SOFT'WARE—PRACTICE AND EXPERIENCE, VOL. 9, 821-825 (1979} %

Pascal Stylistics and Reserved Words

’ : ARTHUR SALE
Department of Information Science, University of Tasmania, Hobart, Tasmania, Australia

May 1 disagree strongly with Dr. Bishop’s paper “On publication Pascal” ! published re-
cently in this journal ? It is difficult to pinpoint exactly where we part company, but I was
horrified to read the conclusions: that keywords should be capitalized in Pascal programs
as a preferred style. As it happens, I have been trying to discourage this practice for some
time now. Since it is difficult to put the aiternative case by reference to Dr Bishop’s paper
(I need to question some basic assumptions), I shall start from scratch. '

SHOULD PASCAL KEYWORDS BE DISTINGUISHED IN STYLE?

In brief, my view is that consistently distinguishing keywords by capitalizing them in con-
trast to predominantly lower-case identifiers is an infantile phase that we should have
grown out of. Consider how we write English: we use predominantly lower-case letters,
with first letters of sentences and proper nouns capitalized to mark them, and the occasional
use of capitals for EMPHASIS. We are generally better readers of this style of text than
of any other. Since the readability of Pascal text is high, and it has a small set of special
words which can be easily remembered, there is no good reason for singling out the re-
served words for special treatment. Consequently, I argue that the most desirable style to
standardize is one where reserved words are in lower-case letters and undistinguished from
the rest of the program text. For example:

program mean(input, output);
var
value, sum: real;
count: integer;
begin
sum:=0;

s

1 remember as a child learning to read with some books in which the difficult words (the
new ones I was learning) were picked out in red. I grew out of that a long time ago. The
situation with respect to Pascal reserved words is not much different.

In textbooks intended for people unfamiliar with the language, there is a case for making
minor distinguishing features to assist the learning process. Any such distinguishing of
reserved words must not disrupt the normal flow of reading. For example, the following
distinguishing features may be used, listed in order of preference:

0038-0644/79/1009-0821501.00 Received 16 February 1979
© 1979 by John Wiley & Sons, Ltd.

821

822 po ARTHUR SALE

distinguishing feature €xample

best: boldface/normal while not eof (input) do
underlined/not while not eof(input) do
typeface change while not eof (input) do

In contrast, the style suggested by Dr. Bishop is far too disruptive, This can be secp 10
her examples (8) and (9), and in the same fragment as used above:

WHILE NOT eof (input) DO

Indeed, the disruptive effect of the capitalization €ncourages the eye to mis
fragment in the following way:

WHILE NOT | eof (input) | DO

“parsc the

FROM WHENCE DOES THE PRACTICE DERIVE?

ation is quite different and there is no requirement that the reserved words be speciatly
* singled out. So we end up with either the historical argument that Pascal reserved wor.i,
should be distinguished because Algol basic symbols had to be, or with a circular argunent
Reserved words are distinguished because they are reserved words. . . An alternative Jir.c

their meanings. Accepting this as an argument leads me to wonder why its proponents (..
ot want to distinguish integer ot write in the same way. After all, they too have pre-definc.!
meanings. I draw two conclusions from this: (i} not all that we inheri; from Algol 60 1
good, and (ii) Pascal is not Algol and deserves its own special consideration,

In some of the styles reported by Dr, Bishop, the reserved words are italicized in contrast
to identifiers in normal upright typefaces.] speculate that this curious practice may have
arisen from the commeon printer’s manuscript rules which regard underlining as a command
to italicize, Séme printers, especially those who Set computing manuscripts frequently,
have been trained 1o treat underlining as a request for a bold typeface,

1. This is pleasing. However note that the switching between italics and an upright e
face is slightly distracting, _

2. Irritating, PROGRAM, VAR and BEGIN are not too objectionable since they start
major sections of the program, but DO and NOT do not need this emphasis.

3. Not essentially different from example 1,

4. The keyword distinctions are happily almost unnoticeable: the only jarring feature 1
the use of upper-case letters,

5. See example 4, However the underline facility here is definitely substandard: it rucs
right through the bottom edge of the characters,

6. Again see example 4. Here the ‘overprinting’ only succeeds in making the program
look mucky,

PASCAL STYLISTICS AND RESERVED WORDS 823

7. Despite Dr. Bishop’s remarks, example 7 is more legible than examples 2, 5 and 6.
While lower-case is clearly preferable, if it is ot available we have to take what is.
8. True underlining and good. See remarks on example 4.
9. Less readable than example 8. Sce remarks on example 2.
This analysis differs markedly from that of Dr. Bishop. My criteria are based on read-
ability, hers on the success of distinguishing reserved words.

IS THERE A CASE FOR DISTINGUISHING ANY RESERVED WORDS ?

1 have argued that the set of reserved words in Pascal is sufficiently small that distinguishing
them is not needed, and that such a practice degrades Pascal’s readability for experienced
users. To be fair, there is a sustainable case for distinguishing a few reserved words, deriving
from a wish to be able to scan a program quickly for salient features. Visual cues can help
in this process. Probably the main keywords in this class are procedure, function, label,
const, type, var and an opening begin. A case might also be made for end, else and until.

While the argument is a valid one, it is not very strong. Other visual cues are much more
effective, as can be seen by the effective use of indentation in Bishop’s examples 8 and 9.
Examples 6 and 7, by contrast, are poor.

COMMENTS

But the question of scanning program text raises a much more important point which 1
believe to be comparatively neglected: the treatment of comments. When I attempt to read
2 program as a string of syntactic symbols, comments are a disruptive influence. I want to
ignore them, and concentrate on the next lexical token. On other occasions, the comments
are of prime importance-and I want to read them in preference to the program text,

I have always distinguished comments from program text, even way back in the days
when I had to write in Fortran (circa 1964). There my technique was to link the leading C
of 2 comment with its text by a string of ‘~’. Scanning down the usually sparsely filled left
edge of the program gave me ample visual cueing after a bit of practice. Example:

Cemme- SCAN TABLE FOR A MATCH

J=TMAX
T(1)=VALUE
C-----WHILE CURRENT ELEMENT NOT = VALUE, COUNT DOWN
230 IF (T(J) .EQ. VALUE) GOTO 231
J=]-1
GOTO 230
C-----SINCE T(1) HAS THE VALUE WANTED, LOOP ALWAYS STOPS
C-----AND AT THIS POINT J IS THE INDEX OF THE MATCHED ELEMENT

231 IF (J.NE.1)...

Now, in preparing Pascal programs for publication, I still prefer to distinguish comments
more strongly than keywords, because they are for human consumption, and not for the
machine. I do this by italicizing commentary; a good example is my recent paper on dis-
ciplined programming.® It is important to realize that preparing papers and programs for
publication is not a task to be taken lightly; still Jess are textbooks with poor stylistics to be
tolerated. In fact, in the paper referred to above, the printer was supplied with a full page
of special instructions on typesetting, and to achieve the results we wanted we had to re-
paste up galley proofs to avoid splitting program text across page or column boundaries.
An example will illustrate what I mean, so here is the Fortran fragment recast into Pascal:

824 ARTHUR SALE

{Scan downwards looking for a match}”

index: = lastusedindex;

table [1] key: =searchvalue;

while (table [index] .key < » searchvalue) do begin
index: =index-1 :

end;

sentinel. At this point indes poinis to the record Sound.}
if (index < » 1) then begin , . ,

Of course, part of Dr. Bishop’s letter addresses the presentation of program fragments in
text, not simply the layout of programs themselves. I ignored this deliberately in the first
part of the response so a5 to bring out the issues ag separable. Programs in text must be

full set of italicized characters including digits, operators, etc,
- For referring to program objects within text, Dr. Bishop remarks that it is scldom neces-
sary to distinguish identifiers or reserved words. I agree. When it is, then we have the
whole gamut of conventional techniques ready for use, Underlining reserved words is.a
possibility ingrained from long habit, but italicizing them as well as identifiers is probably
better and more consistent. Compare:

The word fly is used to denote powered progress through the air, in contrast to glide

which is unpowered,

The variable ¢ is used to hold a lower bound, and moving indicates the direction of scan.

A PREFERRED STANDARD FOR PUBLICATION PASCAL

1. Pascal reserved words and identifiers should be typed or printed in the same typeface:
all upright or all italics,

2. If lower-case letters are available, they should be preferred, especially for typewritten
and typeset programs, Limited usc of capitals for emphasis or readability is permitted,

4. In typewritten or typeset programs the distinguishing of commentary from program
tokens by the use of an italic typeface is acceptable, but not mandatory, -

5. When appearing in prose text, programs and program fragments should pe visually
set off from the prose by hne spacing and indentation s as to mark the switches
between discursive text and formal text.

6. When referring to reserved words and identifiers in prose text, it is not always neces.
Sary to distinguish these from the prose, When it is, italicization is the preferred
method for both reserved words and identifiers, When an italic typeface is not avail-
able, underlining may be substituted. Enclosing within quotes is not recommended.

PASCAL STYLISTICS AND RESERVED WORDS 825

IN CONCLUSION

"I'he preferred standard set out above matches up well with reality. It can be applied to
program listings (the output from compilers for example) as easily as to typeset material.
We seem to be winning the battle for line printers and terminals with both cases of letters,
but few devices can handle more than one type fount. The style suggested by Dr. Bishops’
paper is thercfore impractical for common use. Some of the other notions which have
surfaced in textbooks are curious in the extreme; for example, the notion of ‘overprinting’
on a quality device with good registration is just silly.

I rcalize that this paper has avoided the issue of what place capitals do have in pro-
gramming, This is deliberate, for it is intended to focus on one major issue: the distin-
guishing of reserved words, which I think makes programs even less readable than the all-
upper-case style. The best I can do is to promise another polemic to follow this one, on good
uses of capitals.

REFERENCES

1. J. M. Bishop, ‘On Publication Pascal’, Software—Practice and Experience, 9, No, 9, T11-717 (1979).
2. C. Lakos and A. H.]. Sale, ‘Is disciplined programming transferable, and is it insightful ?*, Australian
Computer Journal, 10 (3), 87-97 (1978).

