difficult (e.g. we might want to express 

that some data could be used globally and other local data• . 

In metacode, constraints cdn only be expressed implicitly 

(by not doing something or doing it in a particular way --

in either case, we have to infec the constraint• or in the 

form of declarations about data structures. 

During any design activity we form questions that ace not 

immediately answered; that is, they are left "open .. " We 

must represent these open questions so that we can come back 

to them at a later stage and determine whether we then have 

sufficient information to answec them. As we have defined 

decision statements, they cannot represent open questions. 

However, a trivial expansion of the representational form to 

include decisions about the design process would remedy 

this. 



Page 35 

Metacode also is not well-suited in general to cepcesenting 

open questions. It is, howevec, on a local basis since when 

a statement is made in metacode that is not opecational 

(e.g. "get the next valid input"• it is implicitly a 

statement of an open question that must be answered {e.g. 

11 how ace we to determine what the next val id input is?"• 

Requirements are vecy simiiac to open questions, but we have 

differentiated them to indicate that requirements are 

imposed from outside the design process while open questions 

arise because of the design actions being taken.. (Cleac ly, 

an open question may turn out to be a requirement that we 

failed to state in the first place; so, the distinction 

between them should not be carried to any gr eat length~ .. 

Again, decision statements, by definition, are not able to 

state requirements -- that must be done using some other 

(although perhaps syntactically similar4 representation. In 

this case, metacode also is not able to express cequicements 

pee se, although one might use metacode to express a 

process-oriented requirement. 

Consideration of both these information eiements open 

questions and requirements points up a very important 

issue often overlooked in design. We must talk about the 

design pcocesss itself, not just the final product. We 

uncover questions to which we must find answers, discover 



Page 36 

celationships between constraints, make decisions about the 

allocation of our design resources and so on. This 

information, just as much as the information that goes to 

mdke up the final design, must be represented so that we can 

work with it in an orderly manner. 

The last two elements we consider are the basic el~ments 

that make up any design: functions -- expressions of what 

something is to do, and structures -- the objects that will 

pcovide the needed functions. Functions are easily 

representable by decision statements and metacode, although 

in metacode the extent of a function is more restricted in 

scope. Foe example, we can state in a decision statement 

that "all routines in the file system will provide complete 

error checking of all inputs", while in metacode this same 

functional description would have to be placed in each 

routine by showing a call on an error checking routine. 

Stcuctuces 

In the case of structures -- that is, programs and data 

decision statements are not very useful for describing the 

programs themselves. We can state that a certain structure 

is to be used (e .. g. "the dicectory lookup will use a linear 

search algorithm"• and describe its properties (e.g .. "the 

linear search will compare only the first 6 characters of a 



Page 37 

fiie name."• but it is difficult to express the exact 

structure of the program in question (e.g. consider 

describing the complete control fiow of the directory lookup 

module using decision statements• . 

Metacode, on the other hand, is ideal for describing program 

structures in detail. The metacode we used had no special 

provisions for describing data, a deficiency which could be 

easily remedied .. 

3.3 IMPACT OF REPRESENTATION ON THE DESIGN PROCESS 

Thus far we have analyzed our representation along several 

partial dimensions. We now wish to look at how the 

cepresentations affected the design process overall. For 

our purposes here, we consider the design process as being 

composed of two activities: elaboration and review. 

3.3.1 Effect On Elaboration -

We must differentiate between elaboration between stages 

using the same form and between stages using diffe~~~~ 

forms. Between stages using decision statements, the form 

of the representation clearly made elaboration much easier: 

We simply took each decision and considered all the more 

detailed decisions implied by it. We did not n~ed to spend 



Page 38 

much effort deciding what problem to wock on next. The 

decision statements organized the design activities into 

discrete, rather local areas of concern. Further, they made 

clear the actual steps necessary to elaborate the design: 

take whatever decisions were implied or enabled by the 

higher-level decision being refined. 

As noted above, difficulty was encountered in going from 

decision statements to metacode.. The r:esult was the "mush" 

of Stage 4. The primary problem seems to have been that the 

decision statements do not do a good job of representing the 

structure of the developing system, either in indicating the 

clumping of functions into discrete packages (module~ or by 

indicating the interconnections between parts. 

Elaboration between stages using metacode was also quite 

easy for the same reasons. (There was some metacode used in 

Stage 4 which was elaborated in Stage ~. While we had only 

one stage completely cepressented in metacode, the next 

stage (not considered hece• which generated assembly code 

from the metacode was extremely easy*. This appears to be 

*Our experience in this respect confirms th~t reported by others 
[Caine and Gordon, 1975]. Coding went extremely fast and few 
logic errors were found. It was not uncommon for a single 
pcogrammer to code up and check out (in stand-alone4 tests up to 
100 assembly language instructions per day. Unfortunately, we do 
not have available precise statistics on this stage of the 
project. 



Page 39 

due to the fact that the representational forms (metacode and 

assembly language4 are both programming languages in their 

structure. One of the most important things we learned 

after the fact is that we should have had another level 

using metacode, but somewhat higher than Stage 5, which 

could have then been refined~ this would have gone a long 

way toward reducing the mush encountered in Stage 4. 

3.3.2 Effect On Review -

When reviewing a design, one is basically just asking 

whether the eight decisions have been made or not. Decision 

statements are a great aid to review since they clearly 

present the decisions that have been made. Their lack of 

completeness, especially in expressing the structure of the 

system limits their effectiveness, however. In other words, 

they make a part of the review process very easy, but hinder 

another pact -- the review of structure. 

The effect of metacode on review is also ambiguous. On the 

one hand, because metacode displays the logical structure of 

programs in a way that makes it easier to understand than a 

lower-level representation, program review is enhanced. On 

the other hand, at the level we used it, metacode 

incorporates a good deal of detail, much of it unrelated to 

the information which must be reviewed. This makes review 

more difficult. Obviously, if we had used metacode more 



Page 40 

consistently at a less-detailed level, some of this pcoblem 

would have gone away. The poor mismatch between the two 

foe ms, made review of the dt:_§~gn as it developed at that 

stage m_~9_tl moce difficult than it should have been.. We will 

tceat this situation in more detail in later sections. 

3.4 IMPACT OF THE DESIGN PROCESS ON THE REPRESENTATION 

The impact in this direction is not as easy to analyze. Foe 

one thing, the representation was not a free variable -- we 

had chosen the representational forms before starting and 

did our best to stick with them. 

If you look carefully at what we were doing in Stages 2 dnd 

3, however, you will see that even if we had not pee-chosen 

decision statements for those stages, what we wece doing 

would have forced us into their use (or something similar~. 

At that point, the design process was ranging widely over a 

number of issues, trying to determine what should be done 

and how to do it. It was not a highly organized sequence of 

design actions and thus needed the loose representation 

offered by decision statements. 

The "mush" of Stage 4 is clearly a cesult of the design 

process we were using at that point. We were trying to 

consolidate our earlier decisions into clumps that could be 

handled later as individual design problems in the form of 

modules. Although we set out trying to use metacode at that 

stage, we faiied because the design actions we were taking 



Page 41 

did not conveniently fall into that focm. 

By Stage 5, we had consolidated the design into separable 

units corresponding to modules. Then, the representation 

affocded by metacode was the natural one to use. The only 

noticeable impact at that stage was that the metacode became 

mace detailed than we had planned because tha design 

activity itself was operating at that degree of specificity. 

4. IMPROVEMENTS 

In this part we will address the problem of how to improve 

design cepresentations from three standpoints. First, we 

will summarize what we have learned about the needed forms 

of representation from the analysis above. Second, we will 

provide some practical sug.gestions for: improving the use of 

the particular representations analyzed in this paper. 

Third, we will suggest some needed long-range developments. 

It is well known that representations effect problem-solving 

performance and design problem-solving is no exception. The 

case study we have analyzed here is an example of a general 

situation -- the representations we have for software design 
--------- .. ······-······-··~·-·-·-------~---~------~-----·--· 

are not sufficient. The issue of interest to a computer 

scientist is: "What are the characteristics of an effective 

design representation?" Needless to say, software engineers 

will be interested in the results of feasible answers to 

that question. The more immediate issue of interest to 

software engineer: s is: "What can be done to irnpr:ove design 



Page 42 

cepcesentations like those analyzed in this paper?" We will 

provide some initial answers in the following sections. 

4.1 CHARACTERISTICS OF AN EFFECTIVE DESIGN REPRESENTATION 

The analysis above is not extensive enough, nor is the data 

cich enough, to permit a definitive answer to the question 

stated above. What we have learned from our analysis 

however is this: 

Metacode is an excellent repcesentation at the level of 

design whece we used it. While more abstract statements 

make it useful at higher levels where many decisions have 

not yet been made, it is not appropriate for the highest 

levels where it is not yet known what programs there will be 

and many of the decisions being made are still at the 

functional level. Some representational focm other than 

pcogram representation is needed at this highest stage of 

formative design where the basic structure of the system and 

its components is being decided. These higher levels that 

we have called design may more appr2pfj~~~~X be labeled 

specification .. While better representations are being 

developed for specification of software at various levels 

[Bell and Bixler, 1976; Robinson, 1976] they may not be 

completely suitable for representing the tentative decisions 



Page 43 

and design activities that still must take place when 

developing more precise specifications. 

A representational form capable of representing a design 

from the earliest formative stage down to exact 

specifications £com which actual programs can be constructed 

edsily and unambiguously would be a powerful tool. We tried 

decision statements for the less structured stages of our 

project where metacode was not sufficient. While it worked 

reasonably well, the gap between it and metacode caused 

problems that a uniform representation could have avoided. 

There seem to be three possibilities: 

- Use metacode throughout since it works so well at the 
detailed end of the spectrum. 

- Find a representation that works well at high levels 
which can be elaborated to a point detailed enough 
to permit easy generation of code. 

- Find different representations for both ends of the 
spectrum that interface better than do programing 
language and natural language formats. 

We have already indicated our doubts about the first 

al tee native .. The second alternative involves two things: 

l• finding a representational form that fits two rather 

different situations -- unstructured general decisions and 

structured, program-specific decisions; 2• raising the 

level at which we can produce code unambiguously. It is 

important to note that the second thing has been done 

before, when higher-level languages were developed. Current 

efforts to rationalize large areas of program content (such 



Page 44 

as has been done in the case of mathematical and statistical 

packagesA offer a good chance of this happening through the 

packaging of software components which can then be 

designated by language forms above the level of current 

high-level languages. 

Uniformity requires something analogous to the graphical 

representations used so successfully by the designers of 

physical objects. Yet, even here, we should note that 

different forms (renderings, blueprints, wiring diagrams~ 

ace used foe different stages and different aspects of the 

design. 

Further, that an architect starts a rendering knowing what 

the primary functions and physical constraints ace for the 

building being designed. This permits him or her to begin 

woe king immediately with the structure of the design 

(generated by a knowledge of the general structural type 

required foe a given function•*· As we build a richer 

*Creative architects devise new and interesting designs, of 
course, precisely by not following the old pattern. Instead, 
they search foe new structures that supply the needed functions 
oc even question whether the stated functions are really those 
that are needed. C~eative design of this type is often needed, 
but in many other cases it is not. If a designer tries to be 
super-creative in a situation that does not need it, the customer 
pays needlessly. 



Page 45 

repertory of software designs and as we learn to specify better 

in advance what a system is to do rather than figuring it 

out during design, we may be able to start software designs 

at a lower level than is often the case now. 

As a final comment on alternative 2, we suspect it may be a 

graphical form of representation, suitably tailored to the 

linear-text format of programming languages. One of the 

main things missing from ouc use of decision statements was 

the ability to express relationships, something that a 

graphical form does well. 

The third alternative is probably the most realistic. Most 

of the comments made in connection with alternative 2 apply 

here as well .. 

A representation should not drive the design process 

The representation should instead conform to the 

design process so that it captures the information being 

generated easily and in a natural manner. Any design 

representation must allow easy refinement of the design as 

*However, we may 
precisely because 
design techniques. 

choose a 
it will 

representation in some instances 
force us to use a desirable set of 



Page 46 

well facilitate backup to previous design states when that 

is necessary. It must also pecmit easy compacison to 

constraints .. 

Any cepcesentation should be clear, easy to use, complete, 

accucate and so on. To be useful a design representation 

must be understandable by humans .. In particular, any new 

representation should be based on an understanding of how 

people design, choose problemss, propose solutions, and so 

on. This is not to say that the representation should not 

be machineable. Indeed, it should be so that the mechanical 

details can be handled easily Further, as our understanding 

of the design process increases then we will be able to 

increase our augmentation of the design proccess. Foe 

cepcesentations that are to be used primarily by humans, 

however, the emphasis must be on making them suitable for 

human use. We have assumed the reader is aware of these 

human factors considerations and, thus, have not stressed 

them here .. 

4.2 IMMEDIATE IMPROVEMENTS 

While development of an improved representation may take 

some time, software designers are still faced with the 

problem of representing their designs. On the basis of our 1 



Page 47 

experience with the RTE and other projects and the analysis 

we have carried out, we make the following suggestions: 

Use Metacode 

It provided us a very good working medium and significantly 

facilitated coding .. There are two extremes in the 

statements used in metacode -- completely standardized and 

completely up to the individual. Our metacode usage on the 

RTE pcoject was probably too free-form. Ovecstandardization 

must be guarded against, however. 

We started this papec by arguing that what one is doing is 

developing a representation, not just documentation. While 

this may seem a subtle distinction, it is clear that viewing 

one's task properly significantly affects success. Thus, we 

suggest that you keep in mind when planning a design project 

that you must develop a representation of the object, not 

just document your design. 

Decision statements appear to be useful for capturing much 

of what is going on at high levels of design. As we 

discovered, however, it is necessary to augment them with 

structure charts and a certain amount of prose to capture 

the information missed by the decision statements. 



Page 48 

Concentrating decisions about particular structures and 

considering decisions at the same level at the same time 

helps to work out the relations between parts and to develop 

all that is needed for a given item. 

4.3 NEEDED LONG-RANGE DEVELOPMENTS 

Our study of this case and our other investidations in the 

area of software design make it clear to us that there are a 

number of long-range developments that are needed. Among 

these ace the three general areas outlined below: 

We feel that the importance of representation has been 

underrated, or at least unrecognized, in the area of 

softwdre design. Indeed, it has only been in the past few 

years that a genuine recognition has taken place of the role 

that programming languages play. We now recognize (at least 

an increasing nummbec of people do• that our choice of 

language structures may play an important role in areas of 

program development other than just simply speed of coding. 



Page 49 

As the focus of much of the effort of cceating software 

systems moves up into the design area, we must learn to pay 

attention to the representation that is used from the 

earliest stages of a project. ,Just as mathematics is an 

indispensible representational tool to the engineer in other 

areas, we must develop appropriate representational forms 

foe use in all stages of software development. 

One of the clearest lessons we have learned is that in 

genecal a single representation is not sufficient for the 

range of tasks encountered in creating software. The 

obvious implication is that we must develop representations 

foe different pacts of the task and for different purposes. 

Further, we believe that as our understanding of 

reliability, protection, modularity and other software 

qualities improves, we will find that ·we must have 

cepcesentations that emphasize these aspects of a system 

(just as a plumbing map serves a specialized function foe an 

architec 

Not only must we develop specialized representations, but we 

develop representations and techniques that tie together 

into a coherent set the more specialized forms. But, we 

must be sure to view this as a long-range task. We should 

not tcy to develop perfect representations immediately, but 



Page 50 

Cdthec do the best we can, try the results, and gcadually 

evolve something better. 

Subjective analyses and ad hoc development of 

representations such as ours have their place, but it is 

clear that in many areas our progress will be greatly 

enhanced by more rigocous analysis and experimentation. 

Techniques exist for evaluating the_ human factors aspects of 

technology in other areas that can be adapte~ for use here. 

While such techniques do not gudrantee better results, and, 

indeed, can lead to worse results if improperly applied, ouc 

current approaches to analyzing, understanding, and 

improving our technological tools are woefully inadequate. 

Improvement in this acea is essential for the long-teem 

success of ouc endeavors. 

5.0 CONCLUSION 

In this paper and its companion [Fceeman, 1976a] we have 

presented and analyzed the representation used in the design 

of a particular system. Our sole purpose has been to learn 

from this experience what we could about the form and use of 



Page 51 

design cepresentation and to pcesent our anaiysis of the 

situation so that others can learn from it, too. 

We have presented our technical conciusions in several 

places above. The only thing we would add here is that it 

is our belief that there is a strong need for other studies 

that add to our knowledge of the tools and techniques of 

software creation. 

6.0 ACKNOWLEDGEMENTS 

I am indebted to the members of the Szamok Software 

Development Department for their patience in learn'ing and 

using the representational forms discussed above: Zoltan 

Szekely, Andras Kelen, Sandor Majoros, Sandoe Zold, and Mary 

Koos-Hutas. Comments from several colleagues and the typing 

assitance of Shirley Rasmussen are also gratefully 

acknowledged. 



Page 52 

7.0 REFERENCES 

1. Thomas E.. Bell and David C. Bixler. "A Flow Oriented 
Requirements Statement Language," .!:£~£.!.. .!..~2§. ~~!. ~Y~E2~iu~, 
held dt Brooklyn Polytechnic Institute, April, 1976. 

2. Stephen H. Caine and E. 
foe Software Design." ~CO£:.. 

Kent Gordon. 
1975 NCC. 

"POL A Tool 

3. F. DeRemec and H. Kron. "PRogc amming-in-the-Large 
versus Programming-in-the-Small," Proc. 1975 International 
~_on£~~~!!£~ .2!! Reli~el~ §..2ft_~~£~, IEEE-Press:--- --·----~-----

4. Peter Freeman.. "Toward Improved Review of Software 
Designs," R£££:.. !_~_75 ~gg, AFIPS Press. 

5. Peter Freeman. "Software Design Representation: A Case 
Study of the R'I'E Pc oj ect," TR 80, ICS Dept. U C Irvine, 
1976 .. 

6. Petec Freeman. "Software 
Survey," ~£2£.:.. 1976 De.sis_!! 
Press. 

7. Henry C. Lucas. Toward 

Reliability 
Automation 

Cceative 
Columbia Univec si ty Press·;·1974. 

and Design: A 
g2~f!:_£en£~, IEEE 

8. Clement C. McGowan and John Kelly. !~=Q2~~ St~~£tured 
ff2g£~~~!!!~ Te£~!!ig~£~, Petcocelli/Chacter, 1975. 

9. Lawrence J. Petecs and Leonard L.. Tripp.. "Design 
Representation Schemes, 11 Proc. 1976 MR!. e..Y!!!E2.§..!~!!!, held at 
Bcooklyn Polytechnic Institute; AprII 1976. 

10. Larry Robinson. 
Reliability," -~r 0£.:.. 
Press. 

"Specification Techniques for Software 
!_~7§_ Q~~i9.!! ~~~.2!!!~~!.£!! .£2~!~£!:..!2.£~, IEEE 

11. Jean Sammet. ~££9.£~~~.!~~ La!!~~ag~~l 
~~!!~~~~-~!:~!~.. Pc entice-Hal 1, 19 71. 

and 



Page 53 

12. W.P. Stevens, G.J. Myecs, and L.L. Constantine. 
" S t c u c tu r e d De s i g n , 11 _!BM .§.Y§.~~!!!.§. '2..2 ~ c n a i 13 , 2 , 19 7 4 .. 

13. Edward Yourdon. !ech~~ue~ of 
Qesi9.Q.. Prentice-Hall, 1975. 

Structure and 




