
5'^L-.,.'\.s,i *-* S- FÆ çl

BC/ww 5.8.1983

Experience with remote procedure cal"ls in a qqql-time cottqr!! ty_q!em

B.E. Carpenter and R. Cailliau
CERN

CH - 1211 Geneva 23, SwiLzerland

Summary

This paper decscribes several years' practical experience with remote procedure

calls as a primary tool for application software in a large and complex

distributed real-time process control system. We motivate the use of remote

procedure calls as an effective technique for the use of local area networks,

describe our implementation, and discuss its advantages and disadvantages.

Key words remote procedure calI,
distributed computing,

Local area network,

process control.



1

Introduction

In 1976, it was decided to implement a distributed real-time computer control
system for the 28 GeV Proton Synchrotron aceelerator, and severaL associated
devices, at CERN, the European Laboratory for Particle Physics, in Geneva'r",
Upon evaluation, this project proved to require a local area network containing
about twenty 16-bit minicomputers, in addition to microprocessors, and to
involve at least B0 person-years of applications software. The ease with whieh

application programmers could exploit the network therefore became a key issue
in the design of system software.

An important characteristic of the system is the fact that eertain computers

those controlling particular pieces of
whereas others - those controlling the

synehrot ron hardware - are speeialised

and identical. Application programs must embed and reflect this structure.

Conventional local networks offer essentially only two flacilities to real-time
application programmers: remote file operations, and task-to-task communication
(message passing). In many networks, remote file operations are limited to the
complete transfer of a file between computers, not allowing access to individual
records. Consider the options open to a programmer required to implement one or
more programs to:

operat ors I consol-es - are oeneraL -purDose

with an operator through any one of several general-purpose
(each with its own computer)

1 ) interaet
consoles

and 2) throughout the interaction, make calls to specialised device drivers
(controlling, sayr power supplies for large eLectromagnets) in
several specific specialised computers

and 3) throughout the inLeraction, give immediaLe feedback to the operator.

It should be noted that with a few substitutions, this requirement
very wide variety of distributed computing problems, for example

data bases or distributed mail systems.

describes'a,

di sL ributed



2

The programmer, then, conventionally has only two tools
the requirements: remote files and task-to-task
implementations are:

with which to
messages.

satisfy
Typical

1 ) implement a task in each computer invorved; design task-to-task
communications sequences between the interactive task and each of the
other tasks (which in turn communicate with device drivers)

of

or 7) agree with all past and future programmers about details of
task-to-task messages, and collectively write very general tasks for
each eomputer (i.e. subsume the requirements of each individual
application into a general seheme).

These methods are eomplex, cumbersome and inflexible. Exeept in the first
the work of various programmers is closely coupled, a fundamental error in
Iarge system involvingr say, 50 programmers over the years.

2) use remote

specialised
computer to
drivers

file access to modify and read back data in each
computerl ensure that tasks run regularly in each

move data between the files concerned and the device

one,

any

Remote p rocedure caLl

Remote procedure calls (RpC) have been discussed recently in the literature
largely in the context of distributed operating systems tru,ur'r". The basic
principle of an RPC is that a procedure call (with its parameters) is
intercepted and instead of being executed in the same computer, it is
transmitted to another computer for execution. Meanwhile, the user program is
blocked at the point of call. When the procedure ends, in the remote computer,
the return (with it.s parameters) is also intercepted and Lransmitted back to the
calling computer. At t.his time, the user program is unbLocked and continues as
if the eall had been executed locally.



t

ïhis process, in an ideal situation, is transparent to the user program

for a real-time delay). Indeed, in the "NewcastLe connection"3,
transparency has been aehieved by adroit use of the UNIX naming scheme,

the other hand only operating system calls are handLed by RPC.

(except

total
but on

In the implementation described here, where application programs must control
real hardware which has a given geographical location, an RPC is transparent to
the application programmer except that the remote computer must be identified
explicitly. Ïhis is supported by the syntax of P*, our primary programming

language for applications in the control system 7. Thus, to call a device driver
for an eLectromagnet power supply one statement is required:

cPS & POv'l(V,WFLAG,N,CCV,3,STATUS) ;

Executed in any eomputer in the network, this causes a call to procedure POW in
Lhe computer whose identifier is CPS. The details of the parameters of POW are
irrelevant; they are shown in order to make the example completely realistic.

It is cLear that the design and implementation of the distributed interactive
applieation described above is dramatically simplified by the avaitability of an

RPC facility. The programmer writes a single task which interacts with the
operator and calls device drivers as it needs to. At run time, execution
switches automatically between computers as required. Application programs are

conceptually simplified, and largely decoupled from one anot.her.

ImplemenL ation

An RPC facility has three essential- phases:

1 ) provision of an RPC protocol

2) provision of a convenient interface to each programming language in
use

3) provision of an initial set of remote procedures.



4

We now describe our implementation of each of these phases.

eP! prctecsl

For managerial reasons, and because of performance constraints, our system uses
a loca.L-area network developed during 1974-75 for control of another CERN

accelerator, the 400 GeV Super Proton Synchrotron It is a special-purpose
packet-switched network with a star topology, giving extremely high performance
(end-to-end packet transmission time is 5 to 7 msec). 0n the other hand, its
high-level protocols are essentially limited to file transfer and remote
execution of interpretive code; task-to-task communication is not provided.

The remote execution protocol requires some comment. The network was originally
developed for control of a rel-atively slow device - the 400 GeV synchrotron is
pulsed at a rate of once about every ten seconds. For this reason, a pure source
code interpreter could be used without crippling the performance of application
programs. Like the network, the interpretive language, N0DAL 9, was developed
specially for CERN. The programmer requests remote execution of part of his
program by use of specialised syntax described in the refer"n""" 819, and then
this part of his source program is transmitted, in ASCII code, to a server in
the remote eomputer. This server is itself a copy of the interpreter which
receives and interpretively executes the transmitted source code. Specialised
syntax is also provided to remit results back to the calling program. The

network provides an access method for both the ealling interpreter and the
server to support these transactions. Thus an application programmer wishing to
call a power-supply driver remotely will write, for example,

1.1 EXEC(CPS)1O V WFLAG N CCV STATUS

WAI T (CPS )1.2

10 .1

10.2

POl,'l(v,WFLAG,N, CCV, I, STATUS )

REMIT STATUS



5

(Note: some syntactic details have been omitted or simplified in this example to
clarify the exposition. Line 1.1 causes lines 10.1 and 10.2 to be transmitted,
with several variables, for remote interpretation. )

The relative complexity and proneness to programming errors of this sequenee
should be contrasted with the simplieity of the preceding single statement in
P*, which achieves the same effect.

This interpretive remote execution protocol, available to us as part of the
network, was used as the basis for our RPC protocol. An access routine named REM

was coded in low-level language. REM accepts a run-time call descriptor, encodes
the descriptor in inLerpretive code, and uses the network access method. The
intepretive code is essentially identical to the two ]ines above numberecj 1û.1
and 10-2; REM directly simulates the network calls made by lines 1.1 and 1.2.

The network access method, when used by REM, transmits a datagram whieh contains
the necessary interpretive code in ASCII, plus binary values of the parameters.
After interpretation by the server - consisting of a single procedure caII - the
result parameters (if any) are returned as another datagram to REM, which in
turn passes them back to the calling program. The remote server is unaware that
the call was generated by REM: it simply receives and interprets a small piece
of source code (plus variables).

Thus, in the context of a network already supporting remote interpretation,
implementation of an RPC protocol as such was reduced to about 400 lines of
assembly programming (excluding comments). The time overhead for a null RpC is
about 20 mseer of which some 15 msec are spent in the network hardware and
software, and the remainder in the interpreter (tne execution time of the REM

routine itself is negligible). An additional 4 msec of overhead is caused by
each actual parameter.



6

Interfaces to Pregramm].ng

For practical reasonsr application programs in our system are coded in one of
three compiled languages, not considering the interpreter which is too slow for
general use' the pulse time of the 28 GeV synchrotron being about one second.
The three languages are P+ ("u"7), PASCAL and NORD-PL, the computer
manufacturerrs machine-oriented language 10. The RPC access routine, REM,

requires a run-time descriptor which may be described in extended BNF by:

(descriptor): :=(procedure name)(computer number)

{<t"q> [(size) ](reference) ] (end tag)

where (procedure name) is the name, in ASCII, of the remote
procedure

(computer number) is the logical number of the remote computer
(tag) is encoded to indicate

- parameter type (word, real, string, word array, real
array )

- parameter mode (read-only, read-write, write-only)
(size) indieates the size of array parameters
(reference) is the address of the aetual parameter
(end tag) indicates the end of the descriptor.

indicates an optional item

indicates repetition zero or more times

Note that abstract data types are mapped onto one of the parameter types
mentioned above, whieh are the only ones directly supported by the interpreter.

For l-ow-l-evel application programs in N0RD-PL, the programmer must provide this
descriptor explicitly; this is simplified by pre-declared mnemonics and macros.
In Pascal, a local compiler extension allows the programmer to write, for
example,

FLAG : =WFLAG i P : =ffY ;L z =3 ;

R[M0TE('pOfV"Cps,R0 V,R0 FLAG, R0 N, R0 p, R0 L, W0 STATUS);

I
J

l
I

{



7

0nly variables are allowed as the actual parameters,

several- preliminary assignments. R0 and W0 indicate
respectively.

whence the necessity for
read-only and write-only

Provision of remote

In P+, the RPC reduces to the single statement given above :

cPS & pOvll(v,WFLAG,N,CCV,I,STATUS),

The extended Pascal compiler, and the P+ compiler, both produce code to generate

a descriptor in the above format and a call to REM. The cost of these two
compiler features was one or two person-months each.

Ïhe convenience and useful-ness of an RPC protocol obviously depends on the
provision of a full set of remote procedures to be accessed by RPC. In our case,
these procedures fall into four cLases:

- genepal system routines (u.g. start a task, store in a mailbox)
device driver routines, known as 'equipment modules', (".g. p0ltl as
mentioned above)

- routines for specific groups of applications programs.

- routines which are an integral part of a single distributed program

Such routines are written to conform to a set of interface rules for
compatibility between interpretive and compiled cal1s, and may be coded in
low-l-evel language or in P+. The principle restrictions imposed on them (due to
the compatibility ru.Les and to the network) are :

- certain esoteric parameter types impossible (e.g. variants)
- not more than B actual parameters whose combined size is

less than 1 Kbyte

- 'procedure name unambiguous in first 6 characters

- execution time limited to 2 eLapsed seconds.

somewhat



B

Practical Experience

Some 400 remote procedures have been implemented in our system during the period
1979'1983, essentially all of which are in frequent use. Most of these routines
have been coded by part-time or full-time application programmers, rather than
by system specialists.

Some 150 compiled apptication programs (i.e. not counting interpreter code) have

been implemented during the same period, all by application proqrammers,

accelerator scientists, or technicians; they aII rely on RPCs for use of the
network.

Although precise statistics are not available, approximate measurements show

that on average, round the cl-ock and throughout the year, at leasL 5 RPCs are
executed per second somewhere in the network, representing a total of about

5 x 108 remote procedure calls since the network went on-l-ine in 0ctober 1980.

These figures speak for themseLves: RPC has become one of the most fundamental
tool-s for our application programmers, and probably the most eost-effective tool
in terms of implementation effort. Any programmer may provide a general facility
by coding it as a remote procedure. Any programmer may use such a procedure, in
a program running on any computer, without particular knowledge of the network
and without coding multiple tasks. In cases where multiple tasks are needed for
other reasonsr t.hey typically communicate via mailbox routines caIled either
locally or remotely: the design of the tasks is hardly affected by their
distribution accross the network.

Clearly, the RPC facility has some disadvantages in practice. Principally, these
are due to the restrictions mentioned above - restriction on parameter types,
numbers and sizel restricted length of names; and above all limited execution
time. The latter is due to timeouts inherent in the network protocolsS, which

lack end-to-end flow control and therefore impose timeouts to avoid emptying the
buffer pools. The direct consequence of this problem is that network timeouts



9

must be treated as normaL, expected events by application programmers and remote
calls tend to be followed in arJ. programs by statements such as

IF IOERROR=TIMEOUT THEN...

A disadvantage of our present implementation is that if a remote procedure
generates a fatal run-time error during debugging, the RPC server will be
aborted: no further RPCs may then be executed in the computer concerned, and

fatal network protocol errors may also occur. It is undesirable to automatically
restart the server, because this leads to the loss of debugging information.

Finallyr one or two applications programs with special requirements are
constrained by the fact that the calling program is blocked for at least 20 msec

during RPC execution. It is clear that the AdaII rendezvous mechanism, in a

distributed implementation, overcornes this constraint, but is probably more

expensive and complex to implement than RpC.

ConcLusions

Our four yearsr experienee with remote procedure calls as a tool for a large
team of real-time application programmers has been extremely positive. We intend
to continue the use of RPC and to extend its domain of application to incLude
many microprocessors. Apart from improvements in the underlying local area
networkr wê intend to overcome some of the disadvantages of the preset
implementation by introducing a dedicated RPC server capable of more efficient
and less restricted interpretation of RPC datagrams.

Acknowledqements

We would

leader B.

like to thank our many colleagues, and in particular our
Kuiper, for help, encouragement and useful criticism.

project



t
10-

improvement project for the CPS controlsr', IEEE

3272 ueTe).

f

Referenees
t) B. Kuiper et al,

Trans. Nucl. Sci.

t'The

NS-26

)
2

3

B. Carpenter, A. Daneels and F. Perriollat, "The planned replacement of a

functioning control system", IEE Conf. rrTrends in on-line computer

control systemsr' , 1979.

D.R. Brownbridge, L.F. Marshall and B. Randell, "The Newcastle

Connection", Software Practice and Experience 12 1147-162 (1982).

4
)

)
5

6

7

F. Panzieri and S.K. Shrivastava, "ReIiable
UNIX", Proc. Znd Symposium on reliability
database systems, JuIy 1982.

remote calls for distributed
in distributed software and

experience with the

Computing Symposium,

G.R. Andrews and F.B. Schneider "Concepts and Notations for Concurrent

Programmingt', Computing Surveys 15 t-43 (983).

"Courier, the remote procedure call- protocol", XSIS 078112, Xerox

Corporation, 1981.
)

) I. Killner, "Ear1y
ACM International

I J. Altaber, "Real-time network for the control of a very large machiner',

IEEE Conf. "Computer Network trends and applications", 1976.

,) M.C. Crowley-Milling & G.

7B-O7, Geneva, 1978.

Sheringr 'rThe Noda1 system for the SPS", CERN

to) 
"NORD-PL Userrs Guiderr, ND-60.o47.o3, Norsk-Data A.S., Oslo, 1976.

J.D.A. Ichbiah et al, "Reference Manua1 for the Ada Programming

Language", ANSï MIL-STD 1815A, Castle House Publications, London, 1983.

B.J. Nelson, 'rRemote Procedure Callrr, Ph.D Thesis, CSL-81-9, X[R0X

Corporation, 1981.

R. Cailliau, B. Carpenter,

programming language P*",
Nûrnberg, Mareh 198t.

)

t t)

,r)


