UC Irvine
ICS Technical Reports

Title
Software design representation: analysis and improvements

Permalink
https://escholarship.org/uc/item/2v54mo6fh

Author
Freeman, Peter

Publication Date
1976

Peer reviewed

eScholarship.org Powered by the California Diqgital Library

University of California

https://escholarship.org/uc/item/2v54m6fb
https://escholarship.org
http://www.cdlib.org/

SOFTWARE DESIGN REPRESENTATION:
ANALYSIS AND IMPROVEMENTS*

sz

Peter Freeman
May, 1976

Notice: This Materiay
may 'be protected

by Capyright | aw
(Title 17 U.S.C.)

Technical Repocrt #81

Department of Information and Computer Science
Univecrsity of California
Icvine, CA 92717

D ey s s D e D O e D S D D D S

*The project studied in this report was funded by the United
Nations Development Programme and was carried out at the
Intecnational Computer Education and Information Center in

Budapest, Hungary.

Page 1

1. PRELIMINARIES

1.1 INTRODUCTION

We are interested in design, especially the design of
software*,. One way of characterizing design is that it is a
process of building a representation of the object 4to be
created. We take it as self-evident that some
representation of a piece of software exists from inception
until a binary image is loaded into memory for execution.
The issue we are concerned with in this paper is the form of

that repcesentation.

The reasons for studying design representation are

probably well known to the reader, but are restated for the
benefit of those new to methodological considerations:
Representations, in some form other than contents of a human
memocy, are needed so that the information involved can ~be
communicated to others; the i£;££ééméépécity of the human

*It has been often observed that the methods used to design
a wide cange of objects are quite similar in many respects.
This fact is especially true in the design of information
processing systems that have both hard and soft elements.
Thus, much of what we have to say here may apply equally

well to hardware or software. We have chosen not to
consider hardware explicitly in this paper, however, for two
£ easons: 14 hardwacre hdas a number of additional, very

useful representations, the consideration of which would
cacrry us too far afield and 24 the concrete example on which
this study is based did not include any hardware design.

Page 2

mind for technical detail must be augmented (represenations
of current software systems often run to hundreds or even
thousands of printed pages%; the form of the representation
may greatly affect the performance of vacrious design tasks
(review, backup, prediction of cesultsﬁ; the representation
of information affects our success or failure in producing

moce refined representations that are closer to the desired

final result.

We have no panaceas to offer. What we have is a
detailed example of the representations used on a particular
project (actually, pieces of a detailed example too lengthy
to present here», an analysis of those representations and
their usage, and some suggestions of how to improve the
representation of software designs. Following some
preliminaries, we will describe the case study, analyze it

and suggest improvements in that order.

1.2 A VIEW OF DESIGN

A design is a cepreéentation of an object.
Fundamentally, a design is a collection of information that
tells us something about the object we want to create.
Thus, the design process can be viewed as an
information-gathering process that continually expands the
design by putting more and more information into the

representation until a tecmination point is teached.

Typically, we terminate a design when we have enough

Page 3

information to implement the object. Figure 1 illustrates

our informational view of design.

It follows then that design is a process of deciding
what information to include in the design and what
information not to include. This has led us in an eaclier
papet [Freeman, 1975] to propose that it is primarily the

decisions made in the course of design that must be

T ——

tepresented.

PAGE Y

FIGURE ¥ ONE VIEW OF DESIGN

REPRESENTATION

MUSH

) g B

METACODE (FDL) \

T/ T/ 77774 e

L= T NEFORMATION ——D

Page 5

1.3 REPRESENTAION VS DOCUMENTATION
It is important to distinguish representations from

documentation. We, along with most people concecned with

software design, have not been careful about making this

distinction in the past; One of the main points we want to

stress in this paper is the need for this distinction.

The curcent use of the word "documentation" in software

cceation wusually denotes information describing an object

such as a program, an operating procedure, or the results of

a design process. This word has the further connotation in

many instances, especially in design where the object does

not vyet exist, of representing everything we know about the

object.

It is precisely this connotative wuse of the word

"documentation," however, that we Dbelieve has prevented

clear thinking about design representation. In the case of

a progcam that exists, it 1is understood that the

documentation augments the actual object and that we must go.

to the object itself as the final authority on questions of

substance. (This in fact is a standard maxim given to those

attempting to undecrstand a programy. In the case of a

all that

progcam design, howevec, the "documentation" is

exists. Thus, it is more than information about an object

(i.e., documentatiog}, it is a representation of the object

being cceated.

Page 6

By not being clear about what our flowcharts, 1lists,
diagcrams, and voluminous prose generated during design
ceally constitute, we have not thought <c¢learly about the

role of these representational forms. Of course, everyone

recognizes that the stacks of paper generated during a
design process contain in theocy all the information we have
available about the object (usually, there is additional,
unrecopded informationd . Yet, few people have specifically
tceated such ad hoc collections of information as a
representation in the same way that an architect views
graphical representations of a building or an engineer views
mathematical representations of a physical process. Just as
other design professions have carefully evolved (and in many
cases consciously c¢reated) the representational forms they

use, so must we do the same for software design.

Recently there has been increased concern taken with
software design. A number of books (e.g. [Lucas, 1974},
[Mcc;owan and Kelly, 1975], and [Yourdon, 19751} and papers
(e.g. [DeRemer and Kron, 1975}, [Freeman, 1976b], and
[Stevens, Myers, and Constantine, 1974]) have appeared that
treat vacious aspects of softwacé design.*

= e emiy) e D b e 0 D Sw

* There are several attempts to develop a more comprehensive
representation for system design that will include hardware
and software [for example, Chu, 1975]. Our purpose here is
not to sucrvey the field, however, but to try to increase our
understanding of the issues by close examinatin of one

particular example.

Page 7

Some of these have explicitly addresssed the issue of

cepcesentation: Structure charts [Stevens, Myers, and

Constantine, 1974] and program description languages (PDLsJ
[CaineququHGQEdon, 1975] ate both forms for representing
program designs and have been used with some success.

Peters and Tripp [1976] sucrvey a number of graphical design

tepresentation schemes,

Our own work on software design rationalization
[Freeman, 1975] provided another form for representing a
design; while typically requiring too much effort to carry

out in the full format we earliec pboposed, its ability to

captuce the decisions being made during design led us to one
of the representational forms discussed below*.

- D et D S e e e Y D S

* Software design rationalization is a technique for
capturing not only the design decisions, but the reasoning
that led to them. Specifically, one is instructed for each
decision, to list a set of alternative choices, an
evaluation for each alternative, and the reason for the one
actually chosen. While it is clear that this provides a
great amount of information not normally found in a design,
which may be very useful to later attempts to understand the
design, it is not clear that the added effort of producing
this detailed ‘"rationalization" is cost-effective. The
decision statement representation discussed below appears to
be a moce natural representation for actual design

situations.

Page 8

In the ctemaindec of this paper we will illustrate and
analyze the usage of several cepresentational forms. Not
surprisingly, we will find that although paying careful
attention to the representational issues outlined above
appears to have improved matters, we are still a 1long ways
from having a truly satisfactory representation for software

design.

Page 9

2.0 THE CASE STUDY

2.1 OVERVIEW

The analysis we will present in later sections is based
on 'a case study of an actual design project. The Remote
Text Editor (RTE) project was carcied out by a group of five
people undér the direction of the author; it resulted in
the design and implementation of a small time-sharing
system. The work was performed at the International
Computer Education and Information Center (Szamoks in

Budapest, Hungary.

A sizeable fragment of the design, along with a
description of the representational forms used, is presented
in [Freeman, 1976al. References in this paper to the "case
study" should be read as implicit references to that paper.
Some of that material is reproduced in this section for ease

of reference along with some new material.

2.2 FORMS OF REPRESENTATION USED

Six main representational forms were used in the RTE

project; each is defined and illustrated below:

Engiish prose: Ocdinary narrative descriptions.

example: The FS consists of a collection of reentrant
programs. These programs, taken as a group, are 4
pact of each process-type in the RTE system.

Page 10

Lists: Simple lists of items which are usually a single

word or phrase.
example: required control functions:

start editing

start copying

start dicectocy manipulation
submit job

quit subsystem

logon

logoff

Decision statements: Simple English statements that record
a decision with 1ittle elaboration. Each decision is
tepresented by a single statement.

example: Files will be accessible in two modes: block
or cecord.

Functional module specifications: Inputs, outputs,
function, <calling sequences, and constcraints that define a
program module; presented in a fixed format with little or
no narrative explanation. ‘

example:

PROTECT (filename, owner=-id, user-process,
t tn-code)

function: Mark the specified file read-only

inputs: filename
owner-id
user=process

outputs: done
file open = no action
user = owher
owner does not exist
user does not exist

Page 11

Graphical forms: Fiow charts and system structure
charts indicating intermodule dependencies of control

and data flow.

example (structure charty

gonmons

=S T OM N

RT DM

Metacode: A PDL (program description Jlanguagej Algol-like
language consisting of ocrdinary control flow statements
(if-then-~elise, do-while, repeat-until, exit, exit-with,
case) and free-form English statements for conditions and
operational statements. Ordinary programming statements are
permitted, but are discouraged. Data structures are either

implicit or logically (not physically} defined.

examples: begin
if owner = user then exit
with(user =owner) ;
if file is open then exitwith(file in use’§;
get directory for owner;

exist’d;
find file entry;
if none then setreturncode(’file does not
exist d ;
else begin
mark file read-only;
setreturncode (“done s ;
end
release directory;

end

Page 12

2.3 STAGES OF DESIGN IN THE RTE PROJECT

This project consisted of several definite temporal

stages. Each stage also corresponded to the level of

decisions being made:

Stage 0: Specifications by customet

Basic objectives - of project wete defined.
Organizational resources. (people and machines) committed.
Overall schedules set. Represented by: prose.

Stage 1A: Detailed specification

Functional specs of system were developed by design
team and advisors. Operated as co=-routine with Stage 1B.
Both involved decisions at about the same level.

Represented by: prose, lists,

[Note: Throughout, the "level" of decisions referced to is

mecrely the mode; often at a low level some high-level
decisions were made and vice versal.

Stage 1B: Overall structural organization of system

Major decisions regarding main pieces of the system and
how they interact. List of main ideas of how to build each
piece (not complete). Represented by: prose, lists,

structure charts.,
Stage 2: Preliminary design of each facility

Functions and interactions of each facility were
considered and major decisions made about how they would
work. Basic input formats and data structutes set.
Represented by: decision statements.

Stage 3: Refined design of each facility

Each decision made in Stage 2 was directly expanded by
considecring its implications, the decisions made at Stage 2

for interacting facilities, and more details of the
underlying hardware and RTDM system (a real-time disk

monitor supplied by the manufacturec). Represented Dby:
decision statements.

Stage 4: Preliminary module design

The decisions of previous stages were examined for
implicit definition of modules for each facility. Common
secrvice routines were identified. Modules were specified by
stating inputs, outputs, and functions precisely. Some
rough metacode was written. Represented by: prose, module
specifications, structure charts, and metacode.

Stage 5: Detailed module design

All needed modules wece specified in metacode. Data
structures were specified at the logical level.
Representated by: functional module specifications,
metacode,

2.4 REPRESENTATIONAL NEEDS

In this section we will summarize the repfesentational
needs experienced in each stage of the RTE project descr ibed
above. For each stage we will describe the information
inputs and outputs to the stage (these comprise the main
items to be represented), the constraints considered at that
stage, the types of decisions made, and the dominant

representational forms actually used.

Stage @: Customer Specifications

inputs: basic needs of the sponsoring organization
physical resources available
people resources available

outputs: wock ocder
constraints on the task (technical and
ocganizationals

decision types: information and action needs
[not made by designers]

Page 14
representations used: verbal instructions and agreements
memor anda defining the task

Stage 1: Detailed Specifications

inputs: work order
knowledge and experience with other systems
detailed knowledge of available hardware and

software
knowledge of application area

outputs: detailed 1list of user functions
initial structuring of system into facilities
iisting of major functions for each facility
dominant intecactions between facilities

constraints: capabilities of machine, software, and design

staff
user needs and level of sophistication

decision types: functional capabilities
system structure

tepresentations used: prose
lists
structure charts

Stage 2: Preliminary Facility Design

inputs: outputs of Stage @ and 1
models of other systems
analogous information handliing situations
tequirements of facilities defined in Stage 1
probable structure of facilities defined in Stage 1

outputs: sets of decisions

constraints: hardware capabilities and structure
Stage 2 decisions

decision types: detailed function, structure and format
descriptions.

representations used: decision statements
formal module specifications

Stage 3: Detailed Facilitiy Design

inputs: outputs of previous stage
decisions of Stage 2
knowledge of other systems
requirements -~ global and of other facilities

outputs: detailed decisions based on decisions of Stage 2
some module specifications

Page 15

some constraints on functions, structures, and
formats

constcaints: hardwace
Stage 2 decisions

decision types: detailed function, structure, and format
descriptions

representations used: decision statements
formal module specifications

Stage 4: Pceliminacry Module Design

inputs: outputs of all previous stages
programming knowledge

outputs: required module list
service module list
rough design of major modules
module specifications, including further decisions

constraints: previous decisions
programming requirements of system and machine

decision types: most format and structure
some further functional requirements

cepresentations used: 1lists
metacode at high level
some prose :

Stage 5: Detailed Module Design

inputs: previous stage outputs
programming knowledge
rough module designs of previous stage

outputs: detailed data structures (logical)
detailed metacode (logicaly
precise input/output formats

constraints: previous decisions
programming structures

decision types: program structures
housekeeping structures

representations used: metacode
diagcams
prose (documentationy

Page 16

2.5 NARRATIVE DESCRIPTION OF THE RTE PROJECT

The design of the entire system followed the temporal
stages described above. For example, Stage 1 activities
wece completed before Stage 2 activities were begun. A
cectain amount of backtcacking was necessary, as in any
design effort; but, with the'exception of the RJE (Remote
Job Entcy) communicator, the design of the other facilities*

proceeded straightforwardly.

In Stages 1 to 3 tnere was a large amount of
interaction between the design of different parts of the
system. Beginning with Stage 4, the interaction was more

limited and localized.

The ociginal project goals were laid down by Szamok
management verbally and in memoranda, but in Hungarian. No
direct translation was available. They were the usual type
of high=level general directions of management to a
technical organization. They set resource levels and

defined certain global constraints on the form and function

— D o G e S D e D D by eh

* The total RTE system consists of several major pieces,
described as "facilities": memory manager, process manager,
i/o manager, file system, editor, command intecrpreter, RJE
communicator, and RJE initiator. See [Freeman, 1976a] for
more details.

Page 17

of the system.

Considerable effort was expended on the RTE project
before the author joined it. One of the results of this
activity was a more detailed statement of specifications for
the system embodied in a report that was given back to

management for review.

When the author joined the project, it was soon evident
that although the major pieces of the system had been
identified, the specifications for each of these pieces were
not well wundecstood. Further, the required user functions

were not clearly delineated.

A series of group work meetings were held over several
days at which we first worked out a comprehensive view of
the system as the usec will see it, and then developed a
functional specification of each major facility. Note that
we did not develop detailed specifications of some
facilities such as the command language intecrpreter and copy
system which do not interact significantly with other

facilities.

Starting from the functional specifications , we began
to devise software structures that would satisfy the
specifications. We worked top-down by considering analogs
of the subsystems, listing requirements and constraints, and
identifying majoc decisions. After choosing an overall

structure, we concentrated on details.

Page 18

The decisions and information generated at the first
stage came about largely through free—association and
brainstorming. Some decisions were explicitly elaborated
later, but primarily the ficrst stage formed a basis for the
more organized decision making of the next stage. At the

end of Stage 1 we had a clear representation of the

tequicrements.

In Stage 2 we undectook to identify and make the major
decisions that would determine more precisely the structure
of subsystems. We did this by considering the requirements
and the hazy structural outline produced in Stage 1B, and by
tcying to identify design features for which there seemed to
be alternatives. If such a feature seemed low-level (i.e.
not having global implicationsy we ignored it; otherwise we
made a decision and recorded it exactly as shown in the case
study. Alternatives for each decision were considered =--

often at length == in the manner of design rationalization

[Freeman, 1975].

The decision statements in Stage 3 were direct
expansions and implications of the decision statements in
Stage 2. For each decision statement in Stage 2 we asked
what implications, sub=-decisions, and co=decisions were
possible. The resulting decisions were then made, as in
Stage 2, by consideration of alternatives. While
sub=decisions of different Stage 2 decisions sometimes

necessitated coordination, we did not have to make major

Page 19

revisions to the Stage 2 decisions.

After Stage 3 we felt the decision statement cefinement
had carried us as far as it could and we set out to specify
actual program modules. While Stage 4 generated a number of
decisions and information that later (Stage 5§ permitted us
to produce detailed module designs, it was not a cleanly

cepresented stage of the design. Biuntly, the

representation used in Stage 4 was a "mush."

Out of the "mush" of Stage 4 we proceeded to identify
needed program modules. In Stage 5 we designed these
modules in sufficient detail that we could then code and
test them. Our decisions were all represented in the
standard organization of module specifications and the

metacode used to describe the logic.

Page 20

3. ANALYSIS

Thcoughout the following we assume some familiarity
with the case study summarized in Section 2 and more fully

described in [Freeman, 1976al.

3.1 APPROACH

Our primary purpose in this study is to increase our
undecstanding of software design representation by careful
consideration of a particular case study. Having presented
what occurred in this pacticular project, we now want to

identify some cause and effect relationships.

A necessary first step in an analysis of this sort,
identifying the constituent parts, has already been done.
In what follows, we wiil limit most of our analysis to two

particular forms: decision statements and metacode. While

other forms were used, these two were dominant.

Our approach to this analysis has three parts. Ficst,
we will identify several important featuces of any
representation along which the two forms of interest Ean be
evaluated. Because we are interested in the total
repcesentation of a design, we will also evaluate the two

forms taken together along these same dimensions.

Page 21

IR

2S5Vl
Second, we will assess the impact of these forms (and

some of the othecs used in the RTE projectd on the design
process. We will igentify specific ways in which the forms

helped or hindered us as we designed.

Thicd, we will assess the impact of the design process
on the forms. We want to understand to what extent the
choice of forms was dictated by the design steps and to what

extent those that were chosen were modified because of the

design process. %

As with any complex and unformalized endeavor, these
evaluations are necessarily subjective. It is clear that
whenevec possible, we should strive to obtain objective
evdaluations. Yet, it is aléo clear that most progress in
improving the state-of-the—-art in software engineering is
based on subjective evaluations due to the extreme
difficulty of obtaining objective data of significance..
Further, careful objective studies usually must be preceded
by subjective analyses that point the way toward areas for

deeper investigation.

3.2 ANALYSIS BY PARTS

Page 22

3.2.1 Underlying Factors -

As the theory and practice of a pacrticulac

representation is developed, highly detailed analyses can be

carried out. For example, we can analyze a programming

language along a lacge number of well-understood technical

and practical dimensions (see, for instance, [Sammet 1971]).

Unfor tunately, this is not vyet the case for design

representations. One result of studies such as this should

be a gradual establishment of the proper dimensions to use

in analyzing representations. Thus, we must first discuss

briefly the factors we consider important for analysis.

A representation 1is a collection of information

expressed in graphical, mathematical, or written form. Its

main reason for existence is to facilitate two fundamental

operations of design: review and elaboration. A design

must be reviewed at a number of times for a number o

ceasons: ! the designers themselves must understand parts

designed by colleagues and refresh their memories on theit
v)‘ s

own decisions, peers must review it for technical accuracy,

7)managers must review it to determine resource allocations

* !
)

for future stages,*and customers must ceview it to see if it
meets specifications and expectations. Later, a design may
be reviewed by students, researchers, and other designers in
order to understand the conceptual basis Vand logical

structuce of the object that has been created.

of

Page 23

Elaboration is the basic operation by which we achieve

progress in design. Even if a design 1is not strictly
organized into 1logical 1levels, any design process is

fundamentally one of continually elabocating the ihfbrmation

- in the design. In effect, designers apply operators (albeit

in a complex manner) to the information represented at one

stage of a design to obtaih the next, more elaborated

representation. A design representation must facilitate

these two main operations of design.

The factors we have chosen for analysis are directly

related to these two primary design functions:

clacrity - atre the representations clear and easy
to understand?

completeness =~ do they permit all needed
information to be represented?

accuracy = can facts and relationships be
expressed precisely?

consistency = are similar items expressed in
similar ways? are items exptessed in the same way
at diffecrent levels of specificity?

ease of use - do people find them natural and
simple to use?

cost-effectiveness - are they expensive to produce
and/ot maintain?

3.2.2 Information Elements Of A Design -

Page 24

A fundamental cequirement of any design representation
is that it be able to represent the elements of the object

in question. In the case of software design, we can

identify the following kinds of information:

decisions - choices among alternatives;
relations - 1logical «connections between other
elements, either physical or informational;

constraints - statements of conditions that should
not be broken by the design; may include
constraints on the process itself, but these are
usually outside the representation;

open guestions - an important part of any design
is determining what 1s not known ot what is
partially known; this information needs to be a
pact of the design representation (although one
might argue that it is properly a part of the
design documentationi ;

cequirements - much the same as open questions;

functions - descriptions of what something is to

do:

structures - programs, data structures, control
structures, formats.

Bear in mind in the following that these are the types
of information that went into the representations we ate
evaluating. The c¢dse study [Freeman, 1976a] provides
numecrous examples and the analysis presented above in

Section 2.4 also illustrates the range of information

present in this design.

Page 25

3.2.3 Summacry Evaluation -

Table 1 presents a summary evaluation of the undecyling
factors desccibed above. Only those forms (metacode and
decision statementsy which are used to any great extent are
evaluated; their combined effect* (since they formed the

buik of the representationi are also evaluated.

D D G St e T et s e €

* By "combined effect" we mean "taken together to form a
whole" and are not implying their use side-by=-side on the

same page.

Page 26

decision metacode decision statements
statements & metacode overall
clarity 8 9 5 :
completeness 6 10 4
accuracy 9 T 8
consistency /5] L7 5
ease of use 8 109 7
cost to use 10 10 149
scale: % 5 . l?
v \ =4
bad good

Table 1: Summary Evaluation by Factors

Table 2 presents a summacy evaluation of the ability of
metacode and decision statements to represent the

information in elements in our design.

Decision Metacode
Information Statements
Elements '
decisions 10 4
relations 3 10
constraints 8 3
open questions] 3
requirements] @
functions 10 8
structures 2 10

¢ 19

scale: unable to easy to
’ represent represent

Table 2: Summary Evaluation by Information Represented

In the next two sections we amplify and illustrate these

evaluations.

Page 27

3.2:4 Discussion Of Factors =

Ciacity (8/9/5¢*

The clarity of decision statements is high. For example,
consider the LFS Preliminary Decision Statements in the case
study. It is easy to see quickly what the primary featuces
of the LFS will be by reading these decision statements.
When they are 1later refined, the ramifications of the

higher-level features are readily apparent.

What is missing is a representation of the interrelation of
decisions. Thus, the connection between the decisions on

file shacing and file protection is unrepresented.

Metacode is generally easy to follow as evidenced by the
samples in the case study. The 1logic is given in
unambiguous form through the wuse of structured control
statements while unnecessary details are suppressed and the
operations ace represented in natural 1language that is
easier to comprehend (in generaly than straight programming

language statements.

) s S e R G D €D G T) D

* (8/9/5¢ are the evaluations of clarity given in Table 1

foc

decision statements, metacode, and the two forms taken together.

Page 28

is not as good as either alone because of the gap between
them. That is, they are rather different forms of
representation and do not interface well. As we progressed
through the stages of design there was no problem as long as
we were within a single form, but Qhen we worked back and
forth between the two forms the combination did not clearcly
tepcesent the design. This is most clearly seen in the case
study in Stage 4 where we attempted to create a metacode

representation directly from decision statements.
e 4 R M,‘m A ref. hj L }ui Ve Gﬂrm en 7 f/ v

Completeness (6/10/4)

Decision statements are onliy fair along the dimension of
completeness. A reasonable amount of the design was not
captured by them, due largely to the fact that they did not
express immediately the implications of design decisions,
such as the interrelationships between pacrts of the system.
In the case of metacode, on the other hand, when something
is written down, we can determine its relationship to other
pacrts, but only on a 1local basis. This is clearly a

consequence of the fact that metacode, asrugwwﬁorm, hgsuwa

definite structure while natural language statements do not.

There is structure between levels of decision statements,
however, and this removes some of the problems. For
instance, from a ficst-level decision regacrding the

simplicity of file names, we can see the relation of several

Page 29

other decisions concerning the exact rules governing name
formation. The relation between these decisions and those
governing the structure of the directory are not I=fe)

appacent, however.

Metacode permitted us to represent the design in as much
completeness as we wanted at the 1logical level, For
example, in the representation of the OPEN function, there
was no problem in showing all the conditions and operations
of intecest. Since we could use programming=language

statements, we could have made it fully compiete.

Taken overall, the two forms did not provide a very complete
tepresentation as we progressed through the stages of the

design. The lack of stcucture representation posed a

serious problem as we moved from decision statements to

~metacode. Thus, our rating of their combined effect is low.

Accuracy (9/7/8)

Decision statements are straightforward, although in some
cases there 1is ambiguity. For example, the decisions on
file space management do not point us vto a definite
implementation. The accucacy of the decision statements is
just the accuracy of natural language, improved somewhat by
the sparseness of the format and the absence of extraneous

verbiage.

Page 39

The metacode we used introduced some ambiguity, especially
in data stcuctures. This, however, was due to our failure
to describe data structures at the metacode 1evel, not to
the representational form itself. However, the use of
English expressions permits one to be sioppy, sometimes

cesulting in inaccurate statements.

Overall we found the representation to be accurate.,
Accuracy tends to be a localized propecty and thus to be
additive. No particular accuracy problems were noted in

going from decision statements to metacode.

Consistency (5/7/5)

Neither form made it easy to achieve a consistent

repcesentation. Decisions were often made at widely

differing levels of detail even when an attempt was made to

iimit to them to a particular level. The representation
\

helped only minimaily to organize decisions by level or by

area. This is especially noticeable in the refined decision

statements of Stage 3.

Metacode is somewhat better. The use of the same control
structures imposes a certain amount of consistency on the
descriptions. Standardization in the terms and operations
used would further increase the consistency of metacode
descriptions. This is illustrated in the case study where
set phrases such as "get owner’'s directory" are used in

saveral different functions.

Page 31

The difference between the two forms and the "distance"
between them is basic enough that it really doesn’t make

sense to address seriously the issue of overall consistency.

Ease of Use (8/18/7)

We found both representations easy to use (i.e., generated,
although decision statements were not as easy as metacode.
This appears to be partly due to the experience of
programmers/designers in working with a proramming language
cepresentation., It is also partly due to the fact that ﬂ}t

is difficult to choose the decisions to be made and that

they typically apply to 1large segmgnts of thgwwéﬁgign.

Generation of representations in both, of course, is
generally quite easy since the syntax i1s not complicated.

The mismatch again detracts from the overall performance.

Cost to Use (10/10/18)

Neither form requires great effort to use or maintain and

thus both are cost-effective,

3.2.5 Discussion Of Representational Effectiveness -

A fundamental property of any representation is its ability
to cepresent items of interest. An equation cannot
tepresent our feelings toward a situation while ©poetry

cannot represent (preciselyd the flow of fluid in a pipe.

Page 32

Beyond the simple binary question of Fgapab%li;y of a
tepresentation, is the more difficult question of relative

\«—i -
ability. A decision statement may represent the structure
of a system, at least implicitly, but how well does it do
this? Even more difficult is the case where we have two

competing representations: for example, does a flow chart

ocr metacode better represent the control structure of a

system?

'(':o D[) eV »‘0’\’,‘;

In Table 2 we have tried provided a set of subjective
discriminations. For seven infocrmation elements (decisions,
relations, etc.y that we wused in our design, we have
indicated, on a scale of @ to 1@, how well they could be
represented in each of the two representational forms we are
analyzing. The different information elements were not
equally distributed throughout the design, of course; buﬁ,
we have evaluated the effectiveness of both representational

forms for all information elements in order to consider

their relative merits.

Decisions (10/4}*

Decisions are easily represented by decision statements, by

D D s e 2> e (es Sty D e s bt

* (l@/4§ ace the ratings given decision statements and metacode
respectively on their ability to represent decisions.

Page 33

definition! While it is clear that metacode (indeed, any
representationy encodés a set of decisions, they are not so
easily seen. Further, while it is easy to represent a local
decision in metacode (e.g. "the test for file ownecrship
will be performed after the test for existence of the file")
the representation of a global decision (e.g. "file
ownership will always be checked before performing any
.operation“a will be distributed across a large amount of
metacode, but would be represented in a single decision

statement.

Relations (3/10)

Relations between parts of the system are not easily
tepresentable by decision statements. We typica11y would
have to write out a decision statement for each possiblie
relation. Further, the mode of usage of decision statements
(deciding the form or function of some pacrt of a system)
does not encourage expressing relations except in cases

where that relationship is of major importance.

In metacode, the relationship between parts 1is expressed
textually, by simply naming the object (through subroutine
calls and use of variables). This makes it easy to express
relationships, although they may not be as visibie as ih a

structure chart.

Constraints (8/3)

Page 34

Constraints are quite easy to express using decision
statements. For example, we might state as a decision "only
the owner of a file may alter its protection code".
Constraints on the programs themselves can be easily
expressed 1in some instances (e.g. "any program that
accesses a file must provide ,an accurate ercor return
indicating the results of the access"} but in other

instances may be difficult (e.g. we might want to express

that some data could be used globally and other local dataj.

In metacode, constraints can only be expressed implicitly
(by not doing something or doing it in a particular way =-

in either case, we have to 1nfec the constcalntQ or in the

form of declarations about data sttuctures.

Open Questions (@/3)

During any design activity we form questions that are not
immediately answered; that is, they are left "open." We
must represent these open questions so that we can come back
to them at a latec stage and determine whether we then have
sufficient information to answer them. - As we have defined
decision statements, they cannot represent open questions.

However, a trcivial @xpdn51on of the c@pcesentdtlonal form to

e e e e et T

1nclude dec151ons about the w§e51gn ptocess would remedy

thlS.

Page 35

Metacode also is not well-suited in general to representing
open questions. It is, however, on a local basis since when
a statement is made in metacode that 1is not operational
(e.qg. "get the next wvalid ’input"i it is implicitly a
statement of an open question that must be answered (e.g.

"how dare we to determine what the next valid input is?"}

"Requirements (0/0)

Requirements are very similac to open questions, but we have
differentiated them to indicate that requirements are
imposed from outside the design process wﬁile open questions
arise because of the design actions being taken. (Cleacly,
an open question may turn out to be a requirement that we
failed to state in the first place; so, the distinction
between them should not be carried to any dgreat lengthi}.
Again, decision statements, by definition, are not able to
state requirements =- that must be done using some other
(although perhaps syntactically similaré representation. In
this case, metacode also is not able to express cequicements
per se, although one might use metacode to express a

process-ocriented requirement.

Consideration of both these information elements == open
questions and requirements =- points up a very important
issue often overlooked in design. We must talk about the
design processs itself, not just the final product. We

uncover questions to which we must find answers, discover

Page 36

celationships between constraints, make depisions about the
allocation of our design resources and so on. This
information, Jjust as much as the information that goes to
make up the final design, must be represented so that we can

work with it in an orderly manner.

Functions (10/8)

The last two elements we consider are the basic elements
that make up any design: functions =- expressions of what
something is to do, and structures =-- the objects that will
pcovide the needed functions. Functions are easily
representable by decision statements and metacode, although
in metacode the extent of a function is more restricted in
scope. For example, we can state in a decision statement
that "all routines in the file system will provide complete
error checking of all inputs", while in metacode this same
functional description would have to be ©placed in each

toutine by showing a call on an error checking routine.

Structures (2/109

In the case of structures =- that is, programs and data ==
decision statements are not very useful for describing the
programs themselves. We can state that a certain stcucture
is to be used (e.g. "the directory lookup will use a linear
search algorithm") and describe its propecties (e.g. "the

linear search will compare only the ficrst 6 characters of a

Page 37

file name."4 but it is difficult to express the exact

structure of the program in question (e.g. considerA

describing the complete control flow of the directory lookup

module using decision statements) .

Metacode, on the other hand, is ideal for describing program
structures in detail. The metacode we used had no special

pcovisions for describing data, a deficiency which could be

casily remedied.

3.3 IMPACT OF REPRESENTATION ON THE DESIGN PROCESS

Thus far we have analyzed our representation along several

pacrtial dimensions. We now wish to 1look at how the

cepresentations affected the design process overall. For

our purposes here, we consider the design process as being

composed of two activities: elaboration and review.

3.3.1 Effect On Elaboration -

We must differentiate between elaboration between stages
using the same form and between stages using diffecent
forms. Between stages using decision statements, the form
of the representation clearly made elaboration much easier:
We simply took each decision and considered all the more

detailed decisions implied by it. We did not need to spend

Page 38

much effort deciding what problem to work on hnext. The
decision statements organized the design activities into
discrete, rathecr local areas of concern. Further, they made
clear the actual steps necessary to elaborate the design:
take whatever decisions were implied or enabled by the

higher-level decision being refined.

As noted above, dif;}sp;ty was encountered in going from
decision statements to metacode. The result was the "mush”
Véf Stage 4. The primary problem seems to have been that the
decision statements do not do a good job of representing the
structure of the developing system, either in indicating the

clumping of functions into discrete packages (modules) or by

indicating the interconnections between parts.

Elaboration between stages using metacode was also quite
easy for the same reasons. (There was some metacode used in
Stage 4 which was elaborated in Stage 5j) . While we had only
one stage completely repressented in metacode, the next
stage (not considered here) which generated assembly code

from the metacode was extremely easy*. This appears to be

o o e e s e Ca G G eu Gl) e G i S G Sl Sl S O € G QY D e

*OQur experience in this respect confirms that reported by others
[Caine and Gocdon, 1975]. Coding went extremely fast and few
logic ercrors were found. It was not uncommon for a single
pcogrammer to code up and check out (in stand-aloned tests up to
100 assembly language instructions per day. Unfortunately, we do
not have available precise statistics on this stage of the

project.

Page 39

due to the fact that the representational forms (metacode and
assembly languaged are both programming languages in their
structure. One of the most important things we learned
after the fact 1is that we should have had another level
using metacode, but somewhat higher than Stage 5, which
could have then been refined; this would have gone a long

way toward reducing the mush encountered in Stage 4.

3.3.2 Effect On Review =

When reviewing a design, one is basically 3just asking
whether the right decisions have been made or not. Decision
statements are a great aid to review since they clearly
present the decisions that have been made. Their lack of
completeness, especially in expressing the structure of the
system limits their effectiveness, however. 1In other words,
they make a part of the review pcoéess very easy, but hinder

another part -=- the review of structure.

The effect of metacode on review is also ambiguous. On the
one hand, because metacode displays the logical structure of
programs in a way that makes it easier to understand than a
lower=level representation, program review is enhanced. On
the other hand, at the level we used it,. metacode
incorporates a good deal of detail, much of it unrelated to

the information which must be reviewed. This makes review

more difficult. Obviously, if we had used metacode more

Page 40

consistently at a less-detailed level, some of this problem

would have gone away. The poor mismatch between the two

forms, made cev1ew of the de51gn as it developed Aat that

< [

stage much more dlfflcult than 1t should _have been. We will

T

tCedt this situation in more detail in later sectlons.

3.4 IMPACT OF THE DESIGN PROCESS ON THE REPRESENTATION

The impact in this direction is not as easy to analyze. For
one thing, the representation was not a free variable == we
had chosen the representational forms before starting and

did our best to stick with them.

If you look carefully at what we were doing in Stages 2 and
3, however, you will see that even if we had not pre=chosen
decision statements for those stages, what we were doing
would have forced us into their use (or something éimilari.
At that point, the design process was ranging widely over a
number of issues, trying to determine what should be done
and how to do it. It was not a highly organized sequence of
design actions and thus needed the loose tepresentation

offered by decision statements.

The "mush" of Stage 4 is clearly a result of the design
process we wetre using at that point. We were trying to
consolidate our earlier decisions into clumps that could be
handlied 1later as individual design problems in the form of
modules. Although we set out trying to use metacode at that

stage, we failed because the design actions we were taking

Page 41

did not conveniently fall into that form.

By Stage 5, we had consolidated the design into separabie
units corresponding to modules. Then, the representation
afforded by metacode was the natural one to use. The only

noticeable impact at that stage was that the metacode became

more detailed than we had planned because the .design

activity itself was opecating at that degree of specificity.

4. IMPROVEMENTS

In this part we will address the problem of how to improve
design cepresentations from three standpoints. First, we
will summarize what we have learned about the needed fécms
of representation from the analysis above. Second, we will
provide some practical suggestions for improving the use of

the particular representations analyzed in this paper.

I e =

Third, we will suggest some needed long-range developments.

It is well known that representations effect problem=solving
performance and design problem=-solving is no exception. The
case study we have analyzed here is an example of a general

situation =- the representations we have for software design

——

are not sufficient. The issue of interest to a computer

scientist is: “WBAt ace the characteristics of an effective
design representation?" Needless to say, software engineers
will be interested in the results of feasible answers to
that question. The more immediate dissue of interest to

softwacre engineers is: "What can be done to improve design

Page 42

representations like those analyzed in this paper?" We will

provide some initial answers in the following sections.

4.1 CHARACTERISTICS OF AN EFFECTIVE DESIGN REPRESENTATION

The analysis above is not extensive enough, nor is the data
cich enough, to permit a definitive answer to the question

stated above. What we have learned from our analysis

however is this:

Metacode by itself is not sufficient

Metacode is an excellent representation at the level of
design where we used it. While more abstract statements
make it useful at higher levels where many decisions have

not yet been made, it is not appropriate for the highest

levels where it is not yet known whatrprqgrams there wil{{be
and many of the decisions being made are still at the
functional level. Some representational form other than
pcogram cepresentation is needed aﬁ this highest stage of
formative design where the basic structure of the system and

its components 1is being decided. These higher levels that

we have called design may more appropriately be labeled

P —

SPecéféggtion; While better representations are being

developed for specification of software at various levels
[Bell and Bixler, 1976; Robinson, 1976] they may not be

completely suitable for representing the tentative decisions

Page 43

and design activities that still must take place when

developing more precise specifications.

Uniformity

A representational form capable of representing a design
from the earliest formative stage down to exact
specifications from which actual programs can be constructed
easily and unambiguously would be a powerful tool. We tried
decision statements for the less structured stages of our
project where metacode was not sufficient. While it worked
reasonably well, the gap between it and metacode caused
problems that a uniform representation could have avoided.
There seem to be three possibilities:

- Use metacode throughout since it works so well at the
detailed end of the spectrum.

- Find a representation that works well at high levels
which can be elaborated to a point detailed enough
to permit easy generation of code.
= Find different representations for both ends of the
spectrum that interface better than do programing
language and natural language formats.
We have already indicated our doubts about the first
altecnative. The second alternative involves two things:
14 finding a representational form that fits two rather
different situations == unstructured general decisions and
structured, progcam-specific decisions; 2§ raising the
level at which we c¢an produce code unambiguously. It is
impocrtant to note that the second thing has been done

before, when higher-level languages were developed. Curcent

efforts to rationalize large areas of program content (such

Page 44

as has been done in the case of mathématical and statistical
packagesy offer a good chance of this happening through the
packaging of software components which «can then be
designated by language forms above the level of currcent

high-=level languages.

Uniformity requires something analogous to the graphical
representations wused so successfully by the designers of
physical objects. Yet, even here, we shoﬁld note that
different forms (renderings, blueprints, wiring diagramsd
are used for different stages and diffecenﬁ aspects of the

design.

Fucther, that an architect starts a rendering knowing what
the primary functions and physical constraints are for the
building being designed. This permits him or her to begin
wocking immediately with the structure of the design
(generated by a knowledge of the general structural type

required for a given functionj*. As we build a richer

D D e D D S S) €D VD D D 6 Ca

*Creative architects devise new and interesting designs, of
course, precisely by not following the old pattern. Instead,
they sedarch for new structures that supply the needed functions
or even question whether the stated functions are really those
that are needed. Creative design of this type is often needed,
but in many other <cases it is not. If a designer tries to be
supetr=creative in a situation that does not need it, the customer

pays needliessly.

Page 45

tepectory of software designs and as we learn to specify better
in advance what a system is to do rather than figuring it

out during design, we may be able to start software designs

at a lower level than is often the case now.

As a final comment on alternative 2, we suspect it may be a
graphical form of representation, suitably tailored to the
linear-text format of programming languages. One of the
main things missing from our use of decision statements was
the ability to express relationships, something that a

graphical form does well.

The third alternative is probably the most realistic. Most
of the comments made in connection with alternative 2 apply

here as well.

Conformity to the Design Process

A representation should not drive the design process

gt et
‘W&’Pbpnduly*. The representation should instead conform to the
/

a1V

e £
H

design process so that it captures the information being
generated easily and in a natural mannec. Any design

representation must allow easy refinement of the design as

D R s D o A Ny D G D D

* However, we may choose a representation in some instances
precisely because it will force wus to use a desirable set of

design techniques.

Page 46

well facilitate backup to previous design states when that
is necessary. It must also permit easy comparison to

constraints,

All Those Good Things

Any representation should be clear, easy to use, complete,

accucate and so on. To be useful a design representation

must be understandable by humans. In particular, any new

e

representatlon spould be based on an understandlng of how

people de51gn, choose problemss, propose solutlons,‘ and ’so
on. Thls is not to say that the :epresentatlon should not
be machineable. 1Indeed, it should be so that the mechanical
details can be handled easily Further, as our understanding
of the design process increases then we will be able to
increase our augmentation of the design proccess. For
representations that are to be used primarily by humans,
however, the emphasis must be on making them suitable for
human use. We have assumed the reader is aware of thése

human factors considerations and, thus, have not stressed

them here.

4.2 IMMEDIATE IMPROVEMENTS

While development of an improved representation may take
some time, software designers are still faced with the

problem of representing their designs. On the basis of our'

Page 47

experience with the RTE and other projects and the analysis

we have carried out, we make the following suggestions:

Use Metacode

It provided us a very good working medium and significantly
facilitated coding. There are two extremes in the
statements used in metacode —- completely standardized and
completely up to the individual. Our metacode usage on the

RTE project was probably too free-form. Overstandardization

must be guarded against, however.

View the Problem Correctly

We stacted this papec by arguing that what one is doing is
developing a representation, not just documentation. While
this may seem a subtle distinction, it is clear that viewing
one s task properly significantiy affects success. Thus, we
suggest that you keep in mind when planning a design project
that you must develop a representation of the object, not

just document your design.

3 4? [

frdi
Augment Decision Statements

Decision statements appeac to be useful for capturing much
of what is going on at high 1levels of design. As we
discovered, however, it is necessary to augment them with
structure charts and a certain amount of prose to capture

the information missed by the decision statements.

Page

Concentrating decisions about particular structures and
considering decisions at the same level at the same time

helps to work out the relations between parts and to develop

all that is needed for a given item.

4,3 NEEDED LONG-RANGE DEVELOPMENTS

Our study of this case and our other investidations in the
area of software design make it clear to us that there are a
number of long-range developments that are needed. Among

these are the three general areas outlined below:

Increased Attention to Representation

We feel that the importance of representation has been
undeccated, or at least wunrecognized, in the area of
softwace design. Indeed, it has only been in the past few
years that a genuine recognition has taken place of the role
that programming languages play. We now recognize (at least
an increasing nummber of peopie doy that our choice of
language structures may play an important role in areas of

program development other than just simply speed of coding.

48

Page 49

As the focus of much of the effort of creating software
systems moves up into the design area, we must learn to pay
attention to the representation that is wused from the
earliest stages of a project. .Just as mathematics is an
indispensible representational tool to the engineer in other
areas, we must develop appropriate representational forms

for use in all stages of software development.

Multiplie Representation

One of the clearest lessons we have learned 1is that in
general a single representation is not sufficient for the
cange of tasks encountered in creating software. The
obvious implication is that we must develop representations
for different parts of the task and for different purposes.
Fur ther, we believe that as our understanding of
celiability, protection, modularity and other software
qualities improves, we will find that ~we must have
cepresentations that emphasize these aspects of a system
(just as a plumbing map serves a specialized function for an

architect.

Not only must we develop specialized representations, but we
develop representations and techniques that tie together
into a coherent set the more specialized forms. But, we
must be sure to view this as a long-range task. We should

not try to develop perfect representations immediately, but

Page 50

tathec do the best we can, try the results, and gradually

evolve something better.

Increased Experimentation and Analysis

Subjective analyses and ad hoc development of
representations such as oucs have their place, but it is
clear that in many areas our progress will be greatly
enhanced by more rigocous analysis and experimentation.

Techniques exist for evaluating the human factors aspects of

technology in other areas that can be adapted for use here.

e —

While such techniques do not guarantee better results, and,
indeed, can lead to worse results if improperliy applied, our
curcent approaches to analyzing, under standing, and
improving our technological tools are woefully inadequate.
Improvement in this acea 1is essential for the long-term

success of our endeavors.

[\\" o i@

5.0 CONCLUSION

In this paper and its companion [Freeman, 1976a] we have
presented and analyzed the representation used in the design
of a particular system. Our sole purpose has been to learn

from this experience what we could about the form and use of

Page 51

design representation and to pcesent our analysis of the

situation so that others can learn from it, too.

We have presented our technical conclusions in several
places above. The only thing we would add here is that it
is our belief that thecre is a strong need for other studies
that add to our knowledge of the tools and techniques of

software creation.

6.0 ACKNOWLEDGEMENTS

I am indebted to the members of the Szamok Software
Development Department for their patience in learning and
using the representational forms discussed above: Zoltan
Szekely, Andras Kelen, Sandor Majoros, Sandor Zold, and Mary
Koos=Hutas. Comments from several colleagues and the typing
assitance of Shirley Rasmussen are also gratefully

acknowledged.

Page 52

7.0 REFERENCES

A1, Thomas E. Bell and David C. Bixlier. "A Flow Oriented

A

Requirements Statement Language," Proc. 1976 MRI Symposium,
held at Brooklyn Polytechnic Institute, April, 1976.

2. Stephen H. Caine and E. Kent Gordon. "PDL = A Tool
foc Software Design." Proc. 1975 NCC.

3. F. DeRemer and H. Kron. "PRoOgcr amming=in=the=Large
versus Programming-in-the-Small," Proc. 1975 International

Conference on Reliable Softwace, IEEE Press.

4. Peter Freeman. "Towacrd Improved Review of Software
Designs," Proc. 1975 NCC, AFIPS Press.

5. Peter Freeman. "Software Design Representation: A Case
Study of the RTE Project," TR 80, ICS Dept. U C Irvine,
1976.

6. Petec Freeman. "Software Reliability and Design: A

Sucvey," Proc. 1976 Design Automation Conference, IEEE
Press.
7. Henry C. Lucas. Towacrd Creative System Design,

Columbia University Press, 1974.

8. Clement C. McGowan and John Kelly. Top=Down Structured
Programming Techniques, Petrocelli/Charter, 1975.

9. Lawrence J. Petecs and Leonard VL. Tripp. "Design
Representation Schemes," Proc. 1976 MRI Symposium, held at
Bcooklyn Polytechnic Institute, April 1976.

10. Larcy Robinson. "Specification Techniques for Software
Reliability," Proc. 1976 Design Automation Conference, IEEE
Press.

11. Jean Sammet. Programming Languages: History and
Fundamentals. Prentice-Hall, 1971.

Page

i2. W.P. Stevens, G.J. Myecs, and L.L. Constantine.
"Structured Design," IBM Systems Joucnal 13,2, 1974.

13. Edward Yourdon. Techniques of Program Structure and
Design. Prentice-Hall, 1975.

53

